mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 12:42:02 +00:00
c2fc6b6947
The DT of_device.h and of_platform.h date back to the separate of_platform_bus_type before it was merged into the regular platform bus. As part of that merge prepping Arm DT support 13 years ago, they "temporarily" include each other. They also include platform_device.h and of.h. As a result, there's a pretty much random mix of those include files used throughout the tree. In order to detangle these headers and replace the implicit includes with struct declarations, users need to explicitly include the correct includes. Signed-off-by: Rob Herring <robh@kernel.org> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Heiko Stuebner <heiko@sntech.de> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20230714174751.4060439-1-robh@kernel.org
879 lines
23 KiB
C
879 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Support for Macronix external hardware ECC engine for NAND devices, also
|
|
* called DPE for Data Processing Engine.
|
|
*
|
|
* Copyright © 2019 Macronix
|
|
* Author: Miquel Raynal <miquel.raynal@bootlin.com>
|
|
*/
|
|
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/nand-ecc-mxic.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
|
|
/* DPE Configuration */
|
|
#define DP_CONFIG 0x00
|
|
#define ECC_EN BIT(0)
|
|
#define ECC_TYP(idx) (((idx) << 3) & GENMASK(6, 3))
|
|
/* DPE Interrupt Status */
|
|
#define INTRPT_STS 0x04
|
|
#define TRANS_CMPLT BIT(0)
|
|
#define SDMA_MAIN BIT(1)
|
|
#define SDMA_SPARE BIT(2)
|
|
#define ECC_ERR BIT(3)
|
|
#define TO_SPARE BIT(4)
|
|
#define TO_MAIN BIT(5)
|
|
/* DPE Interrupt Status Enable */
|
|
#define INTRPT_STS_EN 0x08
|
|
/* DPE Interrupt Signal Enable */
|
|
#define INTRPT_SIG_EN 0x0C
|
|
/* Host Controller Configuration */
|
|
#define HC_CONFIG 0x10
|
|
#define DEV2MEM 0 /* TRANS_TYP_DMA in the spec */
|
|
#define MEM2MEM BIT(4) /* TRANS_TYP_IO in the spec */
|
|
#define MAPPING BIT(5) /* TRANS_TYP_MAPPING in the spec */
|
|
#define ECC_PACKED 0 /* LAYOUT_TYP_INTEGRATED in the spec */
|
|
#define ECC_INTERLEAVED BIT(2) /* LAYOUT_TYP_DISTRIBUTED in the spec */
|
|
#define BURST_TYP_FIXED 0
|
|
#define BURST_TYP_INCREASING BIT(0)
|
|
/* Host Controller Slave Address */
|
|
#define HC_SLV_ADDR 0x14
|
|
/* ECC Chunk Size */
|
|
#define CHUNK_SIZE 0x20
|
|
/* Main Data Size */
|
|
#define MAIN_SIZE 0x24
|
|
/* Spare Data Size */
|
|
#define SPARE_SIZE 0x28
|
|
#define META_SZ(reg) ((reg) & GENMASK(7, 0))
|
|
#define PARITY_SZ(reg) (((reg) & GENMASK(15, 8)) >> 8)
|
|
#define RSV_SZ(reg) (((reg) & GENMASK(23, 16)) >> 16)
|
|
#define SPARE_SZ(reg) ((reg) >> 24)
|
|
/* ECC Chunk Count */
|
|
#define CHUNK_CNT 0x30
|
|
/* SDMA Control */
|
|
#define SDMA_CTRL 0x40
|
|
#define WRITE_NAND 0
|
|
#define READ_NAND BIT(1)
|
|
#define CONT_NAND BIT(29)
|
|
#define CONT_SYSM BIT(30) /* Continue System Memory? */
|
|
#define SDMA_STRT BIT(31)
|
|
/* SDMA Address of Main Data */
|
|
#define SDMA_MAIN_ADDR 0x44
|
|
/* SDMA Address of Spare Data */
|
|
#define SDMA_SPARE_ADDR 0x48
|
|
/* DPE Version Number */
|
|
#define DP_VER 0xD0
|
|
#define DP_VER_OFFSET 16
|
|
|
|
/* Status bytes between each chunk of spare data */
|
|
#define STAT_BYTES 4
|
|
#define NO_ERR 0x00
|
|
#define MAX_CORR_ERR 0x28
|
|
#define UNCORR_ERR 0xFE
|
|
#define ERASED_CHUNK 0xFF
|
|
|
|
struct mxic_ecc_engine {
|
|
struct device *dev;
|
|
void __iomem *regs;
|
|
int irq;
|
|
struct completion complete;
|
|
struct nand_ecc_engine external_engine;
|
|
struct nand_ecc_engine pipelined_engine;
|
|
struct mutex lock;
|
|
};
|
|
|
|
struct mxic_ecc_ctx {
|
|
/* ECC machinery */
|
|
unsigned int data_step_sz;
|
|
unsigned int oob_step_sz;
|
|
unsigned int parity_sz;
|
|
unsigned int meta_sz;
|
|
u8 *status;
|
|
int steps;
|
|
|
|
/* DMA boilerplate */
|
|
struct nand_ecc_req_tweak_ctx req_ctx;
|
|
u8 *oobwithstat;
|
|
struct scatterlist sg[2];
|
|
struct nand_page_io_req *req;
|
|
unsigned int pageoffs;
|
|
};
|
|
|
|
static struct mxic_ecc_engine *ext_ecc_eng_to_mxic(struct nand_ecc_engine *eng)
|
|
{
|
|
return container_of(eng, struct mxic_ecc_engine, external_engine);
|
|
}
|
|
|
|
static struct mxic_ecc_engine *pip_ecc_eng_to_mxic(struct nand_ecc_engine *eng)
|
|
{
|
|
return container_of(eng, struct mxic_ecc_engine, pipelined_engine);
|
|
}
|
|
|
|
static struct mxic_ecc_engine *nand_to_mxic(struct nand_device *nand)
|
|
{
|
|
struct nand_ecc_engine *eng = nand->ecc.engine;
|
|
|
|
if (eng->integration == NAND_ECC_ENGINE_INTEGRATION_EXTERNAL)
|
|
return ext_ecc_eng_to_mxic(eng);
|
|
else
|
|
return pip_ecc_eng_to_mxic(eng);
|
|
}
|
|
|
|
static int mxic_ecc_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_device *nand = mtd_to_nanddev(mtd);
|
|
struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
|
|
|
|
if (section < 0 || section >= ctx->steps)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = (section * ctx->oob_step_sz) + ctx->meta_sz;
|
|
oobregion->length = ctx->parity_sz;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mxic_ecc_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_device *nand = mtd_to_nanddev(mtd);
|
|
struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
|
|
|
|
if (section < 0 || section >= ctx->steps)
|
|
return -ERANGE;
|
|
|
|
if (!section) {
|
|
oobregion->offset = 2;
|
|
oobregion->length = ctx->meta_sz - 2;
|
|
} else {
|
|
oobregion->offset = section * ctx->oob_step_sz;
|
|
oobregion->length = ctx->meta_sz;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops mxic_ecc_ooblayout_ops = {
|
|
.ecc = mxic_ecc_ooblayout_ecc,
|
|
.free = mxic_ecc_ooblayout_free,
|
|
};
|
|
|
|
static void mxic_ecc_disable_engine(struct mxic_ecc_engine *mxic)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = readl(mxic->regs + DP_CONFIG);
|
|
reg &= ~ECC_EN;
|
|
writel(reg, mxic->regs + DP_CONFIG);
|
|
}
|
|
|
|
static void mxic_ecc_enable_engine(struct mxic_ecc_engine *mxic)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = readl(mxic->regs + DP_CONFIG);
|
|
reg |= ECC_EN;
|
|
writel(reg, mxic->regs + DP_CONFIG);
|
|
}
|
|
|
|
static void mxic_ecc_disable_int(struct mxic_ecc_engine *mxic)
|
|
{
|
|
writel(0, mxic->regs + INTRPT_SIG_EN);
|
|
}
|
|
|
|
static void mxic_ecc_enable_int(struct mxic_ecc_engine *mxic)
|
|
{
|
|
writel(TRANS_CMPLT, mxic->regs + INTRPT_SIG_EN);
|
|
}
|
|
|
|
static irqreturn_t mxic_ecc_isr(int irq, void *dev_id)
|
|
{
|
|
struct mxic_ecc_engine *mxic = dev_id;
|
|
u32 sts;
|
|
|
|
sts = readl(mxic->regs + INTRPT_STS);
|
|
if (!sts)
|
|
return IRQ_NONE;
|
|
|
|
if (sts & TRANS_CMPLT)
|
|
complete(&mxic->complete);
|
|
|
|
writel(sts, mxic->regs + INTRPT_STS);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int mxic_ecc_init_ctx(struct nand_device *nand, struct device *dev)
|
|
{
|
|
struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
|
|
struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
|
|
struct nand_ecc_props *reqs = &nand->ecc.requirements;
|
|
struct nand_ecc_props *user = &nand->ecc.user_conf;
|
|
struct mtd_info *mtd = nanddev_to_mtd(nand);
|
|
int step_size = 0, strength = 0, desired_correction = 0, steps, idx;
|
|
static const int possible_strength[] = {4, 8, 40, 48};
|
|
static const int spare_size[] = {32, 32, 96, 96};
|
|
struct mxic_ecc_ctx *ctx;
|
|
u32 spare_reg;
|
|
int ret;
|
|
|
|
ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
|
|
nand->ecc.ctx.priv = ctx;
|
|
|
|
/* Only large page NAND chips may use BCH */
|
|
if (mtd->oobsize < 64) {
|
|
pr_err("BCH cannot be used with small page NAND chips\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
mtd_set_ooblayout(mtd, &mxic_ecc_ooblayout_ops);
|
|
|
|
/* Enable all status bits */
|
|
writel(TRANS_CMPLT | SDMA_MAIN | SDMA_SPARE | ECC_ERR |
|
|
TO_SPARE | TO_MAIN, mxic->regs + INTRPT_STS_EN);
|
|
|
|
/* Configure the correction depending on the NAND device topology */
|
|
if (user->step_size && user->strength) {
|
|
step_size = user->step_size;
|
|
strength = user->strength;
|
|
} else if (reqs->step_size && reqs->strength) {
|
|
step_size = reqs->step_size;
|
|
strength = reqs->strength;
|
|
}
|
|
|
|
if (step_size && strength) {
|
|
steps = mtd->writesize / step_size;
|
|
desired_correction = steps * strength;
|
|
}
|
|
|
|
/* Step size is fixed to 1kiB, strength may vary (4 possible values) */
|
|
conf->step_size = SZ_1K;
|
|
steps = mtd->writesize / conf->step_size;
|
|
|
|
ctx->status = devm_kzalloc(dev, steps * sizeof(u8), GFP_KERNEL);
|
|
if (!ctx->status)
|
|
return -ENOMEM;
|
|
|
|
if (desired_correction) {
|
|
strength = desired_correction / steps;
|
|
|
|
for (idx = 0; idx < ARRAY_SIZE(possible_strength); idx++)
|
|
if (possible_strength[idx] >= strength)
|
|
break;
|
|
|
|
idx = min_t(unsigned int, idx,
|
|
ARRAY_SIZE(possible_strength) - 1);
|
|
} else {
|
|
/* Missing data, maximize the correction */
|
|
idx = ARRAY_SIZE(possible_strength) - 1;
|
|
}
|
|
|
|
/* Tune the selected strength until it fits in the OOB area */
|
|
for (; idx >= 0; idx--) {
|
|
if (spare_size[idx] * steps <= mtd->oobsize)
|
|
break;
|
|
}
|
|
|
|
/* This engine cannot be used with this NAND device */
|
|
if (idx < 0)
|
|
return -EINVAL;
|
|
|
|
/* Configure the engine for the desired strength */
|
|
writel(ECC_TYP(idx), mxic->regs + DP_CONFIG);
|
|
conf->strength = possible_strength[idx];
|
|
spare_reg = readl(mxic->regs + SPARE_SIZE);
|
|
|
|
ctx->steps = steps;
|
|
ctx->data_step_sz = mtd->writesize / steps;
|
|
ctx->oob_step_sz = mtd->oobsize / steps;
|
|
ctx->parity_sz = PARITY_SZ(spare_reg);
|
|
ctx->meta_sz = META_SZ(spare_reg);
|
|
|
|
/* Ensure buffers will contain enough bytes to store the STAT_BYTES */
|
|
ctx->req_ctx.oob_buffer_size = nanddev_per_page_oobsize(nand) +
|
|
(ctx->steps * STAT_BYTES);
|
|
ret = nand_ecc_init_req_tweaking(&ctx->req_ctx, nand);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ctx->oobwithstat = kmalloc(mtd->oobsize + (ctx->steps * STAT_BYTES),
|
|
GFP_KERNEL);
|
|
if (!ctx->oobwithstat) {
|
|
ret = -ENOMEM;
|
|
goto cleanup_req_tweak;
|
|
}
|
|
|
|
sg_init_table(ctx->sg, 2);
|
|
|
|
/* Configuration dump and sanity checks */
|
|
dev_err(dev, "DPE version number: %d\n",
|
|
readl(mxic->regs + DP_VER) >> DP_VER_OFFSET);
|
|
dev_err(dev, "Chunk size: %d\n", readl(mxic->regs + CHUNK_SIZE));
|
|
dev_err(dev, "Main size: %d\n", readl(mxic->regs + MAIN_SIZE));
|
|
dev_err(dev, "Spare size: %d\n", SPARE_SZ(spare_reg));
|
|
dev_err(dev, "Rsv size: %ld\n", RSV_SZ(spare_reg));
|
|
dev_err(dev, "Parity size: %d\n", ctx->parity_sz);
|
|
dev_err(dev, "Meta size: %d\n", ctx->meta_sz);
|
|
|
|
if ((ctx->meta_sz + ctx->parity_sz + RSV_SZ(spare_reg)) !=
|
|
SPARE_SZ(spare_reg)) {
|
|
dev_err(dev, "Wrong OOB configuration: %d + %d + %ld != %d\n",
|
|
ctx->meta_sz, ctx->parity_sz, RSV_SZ(spare_reg),
|
|
SPARE_SZ(spare_reg));
|
|
ret = -EINVAL;
|
|
goto free_oobwithstat;
|
|
}
|
|
|
|
if (ctx->oob_step_sz != SPARE_SZ(spare_reg)) {
|
|
dev_err(dev, "Wrong OOB configuration: %d != %d\n",
|
|
ctx->oob_step_sz, SPARE_SZ(spare_reg));
|
|
ret = -EINVAL;
|
|
goto free_oobwithstat;
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_oobwithstat:
|
|
kfree(ctx->oobwithstat);
|
|
cleanup_req_tweak:
|
|
nand_ecc_cleanup_req_tweaking(&ctx->req_ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mxic_ecc_init_ctx_external(struct nand_device *nand)
|
|
{
|
|
struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
|
|
struct device *dev = nand->ecc.engine->dev;
|
|
int ret;
|
|
|
|
dev_info(dev, "Macronix ECC engine in external mode\n");
|
|
|
|
ret = mxic_ecc_init_ctx(nand, dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Trigger each step manually */
|
|
writel(1, mxic->regs + CHUNK_CNT);
|
|
writel(BURST_TYP_INCREASING | ECC_PACKED | MEM2MEM,
|
|
mxic->regs + HC_CONFIG);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mxic_ecc_init_ctx_pipelined(struct nand_device *nand)
|
|
{
|
|
struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
|
|
struct mxic_ecc_ctx *ctx;
|
|
struct device *dev;
|
|
int ret;
|
|
|
|
dev = nand_ecc_get_engine_dev(nand->ecc.engine->dev);
|
|
if (!dev)
|
|
return -EINVAL;
|
|
|
|
dev_info(dev, "Macronix ECC engine in pipelined/mapping mode\n");
|
|
|
|
ret = mxic_ecc_init_ctx(nand, dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ctx = nand_to_ecc_ctx(nand);
|
|
|
|
/* All steps should be handled in one go directly by the internal DMA */
|
|
writel(ctx->steps, mxic->regs + CHUNK_CNT);
|
|
|
|
/*
|
|
* Interleaved ECC scheme cannot be used otherwise factory bad block
|
|
* markers would be lost. A packed layout is mandatory.
|
|
*/
|
|
writel(BURST_TYP_INCREASING | ECC_PACKED | MAPPING,
|
|
mxic->regs + HC_CONFIG);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mxic_ecc_cleanup_ctx(struct nand_device *nand)
|
|
{
|
|
struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
|
|
|
|
if (ctx) {
|
|
nand_ecc_cleanup_req_tweaking(&ctx->req_ctx);
|
|
kfree(ctx->oobwithstat);
|
|
}
|
|
}
|
|
|
|
static int mxic_ecc_data_xfer_wait_for_completion(struct mxic_ecc_engine *mxic)
|
|
{
|
|
u32 val;
|
|
int ret;
|
|
|
|
if (mxic->irq) {
|
|
reinit_completion(&mxic->complete);
|
|
mxic_ecc_enable_int(mxic);
|
|
ret = wait_for_completion_timeout(&mxic->complete,
|
|
msecs_to_jiffies(1000));
|
|
ret = ret ? 0 : -ETIMEDOUT;
|
|
mxic_ecc_disable_int(mxic);
|
|
} else {
|
|
ret = readl_poll_timeout(mxic->regs + INTRPT_STS, val,
|
|
val & TRANS_CMPLT, 10, USEC_PER_SEC);
|
|
writel(val, mxic->regs + INTRPT_STS);
|
|
}
|
|
|
|
if (ret) {
|
|
dev_err(mxic->dev, "Timeout on data xfer completion\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mxic_ecc_process_data(struct mxic_ecc_engine *mxic,
|
|
unsigned int direction)
|
|
{
|
|
unsigned int dir = (direction == NAND_PAGE_READ) ?
|
|
READ_NAND : WRITE_NAND;
|
|
int ret;
|
|
|
|
mxic_ecc_enable_engine(mxic);
|
|
|
|
/* Trigger processing */
|
|
writel(SDMA_STRT | dir, mxic->regs + SDMA_CTRL);
|
|
|
|
/* Wait for completion */
|
|
ret = mxic_ecc_data_xfer_wait_for_completion(mxic);
|
|
|
|
mxic_ecc_disable_engine(mxic);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mxic_ecc_process_data_pipelined(struct nand_ecc_engine *eng,
|
|
unsigned int direction, dma_addr_t dirmap)
|
|
{
|
|
struct mxic_ecc_engine *mxic = pip_ecc_eng_to_mxic(eng);
|
|
|
|
if (dirmap)
|
|
writel(dirmap, mxic->regs + HC_SLV_ADDR);
|
|
|
|
return mxic_ecc_process_data(mxic, direction);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mxic_ecc_process_data_pipelined);
|
|
|
|
static void mxic_ecc_extract_status_bytes(struct mxic_ecc_ctx *ctx)
|
|
{
|
|
u8 *buf = ctx->oobwithstat;
|
|
int next_stat_pos;
|
|
int step;
|
|
|
|
/* Extract the ECC status */
|
|
for (step = 0; step < ctx->steps; step++) {
|
|
next_stat_pos = ctx->oob_step_sz +
|
|
((STAT_BYTES + ctx->oob_step_sz) * step);
|
|
|
|
ctx->status[step] = buf[next_stat_pos];
|
|
}
|
|
}
|
|
|
|
static void mxic_ecc_reconstruct_oobbuf(struct mxic_ecc_ctx *ctx,
|
|
u8 *dst, const u8 *src)
|
|
{
|
|
int step;
|
|
|
|
/* Reconstruct the OOB buffer linearly (without the ECC status bytes) */
|
|
for (step = 0; step < ctx->steps; step++)
|
|
memcpy(dst + (step * ctx->oob_step_sz),
|
|
src + (step * (ctx->oob_step_sz + STAT_BYTES)),
|
|
ctx->oob_step_sz);
|
|
}
|
|
|
|
static void mxic_ecc_add_room_in_oobbuf(struct mxic_ecc_ctx *ctx,
|
|
u8 *dst, const u8 *src)
|
|
{
|
|
int step;
|
|
|
|
/* Add some space in the OOB buffer for the status bytes */
|
|
for (step = 0; step < ctx->steps; step++)
|
|
memcpy(dst + (step * (ctx->oob_step_sz + STAT_BYTES)),
|
|
src + (step * ctx->oob_step_sz),
|
|
ctx->oob_step_sz);
|
|
}
|
|
|
|
static int mxic_ecc_count_biterrs(struct mxic_ecc_engine *mxic,
|
|
struct nand_device *nand)
|
|
{
|
|
struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
|
|
struct mtd_info *mtd = nanddev_to_mtd(nand);
|
|
struct device *dev = mxic->dev;
|
|
unsigned int max_bf = 0;
|
|
bool failure = false;
|
|
int step;
|
|
|
|
for (step = 0; step < ctx->steps; step++) {
|
|
u8 stat = ctx->status[step];
|
|
|
|
if (stat == NO_ERR) {
|
|
dev_dbg(dev, "ECC step %d: no error\n", step);
|
|
} else if (stat == ERASED_CHUNK) {
|
|
dev_dbg(dev, "ECC step %d: erased\n", step);
|
|
} else if (stat == UNCORR_ERR || stat > MAX_CORR_ERR) {
|
|
dev_dbg(dev, "ECC step %d: uncorrectable\n", step);
|
|
mtd->ecc_stats.failed++;
|
|
failure = true;
|
|
} else {
|
|
dev_dbg(dev, "ECC step %d: %d bits corrected\n",
|
|
step, stat);
|
|
max_bf = max_t(unsigned int, max_bf, stat);
|
|
mtd->ecc_stats.corrected += stat;
|
|
}
|
|
}
|
|
|
|
return failure ? -EBADMSG : max_bf;
|
|
}
|
|
|
|
/* External ECC engine helpers */
|
|
static int mxic_ecc_prepare_io_req_external(struct nand_device *nand,
|
|
struct nand_page_io_req *req)
|
|
{
|
|
struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
|
|
struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
|
|
struct mtd_info *mtd = nanddev_to_mtd(nand);
|
|
int offset, nents, step, ret;
|
|
|
|
if (req->mode == MTD_OPS_RAW)
|
|
return 0;
|
|
|
|
nand_ecc_tweak_req(&ctx->req_ctx, req);
|
|
ctx->req = req;
|
|
|
|
if (req->type == NAND_PAGE_READ)
|
|
return 0;
|
|
|
|
mxic_ecc_add_room_in_oobbuf(ctx, ctx->oobwithstat,
|
|
ctx->req->oobbuf.out);
|
|
|
|
sg_set_buf(&ctx->sg[0], req->databuf.out, req->datalen);
|
|
sg_set_buf(&ctx->sg[1], ctx->oobwithstat,
|
|
req->ooblen + (ctx->steps * STAT_BYTES));
|
|
|
|
nents = dma_map_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL);
|
|
if (!nents)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&mxic->lock);
|
|
|
|
for (step = 0; step < ctx->steps; step++) {
|
|
writel(sg_dma_address(&ctx->sg[0]) + (step * ctx->data_step_sz),
|
|
mxic->regs + SDMA_MAIN_ADDR);
|
|
writel(sg_dma_address(&ctx->sg[1]) + (step * (ctx->oob_step_sz + STAT_BYTES)),
|
|
mxic->regs + SDMA_SPARE_ADDR);
|
|
ret = mxic_ecc_process_data(mxic, ctx->req->type);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&mxic->lock);
|
|
|
|
dma_unmap_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Retrieve the calculated ECC bytes */
|
|
for (step = 0; step < ctx->steps; step++) {
|
|
offset = ctx->meta_sz + (step * ctx->oob_step_sz);
|
|
mtd_ooblayout_get_eccbytes(mtd,
|
|
(u8 *)ctx->req->oobbuf.out + offset,
|
|
ctx->oobwithstat + (step * STAT_BYTES),
|
|
step * ctx->parity_sz,
|
|
ctx->parity_sz);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mxic_ecc_finish_io_req_external(struct nand_device *nand,
|
|
struct nand_page_io_req *req)
|
|
{
|
|
struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
|
|
struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
|
|
int nents, step, ret;
|
|
|
|
if (req->mode == MTD_OPS_RAW)
|
|
return 0;
|
|
|
|
if (req->type == NAND_PAGE_WRITE) {
|
|
nand_ecc_restore_req(&ctx->req_ctx, req);
|
|
return 0;
|
|
}
|
|
|
|
/* Copy the OOB buffer and add room for the ECC engine status bytes */
|
|
mxic_ecc_add_room_in_oobbuf(ctx, ctx->oobwithstat, ctx->req->oobbuf.in);
|
|
|
|
sg_set_buf(&ctx->sg[0], req->databuf.in, req->datalen);
|
|
sg_set_buf(&ctx->sg[1], ctx->oobwithstat,
|
|
req->ooblen + (ctx->steps * STAT_BYTES));
|
|
nents = dma_map_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL);
|
|
if (!nents)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&mxic->lock);
|
|
|
|
for (step = 0; step < ctx->steps; step++) {
|
|
writel(sg_dma_address(&ctx->sg[0]) + (step * ctx->data_step_sz),
|
|
mxic->regs + SDMA_MAIN_ADDR);
|
|
writel(sg_dma_address(&ctx->sg[1]) + (step * (ctx->oob_step_sz + STAT_BYTES)),
|
|
mxic->regs + SDMA_SPARE_ADDR);
|
|
ret = mxic_ecc_process_data(mxic, ctx->req->type);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&mxic->lock);
|
|
|
|
dma_unmap_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL);
|
|
|
|
if (ret) {
|
|
nand_ecc_restore_req(&ctx->req_ctx, req);
|
|
return ret;
|
|
}
|
|
|
|
/* Extract the status bytes and reconstruct the buffer */
|
|
mxic_ecc_extract_status_bytes(ctx);
|
|
mxic_ecc_reconstruct_oobbuf(ctx, ctx->req->oobbuf.in, ctx->oobwithstat);
|
|
|
|
nand_ecc_restore_req(&ctx->req_ctx, req);
|
|
|
|
return mxic_ecc_count_biterrs(mxic, nand);
|
|
}
|
|
|
|
/* Pipelined ECC engine helpers */
|
|
static int mxic_ecc_prepare_io_req_pipelined(struct nand_device *nand,
|
|
struct nand_page_io_req *req)
|
|
{
|
|
struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
|
|
struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
|
|
int nents;
|
|
|
|
if (req->mode == MTD_OPS_RAW)
|
|
return 0;
|
|
|
|
nand_ecc_tweak_req(&ctx->req_ctx, req);
|
|
ctx->req = req;
|
|
|
|
/* Copy the OOB buffer and add room for the ECC engine status bytes */
|
|
mxic_ecc_add_room_in_oobbuf(ctx, ctx->oobwithstat, ctx->req->oobbuf.in);
|
|
|
|
sg_set_buf(&ctx->sg[0], req->databuf.in, req->datalen);
|
|
sg_set_buf(&ctx->sg[1], ctx->oobwithstat,
|
|
req->ooblen + (ctx->steps * STAT_BYTES));
|
|
|
|
nents = dma_map_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL);
|
|
if (!nents)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&mxic->lock);
|
|
|
|
writel(sg_dma_address(&ctx->sg[0]), mxic->regs + SDMA_MAIN_ADDR);
|
|
writel(sg_dma_address(&ctx->sg[1]), mxic->regs + SDMA_SPARE_ADDR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mxic_ecc_finish_io_req_pipelined(struct nand_device *nand,
|
|
struct nand_page_io_req *req)
|
|
{
|
|
struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
|
|
struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
|
|
int ret = 0;
|
|
|
|
if (req->mode == MTD_OPS_RAW)
|
|
return 0;
|
|
|
|
mutex_unlock(&mxic->lock);
|
|
|
|
dma_unmap_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL);
|
|
|
|
if (req->type == NAND_PAGE_READ) {
|
|
mxic_ecc_extract_status_bytes(ctx);
|
|
mxic_ecc_reconstruct_oobbuf(ctx, ctx->req->oobbuf.in,
|
|
ctx->oobwithstat);
|
|
ret = mxic_ecc_count_biterrs(mxic, nand);
|
|
}
|
|
|
|
nand_ecc_restore_req(&ctx->req_ctx, req);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct nand_ecc_engine_ops mxic_ecc_engine_external_ops = {
|
|
.init_ctx = mxic_ecc_init_ctx_external,
|
|
.cleanup_ctx = mxic_ecc_cleanup_ctx,
|
|
.prepare_io_req = mxic_ecc_prepare_io_req_external,
|
|
.finish_io_req = mxic_ecc_finish_io_req_external,
|
|
};
|
|
|
|
static struct nand_ecc_engine_ops mxic_ecc_engine_pipelined_ops = {
|
|
.init_ctx = mxic_ecc_init_ctx_pipelined,
|
|
.cleanup_ctx = mxic_ecc_cleanup_ctx,
|
|
.prepare_io_req = mxic_ecc_prepare_io_req_pipelined,
|
|
.finish_io_req = mxic_ecc_finish_io_req_pipelined,
|
|
};
|
|
|
|
struct nand_ecc_engine_ops *mxic_ecc_get_pipelined_ops(void)
|
|
{
|
|
return &mxic_ecc_engine_pipelined_ops;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mxic_ecc_get_pipelined_ops);
|
|
|
|
static struct platform_device *
|
|
mxic_ecc_get_pdev(struct platform_device *spi_pdev)
|
|
{
|
|
struct platform_device *eng_pdev;
|
|
struct device_node *np;
|
|
|
|
/* Retrieve the nand-ecc-engine phandle */
|
|
np = of_parse_phandle(spi_pdev->dev.of_node, "nand-ecc-engine", 0);
|
|
if (!np)
|
|
return NULL;
|
|
|
|
/* Jump to the engine's device node */
|
|
eng_pdev = of_find_device_by_node(np);
|
|
of_node_put(np);
|
|
|
|
return eng_pdev;
|
|
}
|
|
|
|
void mxic_ecc_put_pipelined_engine(struct nand_ecc_engine *eng)
|
|
{
|
|
struct mxic_ecc_engine *mxic = pip_ecc_eng_to_mxic(eng);
|
|
|
|
platform_device_put(to_platform_device(mxic->dev));
|
|
}
|
|
EXPORT_SYMBOL_GPL(mxic_ecc_put_pipelined_engine);
|
|
|
|
struct nand_ecc_engine *
|
|
mxic_ecc_get_pipelined_engine(struct platform_device *spi_pdev)
|
|
{
|
|
struct platform_device *eng_pdev;
|
|
struct mxic_ecc_engine *mxic;
|
|
|
|
eng_pdev = mxic_ecc_get_pdev(spi_pdev);
|
|
if (!eng_pdev)
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
mxic = platform_get_drvdata(eng_pdev);
|
|
if (!mxic) {
|
|
platform_device_put(eng_pdev);
|
|
return ERR_PTR(-EPROBE_DEFER);
|
|
}
|
|
|
|
return &mxic->pipelined_engine;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mxic_ecc_get_pipelined_engine);
|
|
|
|
/*
|
|
* Only the external ECC engine is exported as the pipelined is SoC specific, so
|
|
* it is registered directly by the drivers that wrap it.
|
|
*/
|
|
static int mxic_ecc_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct mxic_ecc_engine *mxic;
|
|
int ret;
|
|
|
|
mxic = devm_kzalloc(&pdev->dev, sizeof(*mxic), GFP_KERNEL);
|
|
if (!mxic)
|
|
return -ENOMEM;
|
|
|
|
mxic->dev = &pdev->dev;
|
|
|
|
/*
|
|
* Both memory regions for the ECC engine itself and the AXI slave
|
|
* address are mandatory.
|
|
*/
|
|
mxic->regs = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(mxic->regs)) {
|
|
dev_err(&pdev->dev, "Missing memory region\n");
|
|
return PTR_ERR(mxic->regs);
|
|
}
|
|
|
|
mxic_ecc_disable_engine(mxic);
|
|
mxic_ecc_disable_int(mxic);
|
|
|
|
/* IRQ is optional yet much more efficient */
|
|
mxic->irq = platform_get_irq_byname_optional(pdev, "ecc-engine");
|
|
if (mxic->irq > 0) {
|
|
ret = devm_request_irq(&pdev->dev, mxic->irq, mxic_ecc_isr, 0,
|
|
"mxic-ecc", mxic);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
dev_info(dev, "Invalid or missing IRQ, fallback to polling\n");
|
|
mxic->irq = 0;
|
|
}
|
|
|
|
mutex_init(&mxic->lock);
|
|
|
|
/*
|
|
* In external mode, the device is the ECC engine. In pipelined mode,
|
|
* the device is the host controller. The device is used to match the
|
|
* right ECC engine based on the DT properties.
|
|
*/
|
|
mxic->external_engine.dev = &pdev->dev;
|
|
mxic->external_engine.integration = NAND_ECC_ENGINE_INTEGRATION_EXTERNAL;
|
|
mxic->external_engine.ops = &mxic_ecc_engine_external_ops;
|
|
|
|
nand_ecc_register_on_host_hw_engine(&mxic->external_engine);
|
|
|
|
platform_set_drvdata(pdev, mxic);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mxic_ecc_remove(struct platform_device *pdev)
|
|
{
|
|
struct mxic_ecc_engine *mxic = platform_get_drvdata(pdev);
|
|
|
|
nand_ecc_unregister_on_host_hw_engine(&mxic->external_engine);
|
|
}
|
|
|
|
static const struct of_device_id mxic_ecc_of_ids[] = {
|
|
{
|
|
.compatible = "mxicy,nand-ecc-engine-rev3",
|
|
},
|
|
{ /* sentinel */ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, mxic_ecc_of_ids);
|
|
|
|
static struct platform_driver mxic_ecc_driver = {
|
|
.driver = {
|
|
.name = "mxic-nand-ecc-engine",
|
|
.of_match_table = mxic_ecc_of_ids,
|
|
},
|
|
.probe = mxic_ecc_probe,
|
|
.remove_new = mxic_ecc_remove,
|
|
};
|
|
module_platform_driver(mxic_ecc_driver);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
|
|
MODULE_DESCRIPTION("Macronix NAND hardware ECC controller");
|