mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 04:31:50 +00:00
437589a74b
Pull user namespace changes from Eric Biederman: "This is a mostly modest set of changes to enable basic user namespace support. This allows the code to code to compile with user namespaces enabled and removes the assumption there is only the initial user namespace. Everything is converted except for the most complex of the filesystems: autofs4, 9p, afs, ceph, cifs, coda, fuse, gfs2, ncpfs, nfs, ocfs2 and xfs as those patches need a bit more review. The strategy is to push kuid_t and kgid_t values are far down into subsystems and filesystems as reasonable. Leaving the make_kuid and from_kuid operations to happen at the edge of userspace, as the values come off the disk, and as the values come in from the network. Letting compile type incompatible compile errors (present when user namespaces are enabled) guide me to find the issues. The most tricky areas have been the places where we had an implicit union of uid and gid values and were storing them in an unsigned int. Those places were converted into explicit unions. I made certain to handle those places with simple trivial patches. Out of that work I discovered we have generic interfaces for storing quota by projid. I had never heard of the project identifiers before. Adding full user namespace support for project identifiers accounts for most of the code size growth in my git tree. Ultimately there will be work to relax privlige checks from "capable(FOO)" to "ns_capable(user_ns, FOO)" where it is safe allowing root in a user names to do those things that today we only forbid to non-root users because it will confuse suid root applications. While I was pushing kuid_t and kgid_t changes deep into the audit code I made a few other cleanups. I capitalized on the fact we process netlink messages in the context of the message sender. I removed usage of NETLINK_CRED, and started directly using current->tty. Some of these patches have also made it into maintainer trees, with no problems from identical code from different trees showing up in linux-next. After reading through all of this code I feel like I might be able to win a game of kernel trivial pursuit." Fix up some fairly trivial conflicts in netfilter uid/git logging code. * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (107 commits) userns: Convert the ufs filesystem to use kuid/kgid where appropriate userns: Convert the udf filesystem to use kuid/kgid where appropriate userns: Convert ubifs to use kuid/kgid userns: Convert squashfs to use kuid/kgid where appropriate userns: Convert reiserfs to use kuid and kgid where appropriate userns: Convert jfs to use kuid/kgid where appropriate userns: Convert jffs2 to use kuid and kgid where appropriate userns: Convert hpfs to use kuid and kgid where appropriate userns: Convert btrfs to use kuid/kgid where appropriate userns: Convert bfs to use kuid/kgid where appropriate userns: Convert affs to use kuid/kgid wherwe appropriate userns: On alpha modify linux_to_osf_stat to use convert from kuids and kgids userns: On ia64 deal with current_uid and current_gid being kuid and kgid userns: On ppc convert current_uid from a kuid before printing. userns: Convert s390 getting uid and gid system calls to use kuid and kgid userns: Convert s390 hypfs to use kuid and kgid where appropriate userns: Convert binder ipc to use kuids userns: Teach security_path_chown to take kuids and kgids userns: Add user namespace support to IMA userns: Convert EVM to deal with kuids and kgids in it's hmac computation ...
2309 lines
58 KiB
C
2309 lines
58 KiB
C
/*
|
|
* INET An implementation of the TCP/IP protocol suite for the LINUX
|
|
* operating system. INET is implemented using the BSD Socket
|
|
* interface as the means of communication with the user level.
|
|
*
|
|
* The User Datagram Protocol (UDP).
|
|
*
|
|
* Authors: Ross Biro
|
|
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
|
|
* Arnt Gulbrandsen, <agulbra@nvg.unit.no>
|
|
* Alan Cox, <alan@lxorguk.ukuu.org.uk>
|
|
* Hirokazu Takahashi, <taka@valinux.co.jp>
|
|
*
|
|
* Fixes:
|
|
* Alan Cox : verify_area() calls
|
|
* Alan Cox : stopped close while in use off icmp
|
|
* messages. Not a fix but a botch that
|
|
* for udp at least is 'valid'.
|
|
* Alan Cox : Fixed icmp handling properly
|
|
* Alan Cox : Correct error for oversized datagrams
|
|
* Alan Cox : Tidied select() semantics.
|
|
* Alan Cox : udp_err() fixed properly, also now
|
|
* select and read wake correctly on errors
|
|
* Alan Cox : udp_send verify_area moved to avoid mem leak
|
|
* Alan Cox : UDP can count its memory
|
|
* Alan Cox : send to an unknown connection causes
|
|
* an ECONNREFUSED off the icmp, but
|
|
* does NOT close.
|
|
* Alan Cox : Switched to new sk_buff handlers. No more backlog!
|
|
* Alan Cox : Using generic datagram code. Even smaller and the PEEK
|
|
* bug no longer crashes it.
|
|
* Fred Van Kempen : Net2e support for sk->broadcast.
|
|
* Alan Cox : Uses skb_free_datagram
|
|
* Alan Cox : Added get/set sockopt support.
|
|
* Alan Cox : Broadcasting without option set returns EACCES.
|
|
* Alan Cox : No wakeup calls. Instead we now use the callbacks.
|
|
* Alan Cox : Use ip_tos and ip_ttl
|
|
* Alan Cox : SNMP Mibs
|
|
* Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
|
|
* Matt Dillon : UDP length checks.
|
|
* Alan Cox : Smarter af_inet used properly.
|
|
* Alan Cox : Use new kernel side addressing.
|
|
* Alan Cox : Incorrect return on truncated datagram receive.
|
|
* Arnt Gulbrandsen : New udp_send and stuff
|
|
* Alan Cox : Cache last socket
|
|
* Alan Cox : Route cache
|
|
* Jon Peatfield : Minor efficiency fix to sendto().
|
|
* Mike Shaver : RFC1122 checks.
|
|
* Alan Cox : Nonblocking error fix.
|
|
* Willy Konynenberg : Transparent proxying support.
|
|
* Mike McLagan : Routing by source
|
|
* David S. Miller : New socket lookup architecture.
|
|
* Last socket cache retained as it
|
|
* does have a high hit rate.
|
|
* Olaf Kirch : Don't linearise iovec on sendmsg.
|
|
* Andi Kleen : Some cleanups, cache destination entry
|
|
* for connect.
|
|
* Vitaly E. Lavrov : Transparent proxy revived after year coma.
|
|
* Melvin Smith : Check msg_name not msg_namelen in sendto(),
|
|
* return ENOTCONN for unconnected sockets (POSIX)
|
|
* Janos Farkas : don't deliver multi/broadcasts to a different
|
|
* bound-to-device socket
|
|
* Hirokazu Takahashi : HW checksumming for outgoing UDP
|
|
* datagrams.
|
|
* Hirokazu Takahashi : sendfile() on UDP works now.
|
|
* Arnaldo C. Melo : convert /proc/net/udp to seq_file
|
|
* YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
|
|
* Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
|
|
* a single port at the same time.
|
|
* Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
|
|
* James Chapman : Add L2TP encapsulation type.
|
|
*
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "UDP: " fmt
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/ioctls.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/types.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/module.h>
|
|
#include <linux/socket.h>
|
|
#include <linux/sockios.h>
|
|
#include <linux/igmp.h>
|
|
#include <linux/in.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/inet.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/slab.h>
|
|
#include <net/tcp_states.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <net/net_namespace.h>
|
|
#include <net/icmp.h>
|
|
#include <net/route.h>
|
|
#include <net/checksum.h>
|
|
#include <net/xfrm.h>
|
|
#include <trace/events/udp.h>
|
|
#include <linux/static_key.h>
|
|
#include <trace/events/skb.h>
|
|
#include "udp_impl.h"
|
|
|
|
struct udp_table udp_table __read_mostly;
|
|
EXPORT_SYMBOL(udp_table);
|
|
|
|
long sysctl_udp_mem[3] __read_mostly;
|
|
EXPORT_SYMBOL(sysctl_udp_mem);
|
|
|
|
int sysctl_udp_rmem_min __read_mostly;
|
|
EXPORT_SYMBOL(sysctl_udp_rmem_min);
|
|
|
|
int sysctl_udp_wmem_min __read_mostly;
|
|
EXPORT_SYMBOL(sysctl_udp_wmem_min);
|
|
|
|
atomic_long_t udp_memory_allocated;
|
|
EXPORT_SYMBOL(udp_memory_allocated);
|
|
|
|
#define MAX_UDP_PORTS 65536
|
|
#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
|
|
|
|
static int udp_lib_lport_inuse(struct net *net, __u16 num,
|
|
const struct udp_hslot *hslot,
|
|
unsigned long *bitmap,
|
|
struct sock *sk,
|
|
int (*saddr_comp)(const struct sock *sk1,
|
|
const struct sock *sk2),
|
|
unsigned int log)
|
|
{
|
|
struct sock *sk2;
|
|
struct hlist_nulls_node *node;
|
|
|
|
sk_nulls_for_each(sk2, node, &hslot->head)
|
|
if (net_eq(sock_net(sk2), net) &&
|
|
sk2 != sk &&
|
|
(bitmap || udp_sk(sk2)->udp_port_hash == num) &&
|
|
(!sk2->sk_reuse || !sk->sk_reuse) &&
|
|
(!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
|
|
sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
|
|
(*saddr_comp)(sk, sk2)) {
|
|
if (bitmap)
|
|
__set_bit(udp_sk(sk2)->udp_port_hash >> log,
|
|
bitmap);
|
|
else
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Note: we still hold spinlock of primary hash chain, so no other writer
|
|
* can insert/delete a socket with local_port == num
|
|
*/
|
|
static int udp_lib_lport_inuse2(struct net *net, __u16 num,
|
|
struct udp_hslot *hslot2,
|
|
struct sock *sk,
|
|
int (*saddr_comp)(const struct sock *sk1,
|
|
const struct sock *sk2))
|
|
{
|
|
struct sock *sk2;
|
|
struct hlist_nulls_node *node;
|
|
int res = 0;
|
|
|
|
spin_lock(&hslot2->lock);
|
|
udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
|
|
if (net_eq(sock_net(sk2), net) &&
|
|
sk2 != sk &&
|
|
(udp_sk(sk2)->udp_port_hash == num) &&
|
|
(!sk2->sk_reuse || !sk->sk_reuse) &&
|
|
(!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
|
|
sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
|
|
(*saddr_comp)(sk, sk2)) {
|
|
res = 1;
|
|
break;
|
|
}
|
|
spin_unlock(&hslot2->lock);
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
|
|
*
|
|
* @sk: socket struct in question
|
|
* @snum: port number to look up
|
|
* @saddr_comp: AF-dependent comparison of bound local IP addresses
|
|
* @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
|
|
* with NULL address
|
|
*/
|
|
int udp_lib_get_port(struct sock *sk, unsigned short snum,
|
|
int (*saddr_comp)(const struct sock *sk1,
|
|
const struct sock *sk2),
|
|
unsigned int hash2_nulladdr)
|
|
{
|
|
struct udp_hslot *hslot, *hslot2;
|
|
struct udp_table *udptable = sk->sk_prot->h.udp_table;
|
|
int error = 1;
|
|
struct net *net = sock_net(sk);
|
|
|
|
if (!snum) {
|
|
int low, high, remaining;
|
|
unsigned int rand;
|
|
unsigned short first, last;
|
|
DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
|
|
|
|
inet_get_local_port_range(&low, &high);
|
|
remaining = (high - low) + 1;
|
|
|
|
rand = net_random();
|
|
first = (((u64)rand * remaining) >> 32) + low;
|
|
/*
|
|
* force rand to be an odd multiple of UDP_HTABLE_SIZE
|
|
*/
|
|
rand = (rand | 1) * (udptable->mask + 1);
|
|
last = first + udptable->mask + 1;
|
|
do {
|
|
hslot = udp_hashslot(udptable, net, first);
|
|
bitmap_zero(bitmap, PORTS_PER_CHAIN);
|
|
spin_lock_bh(&hslot->lock);
|
|
udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
|
|
saddr_comp, udptable->log);
|
|
|
|
snum = first;
|
|
/*
|
|
* Iterate on all possible values of snum for this hash.
|
|
* Using steps of an odd multiple of UDP_HTABLE_SIZE
|
|
* give us randomization and full range coverage.
|
|
*/
|
|
do {
|
|
if (low <= snum && snum <= high &&
|
|
!test_bit(snum >> udptable->log, bitmap) &&
|
|
!inet_is_reserved_local_port(snum))
|
|
goto found;
|
|
snum += rand;
|
|
} while (snum != first);
|
|
spin_unlock_bh(&hslot->lock);
|
|
} while (++first != last);
|
|
goto fail;
|
|
} else {
|
|
hslot = udp_hashslot(udptable, net, snum);
|
|
spin_lock_bh(&hslot->lock);
|
|
if (hslot->count > 10) {
|
|
int exist;
|
|
unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
|
|
|
|
slot2 &= udptable->mask;
|
|
hash2_nulladdr &= udptable->mask;
|
|
|
|
hslot2 = udp_hashslot2(udptable, slot2);
|
|
if (hslot->count < hslot2->count)
|
|
goto scan_primary_hash;
|
|
|
|
exist = udp_lib_lport_inuse2(net, snum, hslot2,
|
|
sk, saddr_comp);
|
|
if (!exist && (hash2_nulladdr != slot2)) {
|
|
hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
|
|
exist = udp_lib_lport_inuse2(net, snum, hslot2,
|
|
sk, saddr_comp);
|
|
}
|
|
if (exist)
|
|
goto fail_unlock;
|
|
else
|
|
goto found;
|
|
}
|
|
scan_primary_hash:
|
|
if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
|
|
saddr_comp, 0))
|
|
goto fail_unlock;
|
|
}
|
|
found:
|
|
inet_sk(sk)->inet_num = snum;
|
|
udp_sk(sk)->udp_port_hash = snum;
|
|
udp_sk(sk)->udp_portaddr_hash ^= snum;
|
|
if (sk_unhashed(sk)) {
|
|
sk_nulls_add_node_rcu(sk, &hslot->head);
|
|
hslot->count++;
|
|
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
|
|
|
|
hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
|
|
spin_lock(&hslot2->lock);
|
|
hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
|
|
&hslot2->head);
|
|
hslot2->count++;
|
|
spin_unlock(&hslot2->lock);
|
|
}
|
|
error = 0;
|
|
fail_unlock:
|
|
spin_unlock_bh(&hslot->lock);
|
|
fail:
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL(udp_lib_get_port);
|
|
|
|
static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
|
|
{
|
|
struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
|
|
|
|
return (!ipv6_only_sock(sk2) &&
|
|
(!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
|
|
inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
|
|
}
|
|
|
|
static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
|
|
unsigned int port)
|
|
{
|
|
return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
|
|
}
|
|
|
|
int udp_v4_get_port(struct sock *sk, unsigned short snum)
|
|
{
|
|
unsigned int hash2_nulladdr =
|
|
udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
|
|
unsigned int hash2_partial =
|
|
udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
|
|
|
|
/* precompute partial secondary hash */
|
|
udp_sk(sk)->udp_portaddr_hash = hash2_partial;
|
|
return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
|
|
}
|
|
|
|
static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
|
|
unsigned short hnum,
|
|
__be16 sport, __be32 daddr, __be16 dport, int dif)
|
|
{
|
|
int score = -1;
|
|
|
|
if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
|
|
!ipv6_only_sock(sk)) {
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
|
|
score = (sk->sk_family == PF_INET ? 1 : 0);
|
|
if (inet->inet_rcv_saddr) {
|
|
if (inet->inet_rcv_saddr != daddr)
|
|
return -1;
|
|
score += 2;
|
|
}
|
|
if (inet->inet_daddr) {
|
|
if (inet->inet_daddr != saddr)
|
|
return -1;
|
|
score += 2;
|
|
}
|
|
if (inet->inet_dport) {
|
|
if (inet->inet_dport != sport)
|
|
return -1;
|
|
score += 2;
|
|
}
|
|
if (sk->sk_bound_dev_if) {
|
|
if (sk->sk_bound_dev_if != dif)
|
|
return -1;
|
|
score += 2;
|
|
}
|
|
}
|
|
return score;
|
|
}
|
|
|
|
/*
|
|
* In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
|
|
*/
|
|
#define SCORE2_MAX (1 + 2 + 2 + 2)
|
|
static inline int compute_score2(struct sock *sk, struct net *net,
|
|
__be32 saddr, __be16 sport,
|
|
__be32 daddr, unsigned int hnum, int dif)
|
|
{
|
|
int score = -1;
|
|
|
|
if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
|
|
if (inet->inet_rcv_saddr != daddr)
|
|
return -1;
|
|
if (inet->inet_num != hnum)
|
|
return -1;
|
|
|
|
score = (sk->sk_family == PF_INET ? 1 : 0);
|
|
if (inet->inet_daddr) {
|
|
if (inet->inet_daddr != saddr)
|
|
return -1;
|
|
score += 2;
|
|
}
|
|
if (inet->inet_dport) {
|
|
if (inet->inet_dport != sport)
|
|
return -1;
|
|
score += 2;
|
|
}
|
|
if (sk->sk_bound_dev_if) {
|
|
if (sk->sk_bound_dev_if != dif)
|
|
return -1;
|
|
score += 2;
|
|
}
|
|
}
|
|
return score;
|
|
}
|
|
|
|
|
|
/* called with read_rcu_lock() */
|
|
static struct sock *udp4_lib_lookup2(struct net *net,
|
|
__be32 saddr, __be16 sport,
|
|
__be32 daddr, unsigned int hnum, int dif,
|
|
struct udp_hslot *hslot2, unsigned int slot2)
|
|
{
|
|
struct sock *sk, *result;
|
|
struct hlist_nulls_node *node;
|
|
int score, badness;
|
|
|
|
begin:
|
|
result = NULL;
|
|
badness = -1;
|
|
udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
|
|
score = compute_score2(sk, net, saddr, sport,
|
|
daddr, hnum, dif);
|
|
if (score > badness) {
|
|
result = sk;
|
|
badness = score;
|
|
if (score == SCORE2_MAX)
|
|
goto exact_match;
|
|
}
|
|
}
|
|
/*
|
|
* if the nulls value we got at the end of this lookup is
|
|
* not the expected one, we must restart lookup.
|
|
* We probably met an item that was moved to another chain.
|
|
*/
|
|
if (get_nulls_value(node) != slot2)
|
|
goto begin;
|
|
|
|
if (result) {
|
|
exact_match:
|
|
if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
|
|
result = NULL;
|
|
else if (unlikely(compute_score2(result, net, saddr, sport,
|
|
daddr, hnum, dif) < badness)) {
|
|
sock_put(result);
|
|
goto begin;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
|
|
* harder than this. -DaveM
|
|
*/
|
|
struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
|
|
__be16 sport, __be32 daddr, __be16 dport,
|
|
int dif, struct udp_table *udptable)
|
|
{
|
|
struct sock *sk, *result;
|
|
struct hlist_nulls_node *node;
|
|
unsigned short hnum = ntohs(dport);
|
|
unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
|
|
struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
|
|
int score, badness;
|
|
|
|
rcu_read_lock();
|
|
if (hslot->count > 10) {
|
|
hash2 = udp4_portaddr_hash(net, daddr, hnum);
|
|
slot2 = hash2 & udptable->mask;
|
|
hslot2 = &udptable->hash2[slot2];
|
|
if (hslot->count < hslot2->count)
|
|
goto begin;
|
|
|
|
result = udp4_lib_lookup2(net, saddr, sport,
|
|
daddr, hnum, dif,
|
|
hslot2, slot2);
|
|
if (!result) {
|
|
hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
|
|
slot2 = hash2 & udptable->mask;
|
|
hslot2 = &udptable->hash2[slot2];
|
|
if (hslot->count < hslot2->count)
|
|
goto begin;
|
|
|
|
result = udp4_lib_lookup2(net, saddr, sport,
|
|
htonl(INADDR_ANY), hnum, dif,
|
|
hslot2, slot2);
|
|
}
|
|
rcu_read_unlock();
|
|
return result;
|
|
}
|
|
begin:
|
|
result = NULL;
|
|
badness = -1;
|
|
sk_nulls_for_each_rcu(sk, node, &hslot->head) {
|
|
score = compute_score(sk, net, saddr, hnum, sport,
|
|
daddr, dport, dif);
|
|
if (score > badness) {
|
|
result = sk;
|
|
badness = score;
|
|
}
|
|
}
|
|
/*
|
|
* if the nulls value we got at the end of this lookup is
|
|
* not the expected one, we must restart lookup.
|
|
* We probably met an item that was moved to another chain.
|
|
*/
|
|
if (get_nulls_value(node) != slot)
|
|
goto begin;
|
|
|
|
if (result) {
|
|
if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
|
|
result = NULL;
|
|
else if (unlikely(compute_score(result, net, saddr, hnum, sport,
|
|
daddr, dport, dif) < badness)) {
|
|
sock_put(result);
|
|
goto begin;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
|
|
|
|
static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
|
|
__be16 sport, __be16 dport,
|
|
struct udp_table *udptable)
|
|
{
|
|
struct sock *sk;
|
|
const struct iphdr *iph = ip_hdr(skb);
|
|
|
|
if (unlikely(sk = skb_steal_sock(skb)))
|
|
return sk;
|
|
else
|
|
return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
|
|
iph->daddr, dport, inet_iif(skb),
|
|
udptable);
|
|
}
|
|
|
|
struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
|
|
__be32 daddr, __be16 dport, int dif)
|
|
{
|
|
return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
|
|
}
|
|
EXPORT_SYMBOL_GPL(udp4_lib_lookup);
|
|
|
|
static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
|
|
__be16 loc_port, __be32 loc_addr,
|
|
__be16 rmt_port, __be32 rmt_addr,
|
|
int dif)
|
|
{
|
|
struct hlist_nulls_node *node;
|
|
struct sock *s = sk;
|
|
unsigned short hnum = ntohs(loc_port);
|
|
|
|
sk_nulls_for_each_from(s, node) {
|
|
struct inet_sock *inet = inet_sk(s);
|
|
|
|
if (!net_eq(sock_net(s), net) ||
|
|
udp_sk(s)->udp_port_hash != hnum ||
|
|
(inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
|
|
(inet->inet_dport != rmt_port && inet->inet_dport) ||
|
|
(inet->inet_rcv_saddr &&
|
|
inet->inet_rcv_saddr != loc_addr) ||
|
|
ipv6_only_sock(s) ||
|
|
(s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
|
|
continue;
|
|
if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
|
|
continue;
|
|
goto found;
|
|
}
|
|
s = NULL;
|
|
found:
|
|
return s;
|
|
}
|
|
|
|
/*
|
|
* This routine is called by the ICMP module when it gets some
|
|
* sort of error condition. If err < 0 then the socket should
|
|
* be closed and the error returned to the user. If err > 0
|
|
* it's just the icmp type << 8 | icmp code.
|
|
* Header points to the ip header of the error packet. We move
|
|
* on past this. Then (as it used to claim before adjustment)
|
|
* header points to the first 8 bytes of the udp header. We need
|
|
* to find the appropriate port.
|
|
*/
|
|
|
|
void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
|
|
{
|
|
struct inet_sock *inet;
|
|
const struct iphdr *iph = (const struct iphdr *)skb->data;
|
|
struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
|
|
const int type = icmp_hdr(skb)->type;
|
|
const int code = icmp_hdr(skb)->code;
|
|
struct sock *sk;
|
|
int harderr;
|
|
int err;
|
|
struct net *net = dev_net(skb->dev);
|
|
|
|
sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
|
|
iph->saddr, uh->source, skb->dev->ifindex, udptable);
|
|
if (sk == NULL) {
|
|
ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
|
|
return; /* No socket for error */
|
|
}
|
|
|
|
err = 0;
|
|
harderr = 0;
|
|
inet = inet_sk(sk);
|
|
|
|
switch (type) {
|
|
default:
|
|
case ICMP_TIME_EXCEEDED:
|
|
err = EHOSTUNREACH;
|
|
break;
|
|
case ICMP_SOURCE_QUENCH:
|
|
goto out;
|
|
case ICMP_PARAMETERPROB:
|
|
err = EPROTO;
|
|
harderr = 1;
|
|
break;
|
|
case ICMP_DEST_UNREACH:
|
|
if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
|
|
ipv4_sk_update_pmtu(skb, sk, info);
|
|
if (inet->pmtudisc != IP_PMTUDISC_DONT) {
|
|
err = EMSGSIZE;
|
|
harderr = 1;
|
|
break;
|
|
}
|
|
goto out;
|
|
}
|
|
err = EHOSTUNREACH;
|
|
if (code <= NR_ICMP_UNREACH) {
|
|
harderr = icmp_err_convert[code].fatal;
|
|
err = icmp_err_convert[code].errno;
|
|
}
|
|
break;
|
|
case ICMP_REDIRECT:
|
|
ipv4_sk_redirect(skb, sk);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* RFC1122: OK. Passes ICMP errors back to application, as per
|
|
* 4.1.3.3.
|
|
*/
|
|
if (!inet->recverr) {
|
|
if (!harderr || sk->sk_state != TCP_ESTABLISHED)
|
|
goto out;
|
|
} else
|
|
ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
|
|
|
|
sk->sk_err = err;
|
|
sk->sk_error_report(sk);
|
|
out:
|
|
sock_put(sk);
|
|
}
|
|
|
|
void udp_err(struct sk_buff *skb, u32 info)
|
|
{
|
|
__udp4_lib_err(skb, info, &udp_table);
|
|
}
|
|
|
|
/*
|
|
* Throw away all pending data and cancel the corking. Socket is locked.
|
|
*/
|
|
void udp_flush_pending_frames(struct sock *sk)
|
|
{
|
|
struct udp_sock *up = udp_sk(sk);
|
|
|
|
if (up->pending) {
|
|
up->len = 0;
|
|
up->pending = 0;
|
|
ip_flush_pending_frames(sk);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(udp_flush_pending_frames);
|
|
|
|
/**
|
|
* udp4_hwcsum - handle outgoing HW checksumming
|
|
* @skb: sk_buff containing the filled-in UDP header
|
|
* (checksum field must be zeroed out)
|
|
* @src: source IP address
|
|
* @dst: destination IP address
|
|
*/
|
|
static void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
|
|
{
|
|
struct udphdr *uh = udp_hdr(skb);
|
|
struct sk_buff *frags = skb_shinfo(skb)->frag_list;
|
|
int offset = skb_transport_offset(skb);
|
|
int len = skb->len - offset;
|
|
int hlen = len;
|
|
__wsum csum = 0;
|
|
|
|
if (!frags) {
|
|
/*
|
|
* Only one fragment on the socket.
|
|
*/
|
|
skb->csum_start = skb_transport_header(skb) - skb->head;
|
|
skb->csum_offset = offsetof(struct udphdr, check);
|
|
uh->check = ~csum_tcpudp_magic(src, dst, len,
|
|
IPPROTO_UDP, 0);
|
|
} else {
|
|
/*
|
|
* HW-checksum won't work as there are two or more
|
|
* fragments on the socket so that all csums of sk_buffs
|
|
* should be together
|
|
*/
|
|
do {
|
|
csum = csum_add(csum, frags->csum);
|
|
hlen -= frags->len;
|
|
} while ((frags = frags->next));
|
|
|
|
csum = skb_checksum(skb, offset, hlen, csum);
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
|
|
uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
|
|
if (uh->check == 0)
|
|
uh->check = CSUM_MANGLED_0;
|
|
}
|
|
}
|
|
|
|
static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
|
|
{
|
|
struct sock *sk = skb->sk;
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
struct udphdr *uh;
|
|
int err = 0;
|
|
int is_udplite = IS_UDPLITE(sk);
|
|
int offset = skb_transport_offset(skb);
|
|
int len = skb->len - offset;
|
|
__wsum csum = 0;
|
|
|
|
/*
|
|
* Create a UDP header
|
|
*/
|
|
uh = udp_hdr(skb);
|
|
uh->source = inet->inet_sport;
|
|
uh->dest = fl4->fl4_dport;
|
|
uh->len = htons(len);
|
|
uh->check = 0;
|
|
|
|
if (is_udplite) /* UDP-Lite */
|
|
csum = udplite_csum(skb);
|
|
|
|
else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
|
|
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
goto send;
|
|
|
|
} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
|
|
|
|
udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
|
|
goto send;
|
|
|
|
} else
|
|
csum = udp_csum(skb);
|
|
|
|
/* add protocol-dependent pseudo-header */
|
|
uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
|
|
sk->sk_protocol, csum);
|
|
if (uh->check == 0)
|
|
uh->check = CSUM_MANGLED_0;
|
|
|
|
send:
|
|
err = ip_send_skb(sock_net(sk), skb);
|
|
if (err) {
|
|
if (err == -ENOBUFS && !inet->recverr) {
|
|
UDP_INC_STATS_USER(sock_net(sk),
|
|
UDP_MIB_SNDBUFERRORS, is_udplite);
|
|
err = 0;
|
|
}
|
|
} else
|
|
UDP_INC_STATS_USER(sock_net(sk),
|
|
UDP_MIB_OUTDATAGRAMS, is_udplite);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Push out all pending data as one UDP datagram. Socket is locked.
|
|
*/
|
|
static int udp_push_pending_frames(struct sock *sk)
|
|
{
|
|
struct udp_sock *up = udp_sk(sk);
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
|
|
struct sk_buff *skb;
|
|
int err = 0;
|
|
|
|
skb = ip_finish_skb(sk, fl4);
|
|
if (!skb)
|
|
goto out;
|
|
|
|
err = udp_send_skb(skb, fl4);
|
|
|
|
out:
|
|
up->len = 0;
|
|
up->pending = 0;
|
|
return err;
|
|
}
|
|
|
|
int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
|
|
size_t len)
|
|
{
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
struct udp_sock *up = udp_sk(sk);
|
|
struct flowi4 fl4_stack;
|
|
struct flowi4 *fl4;
|
|
int ulen = len;
|
|
struct ipcm_cookie ipc;
|
|
struct rtable *rt = NULL;
|
|
int free = 0;
|
|
int connected = 0;
|
|
__be32 daddr, faddr, saddr;
|
|
__be16 dport;
|
|
u8 tos;
|
|
int err, is_udplite = IS_UDPLITE(sk);
|
|
int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
|
|
int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
|
|
struct sk_buff *skb;
|
|
struct ip_options_data opt_copy;
|
|
|
|
if (len > 0xFFFF)
|
|
return -EMSGSIZE;
|
|
|
|
/*
|
|
* Check the flags.
|
|
*/
|
|
|
|
if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
|
|
return -EOPNOTSUPP;
|
|
|
|
ipc.opt = NULL;
|
|
ipc.tx_flags = 0;
|
|
|
|
getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
|
|
|
|
fl4 = &inet->cork.fl.u.ip4;
|
|
if (up->pending) {
|
|
/*
|
|
* There are pending frames.
|
|
* The socket lock must be held while it's corked.
|
|
*/
|
|
lock_sock(sk);
|
|
if (likely(up->pending)) {
|
|
if (unlikely(up->pending != AF_INET)) {
|
|
release_sock(sk);
|
|
return -EINVAL;
|
|
}
|
|
goto do_append_data;
|
|
}
|
|
release_sock(sk);
|
|
}
|
|
ulen += sizeof(struct udphdr);
|
|
|
|
/*
|
|
* Get and verify the address.
|
|
*/
|
|
if (msg->msg_name) {
|
|
struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
|
|
if (msg->msg_namelen < sizeof(*usin))
|
|
return -EINVAL;
|
|
if (usin->sin_family != AF_INET) {
|
|
if (usin->sin_family != AF_UNSPEC)
|
|
return -EAFNOSUPPORT;
|
|
}
|
|
|
|
daddr = usin->sin_addr.s_addr;
|
|
dport = usin->sin_port;
|
|
if (dport == 0)
|
|
return -EINVAL;
|
|
} else {
|
|
if (sk->sk_state != TCP_ESTABLISHED)
|
|
return -EDESTADDRREQ;
|
|
daddr = inet->inet_daddr;
|
|
dport = inet->inet_dport;
|
|
/* Open fast path for connected socket.
|
|
Route will not be used, if at least one option is set.
|
|
*/
|
|
connected = 1;
|
|
}
|
|
ipc.addr = inet->inet_saddr;
|
|
|
|
ipc.oif = sk->sk_bound_dev_if;
|
|
err = sock_tx_timestamp(sk, &ipc.tx_flags);
|
|
if (err)
|
|
return err;
|
|
if (msg->msg_controllen) {
|
|
err = ip_cmsg_send(sock_net(sk), msg, &ipc);
|
|
if (err)
|
|
return err;
|
|
if (ipc.opt)
|
|
free = 1;
|
|
connected = 0;
|
|
}
|
|
if (!ipc.opt) {
|
|
struct ip_options_rcu *inet_opt;
|
|
|
|
rcu_read_lock();
|
|
inet_opt = rcu_dereference(inet->inet_opt);
|
|
if (inet_opt) {
|
|
memcpy(&opt_copy, inet_opt,
|
|
sizeof(*inet_opt) + inet_opt->opt.optlen);
|
|
ipc.opt = &opt_copy.opt;
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
saddr = ipc.addr;
|
|
ipc.addr = faddr = daddr;
|
|
|
|
if (ipc.opt && ipc.opt->opt.srr) {
|
|
if (!daddr)
|
|
return -EINVAL;
|
|
faddr = ipc.opt->opt.faddr;
|
|
connected = 0;
|
|
}
|
|
tos = RT_TOS(inet->tos);
|
|
if (sock_flag(sk, SOCK_LOCALROUTE) ||
|
|
(msg->msg_flags & MSG_DONTROUTE) ||
|
|
(ipc.opt && ipc.opt->opt.is_strictroute)) {
|
|
tos |= RTO_ONLINK;
|
|
connected = 0;
|
|
}
|
|
|
|
if (ipv4_is_multicast(daddr)) {
|
|
if (!ipc.oif)
|
|
ipc.oif = inet->mc_index;
|
|
if (!saddr)
|
|
saddr = inet->mc_addr;
|
|
connected = 0;
|
|
} else if (!ipc.oif)
|
|
ipc.oif = inet->uc_index;
|
|
|
|
if (connected)
|
|
rt = (struct rtable *)sk_dst_check(sk, 0);
|
|
|
|
if (rt == NULL) {
|
|
struct net *net = sock_net(sk);
|
|
|
|
fl4 = &fl4_stack;
|
|
flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
|
|
RT_SCOPE_UNIVERSE, sk->sk_protocol,
|
|
inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
|
|
faddr, saddr, dport, inet->inet_sport);
|
|
|
|
security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
|
|
rt = ip_route_output_flow(net, fl4, sk);
|
|
if (IS_ERR(rt)) {
|
|
err = PTR_ERR(rt);
|
|
rt = NULL;
|
|
if (err == -ENETUNREACH)
|
|
IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
|
|
goto out;
|
|
}
|
|
|
|
err = -EACCES;
|
|
if ((rt->rt_flags & RTCF_BROADCAST) &&
|
|
!sock_flag(sk, SOCK_BROADCAST))
|
|
goto out;
|
|
if (connected)
|
|
sk_dst_set(sk, dst_clone(&rt->dst));
|
|
}
|
|
|
|
if (msg->msg_flags&MSG_CONFIRM)
|
|
goto do_confirm;
|
|
back_from_confirm:
|
|
|
|
saddr = fl4->saddr;
|
|
if (!ipc.addr)
|
|
daddr = ipc.addr = fl4->daddr;
|
|
|
|
/* Lockless fast path for the non-corking case. */
|
|
if (!corkreq) {
|
|
skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
|
|
sizeof(struct udphdr), &ipc, &rt,
|
|
msg->msg_flags);
|
|
err = PTR_ERR(skb);
|
|
if (skb && !IS_ERR(skb))
|
|
err = udp_send_skb(skb, fl4);
|
|
goto out;
|
|
}
|
|
|
|
lock_sock(sk);
|
|
if (unlikely(up->pending)) {
|
|
/* The socket is already corked while preparing it. */
|
|
/* ... which is an evident application bug. --ANK */
|
|
release_sock(sk);
|
|
|
|
LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
/*
|
|
* Now cork the socket to pend data.
|
|
*/
|
|
fl4 = &inet->cork.fl.u.ip4;
|
|
fl4->daddr = daddr;
|
|
fl4->saddr = saddr;
|
|
fl4->fl4_dport = dport;
|
|
fl4->fl4_sport = inet->inet_sport;
|
|
up->pending = AF_INET;
|
|
|
|
do_append_data:
|
|
up->len += ulen;
|
|
err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
|
|
sizeof(struct udphdr), &ipc, &rt,
|
|
corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
|
|
if (err)
|
|
udp_flush_pending_frames(sk);
|
|
else if (!corkreq)
|
|
err = udp_push_pending_frames(sk);
|
|
else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
|
|
up->pending = 0;
|
|
release_sock(sk);
|
|
|
|
out:
|
|
ip_rt_put(rt);
|
|
if (free)
|
|
kfree(ipc.opt);
|
|
if (!err)
|
|
return len;
|
|
/*
|
|
* ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
|
|
* ENOBUFS might not be good (it's not tunable per se), but otherwise
|
|
* we don't have a good statistic (IpOutDiscards but it can be too many
|
|
* things). We could add another new stat but at least for now that
|
|
* seems like overkill.
|
|
*/
|
|
if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
|
|
UDP_INC_STATS_USER(sock_net(sk),
|
|
UDP_MIB_SNDBUFERRORS, is_udplite);
|
|
}
|
|
return err;
|
|
|
|
do_confirm:
|
|
dst_confirm(&rt->dst);
|
|
if (!(msg->msg_flags&MSG_PROBE) || len)
|
|
goto back_from_confirm;
|
|
err = 0;
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL(udp_sendmsg);
|
|
|
|
int udp_sendpage(struct sock *sk, struct page *page, int offset,
|
|
size_t size, int flags)
|
|
{
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
struct udp_sock *up = udp_sk(sk);
|
|
int ret;
|
|
|
|
if (!up->pending) {
|
|
struct msghdr msg = { .msg_flags = flags|MSG_MORE };
|
|
|
|
/* Call udp_sendmsg to specify destination address which
|
|
* sendpage interface can't pass.
|
|
* This will succeed only when the socket is connected.
|
|
*/
|
|
ret = udp_sendmsg(NULL, sk, &msg, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
lock_sock(sk);
|
|
|
|
if (unlikely(!up->pending)) {
|
|
release_sock(sk);
|
|
|
|
LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
|
|
page, offset, size, flags);
|
|
if (ret == -EOPNOTSUPP) {
|
|
release_sock(sk);
|
|
return sock_no_sendpage(sk->sk_socket, page, offset,
|
|
size, flags);
|
|
}
|
|
if (ret < 0) {
|
|
udp_flush_pending_frames(sk);
|
|
goto out;
|
|
}
|
|
|
|
up->len += size;
|
|
if (!(up->corkflag || (flags&MSG_MORE)))
|
|
ret = udp_push_pending_frames(sk);
|
|
if (!ret)
|
|
ret = size;
|
|
out:
|
|
release_sock(sk);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* first_packet_length - return length of first packet in receive queue
|
|
* @sk: socket
|
|
*
|
|
* Drops all bad checksum frames, until a valid one is found.
|
|
* Returns the length of found skb, or 0 if none is found.
|
|
*/
|
|
static unsigned int first_packet_length(struct sock *sk)
|
|
{
|
|
struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
|
|
struct sk_buff *skb;
|
|
unsigned int res;
|
|
|
|
__skb_queue_head_init(&list_kill);
|
|
|
|
spin_lock_bh(&rcvq->lock);
|
|
while ((skb = skb_peek(rcvq)) != NULL &&
|
|
udp_lib_checksum_complete(skb)) {
|
|
UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
|
|
IS_UDPLITE(sk));
|
|
atomic_inc(&sk->sk_drops);
|
|
__skb_unlink(skb, rcvq);
|
|
__skb_queue_tail(&list_kill, skb);
|
|
}
|
|
res = skb ? skb->len : 0;
|
|
spin_unlock_bh(&rcvq->lock);
|
|
|
|
if (!skb_queue_empty(&list_kill)) {
|
|
bool slow = lock_sock_fast(sk);
|
|
|
|
__skb_queue_purge(&list_kill);
|
|
sk_mem_reclaim_partial(sk);
|
|
unlock_sock_fast(sk, slow);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* IOCTL requests applicable to the UDP protocol
|
|
*/
|
|
|
|
int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
|
|
{
|
|
switch (cmd) {
|
|
case SIOCOUTQ:
|
|
{
|
|
int amount = sk_wmem_alloc_get(sk);
|
|
|
|
return put_user(amount, (int __user *)arg);
|
|
}
|
|
|
|
case SIOCINQ:
|
|
{
|
|
unsigned int amount = first_packet_length(sk);
|
|
|
|
if (amount)
|
|
/*
|
|
* We will only return the amount
|
|
* of this packet since that is all
|
|
* that will be read.
|
|
*/
|
|
amount -= sizeof(struct udphdr);
|
|
|
|
return put_user(amount, (int __user *)arg);
|
|
}
|
|
|
|
default:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(udp_ioctl);
|
|
|
|
/*
|
|
* This should be easy, if there is something there we
|
|
* return it, otherwise we block.
|
|
*/
|
|
|
|
int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
|
|
size_t len, int noblock, int flags, int *addr_len)
|
|
{
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
|
|
struct sk_buff *skb;
|
|
unsigned int ulen, copied;
|
|
int peeked, off = 0;
|
|
int err;
|
|
int is_udplite = IS_UDPLITE(sk);
|
|
bool slow;
|
|
|
|
/*
|
|
* Check any passed addresses
|
|
*/
|
|
if (addr_len)
|
|
*addr_len = sizeof(*sin);
|
|
|
|
if (flags & MSG_ERRQUEUE)
|
|
return ip_recv_error(sk, msg, len);
|
|
|
|
try_again:
|
|
skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
|
|
&peeked, &off, &err);
|
|
if (!skb)
|
|
goto out;
|
|
|
|
ulen = skb->len - sizeof(struct udphdr);
|
|
copied = len;
|
|
if (copied > ulen)
|
|
copied = ulen;
|
|
else if (copied < ulen)
|
|
msg->msg_flags |= MSG_TRUNC;
|
|
|
|
/*
|
|
* If checksum is needed at all, try to do it while copying the
|
|
* data. If the data is truncated, or if we only want a partial
|
|
* coverage checksum (UDP-Lite), do it before the copy.
|
|
*/
|
|
|
|
if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
|
|
if (udp_lib_checksum_complete(skb))
|
|
goto csum_copy_err;
|
|
}
|
|
|
|
if (skb_csum_unnecessary(skb))
|
|
err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
|
|
msg->msg_iov, copied);
|
|
else {
|
|
err = skb_copy_and_csum_datagram_iovec(skb,
|
|
sizeof(struct udphdr),
|
|
msg->msg_iov);
|
|
|
|
if (err == -EINVAL)
|
|
goto csum_copy_err;
|
|
}
|
|
|
|
if (unlikely(err)) {
|
|
trace_kfree_skb(skb, udp_recvmsg);
|
|
if (!peeked) {
|
|
atomic_inc(&sk->sk_drops);
|
|
UDP_INC_STATS_USER(sock_net(sk),
|
|
UDP_MIB_INERRORS, is_udplite);
|
|
}
|
|
goto out_free;
|
|
}
|
|
|
|
if (!peeked)
|
|
UDP_INC_STATS_USER(sock_net(sk),
|
|
UDP_MIB_INDATAGRAMS, is_udplite);
|
|
|
|
sock_recv_ts_and_drops(msg, sk, skb);
|
|
|
|
/* Copy the address. */
|
|
if (sin) {
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_port = udp_hdr(skb)->source;
|
|
sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
|
|
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
|
|
}
|
|
if (inet->cmsg_flags)
|
|
ip_cmsg_recv(msg, skb);
|
|
|
|
err = copied;
|
|
if (flags & MSG_TRUNC)
|
|
err = ulen;
|
|
|
|
out_free:
|
|
skb_free_datagram_locked(sk, skb);
|
|
out:
|
|
return err;
|
|
|
|
csum_copy_err:
|
|
slow = lock_sock_fast(sk);
|
|
if (!skb_kill_datagram(sk, skb, flags))
|
|
UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
|
|
unlock_sock_fast(sk, slow);
|
|
|
|
if (noblock)
|
|
return -EAGAIN;
|
|
|
|
/* starting over for a new packet */
|
|
msg->msg_flags &= ~MSG_TRUNC;
|
|
goto try_again;
|
|
}
|
|
|
|
|
|
int udp_disconnect(struct sock *sk, int flags)
|
|
{
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
/*
|
|
* 1003.1g - break association.
|
|
*/
|
|
|
|
sk->sk_state = TCP_CLOSE;
|
|
inet->inet_daddr = 0;
|
|
inet->inet_dport = 0;
|
|
sock_rps_reset_rxhash(sk);
|
|
sk->sk_bound_dev_if = 0;
|
|
if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
|
|
inet_reset_saddr(sk);
|
|
|
|
if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
|
|
sk->sk_prot->unhash(sk);
|
|
inet->inet_sport = 0;
|
|
}
|
|
sk_dst_reset(sk);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(udp_disconnect);
|
|
|
|
void udp_lib_unhash(struct sock *sk)
|
|
{
|
|
if (sk_hashed(sk)) {
|
|
struct udp_table *udptable = sk->sk_prot->h.udp_table;
|
|
struct udp_hslot *hslot, *hslot2;
|
|
|
|
hslot = udp_hashslot(udptable, sock_net(sk),
|
|
udp_sk(sk)->udp_port_hash);
|
|
hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
|
|
|
|
spin_lock_bh(&hslot->lock);
|
|
if (sk_nulls_del_node_init_rcu(sk)) {
|
|
hslot->count--;
|
|
inet_sk(sk)->inet_num = 0;
|
|
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
|
|
|
|
spin_lock(&hslot2->lock);
|
|
hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
|
|
hslot2->count--;
|
|
spin_unlock(&hslot2->lock);
|
|
}
|
|
spin_unlock_bh(&hslot->lock);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(udp_lib_unhash);
|
|
|
|
/*
|
|
* inet_rcv_saddr was changed, we must rehash secondary hash
|
|
*/
|
|
void udp_lib_rehash(struct sock *sk, u16 newhash)
|
|
{
|
|
if (sk_hashed(sk)) {
|
|
struct udp_table *udptable = sk->sk_prot->h.udp_table;
|
|
struct udp_hslot *hslot, *hslot2, *nhslot2;
|
|
|
|
hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
|
|
nhslot2 = udp_hashslot2(udptable, newhash);
|
|
udp_sk(sk)->udp_portaddr_hash = newhash;
|
|
if (hslot2 != nhslot2) {
|
|
hslot = udp_hashslot(udptable, sock_net(sk),
|
|
udp_sk(sk)->udp_port_hash);
|
|
/* we must lock primary chain too */
|
|
spin_lock_bh(&hslot->lock);
|
|
|
|
spin_lock(&hslot2->lock);
|
|
hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
|
|
hslot2->count--;
|
|
spin_unlock(&hslot2->lock);
|
|
|
|
spin_lock(&nhslot2->lock);
|
|
hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
|
|
&nhslot2->head);
|
|
nhslot2->count++;
|
|
spin_unlock(&nhslot2->lock);
|
|
|
|
spin_unlock_bh(&hslot->lock);
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(udp_lib_rehash);
|
|
|
|
static void udp_v4_rehash(struct sock *sk)
|
|
{
|
|
u16 new_hash = udp4_portaddr_hash(sock_net(sk),
|
|
inet_sk(sk)->inet_rcv_saddr,
|
|
inet_sk(sk)->inet_num);
|
|
udp_lib_rehash(sk, new_hash);
|
|
}
|
|
|
|
static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
int rc;
|
|
|
|
if (inet_sk(sk)->inet_daddr)
|
|
sock_rps_save_rxhash(sk, skb);
|
|
|
|
rc = sock_queue_rcv_skb(sk, skb);
|
|
if (rc < 0) {
|
|
int is_udplite = IS_UDPLITE(sk);
|
|
|
|
/* Note that an ENOMEM error is charged twice */
|
|
if (rc == -ENOMEM)
|
|
UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
|
|
is_udplite);
|
|
UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
|
|
kfree_skb(skb);
|
|
trace_udp_fail_queue_rcv_skb(rc, sk);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static struct static_key udp_encap_needed __read_mostly;
|
|
void udp_encap_enable(void)
|
|
{
|
|
if (!static_key_enabled(&udp_encap_needed))
|
|
static_key_slow_inc(&udp_encap_needed);
|
|
}
|
|
EXPORT_SYMBOL(udp_encap_enable);
|
|
|
|
/* returns:
|
|
* -1: error
|
|
* 0: success
|
|
* >0: "udp encap" protocol resubmission
|
|
*
|
|
* Note that in the success and error cases, the skb is assumed to
|
|
* have either been requeued or freed.
|
|
*/
|
|
int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
struct udp_sock *up = udp_sk(sk);
|
|
int rc;
|
|
int is_udplite = IS_UDPLITE(sk);
|
|
|
|
/*
|
|
* Charge it to the socket, dropping if the queue is full.
|
|
*/
|
|
if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
|
|
goto drop;
|
|
nf_reset(skb);
|
|
|
|
if (static_key_false(&udp_encap_needed) && up->encap_type) {
|
|
int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
|
|
|
|
/*
|
|
* This is an encapsulation socket so pass the skb to
|
|
* the socket's udp_encap_rcv() hook. Otherwise, just
|
|
* fall through and pass this up the UDP socket.
|
|
* up->encap_rcv() returns the following value:
|
|
* =0 if skb was successfully passed to the encap
|
|
* handler or was discarded by it.
|
|
* >0 if skb should be passed on to UDP.
|
|
* <0 if skb should be resubmitted as proto -N
|
|
*/
|
|
|
|
/* if we're overly short, let UDP handle it */
|
|
encap_rcv = ACCESS_ONCE(up->encap_rcv);
|
|
if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
|
|
int ret;
|
|
|
|
ret = encap_rcv(sk, skb);
|
|
if (ret <= 0) {
|
|
UDP_INC_STATS_BH(sock_net(sk),
|
|
UDP_MIB_INDATAGRAMS,
|
|
is_udplite);
|
|
return -ret;
|
|
}
|
|
}
|
|
|
|
/* FALLTHROUGH -- it's a UDP Packet */
|
|
}
|
|
|
|
/*
|
|
* UDP-Lite specific tests, ignored on UDP sockets
|
|
*/
|
|
if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
|
|
|
|
/*
|
|
* MIB statistics other than incrementing the error count are
|
|
* disabled for the following two types of errors: these depend
|
|
* on the application settings, not on the functioning of the
|
|
* protocol stack as such.
|
|
*
|
|
* RFC 3828 here recommends (sec 3.3): "There should also be a
|
|
* way ... to ... at least let the receiving application block
|
|
* delivery of packets with coverage values less than a value
|
|
* provided by the application."
|
|
*/
|
|
if (up->pcrlen == 0) { /* full coverage was set */
|
|
LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
|
|
UDP_SKB_CB(skb)->cscov, skb->len);
|
|
goto drop;
|
|
}
|
|
/* The next case involves violating the min. coverage requested
|
|
* by the receiver. This is subtle: if receiver wants x and x is
|
|
* greater than the buffersize/MTU then receiver will complain
|
|
* that it wants x while sender emits packets of smaller size y.
|
|
* Therefore the above ...()->partial_cov statement is essential.
|
|
*/
|
|
if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
|
|
LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
|
|
UDP_SKB_CB(skb)->cscov, up->pcrlen);
|
|
goto drop;
|
|
}
|
|
}
|
|
|
|
if (rcu_access_pointer(sk->sk_filter) &&
|
|
udp_lib_checksum_complete(skb))
|
|
goto drop;
|
|
|
|
|
|
if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
|
|
goto drop;
|
|
|
|
rc = 0;
|
|
|
|
ipv4_pktinfo_prepare(skb);
|
|
bh_lock_sock(sk);
|
|
if (!sock_owned_by_user(sk))
|
|
rc = __udp_queue_rcv_skb(sk, skb);
|
|
else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
|
|
bh_unlock_sock(sk);
|
|
goto drop;
|
|
}
|
|
bh_unlock_sock(sk);
|
|
|
|
return rc;
|
|
|
|
drop:
|
|
UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
|
|
atomic_inc(&sk->sk_drops);
|
|
kfree_skb(skb);
|
|
return -1;
|
|
}
|
|
|
|
|
|
static void flush_stack(struct sock **stack, unsigned int count,
|
|
struct sk_buff *skb, unsigned int final)
|
|
{
|
|
unsigned int i;
|
|
struct sk_buff *skb1 = NULL;
|
|
struct sock *sk;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
sk = stack[i];
|
|
if (likely(skb1 == NULL))
|
|
skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
|
|
|
|
if (!skb1) {
|
|
atomic_inc(&sk->sk_drops);
|
|
UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
|
|
IS_UDPLITE(sk));
|
|
UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
|
|
IS_UDPLITE(sk));
|
|
}
|
|
|
|
if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
|
|
skb1 = NULL;
|
|
}
|
|
if (unlikely(skb1))
|
|
kfree_skb(skb1);
|
|
}
|
|
|
|
/*
|
|
* Multicasts and broadcasts go to each listener.
|
|
*
|
|
* Note: called only from the BH handler context.
|
|
*/
|
|
static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
|
|
struct udphdr *uh,
|
|
__be32 saddr, __be32 daddr,
|
|
struct udp_table *udptable)
|
|
{
|
|
struct sock *sk, *stack[256 / sizeof(struct sock *)];
|
|
struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
|
|
int dif;
|
|
unsigned int i, count = 0;
|
|
|
|
spin_lock(&hslot->lock);
|
|
sk = sk_nulls_head(&hslot->head);
|
|
dif = skb->dev->ifindex;
|
|
sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
|
|
while (sk) {
|
|
stack[count++] = sk;
|
|
sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
|
|
daddr, uh->source, saddr, dif);
|
|
if (unlikely(count == ARRAY_SIZE(stack))) {
|
|
if (!sk)
|
|
break;
|
|
flush_stack(stack, count, skb, ~0);
|
|
count = 0;
|
|
}
|
|
}
|
|
/*
|
|
* before releasing chain lock, we must take a reference on sockets
|
|
*/
|
|
for (i = 0; i < count; i++)
|
|
sock_hold(stack[i]);
|
|
|
|
spin_unlock(&hslot->lock);
|
|
|
|
/*
|
|
* do the slow work with no lock held
|
|
*/
|
|
if (count) {
|
|
flush_stack(stack, count, skb, count - 1);
|
|
|
|
for (i = 0; i < count; i++)
|
|
sock_put(stack[i]);
|
|
} else {
|
|
kfree_skb(skb);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Initialize UDP checksum. If exited with zero value (success),
|
|
* CHECKSUM_UNNECESSARY means, that no more checks are required.
|
|
* Otherwise, csum completion requires chacksumming packet body,
|
|
* including udp header and folding it to skb->csum.
|
|
*/
|
|
static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
|
|
int proto)
|
|
{
|
|
const struct iphdr *iph;
|
|
int err;
|
|
|
|
UDP_SKB_CB(skb)->partial_cov = 0;
|
|
UDP_SKB_CB(skb)->cscov = skb->len;
|
|
|
|
if (proto == IPPROTO_UDPLITE) {
|
|
err = udplite_checksum_init(skb, uh);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
iph = ip_hdr(skb);
|
|
if (uh->check == 0) {
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
|
|
if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
|
|
proto, skb->csum))
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
}
|
|
if (!skb_csum_unnecessary(skb))
|
|
skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
|
|
skb->len, proto, 0);
|
|
/* Probably, we should checksum udp header (it should be in cache
|
|
* in any case) and data in tiny packets (< rx copybreak).
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* All we need to do is get the socket, and then do a checksum.
|
|
*/
|
|
|
|
int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
|
|
int proto)
|
|
{
|
|
struct sock *sk;
|
|
struct udphdr *uh;
|
|
unsigned short ulen;
|
|
struct rtable *rt = skb_rtable(skb);
|
|
__be32 saddr, daddr;
|
|
struct net *net = dev_net(skb->dev);
|
|
|
|
/*
|
|
* Validate the packet.
|
|
*/
|
|
if (!pskb_may_pull(skb, sizeof(struct udphdr)))
|
|
goto drop; /* No space for header. */
|
|
|
|
uh = udp_hdr(skb);
|
|
ulen = ntohs(uh->len);
|
|
saddr = ip_hdr(skb)->saddr;
|
|
daddr = ip_hdr(skb)->daddr;
|
|
|
|
if (ulen > skb->len)
|
|
goto short_packet;
|
|
|
|
if (proto == IPPROTO_UDP) {
|
|
/* UDP validates ulen. */
|
|
if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
|
|
goto short_packet;
|
|
uh = udp_hdr(skb);
|
|
}
|
|
|
|
if (udp4_csum_init(skb, uh, proto))
|
|
goto csum_error;
|
|
|
|
if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
|
|
return __udp4_lib_mcast_deliver(net, skb, uh,
|
|
saddr, daddr, udptable);
|
|
|
|
sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
|
|
|
|
if (sk != NULL) {
|
|
int ret = udp_queue_rcv_skb(sk, skb);
|
|
sock_put(sk);
|
|
|
|
/* a return value > 0 means to resubmit the input, but
|
|
* it wants the return to be -protocol, or 0
|
|
*/
|
|
if (ret > 0)
|
|
return -ret;
|
|
return 0;
|
|
}
|
|
|
|
if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
|
|
goto drop;
|
|
nf_reset(skb);
|
|
|
|
/* No socket. Drop packet silently, if checksum is wrong */
|
|
if (udp_lib_checksum_complete(skb))
|
|
goto csum_error;
|
|
|
|
UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
|
|
icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
|
|
|
|
/*
|
|
* Hmm. We got an UDP packet to a port to which we
|
|
* don't wanna listen. Ignore it.
|
|
*/
|
|
kfree_skb(skb);
|
|
return 0;
|
|
|
|
short_packet:
|
|
LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
|
|
proto == IPPROTO_UDPLITE ? "Lite" : "",
|
|
&saddr, ntohs(uh->source),
|
|
ulen, skb->len,
|
|
&daddr, ntohs(uh->dest));
|
|
goto drop;
|
|
|
|
csum_error:
|
|
/*
|
|
* RFC1122: OK. Discards the bad packet silently (as far as
|
|
* the network is concerned, anyway) as per 4.1.3.4 (MUST).
|
|
*/
|
|
LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
|
|
proto == IPPROTO_UDPLITE ? "Lite" : "",
|
|
&saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
|
|
ulen);
|
|
drop:
|
|
UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
|
|
kfree_skb(skb);
|
|
return 0;
|
|
}
|
|
|
|
int udp_rcv(struct sk_buff *skb)
|
|
{
|
|
return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
|
|
}
|
|
|
|
void udp_destroy_sock(struct sock *sk)
|
|
{
|
|
bool slow = lock_sock_fast(sk);
|
|
udp_flush_pending_frames(sk);
|
|
unlock_sock_fast(sk, slow);
|
|
}
|
|
|
|
/*
|
|
* Socket option code for UDP
|
|
*/
|
|
int udp_lib_setsockopt(struct sock *sk, int level, int optname,
|
|
char __user *optval, unsigned int optlen,
|
|
int (*push_pending_frames)(struct sock *))
|
|
{
|
|
struct udp_sock *up = udp_sk(sk);
|
|
int val;
|
|
int err = 0;
|
|
int is_udplite = IS_UDPLITE(sk);
|
|
|
|
if (optlen < sizeof(int))
|
|
return -EINVAL;
|
|
|
|
if (get_user(val, (int __user *)optval))
|
|
return -EFAULT;
|
|
|
|
switch (optname) {
|
|
case UDP_CORK:
|
|
if (val != 0) {
|
|
up->corkflag = 1;
|
|
} else {
|
|
up->corkflag = 0;
|
|
lock_sock(sk);
|
|
(*push_pending_frames)(sk);
|
|
release_sock(sk);
|
|
}
|
|
break;
|
|
|
|
case UDP_ENCAP:
|
|
switch (val) {
|
|
case 0:
|
|
case UDP_ENCAP_ESPINUDP:
|
|
case UDP_ENCAP_ESPINUDP_NON_IKE:
|
|
up->encap_rcv = xfrm4_udp_encap_rcv;
|
|
/* FALLTHROUGH */
|
|
case UDP_ENCAP_L2TPINUDP:
|
|
up->encap_type = val;
|
|
udp_encap_enable();
|
|
break;
|
|
default:
|
|
err = -ENOPROTOOPT;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* UDP-Lite's partial checksum coverage (RFC 3828).
|
|
*/
|
|
/* The sender sets actual checksum coverage length via this option.
|
|
* The case coverage > packet length is handled by send module. */
|
|
case UDPLITE_SEND_CSCOV:
|
|
if (!is_udplite) /* Disable the option on UDP sockets */
|
|
return -ENOPROTOOPT;
|
|
if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
|
|
val = 8;
|
|
else if (val > USHRT_MAX)
|
|
val = USHRT_MAX;
|
|
up->pcslen = val;
|
|
up->pcflag |= UDPLITE_SEND_CC;
|
|
break;
|
|
|
|
/* The receiver specifies a minimum checksum coverage value. To make
|
|
* sense, this should be set to at least 8 (as done below). If zero is
|
|
* used, this again means full checksum coverage. */
|
|
case UDPLITE_RECV_CSCOV:
|
|
if (!is_udplite) /* Disable the option on UDP sockets */
|
|
return -ENOPROTOOPT;
|
|
if (val != 0 && val < 8) /* Avoid silly minimal values. */
|
|
val = 8;
|
|
else if (val > USHRT_MAX)
|
|
val = USHRT_MAX;
|
|
up->pcrlen = val;
|
|
up->pcflag |= UDPLITE_RECV_CC;
|
|
break;
|
|
|
|
default:
|
|
err = -ENOPROTOOPT;
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(udp_lib_setsockopt);
|
|
|
|
int udp_setsockopt(struct sock *sk, int level, int optname,
|
|
char __user *optval, unsigned int optlen)
|
|
{
|
|
if (level == SOL_UDP || level == SOL_UDPLITE)
|
|
return udp_lib_setsockopt(sk, level, optname, optval, optlen,
|
|
udp_push_pending_frames);
|
|
return ip_setsockopt(sk, level, optname, optval, optlen);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
int compat_udp_setsockopt(struct sock *sk, int level, int optname,
|
|
char __user *optval, unsigned int optlen)
|
|
{
|
|
if (level == SOL_UDP || level == SOL_UDPLITE)
|
|
return udp_lib_setsockopt(sk, level, optname, optval, optlen,
|
|
udp_push_pending_frames);
|
|
return compat_ip_setsockopt(sk, level, optname, optval, optlen);
|
|
}
|
|
#endif
|
|
|
|
int udp_lib_getsockopt(struct sock *sk, int level, int optname,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
struct udp_sock *up = udp_sk(sk);
|
|
int val, len;
|
|
|
|
if (get_user(len, optlen))
|
|
return -EFAULT;
|
|
|
|
len = min_t(unsigned int, len, sizeof(int));
|
|
|
|
if (len < 0)
|
|
return -EINVAL;
|
|
|
|
switch (optname) {
|
|
case UDP_CORK:
|
|
val = up->corkflag;
|
|
break;
|
|
|
|
case UDP_ENCAP:
|
|
val = up->encap_type;
|
|
break;
|
|
|
|
/* The following two cannot be changed on UDP sockets, the return is
|
|
* always 0 (which corresponds to the full checksum coverage of UDP). */
|
|
case UDPLITE_SEND_CSCOV:
|
|
val = up->pcslen;
|
|
break;
|
|
|
|
case UDPLITE_RECV_CSCOV:
|
|
val = up->pcrlen;
|
|
break;
|
|
|
|
default:
|
|
return -ENOPROTOOPT;
|
|
}
|
|
|
|
if (put_user(len, optlen))
|
|
return -EFAULT;
|
|
if (copy_to_user(optval, &val, len))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(udp_lib_getsockopt);
|
|
|
|
int udp_getsockopt(struct sock *sk, int level, int optname,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
if (level == SOL_UDP || level == SOL_UDPLITE)
|
|
return udp_lib_getsockopt(sk, level, optname, optval, optlen);
|
|
return ip_getsockopt(sk, level, optname, optval, optlen);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
int compat_udp_getsockopt(struct sock *sk, int level, int optname,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
if (level == SOL_UDP || level == SOL_UDPLITE)
|
|
return udp_lib_getsockopt(sk, level, optname, optval, optlen);
|
|
return compat_ip_getsockopt(sk, level, optname, optval, optlen);
|
|
}
|
|
#endif
|
|
/**
|
|
* udp_poll - wait for a UDP event.
|
|
* @file - file struct
|
|
* @sock - socket
|
|
* @wait - poll table
|
|
*
|
|
* This is same as datagram poll, except for the special case of
|
|
* blocking sockets. If application is using a blocking fd
|
|
* and a packet with checksum error is in the queue;
|
|
* then it could get return from select indicating data available
|
|
* but then block when reading it. Add special case code
|
|
* to work around these arguably broken applications.
|
|
*/
|
|
unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
|
|
{
|
|
unsigned int mask = datagram_poll(file, sock, wait);
|
|
struct sock *sk = sock->sk;
|
|
|
|
/* Check for false positives due to checksum errors */
|
|
if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
|
|
!(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
|
|
mask &= ~(POLLIN | POLLRDNORM);
|
|
|
|
return mask;
|
|
|
|
}
|
|
EXPORT_SYMBOL(udp_poll);
|
|
|
|
struct proto udp_prot = {
|
|
.name = "UDP",
|
|
.owner = THIS_MODULE,
|
|
.close = udp_lib_close,
|
|
.connect = ip4_datagram_connect,
|
|
.disconnect = udp_disconnect,
|
|
.ioctl = udp_ioctl,
|
|
.destroy = udp_destroy_sock,
|
|
.setsockopt = udp_setsockopt,
|
|
.getsockopt = udp_getsockopt,
|
|
.sendmsg = udp_sendmsg,
|
|
.recvmsg = udp_recvmsg,
|
|
.sendpage = udp_sendpage,
|
|
.backlog_rcv = __udp_queue_rcv_skb,
|
|
.hash = udp_lib_hash,
|
|
.unhash = udp_lib_unhash,
|
|
.rehash = udp_v4_rehash,
|
|
.get_port = udp_v4_get_port,
|
|
.memory_allocated = &udp_memory_allocated,
|
|
.sysctl_mem = sysctl_udp_mem,
|
|
.sysctl_wmem = &sysctl_udp_wmem_min,
|
|
.sysctl_rmem = &sysctl_udp_rmem_min,
|
|
.obj_size = sizeof(struct udp_sock),
|
|
.slab_flags = SLAB_DESTROY_BY_RCU,
|
|
.h.udp_table = &udp_table,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_setsockopt = compat_udp_setsockopt,
|
|
.compat_getsockopt = compat_udp_getsockopt,
|
|
#endif
|
|
.clear_sk = sk_prot_clear_portaddr_nulls,
|
|
};
|
|
EXPORT_SYMBOL(udp_prot);
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
#ifdef CONFIG_PROC_FS
|
|
|
|
static struct sock *udp_get_first(struct seq_file *seq, int start)
|
|
{
|
|
struct sock *sk;
|
|
struct udp_iter_state *state = seq->private;
|
|
struct net *net = seq_file_net(seq);
|
|
|
|
for (state->bucket = start; state->bucket <= state->udp_table->mask;
|
|
++state->bucket) {
|
|
struct hlist_nulls_node *node;
|
|
struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
|
|
|
|
if (hlist_nulls_empty(&hslot->head))
|
|
continue;
|
|
|
|
spin_lock_bh(&hslot->lock);
|
|
sk_nulls_for_each(sk, node, &hslot->head) {
|
|
if (!net_eq(sock_net(sk), net))
|
|
continue;
|
|
if (sk->sk_family == state->family)
|
|
goto found;
|
|
}
|
|
spin_unlock_bh(&hslot->lock);
|
|
}
|
|
sk = NULL;
|
|
found:
|
|
return sk;
|
|
}
|
|
|
|
static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
|
|
{
|
|
struct udp_iter_state *state = seq->private;
|
|
struct net *net = seq_file_net(seq);
|
|
|
|
do {
|
|
sk = sk_nulls_next(sk);
|
|
} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
|
|
|
|
if (!sk) {
|
|
if (state->bucket <= state->udp_table->mask)
|
|
spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
|
|
return udp_get_first(seq, state->bucket + 1);
|
|
}
|
|
return sk;
|
|
}
|
|
|
|
static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
|
|
{
|
|
struct sock *sk = udp_get_first(seq, 0);
|
|
|
|
if (sk)
|
|
while (pos && (sk = udp_get_next(seq, sk)) != NULL)
|
|
--pos;
|
|
return pos ? NULL : sk;
|
|
}
|
|
|
|
static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
struct udp_iter_state *state = seq->private;
|
|
state->bucket = MAX_UDP_PORTS;
|
|
|
|
return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
|
|
}
|
|
|
|
static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
struct sock *sk;
|
|
|
|
if (v == SEQ_START_TOKEN)
|
|
sk = udp_get_idx(seq, 0);
|
|
else
|
|
sk = udp_get_next(seq, v);
|
|
|
|
++*pos;
|
|
return sk;
|
|
}
|
|
|
|
static void udp_seq_stop(struct seq_file *seq, void *v)
|
|
{
|
|
struct udp_iter_state *state = seq->private;
|
|
|
|
if (state->bucket <= state->udp_table->mask)
|
|
spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
|
|
}
|
|
|
|
int udp_seq_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct udp_seq_afinfo *afinfo = PDE(inode)->data;
|
|
struct udp_iter_state *s;
|
|
int err;
|
|
|
|
err = seq_open_net(inode, file, &afinfo->seq_ops,
|
|
sizeof(struct udp_iter_state));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
s = ((struct seq_file *)file->private_data)->private;
|
|
s->family = afinfo->family;
|
|
s->udp_table = afinfo->udp_table;
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(udp_seq_open);
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
|
|
{
|
|
struct proc_dir_entry *p;
|
|
int rc = 0;
|
|
|
|
afinfo->seq_ops.start = udp_seq_start;
|
|
afinfo->seq_ops.next = udp_seq_next;
|
|
afinfo->seq_ops.stop = udp_seq_stop;
|
|
|
|
p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
|
|
afinfo->seq_fops, afinfo);
|
|
if (!p)
|
|
rc = -ENOMEM;
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(udp_proc_register);
|
|
|
|
void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
|
|
{
|
|
proc_net_remove(net, afinfo->name);
|
|
}
|
|
EXPORT_SYMBOL(udp_proc_unregister);
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
static void udp4_format_sock(struct sock *sp, struct seq_file *f,
|
|
int bucket, int *len)
|
|
{
|
|
struct inet_sock *inet = inet_sk(sp);
|
|
__be32 dest = inet->inet_daddr;
|
|
__be32 src = inet->inet_rcv_saddr;
|
|
__u16 destp = ntohs(inet->inet_dport);
|
|
__u16 srcp = ntohs(inet->inet_sport);
|
|
|
|
seq_printf(f, "%5d: %08X:%04X %08X:%04X"
|
|
" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %pK %d%n",
|
|
bucket, src, srcp, dest, destp, sp->sk_state,
|
|
sk_wmem_alloc_get(sp),
|
|
sk_rmem_alloc_get(sp),
|
|
0, 0L, 0,
|
|
from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
|
|
0, sock_i_ino(sp),
|
|
atomic_read(&sp->sk_refcnt), sp,
|
|
atomic_read(&sp->sk_drops), len);
|
|
}
|
|
|
|
int udp4_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
if (v == SEQ_START_TOKEN)
|
|
seq_printf(seq, "%-127s\n",
|
|
" sl local_address rem_address st tx_queue "
|
|
"rx_queue tr tm->when retrnsmt uid timeout "
|
|
"inode ref pointer drops");
|
|
else {
|
|
struct udp_iter_state *state = seq->private;
|
|
int len;
|
|
|
|
udp4_format_sock(v, seq, state->bucket, &len);
|
|
seq_printf(seq, "%*s\n", 127 - len, "");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const struct file_operations udp_afinfo_seq_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = udp_seq_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_net
|
|
};
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
static struct udp_seq_afinfo udp4_seq_afinfo = {
|
|
.name = "udp",
|
|
.family = AF_INET,
|
|
.udp_table = &udp_table,
|
|
.seq_fops = &udp_afinfo_seq_fops,
|
|
.seq_ops = {
|
|
.show = udp4_seq_show,
|
|
},
|
|
};
|
|
|
|
static int __net_init udp4_proc_init_net(struct net *net)
|
|
{
|
|
return udp_proc_register(net, &udp4_seq_afinfo);
|
|
}
|
|
|
|
static void __net_exit udp4_proc_exit_net(struct net *net)
|
|
{
|
|
udp_proc_unregister(net, &udp4_seq_afinfo);
|
|
}
|
|
|
|
static struct pernet_operations udp4_net_ops = {
|
|
.init = udp4_proc_init_net,
|
|
.exit = udp4_proc_exit_net,
|
|
};
|
|
|
|
int __init udp4_proc_init(void)
|
|
{
|
|
return register_pernet_subsys(&udp4_net_ops);
|
|
}
|
|
|
|
void udp4_proc_exit(void)
|
|
{
|
|
unregister_pernet_subsys(&udp4_net_ops);
|
|
}
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
static __initdata unsigned long uhash_entries;
|
|
static int __init set_uhash_entries(char *str)
|
|
{
|
|
ssize_t ret;
|
|
|
|
if (!str)
|
|
return 0;
|
|
|
|
ret = kstrtoul(str, 0, &uhash_entries);
|
|
if (ret)
|
|
return 0;
|
|
|
|
if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
|
|
uhash_entries = UDP_HTABLE_SIZE_MIN;
|
|
return 1;
|
|
}
|
|
__setup("uhash_entries=", set_uhash_entries);
|
|
|
|
void __init udp_table_init(struct udp_table *table, const char *name)
|
|
{
|
|
unsigned int i;
|
|
|
|
table->hash = alloc_large_system_hash(name,
|
|
2 * sizeof(struct udp_hslot),
|
|
uhash_entries,
|
|
21, /* one slot per 2 MB */
|
|
0,
|
|
&table->log,
|
|
&table->mask,
|
|
UDP_HTABLE_SIZE_MIN,
|
|
64 * 1024);
|
|
|
|
table->hash2 = table->hash + (table->mask + 1);
|
|
for (i = 0; i <= table->mask; i++) {
|
|
INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
|
|
table->hash[i].count = 0;
|
|
spin_lock_init(&table->hash[i].lock);
|
|
}
|
|
for (i = 0; i <= table->mask; i++) {
|
|
INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
|
|
table->hash2[i].count = 0;
|
|
spin_lock_init(&table->hash2[i].lock);
|
|
}
|
|
}
|
|
|
|
void __init udp_init(void)
|
|
{
|
|
unsigned long limit;
|
|
|
|
udp_table_init(&udp_table, "UDP");
|
|
limit = nr_free_buffer_pages() / 8;
|
|
limit = max(limit, 128UL);
|
|
sysctl_udp_mem[0] = limit / 4 * 3;
|
|
sysctl_udp_mem[1] = limit;
|
|
sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
|
|
|
|
sysctl_udp_rmem_min = SK_MEM_QUANTUM;
|
|
sysctl_udp_wmem_min = SK_MEM_QUANTUM;
|
|
}
|
|
|
|
int udp4_ufo_send_check(struct sk_buff *skb)
|
|
{
|
|
const struct iphdr *iph;
|
|
struct udphdr *uh;
|
|
|
|
if (!pskb_may_pull(skb, sizeof(*uh)))
|
|
return -EINVAL;
|
|
|
|
iph = ip_hdr(skb);
|
|
uh = udp_hdr(skb);
|
|
|
|
uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
|
|
IPPROTO_UDP, 0);
|
|
skb->csum_start = skb_transport_header(skb) - skb->head;
|
|
skb->csum_offset = offsetof(struct udphdr, check);
|
|
skb->ip_summed = CHECKSUM_PARTIAL;
|
|
return 0;
|
|
}
|
|
|
|
struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb,
|
|
netdev_features_t features)
|
|
{
|
|
struct sk_buff *segs = ERR_PTR(-EINVAL);
|
|
unsigned int mss;
|
|
int offset;
|
|
__wsum csum;
|
|
|
|
mss = skb_shinfo(skb)->gso_size;
|
|
if (unlikely(skb->len <= mss))
|
|
goto out;
|
|
|
|
if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
|
|
/* Packet is from an untrusted source, reset gso_segs. */
|
|
int type = skb_shinfo(skb)->gso_type;
|
|
|
|
if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
|
|
!(type & (SKB_GSO_UDP))))
|
|
goto out;
|
|
|
|
skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
|
|
|
|
segs = NULL;
|
|
goto out;
|
|
}
|
|
|
|
/* Do software UFO. Complete and fill in the UDP checksum as HW cannot
|
|
* do checksum of UDP packets sent as multiple IP fragments.
|
|
*/
|
|
offset = skb_checksum_start_offset(skb);
|
|
csum = skb_checksum(skb, offset, skb->len - offset, 0);
|
|
offset += skb->csum_offset;
|
|
*(__sum16 *)(skb->data + offset) = csum_fold(csum);
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
|
|
/* Fragment the skb. IP headers of the fragments are updated in
|
|
* inet_gso_segment()
|
|
*/
|
|
segs = skb_segment(skb, features);
|
|
out:
|
|
return segs;
|
|
}
|
|
|