mirror of
https://github.com/torvalds/linux.git
synced 2024-12-16 08:02:17 +00:00
a5370e9ed5
Some nand chip has two DIEs in a single chip, such as Micron MT29F32G08QAA. Each die has its own chip select pin, so this chip acts as two nand chips. If we only scan one chip, we may find that we only get 2G for this chip, but in actually, this chip's size is 4G. So scan two chips by default. Signed-off-by: Huang Shijie <b32955@freescale.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
1794 lines
50 KiB
C
1794 lines
50 KiB
C
/*
|
|
* Freescale GPMI NAND Flash Driver
|
|
*
|
|
* Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
|
|
* Copyright (C) 2008 Embedded Alley Solutions, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_mtd.h>
|
|
#include "gpmi-nand.h"
|
|
|
|
/* Resource names for the GPMI NAND driver. */
|
|
#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
|
|
#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
|
|
#define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
|
|
|
|
/* add our owner bbt descriptor */
|
|
static uint8_t scan_ff_pattern[] = { 0xff };
|
|
static struct nand_bbt_descr gpmi_bbt_descr = {
|
|
.options = 0,
|
|
.offs = 0,
|
|
.len = 1,
|
|
.pattern = scan_ff_pattern
|
|
};
|
|
|
|
/*
|
|
* We may change the layout if we can get the ECC info from the datasheet,
|
|
* else we will use all the (page + OOB).
|
|
*/
|
|
static struct nand_ecclayout gpmi_hw_ecclayout = {
|
|
.eccbytes = 0,
|
|
.eccpos = { 0, },
|
|
.oobfree = { {.offset = 0, .length = 0} }
|
|
};
|
|
|
|
static irqreturn_t bch_irq(int irq, void *cookie)
|
|
{
|
|
struct gpmi_nand_data *this = cookie;
|
|
|
|
gpmi_clear_bch(this);
|
|
complete(&this->bch_done);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Calculate the ECC strength by hand:
|
|
* E : The ECC strength.
|
|
* G : the length of Galois Field.
|
|
* N : The chunk count of per page.
|
|
* O : the oobsize of the NAND chip.
|
|
* M : the metasize of per page.
|
|
*
|
|
* The formula is :
|
|
* E * G * N
|
|
* ------------ <= (O - M)
|
|
* 8
|
|
*
|
|
* So, we get E by:
|
|
* (O - M) * 8
|
|
* E <= -------------
|
|
* G * N
|
|
*/
|
|
static inline int get_ecc_strength(struct gpmi_nand_data *this)
|
|
{
|
|
struct bch_geometry *geo = &this->bch_geometry;
|
|
struct mtd_info *mtd = &this->mtd;
|
|
int ecc_strength;
|
|
|
|
ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
|
|
/ (geo->gf_len * geo->ecc_chunk_count);
|
|
|
|
/* We need the minor even number. */
|
|
return round_down(ecc_strength, 2);
|
|
}
|
|
|
|
static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
|
|
{
|
|
struct bch_geometry *geo = &this->bch_geometry;
|
|
|
|
/* Do the sanity check. */
|
|
if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
|
|
/* The mx23/mx28 only support the GF13. */
|
|
if (geo->gf_len == 14)
|
|
return false;
|
|
|
|
if (geo->ecc_strength > MXS_ECC_STRENGTH_MAX)
|
|
return false;
|
|
} else if (GPMI_IS_MX6Q(this)) {
|
|
if (geo->ecc_strength > MX6_ECC_STRENGTH_MAX)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* If we can get the ECC information from the nand chip, we do not
|
|
* need to calculate them ourselves.
|
|
*
|
|
* We may have available oob space in this case.
|
|
*/
|
|
static bool set_geometry_by_ecc_info(struct gpmi_nand_data *this)
|
|
{
|
|
struct bch_geometry *geo = &this->bch_geometry;
|
|
struct mtd_info *mtd = &this->mtd;
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct nand_oobfree *of = gpmi_hw_ecclayout.oobfree;
|
|
unsigned int block_mark_bit_offset;
|
|
|
|
if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
|
|
return false;
|
|
|
|
switch (chip->ecc_step_ds) {
|
|
case SZ_512:
|
|
geo->gf_len = 13;
|
|
break;
|
|
case SZ_1K:
|
|
geo->gf_len = 14;
|
|
break;
|
|
default:
|
|
dev_err(this->dev,
|
|
"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
|
|
chip->ecc_strength_ds, chip->ecc_step_ds);
|
|
return false;
|
|
}
|
|
geo->ecc_chunk_size = chip->ecc_step_ds;
|
|
geo->ecc_strength = round_up(chip->ecc_strength_ds, 2);
|
|
if (!gpmi_check_ecc(this))
|
|
return false;
|
|
|
|
/* Keep the C >= O */
|
|
if (geo->ecc_chunk_size < mtd->oobsize) {
|
|
dev_err(this->dev,
|
|
"unsupported nand chip. ecc size: %d, oob size : %d\n",
|
|
chip->ecc_step_ds, mtd->oobsize);
|
|
return false;
|
|
}
|
|
|
|
/* The default value, see comment in the legacy_set_geometry(). */
|
|
geo->metadata_size = 10;
|
|
|
|
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
|
|
|
|
/*
|
|
* Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
|
|
*
|
|
* | P |
|
|
* |<----------------------------------------------------->|
|
|
* | |
|
|
* | (Block Mark) |
|
|
* | P' | | | |
|
|
* |<-------------------------------------------->| D | | O' |
|
|
* | |<---->| |<--->|
|
|
* V V V V V
|
|
* +---+----------+-+----------+-+----------+-+----------+-+-----+
|
|
* | M | data |E| data |E| data |E| data |E| |
|
|
* +---+----------+-+----------+-+----------+-+----------+-+-----+
|
|
* ^ ^
|
|
* | O |
|
|
* |<------------>|
|
|
* | |
|
|
*
|
|
* P : the page size for BCH module.
|
|
* E : The ECC strength.
|
|
* G : the length of Galois Field.
|
|
* N : The chunk count of per page.
|
|
* M : the metasize of per page.
|
|
* C : the ecc chunk size, aka the "data" above.
|
|
* P': the nand chip's page size.
|
|
* O : the nand chip's oob size.
|
|
* O': the free oob.
|
|
*
|
|
* The formula for P is :
|
|
*
|
|
* E * G * N
|
|
* P = ------------ + P' + M
|
|
* 8
|
|
*
|
|
* The position of block mark moves forward in the ECC-based view
|
|
* of page, and the delta is:
|
|
*
|
|
* E * G * (N - 1)
|
|
* D = (---------------- + M)
|
|
* 8
|
|
*
|
|
* Please see the comment in legacy_set_geometry().
|
|
* With the condition C >= O , we still can get same result.
|
|
* So the bit position of the physical block mark within the ECC-based
|
|
* view of the page is :
|
|
* (P' - D) * 8
|
|
*/
|
|
geo->page_size = mtd->writesize + geo->metadata_size +
|
|
(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
|
|
|
|
/* The available oob size we have. */
|
|
if (geo->page_size < mtd->writesize + mtd->oobsize) {
|
|
of->offset = geo->page_size - mtd->writesize;
|
|
of->length = mtd->oobsize - of->offset;
|
|
}
|
|
|
|
geo->payload_size = mtd->writesize;
|
|
|
|
geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
|
|
geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
|
|
+ ALIGN(geo->ecc_chunk_count, 4);
|
|
|
|
if (!this->swap_block_mark)
|
|
return true;
|
|
|
|
/* For bit swap. */
|
|
block_mark_bit_offset = mtd->writesize * 8 -
|
|
(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
|
|
+ geo->metadata_size * 8);
|
|
|
|
geo->block_mark_byte_offset = block_mark_bit_offset / 8;
|
|
geo->block_mark_bit_offset = block_mark_bit_offset % 8;
|
|
return true;
|
|
}
|
|
|
|
static int legacy_set_geometry(struct gpmi_nand_data *this)
|
|
{
|
|
struct bch_geometry *geo = &this->bch_geometry;
|
|
struct mtd_info *mtd = &this->mtd;
|
|
unsigned int metadata_size;
|
|
unsigned int status_size;
|
|
unsigned int block_mark_bit_offset;
|
|
|
|
/*
|
|
* The size of the metadata can be changed, though we set it to 10
|
|
* bytes now. But it can't be too large, because we have to save
|
|
* enough space for BCH.
|
|
*/
|
|
geo->metadata_size = 10;
|
|
|
|
/* The default for the length of Galois Field. */
|
|
geo->gf_len = 13;
|
|
|
|
/* The default for chunk size. */
|
|
geo->ecc_chunk_size = 512;
|
|
while (geo->ecc_chunk_size < mtd->oobsize) {
|
|
geo->ecc_chunk_size *= 2; /* keep C >= O */
|
|
geo->gf_len = 14;
|
|
}
|
|
|
|
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
|
|
|
|
/* We use the same ECC strength for all chunks. */
|
|
geo->ecc_strength = get_ecc_strength(this);
|
|
if (!gpmi_check_ecc(this)) {
|
|
dev_err(this->dev,
|
|
"We can not support this nand chip."
|
|
" Its required ecc strength(%d) is beyond our"
|
|
" capability(%d).\n", geo->ecc_strength,
|
|
(GPMI_IS_MX6Q(this) ? MX6_ECC_STRENGTH_MAX
|
|
: MXS_ECC_STRENGTH_MAX));
|
|
return -EINVAL;
|
|
}
|
|
|
|
geo->page_size = mtd->writesize + mtd->oobsize;
|
|
geo->payload_size = mtd->writesize;
|
|
|
|
/*
|
|
* The auxiliary buffer contains the metadata and the ECC status. The
|
|
* metadata is padded to the nearest 32-bit boundary. The ECC status
|
|
* contains one byte for every ECC chunk, and is also padded to the
|
|
* nearest 32-bit boundary.
|
|
*/
|
|
metadata_size = ALIGN(geo->metadata_size, 4);
|
|
status_size = ALIGN(geo->ecc_chunk_count, 4);
|
|
|
|
geo->auxiliary_size = metadata_size + status_size;
|
|
geo->auxiliary_status_offset = metadata_size;
|
|
|
|
if (!this->swap_block_mark)
|
|
return 0;
|
|
|
|
/*
|
|
* We need to compute the byte and bit offsets of
|
|
* the physical block mark within the ECC-based view of the page.
|
|
*
|
|
* NAND chip with 2K page shows below:
|
|
* (Block Mark)
|
|
* | |
|
|
* | D |
|
|
* |<---->|
|
|
* V V
|
|
* +---+----------+-+----------+-+----------+-+----------+-+
|
|
* | M | data |E| data |E| data |E| data |E|
|
|
* +---+----------+-+----------+-+----------+-+----------+-+
|
|
*
|
|
* The position of block mark moves forward in the ECC-based view
|
|
* of page, and the delta is:
|
|
*
|
|
* E * G * (N - 1)
|
|
* D = (---------------- + M)
|
|
* 8
|
|
*
|
|
* With the formula to compute the ECC strength, and the condition
|
|
* : C >= O (C is the ecc chunk size)
|
|
*
|
|
* It's easy to deduce to the following result:
|
|
*
|
|
* E * G (O - M) C - M C - M
|
|
* ----------- <= ------- <= -------- < ---------
|
|
* 8 N N (N - 1)
|
|
*
|
|
* So, we get:
|
|
*
|
|
* E * G * (N - 1)
|
|
* D = (---------------- + M) < C
|
|
* 8
|
|
*
|
|
* The above inequality means the position of block mark
|
|
* within the ECC-based view of the page is still in the data chunk,
|
|
* and it's NOT in the ECC bits of the chunk.
|
|
*
|
|
* Use the following to compute the bit position of the
|
|
* physical block mark within the ECC-based view of the page:
|
|
* (page_size - D) * 8
|
|
*
|
|
* --Huang Shijie
|
|
*/
|
|
block_mark_bit_offset = mtd->writesize * 8 -
|
|
(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
|
|
+ geo->metadata_size * 8);
|
|
|
|
geo->block_mark_byte_offset = block_mark_bit_offset / 8;
|
|
geo->block_mark_bit_offset = block_mark_bit_offset % 8;
|
|
return 0;
|
|
}
|
|
|
|
int common_nfc_set_geometry(struct gpmi_nand_data *this)
|
|
{
|
|
return legacy_set_geometry(this);
|
|
}
|
|
|
|
struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
|
|
{
|
|
/* We use the DMA channel 0 to access all the nand chips. */
|
|
return this->dma_chans[0];
|
|
}
|
|
|
|
/* Can we use the upper's buffer directly for DMA? */
|
|
void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
|
|
{
|
|
struct scatterlist *sgl = &this->data_sgl;
|
|
int ret;
|
|
|
|
this->direct_dma_map_ok = true;
|
|
|
|
/* first try to map the upper buffer directly */
|
|
sg_init_one(sgl, this->upper_buf, this->upper_len);
|
|
ret = dma_map_sg(this->dev, sgl, 1, dr);
|
|
if (ret == 0) {
|
|
/* We have to use our own DMA buffer. */
|
|
sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE);
|
|
|
|
if (dr == DMA_TO_DEVICE)
|
|
memcpy(this->data_buffer_dma, this->upper_buf,
|
|
this->upper_len);
|
|
|
|
ret = dma_map_sg(this->dev, sgl, 1, dr);
|
|
if (ret == 0)
|
|
pr_err("DMA mapping failed.\n");
|
|
|
|
this->direct_dma_map_ok = false;
|
|
}
|
|
}
|
|
|
|
/* This will be called after the DMA operation is finished. */
|
|
static void dma_irq_callback(void *param)
|
|
{
|
|
struct gpmi_nand_data *this = param;
|
|
struct completion *dma_c = &this->dma_done;
|
|
|
|
complete(dma_c);
|
|
|
|
switch (this->dma_type) {
|
|
case DMA_FOR_COMMAND:
|
|
dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
|
|
break;
|
|
|
|
case DMA_FOR_READ_DATA:
|
|
dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
|
|
if (this->direct_dma_map_ok == false)
|
|
memcpy(this->upper_buf, this->data_buffer_dma,
|
|
this->upper_len);
|
|
break;
|
|
|
|
case DMA_FOR_WRITE_DATA:
|
|
dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
|
|
break;
|
|
|
|
case DMA_FOR_READ_ECC_PAGE:
|
|
case DMA_FOR_WRITE_ECC_PAGE:
|
|
/* We have to wait the BCH interrupt to finish. */
|
|
break;
|
|
|
|
default:
|
|
pr_err("in wrong DMA operation.\n");
|
|
}
|
|
}
|
|
|
|
int start_dma_without_bch_irq(struct gpmi_nand_data *this,
|
|
struct dma_async_tx_descriptor *desc)
|
|
{
|
|
struct completion *dma_c = &this->dma_done;
|
|
int err;
|
|
|
|
init_completion(dma_c);
|
|
|
|
desc->callback = dma_irq_callback;
|
|
desc->callback_param = this;
|
|
dmaengine_submit(desc);
|
|
dma_async_issue_pending(get_dma_chan(this));
|
|
|
|
/* Wait for the interrupt from the DMA block. */
|
|
err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
|
|
if (!err) {
|
|
pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type);
|
|
gpmi_dump_info(this);
|
|
return -ETIMEDOUT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function is used in BCH reading or BCH writing pages.
|
|
* It will wait for the BCH interrupt as long as ONE second.
|
|
* Actually, we must wait for two interrupts :
|
|
* [1] firstly the DMA interrupt and
|
|
* [2] secondly the BCH interrupt.
|
|
*/
|
|
int start_dma_with_bch_irq(struct gpmi_nand_data *this,
|
|
struct dma_async_tx_descriptor *desc)
|
|
{
|
|
struct completion *bch_c = &this->bch_done;
|
|
int err;
|
|
|
|
/* Prepare to receive an interrupt from the BCH block. */
|
|
init_completion(bch_c);
|
|
|
|
/* start the DMA */
|
|
start_dma_without_bch_irq(this, desc);
|
|
|
|
/* Wait for the interrupt from the BCH block. */
|
|
err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
|
|
if (!err) {
|
|
pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type);
|
|
gpmi_dump_info(this);
|
|
return -ETIMEDOUT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int acquire_register_block(struct gpmi_nand_data *this,
|
|
const char *res_name)
|
|
{
|
|
struct platform_device *pdev = this->pdev;
|
|
struct resources *res = &this->resources;
|
|
struct resource *r;
|
|
void __iomem *p;
|
|
|
|
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
|
|
if (!r) {
|
|
pr_err("Can't get resource for %s\n", res_name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
p = ioremap(r->start, resource_size(r));
|
|
if (!p) {
|
|
pr_err("Can't remap %s\n", res_name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
|
|
res->gpmi_regs = p;
|
|
else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
|
|
res->bch_regs = p;
|
|
else
|
|
pr_err("unknown resource name : %s\n", res_name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void release_register_block(struct gpmi_nand_data *this)
|
|
{
|
|
struct resources *res = &this->resources;
|
|
if (res->gpmi_regs)
|
|
iounmap(res->gpmi_regs);
|
|
if (res->bch_regs)
|
|
iounmap(res->bch_regs);
|
|
res->gpmi_regs = NULL;
|
|
res->bch_regs = NULL;
|
|
}
|
|
|
|
static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
|
|
{
|
|
struct platform_device *pdev = this->pdev;
|
|
struct resources *res = &this->resources;
|
|
const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
|
|
struct resource *r;
|
|
int err;
|
|
|
|
r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
|
|
if (!r) {
|
|
pr_err("Can't get resource for %s\n", res_name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
err = request_irq(r->start, irq_h, 0, res_name, this);
|
|
if (err) {
|
|
pr_err("Can't own %s\n", res_name);
|
|
return err;
|
|
}
|
|
|
|
res->bch_low_interrupt = r->start;
|
|
res->bch_high_interrupt = r->end;
|
|
return 0;
|
|
}
|
|
|
|
static void release_bch_irq(struct gpmi_nand_data *this)
|
|
{
|
|
struct resources *res = &this->resources;
|
|
int i = res->bch_low_interrupt;
|
|
|
|
for (; i <= res->bch_high_interrupt; i++)
|
|
free_irq(i, this);
|
|
}
|
|
|
|
static void release_dma_channels(struct gpmi_nand_data *this)
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i < DMA_CHANS; i++)
|
|
if (this->dma_chans[i]) {
|
|
dma_release_channel(this->dma_chans[i]);
|
|
this->dma_chans[i] = NULL;
|
|
}
|
|
}
|
|
|
|
static int acquire_dma_channels(struct gpmi_nand_data *this)
|
|
{
|
|
struct platform_device *pdev = this->pdev;
|
|
struct dma_chan *dma_chan;
|
|
|
|
/* request dma channel */
|
|
dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
|
|
if (!dma_chan) {
|
|
pr_err("Failed to request DMA channel.\n");
|
|
goto acquire_err;
|
|
}
|
|
|
|
this->dma_chans[0] = dma_chan;
|
|
return 0;
|
|
|
|
acquire_err:
|
|
release_dma_channels(this);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void gpmi_put_clks(struct gpmi_nand_data *this)
|
|
{
|
|
struct resources *r = &this->resources;
|
|
struct clk *clk;
|
|
int i;
|
|
|
|
for (i = 0; i < GPMI_CLK_MAX; i++) {
|
|
clk = r->clock[i];
|
|
if (clk) {
|
|
clk_put(clk);
|
|
r->clock[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static char *extra_clks_for_mx6q[GPMI_CLK_MAX] = {
|
|
"gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
|
|
};
|
|
|
|
static int gpmi_get_clks(struct gpmi_nand_data *this)
|
|
{
|
|
struct resources *r = &this->resources;
|
|
char **extra_clks = NULL;
|
|
struct clk *clk;
|
|
int err, i;
|
|
|
|
/* The main clock is stored in the first. */
|
|
r->clock[0] = clk_get(this->dev, "gpmi_io");
|
|
if (IS_ERR(r->clock[0])) {
|
|
err = PTR_ERR(r->clock[0]);
|
|
goto err_clock;
|
|
}
|
|
|
|
/* Get extra clocks */
|
|
if (GPMI_IS_MX6Q(this))
|
|
extra_clks = extra_clks_for_mx6q;
|
|
if (!extra_clks)
|
|
return 0;
|
|
|
|
for (i = 1; i < GPMI_CLK_MAX; i++) {
|
|
if (extra_clks[i - 1] == NULL)
|
|
break;
|
|
|
|
clk = clk_get(this->dev, extra_clks[i - 1]);
|
|
if (IS_ERR(clk)) {
|
|
err = PTR_ERR(clk);
|
|
goto err_clock;
|
|
}
|
|
|
|
r->clock[i] = clk;
|
|
}
|
|
|
|
if (GPMI_IS_MX6Q(this))
|
|
/*
|
|
* Set the default value for the gpmi clock in mx6q:
|
|
*
|
|
* If you want to use the ONFI nand which is in the
|
|
* Synchronous Mode, you should change the clock as you need.
|
|
*/
|
|
clk_set_rate(r->clock[0], 22000000);
|
|
|
|
return 0;
|
|
|
|
err_clock:
|
|
dev_dbg(this->dev, "failed in finding the clocks.\n");
|
|
gpmi_put_clks(this);
|
|
return err;
|
|
}
|
|
|
|
static int acquire_resources(struct gpmi_nand_data *this)
|
|
{
|
|
int ret;
|
|
|
|
ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
|
|
if (ret)
|
|
goto exit_regs;
|
|
|
|
ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
|
|
if (ret)
|
|
goto exit_regs;
|
|
|
|
ret = acquire_bch_irq(this, bch_irq);
|
|
if (ret)
|
|
goto exit_regs;
|
|
|
|
ret = acquire_dma_channels(this);
|
|
if (ret)
|
|
goto exit_dma_channels;
|
|
|
|
ret = gpmi_get_clks(this);
|
|
if (ret)
|
|
goto exit_clock;
|
|
return 0;
|
|
|
|
exit_clock:
|
|
release_dma_channels(this);
|
|
exit_dma_channels:
|
|
release_bch_irq(this);
|
|
exit_regs:
|
|
release_register_block(this);
|
|
return ret;
|
|
}
|
|
|
|
static void release_resources(struct gpmi_nand_data *this)
|
|
{
|
|
gpmi_put_clks(this);
|
|
release_register_block(this);
|
|
release_bch_irq(this);
|
|
release_dma_channels(this);
|
|
}
|
|
|
|
static int init_hardware(struct gpmi_nand_data *this)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* This structure contains the "safe" GPMI timing that should succeed
|
|
* with any NAND Flash device
|
|
* (although, with less-than-optimal performance).
|
|
*/
|
|
struct nand_timing safe_timing = {
|
|
.data_setup_in_ns = 80,
|
|
.data_hold_in_ns = 60,
|
|
.address_setup_in_ns = 25,
|
|
.gpmi_sample_delay_in_ns = 6,
|
|
.tREA_in_ns = -1,
|
|
.tRLOH_in_ns = -1,
|
|
.tRHOH_in_ns = -1,
|
|
};
|
|
|
|
/* Initialize the hardwares. */
|
|
ret = gpmi_init(this);
|
|
if (ret)
|
|
return ret;
|
|
|
|
this->timing = safe_timing;
|
|
return 0;
|
|
}
|
|
|
|
static int read_page_prepare(struct gpmi_nand_data *this,
|
|
void *destination, unsigned length,
|
|
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
|
|
void **use_virt, dma_addr_t *use_phys)
|
|
{
|
|
struct device *dev = this->dev;
|
|
|
|
if (virt_addr_valid(destination)) {
|
|
dma_addr_t dest_phys;
|
|
|
|
dest_phys = dma_map_single(dev, destination,
|
|
length, DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(dev, dest_phys)) {
|
|
if (alt_size < length) {
|
|
pr_err("%s, Alternate buffer is too small\n",
|
|
__func__);
|
|
return -ENOMEM;
|
|
}
|
|
goto map_failed;
|
|
}
|
|
*use_virt = destination;
|
|
*use_phys = dest_phys;
|
|
this->direct_dma_map_ok = true;
|
|
return 0;
|
|
}
|
|
|
|
map_failed:
|
|
*use_virt = alt_virt;
|
|
*use_phys = alt_phys;
|
|
this->direct_dma_map_ok = false;
|
|
return 0;
|
|
}
|
|
|
|
static inline void read_page_end(struct gpmi_nand_data *this,
|
|
void *destination, unsigned length,
|
|
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
|
|
void *used_virt, dma_addr_t used_phys)
|
|
{
|
|
if (this->direct_dma_map_ok)
|
|
dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
static inline void read_page_swap_end(struct gpmi_nand_data *this,
|
|
void *destination, unsigned length,
|
|
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
|
|
void *used_virt, dma_addr_t used_phys)
|
|
{
|
|
if (!this->direct_dma_map_ok)
|
|
memcpy(destination, alt_virt, length);
|
|
}
|
|
|
|
static int send_page_prepare(struct gpmi_nand_data *this,
|
|
const void *source, unsigned length,
|
|
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
|
|
const void **use_virt, dma_addr_t *use_phys)
|
|
{
|
|
struct device *dev = this->dev;
|
|
|
|
if (virt_addr_valid(source)) {
|
|
dma_addr_t source_phys;
|
|
|
|
source_phys = dma_map_single(dev, (void *)source, length,
|
|
DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, source_phys)) {
|
|
if (alt_size < length) {
|
|
pr_err("%s, Alternate buffer is too small\n",
|
|
__func__);
|
|
return -ENOMEM;
|
|
}
|
|
goto map_failed;
|
|
}
|
|
*use_virt = source;
|
|
*use_phys = source_phys;
|
|
return 0;
|
|
}
|
|
map_failed:
|
|
/*
|
|
* Copy the content of the source buffer into the alternate
|
|
* buffer and set up the return values accordingly.
|
|
*/
|
|
memcpy(alt_virt, source, length);
|
|
|
|
*use_virt = alt_virt;
|
|
*use_phys = alt_phys;
|
|
return 0;
|
|
}
|
|
|
|
static void send_page_end(struct gpmi_nand_data *this,
|
|
const void *source, unsigned length,
|
|
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
|
|
const void *used_virt, dma_addr_t used_phys)
|
|
{
|
|
struct device *dev = this->dev;
|
|
if (used_virt == source)
|
|
dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
|
|
}
|
|
|
|
static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
|
|
{
|
|
struct device *dev = this->dev;
|
|
|
|
if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
|
|
dma_free_coherent(dev, this->page_buffer_size,
|
|
this->page_buffer_virt,
|
|
this->page_buffer_phys);
|
|
kfree(this->cmd_buffer);
|
|
kfree(this->data_buffer_dma);
|
|
|
|
this->cmd_buffer = NULL;
|
|
this->data_buffer_dma = NULL;
|
|
this->page_buffer_virt = NULL;
|
|
this->page_buffer_size = 0;
|
|
}
|
|
|
|
/* Allocate the DMA buffers */
|
|
static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
|
|
{
|
|
struct bch_geometry *geo = &this->bch_geometry;
|
|
struct device *dev = this->dev;
|
|
|
|
/* [1] Allocate a command buffer. PAGE_SIZE is enough. */
|
|
this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
|
|
if (this->cmd_buffer == NULL)
|
|
goto error_alloc;
|
|
|
|
/* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
|
|
this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
|
|
if (this->data_buffer_dma == NULL)
|
|
goto error_alloc;
|
|
|
|
/*
|
|
* [3] Allocate the page buffer.
|
|
*
|
|
* Both the payload buffer and the auxiliary buffer must appear on
|
|
* 32-bit boundaries. We presume the size of the payload buffer is a
|
|
* power of two and is much larger than four, which guarantees the
|
|
* auxiliary buffer will appear on a 32-bit boundary.
|
|
*/
|
|
this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
|
|
this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
|
|
&this->page_buffer_phys, GFP_DMA);
|
|
if (!this->page_buffer_virt)
|
|
goto error_alloc;
|
|
|
|
|
|
/* Slice up the page buffer. */
|
|
this->payload_virt = this->page_buffer_virt;
|
|
this->payload_phys = this->page_buffer_phys;
|
|
this->auxiliary_virt = this->payload_virt + geo->payload_size;
|
|
this->auxiliary_phys = this->payload_phys + geo->payload_size;
|
|
return 0;
|
|
|
|
error_alloc:
|
|
gpmi_free_dma_buffer(this);
|
|
pr_err("Error allocating DMA buffers!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
int ret;
|
|
|
|
/*
|
|
* Every operation begins with a command byte and a series of zero or
|
|
* more address bytes. These are distinguished by either the Address
|
|
* Latch Enable (ALE) or Command Latch Enable (CLE) signals being
|
|
* asserted. When MTD is ready to execute the command, it will deassert
|
|
* both latch enables.
|
|
*
|
|
* Rather than run a separate DMA operation for every single byte, we
|
|
* queue them up and run a single DMA operation for the entire series
|
|
* of command and data bytes. NAND_CMD_NONE means the END of the queue.
|
|
*/
|
|
if ((ctrl & (NAND_ALE | NAND_CLE))) {
|
|
if (data != NAND_CMD_NONE)
|
|
this->cmd_buffer[this->command_length++] = data;
|
|
return;
|
|
}
|
|
|
|
if (!this->command_length)
|
|
return;
|
|
|
|
ret = gpmi_send_command(this);
|
|
if (ret)
|
|
pr_err("Chip: %u, Error %d\n", this->current_chip, ret);
|
|
|
|
this->command_length = 0;
|
|
}
|
|
|
|
static int gpmi_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
|
|
return gpmi_is_ready(this, this->current_chip);
|
|
}
|
|
|
|
static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
|
|
if ((this->current_chip < 0) && (chipnr >= 0))
|
|
gpmi_begin(this);
|
|
else if ((this->current_chip >= 0) && (chipnr < 0))
|
|
gpmi_end(this);
|
|
|
|
this->current_chip = chipnr;
|
|
}
|
|
|
|
static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
|
|
pr_debug("len is %d\n", len);
|
|
this->upper_buf = buf;
|
|
this->upper_len = len;
|
|
|
|
gpmi_read_data(this);
|
|
}
|
|
|
|
static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
|
|
pr_debug("len is %d\n", len);
|
|
this->upper_buf = (uint8_t *)buf;
|
|
this->upper_len = len;
|
|
|
|
gpmi_send_data(this);
|
|
}
|
|
|
|
static uint8_t gpmi_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
uint8_t *buf = this->data_buffer_dma;
|
|
|
|
gpmi_read_buf(mtd, buf, 1);
|
|
return buf[0];
|
|
}
|
|
|
|
/*
|
|
* Handles block mark swapping.
|
|
* It can be called in swapping the block mark, or swapping it back,
|
|
* because the the operations are the same.
|
|
*/
|
|
static void block_mark_swapping(struct gpmi_nand_data *this,
|
|
void *payload, void *auxiliary)
|
|
{
|
|
struct bch_geometry *nfc_geo = &this->bch_geometry;
|
|
unsigned char *p;
|
|
unsigned char *a;
|
|
unsigned int bit;
|
|
unsigned char mask;
|
|
unsigned char from_data;
|
|
unsigned char from_oob;
|
|
|
|
if (!this->swap_block_mark)
|
|
return;
|
|
|
|
/*
|
|
* If control arrives here, we're swapping. Make some convenience
|
|
* variables.
|
|
*/
|
|
bit = nfc_geo->block_mark_bit_offset;
|
|
p = payload + nfc_geo->block_mark_byte_offset;
|
|
a = auxiliary;
|
|
|
|
/*
|
|
* Get the byte from the data area that overlays the block mark. Since
|
|
* the ECC engine applies its own view to the bits in the page, the
|
|
* physical block mark won't (in general) appear on a byte boundary in
|
|
* the data.
|
|
*/
|
|
from_data = (p[0] >> bit) | (p[1] << (8 - bit));
|
|
|
|
/* Get the byte from the OOB. */
|
|
from_oob = a[0];
|
|
|
|
/* Swap them. */
|
|
a[0] = from_data;
|
|
|
|
mask = (0x1 << bit) - 1;
|
|
p[0] = (p[0] & mask) | (from_oob << bit);
|
|
|
|
mask = ~0 << bit;
|
|
p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
|
|
}
|
|
|
|
static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
struct bch_geometry *nfc_geo = &this->bch_geometry;
|
|
void *payload_virt;
|
|
dma_addr_t payload_phys;
|
|
void *auxiliary_virt;
|
|
dma_addr_t auxiliary_phys;
|
|
unsigned int i;
|
|
unsigned char *status;
|
|
unsigned int max_bitflips = 0;
|
|
int ret;
|
|
|
|
pr_debug("page number is : %d\n", page);
|
|
ret = read_page_prepare(this, buf, mtd->writesize,
|
|
this->payload_virt, this->payload_phys,
|
|
nfc_geo->payload_size,
|
|
&payload_virt, &payload_phys);
|
|
if (ret) {
|
|
pr_err("Inadequate DMA buffer\n");
|
|
ret = -ENOMEM;
|
|
return ret;
|
|
}
|
|
auxiliary_virt = this->auxiliary_virt;
|
|
auxiliary_phys = this->auxiliary_phys;
|
|
|
|
/* go! */
|
|
ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
|
|
read_page_end(this, buf, mtd->writesize,
|
|
this->payload_virt, this->payload_phys,
|
|
nfc_geo->payload_size,
|
|
payload_virt, payload_phys);
|
|
if (ret) {
|
|
pr_err("Error in ECC-based read: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* handle the block mark swapping */
|
|
block_mark_swapping(this, payload_virt, auxiliary_virt);
|
|
|
|
/* Loop over status bytes, accumulating ECC status. */
|
|
status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
|
|
|
|
for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
|
|
if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
|
|
continue;
|
|
|
|
if (*status == STATUS_UNCORRECTABLE) {
|
|
mtd->ecc_stats.failed++;
|
|
continue;
|
|
}
|
|
mtd->ecc_stats.corrected += *status;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, *status);
|
|
}
|
|
|
|
if (oob_required) {
|
|
/*
|
|
* It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
|
|
* for details about our policy for delivering the OOB.
|
|
*
|
|
* We fill the caller's buffer with set bits, and then copy the
|
|
* block mark to th caller's buffer. Note that, if block mark
|
|
* swapping was necessary, it has already been done, so we can
|
|
* rely on the first byte of the auxiliary buffer to contain
|
|
* the block mark.
|
|
*/
|
|
memset(chip->oob_poi, ~0, mtd->oobsize);
|
|
chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
|
|
}
|
|
|
|
read_page_swap_end(this, buf, mtd->writesize,
|
|
this->payload_virt, this->payload_phys,
|
|
nfc_geo->payload_size,
|
|
payload_virt, payload_phys);
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required)
|
|
{
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
struct bch_geometry *nfc_geo = &this->bch_geometry;
|
|
const void *payload_virt;
|
|
dma_addr_t payload_phys;
|
|
const void *auxiliary_virt;
|
|
dma_addr_t auxiliary_phys;
|
|
int ret;
|
|
|
|
pr_debug("ecc write page.\n");
|
|
if (this->swap_block_mark) {
|
|
/*
|
|
* If control arrives here, we're doing block mark swapping.
|
|
* Since we can't modify the caller's buffers, we must copy them
|
|
* into our own.
|
|
*/
|
|
memcpy(this->payload_virt, buf, mtd->writesize);
|
|
payload_virt = this->payload_virt;
|
|
payload_phys = this->payload_phys;
|
|
|
|
memcpy(this->auxiliary_virt, chip->oob_poi,
|
|
nfc_geo->auxiliary_size);
|
|
auxiliary_virt = this->auxiliary_virt;
|
|
auxiliary_phys = this->auxiliary_phys;
|
|
|
|
/* Handle block mark swapping. */
|
|
block_mark_swapping(this,
|
|
(void *) payload_virt, (void *) auxiliary_virt);
|
|
} else {
|
|
/*
|
|
* If control arrives here, we're not doing block mark swapping,
|
|
* so we can to try and use the caller's buffers.
|
|
*/
|
|
ret = send_page_prepare(this,
|
|
buf, mtd->writesize,
|
|
this->payload_virt, this->payload_phys,
|
|
nfc_geo->payload_size,
|
|
&payload_virt, &payload_phys);
|
|
if (ret) {
|
|
pr_err("Inadequate payload DMA buffer\n");
|
|
return 0;
|
|
}
|
|
|
|
ret = send_page_prepare(this,
|
|
chip->oob_poi, mtd->oobsize,
|
|
this->auxiliary_virt, this->auxiliary_phys,
|
|
nfc_geo->auxiliary_size,
|
|
&auxiliary_virt, &auxiliary_phys);
|
|
if (ret) {
|
|
pr_err("Inadequate auxiliary DMA buffer\n");
|
|
goto exit_auxiliary;
|
|
}
|
|
}
|
|
|
|
/* Ask the NFC. */
|
|
ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
|
|
if (ret)
|
|
pr_err("Error in ECC-based write: %d\n", ret);
|
|
|
|
if (!this->swap_block_mark) {
|
|
send_page_end(this, chip->oob_poi, mtd->oobsize,
|
|
this->auxiliary_virt, this->auxiliary_phys,
|
|
nfc_geo->auxiliary_size,
|
|
auxiliary_virt, auxiliary_phys);
|
|
exit_auxiliary:
|
|
send_page_end(this, buf, mtd->writesize,
|
|
this->payload_virt, this->payload_phys,
|
|
nfc_geo->payload_size,
|
|
payload_virt, payload_phys);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* There are several places in this driver where we have to handle the OOB and
|
|
* block marks. This is the function where things are the most complicated, so
|
|
* this is where we try to explain it all. All the other places refer back to
|
|
* here.
|
|
*
|
|
* These are the rules, in order of decreasing importance:
|
|
*
|
|
* 1) Nothing the caller does can be allowed to imperil the block mark.
|
|
*
|
|
* 2) In read operations, the first byte of the OOB we return must reflect the
|
|
* true state of the block mark, no matter where that block mark appears in
|
|
* the physical page.
|
|
*
|
|
* 3) ECC-based read operations return an OOB full of set bits (since we never
|
|
* allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
|
|
* return).
|
|
*
|
|
* 4) "Raw" read operations return a direct view of the physical bytes in the
|
|
* page, using the conventional definition of which bytes are data and which
|
|
* are OOB. This gives the caller a way to see the actual, physical bytes
|
|
* in the page, without the distortions applied by our ECC engine.
|
|
*
|
|
*
|
|
* What we do for this specific read operation depends on two questions:
|
|
*
|
|
* 1) Are we doing a "raw" read, or an ECC-based read?
|
|
*
|
|
* 2) Are we using block mark swapping or transcription?
|
|
*
|
|
* There are four cases, illustrated by the following Karnaugh map:
|
|
*
|
|
* | Raw | ECC-based |
|
|
* -------------+-------------------------+-------------------------+
|
|
* | Read the conventional | |
|
|
* | OOB at the end of the | |
|
|
* Swapping | page and return it. It | |
|
|
* | contains exactly what | |
|
|
* | we want. | Read the block mark and |
|
|
* -------------+-------------------------+ return it in a buffer |
|
|
* | Read the conventional | full of set bits. |
|
|
* | OOB at the end of the | |
|
|
* | page and also the block | |
|
|
* Transcribing | mark in the metadata. | |
|
|
* | Copy the block mark | |
|
|
* | into the first byte of | |
|
|
* | the OOB. | |
|
|
* -------------+-------------------------+-------------------------+
|
|
*
|
|
* Note that we break rule #4 in the Transcribing/Raw case because we're not
|
|
* giving an accurate view of the actual, physical bytes in the page (we're
|
|
* overwriting the block mark). That's OK because it's more important to follow
|
|
* rule #2.
|
|
*
|
|
* It turns out that knowing whether we want an "ECC-based" or "raw" read is not
|
|
* easy. When reading a page, for example, the NAND Flash MTD code calls our
|
|
* ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
|
|
* ECC-based or raw view of the page is implicit in which function it calls
|
|
* (there is a similar pair of ECC-based/raw functions for writing).
|
|
*
|
|
* FIXME: The following paragraph is incorrect, now that there exist
|
|
* ecc.read_oob_raw and ecc.write_oob_raw functions.
|
|
*
|
|
* Since MTD assumes the OOB is not covered by ECC, there is no pair of
|
|
* ECC-based/raw functions for reading or or writing the OOB. The fact that the
|
|
* caller wants an ECC-based or raw view of the page is not propagated down to
|
|
* this driver.
|
|
*/
|
|
static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
|
|
pr_debug("page number is %d\n", page);
|
|
/* clear the OOB buffer */
|
|
memset(chip->oob_poi, ~0, mtd->oobsize);
|
|
|
|
/* Read out the conventional OOB. */
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
|
|
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
/*
|
|
* Now, we want to make sure the block mark is correct. In the
|
|
* Swapping/Raw case, we already have it. Otherwise, we need to
|
|
* explicitly read it.
|
|
*/
|
|
if (!this->swap_block_mark) {
|
|
/* Read the block mark into the first byte of the OOB buffer. */
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
|
|
chip->oob_poi[0] = chip->read_byte(mtd);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
|
|
{
|
|
struct nand_oobfree *of = mtd->ecclayout->oobfree;
|
|
int status = 0;
|
|
|
|
/* Do we have available oob area? */
|
|
if (!of->length)
|
|
return -EPERM;
|
|
|
|
if (!nand_is_slc(chip))
|
|
return -EPERM;
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize + of->offset, page);
|
|
chip->write_buf(mtd, chip->oob_poi + of->offset, of->length);
|
|
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
|
|
status = chip->waitfunc(mtd, chip);
|
|
return status & NAND_STATUS_FAIL ? -EIO : 0;
|
|
}
|
|
|
|
static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
int ret = 0;
|
|
uint8_t *block_mark;
|
|
int column, page, status, chipnr;
|
|
|
|
chipnr = (int)(ofs >> chip->chip_shift);
|
|
chip->select_chip(mtd, chipnr);
|
|
|
|
column = this->swap_block_mark ? mtd->writesize : 0;
|
|
|
|
/* Write the block mark. */
|
|
block_mark = this->data_buffer_dma;
|
|
block_mark[0] = 0; /* bad block marker */
|
|
|
|
/* Shift to get page */
|
|
page = (int)(ofs >> chip->page_shift);
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
|
|
chip->write_buf(mtd, block_mark, 1);
|
|
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
|
|
status = chip->waitfunc(mtd, chip);
|
|
if (status & NAND_STATUS_FAIL)
|
|
ret = -EIO;
|
|
|
|
chip->select_chip(mtd, -1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int nand_boot_set_geometry(struct gpmi_nand_data *this)
|
|
{
|
|
struct boot_rom_geometry *geometry = &this->rom_geometry;
|
|
|
|
/*
|
|
* Set the boot block stride size.
|
|
*
|
|
* In principle, we should be reading this from the OTP bits, since
|
|
* that's where the ROM is going to get it. In fact, we don't have any
|
|
* way to read the OTP bits, so we go with the default and hope for the
|
|
* best.
|
|
*/
|
|
geometry->stride_size_in_pages = 64;
|
|
|
|
/*
|
|
* Set the search area stride exponent.
|
|
*
|
|
* In principle, we should be reading this from the OTP bits, since
|
|
* that's where the ROM is going to get it. In fact, we don't have any
|
|
* way to read the OTP bits, so we go with the default and hope for the
|
|
* best.
|
|
*/
|
|
geometry->search_area_stride_exponent = 2;
|
|
return 0;
|
|
}
|
|
|
|
static const char *fingerprint = "STMP";
|
|
static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
|
|
{
|
|
struct boot_rom_geometry *rom_geo = &this->rom_geometry;
|
|
struct device *dev = this->dev;
|
|
struct mtd_info *mtd = &this->mtd;
|
|
struct nand_chip *chip = &this->nand;
|
|
unsigned int search_area_size_in_strides;
|
|
unsigned int stride;
|
|
unsigned int page;
|
|
uint8_t *buffer = chip->buffers->databuf;
|
|
int saved_chip_number;
|
|
int found_an_ncb_fingerprint = false;
|
|
|
|
/* Compute the number of strides in a search area. */
|
|
search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
|
|
|
|
saved_chip_number = this->current_chip;
|
|
chip->select_chip(mtd, 0);
|
|
|
|
/*
|
|
* Loop through the first search area, looking for the NCB fingerprint.
|
|
*/
|
|
dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
|
|
|
|
for (stride = 0; stride < search_area_size_in_strides; stride++) {
|
|
/* Compute the page addresses. */
|
|
page = stride * rom_geo->stride_size_in_pages;
|
|
|
|
dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
|
|
|
|
/*
|
|
* Read the NCB fingerprint. The fingerprint is four bytes long
|
|
* and starts in the 12th byte of the page.
|
|
*/
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
|
|
chip->read_buf(mtd, buffer, strlen(fingerprint));
|
|
|
|
/* Look for the fingerprint. */
|
|
if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
|
|
found_an_ncb_fingerprint = true;
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
chip->select_chip(mtd, saved_chip_number);
|
|
|
|
if (found_an_ncb_fingerprint)
|
|
dev_dbg(dev, "\tFound a fingerprint\n");
|
|
else
|
|
dev_dbg(dev, "\tNo fingerprint found\n");
|
|
return found_an_ncb_fingerprint;
|
|
}
|
|
|
|
/* Writes a transcription stamp. */
|
|
static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
|
|
{
|
|
struct device *dev = this->dev;
|
|
struct boot_rom_geometry *rom_geo = &this->rom_geometry;
|
|
struct mtd_info *mtd = &this->mtd;
|
|
struct nand_chip *chip = &this->nand;
|
|
unsigned int block_size_in_pages;
|
|
unsigned int search_area_size_in_strides;
|
|
unsigned int search_area_size_in_pages;
|
|
unsigned int search_area_size_in_blocks;
|
|
unsigned int block;
|
|
unsigned int stride;
|
|
unsigned int page;
|
|
uint8_t *buffer = chip->buffers->databuf;
|
|
int saved_chip_number;
|
|
int status;
|
|
|
|
/* Compute the search area geometry. */
|
|
block_size_in_pages = mtd->erasesize / mtd->writesize;
|
|
search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
|
|
search_area_size_in_pages = search_area_size_in_strides *
|
|
rom_geo->stride_size_in_pages;
|
|
search_area_size_in_blocks =
|
|
(search_area_size_in_pages + (block_size_in_pages - 1)) /
|
|
block_size_in_pages;
|
|
|
|
dev_dbg(dev, "Search Area Geometry :\n");
|
|
dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
|
|
dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
|
|
dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
|
|
|
|
/* Select chip 0. */
|
|
saved_chip_number = this->current_chip;
|
|
chip->select_chip(mtd, 0);
|
|
|
|
/* Loop over blocks in the first search area, erasing them. */
|
|
dev_dbg(dev, "Erasing the search area...\n");
|
|
|
|
for (block = 0; block < search_area_size_in_blocks; block++) {
|
|
/* Compute the page address. */
|
|
page = block * block_size_in_pages;
|
|
|
|
/* Erase this block. */
|
|
dev_dbg(dev, "\tErasing block 0x%x\n", block);
|
|
chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
|
|
chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
|
|
|
|
/* Wait for the erase to finish. */
|
|
status = chip->waitfunc(mtd, chip);
|
|
if (status & NAND_STATUS_FAIL)
|
|
dev_err(dev, "[%s] Erase failed.\n", __func__);
|
|
}
|
|
|
|
/* Write the NCB fingerprint into the page buffer. */
|
|
memset(buffer, ~0, mtd->writesize);
|
|
memset(chip->oob_poi, ~0, mtd->oobsize);
|
|
memcpy(buffer + 12, fingerprint, strlen(fingerprint));
|
|
|
|
/* Loop through the first search area, writing NCB fingerprints. */
|
|
dev_dbg(dev, "Writing NCB fingerprints...\n");
|
|
for (stride = 0; stride < search_area_size_in_strides; stride++) {
|
|
/* Compute the page addresses. */
|
|
page = stride * rom_geo->stride_size_in_pages;
|
|
|
|
/* Write the first page of the current stride. */
|
|
dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
|
|
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
|
|
chip->ecc.write_page_raw(mtd, chip, buffer, 0);
|
|
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
|
|
/* Wait for the write to finish. */
|
|
status = chip->waitfunc(mtd, chip);
|
|
if (status & NAND_STATUS_FAIL)
|
|
dev_err(dev, "[%s] Write failed.\n", __func__);
|
|
}
|
|
|
|
/* Deselect chip 0. */
|
|
chip->select_chip(mtd, saved_chip_number);
|
|
return 0;
|
|
}
|
|
|
|
static int mx23_boot_init(struct gpmi_nand_data *this)
|
|
{
|
|
struct device *dev = this->dev;
|
|
struct nand_chip *chip = &this->nand;
|
|
struct mtd_info *mtd = &this->mtd;
|
|
unsigned int block_count;
|
|
unsigned int block;
|
|
int chipnr;
|
|
int page;
|
|
loff_t byte;
|
|
uint8_t block_mark;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* If control arrives here, we can't use block mark swapping, which
|
|
* means we're forced to use transcription. First, scan for the
|
|
* transcription stamp. If we find it, then we don't have to do
|
|
* anything -- the block marks are already transcribed.
|
|
*/
|
|
if (mx23_check_transcription_stamp(this))
|
|
return 0;
|
|
|
|
/*
|
|
* If control arrives here, we couldn't find a transcription stamp, so
|
|
* so we presume the block marks are in the conventional location.
|
|
*/
|
|
dev_dbg(dev, "Transcribing bad block marks...\n");
|
|
|
|
/* Compute the number of blocks in the entire medium. */
|
|
block_count = chip->chipsize >> chip->phys_erase_shift;
|
|
|
|
/*
|
|
* Loop over all the blocks in the medium, transcribing block marks as
|
|
* we go.
|
|
*/
|
|
for (block = 0; block < block_count; block++) {
|
|
/*
|
|
* Compute the chip, page and byte addresses for this block's
|
|
* conventional mark.
|
|
*/
|
|
chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
|
|
page = block << (chip->phys_erase_shift - chip->page_shift);
|
|
byte = block << chip->phys_erase_shift;
|
|
|
|
/* Send the command to read the conventional block mark. */
|
|
chip->select_chip(mtd, chipnr);
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
|
|
block_mark = chip->read_byte(mtd);
|
|
chip->select_chip(mtd, -1);
|
|
|
|
/*
|
|
* Check if the block is marked bad. If so, we need to mark it
|
|
* again, but this time the result will be a mark in the
|
|
* location where we transcribe block marks.
|
|
*/
|
|
if (block_mark != 0xff) {
|
|
dev_dbg(dev, "Transcribing mark in block %u\n", block);
|
|
ret = chip->block_markbad(mtd, byte);
|
|
if (ret)
|
|
dev_err(dev, "Failed to mark block bad with "
|
|
"ret %d\n", ret);
|
|
}
|
|
}
|
|
|
|
/* Write the stamp that indicates we've transcribed the block marks. */
|
|
mx23_write_transcription_stamp(this);
|
|
return 0;
|
|
}
|
|
|
|
static int nand_boot_init(struct gpmi_nand_data *this)
|
|
{
|
|
nand_boot_set_geometry(this);
|
|
|
|
/* This is ROM arch-specific initilization before the BBT scanning. */
|
|
if (GPMI_IS_MX23(this))
|
|
return mx23_boot_init(this);
|
|
return 0;
|
|
}
|
|
|
|
static int gpmi_set_geometry(struct gpmi_nand_data *this)
|
|
{
|
|
int ret;
|
|
|
|
/* Free the temporary DMA memory for reading ID. */
|
|
gpmi_free_dma_buffer(this);
|
|
|
|
/* Set up the NFC geometry which is used by BCH. */
|
|
ret = bch_set_geometry(this);
|
|
if (ret) {
|
|
pr_err("Error setting BCH geometry : %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Alloc the new DMA buffers according to the pagesize and oobsize */
|
|
return gpmi_alloc_dma_buffer(this);
|
|
}
|
|
|
|
static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this)
|
|
{
|
|
int ret;
|
|
|
|
/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
|
|
if (GPMI_IS_MX23(this))
|
|
this->swap_block_mark = false;
|
|
else
|
|
this->swap_block_mark = true;
|
|
|
|
/* Set up the medium geometry */
|
|
ret = gpmi_set_geometry(this);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* NAND boot init, depends on the gpmi_set_geometry(). */
|
|
return nand_boot_init(this);
|
|
}
|
|
|
|
static void gpmi_nfc_exit(struct gpmi_nand_data *this)
|
|
{
|
|
nand_release(&this->mtd);
|
|
gpmi_free_dma_buffer(this);
|
|
}
|
|
|
|
static int gpmi_init_last(struct gpmi_nand_data *this)
|
|
{
|
|
struct mtd_info *mtd = &this->mtd;
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
struct bch_geometry *bch_geo = &this->bch_geometry;
|
|
int ret;
|
|
|
|
/* Prepare for the BBT scan. */
|
|
ret = gpmi_pre_bbt_scan(this);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Init the nand_ecc_ctrl{} */
|
|
ecc->read_page = gpmi_ecc_read_page;
|
|
ecc->write_page = gpmi_ecc_write_page;
|
|
ecc->read_oob = gpmi_ecc_read_oob;
|
|
ecc->write_oob = gpmi_ecc_write_oob;
|
|
ecc->mode = NAND_ECC_HW;
|
|
ecc->size = bch_geo->ecc_chunk_size;
|
|
ecc->strength = bch_geo->ecc_strength;
|
|
ecc->layout = &gpmi_hw_ecclayout;
|
|
|
|
/*
|
|
* Can we enable the extra features? such as EDO or Sync mode.
|
|
*
|
|
* We do not check the return value now. That's means if we fail in
|
|
* enable the extra features, we still can run in the normal way.
|
|
*/
|
|
gpmi_extra_init(this);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gpmi_nfc_init(struct gpmi_nand_data *this)
|
|
{
|
|
struct mtd_info *mtd = &this->mtd;
|
|
struct nand_chip *chip = &this->nand;
|
|
struct mtd_part_parser_data ppdata = {};
|
|
int ret;
|
|
|
|
/* init current chip */
|
|
this->current_chip = -1;
|
|
|
|
/* init the MTD data structures */
|
|
mtd->priv = chip;
|
|
mtd->name = "gpmi-nand";
|
|
mtd->owner = THIS_MODULE;
|
|
|
|
/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
|
|
chip->priv = this;
|
|
chip->select_chip = gpmi_select_chip;
|
|
chip->cmd_ctrl = gpmi_cmd_ctrl;
|
|
chip->dev_ready = gpmi_dev_ready;
|
|
chip->read_byte = gpmi_read_byte;
|
|
chip->read_buf = gpmi_read_buf;
|
|
chip->write_buf = gpmi_write_buf;
|
|
chip->badblock_pattern = &gpmi_bbt_descr;
|
|
chip->block_markbad = gpmi_block_markbad;
|
|
chip->options |= NAND_NO_SUBPAGE_WRITE;
|
|
if (of_get_nand_on_flash_bbt(this->dev->of_node))
|
|
chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
|
|
|
|
/*
|
|
* Allocate a temporary DMA buffer for reading ID in the
|
|
* nand_scan_ident().
|
|
*/
|
|
this->bch_geometry.payload_size = 1024;
|
|
this->bch_geometry.auxiliary_size = 128;
|
|
ret = gpmi_alloc_dma_buffer(this);
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
ret = nand_scan_ident(mtd, 2, NULL);
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
ret = gpmi_init_last(this);
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
ret = nand_scan_tail(mtd);
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
ppdata.of_node = this->pdev->dev.of_node;
|
|
ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
|
|
if (ret)
|
|
goto err_out;
|
|
return 0;
|
|
|
|
err_out:
|
|
gpmi_nfc_exit(this);
|
|
return ret;
|
|
}
|
|
|
|
static const struct platform_device_id gpmi_ids[] = {
|
|
{ .name = "imx23-gpmi-nand", .driver_data = IS_MX23, },
|
|
{ .name = "imx28-gpmi-nand", .driver_data = IS_MX28, },
|
|
{ .name = "imx6q-gpmi-nand", .driver_data = IS_MX6Q, },
|
|
{}
|
|
};
|
|
|
|
static const struct of_device_id gpmi_nand_id_table[] = {
|
|
{
|
|
.compatible = "fsl,imx23-gpmi-nand",
|
|
.data = (void *)&gpmi_ids[IS_MX23],
|
|
}, {
|
|
.compatible = "fsl,imx28-gpmi-nand",
|
|
.data = (void *)&gpmi_ids[IS_MX28],
|
|
}, {
|
|
.compatible = "fsl,imx6q-gpmi-nand",
|
|
.data = (void *)&gpmi_ids[IS_MX6Q],
|
|
}, {}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
|
|
|
|
static int gpmi_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct gpmi_nand_data *this;
|
|
const struct of_device_id *of_id;
|
|
int ret;
|
|
|
|
of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
|
|
if (of_id) {
|
|
pdev->id_entry = of_id->data;
|
|
} else {
|
|
pr_err("Failed to find the right device id.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
this = kzalloc(sizeof(*this), GFP_KERNEL);
|
|
if (!this) {
|
|
pr_err("Failed to allocate per-device memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, this);
|
|
this->pdev = pdev;
|
|
this->dev = &pdev->dev;
|
|
|
|
ret = acquire_resources(this);
|
|
if (ret)
|
|
goto exit_acquire_resources;
|
|
|
|
ret = init_hardware(this);
|
|
if (ret)
|
|
goto exit_nfc_init;
|
|
|
|
ret = gpmi_nfc_init(this);
|
|
if (ret)
|
|
goto exit_nfc_init;
|
|
|
|
dev_info(this->dev, "driver registered.\n");
|
|
|
|
return 0;
|
|
|
|
exit_nfc_init:
|
|
release_resources(this);
|
|
exit_acquire_resources:
|
|
dev_err(this->dev, "driver registration failed: %d\n", ret);
|
|
kfree(this);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int gpmi_nand_remove(struct platform_device *pdev)
|
|
{
|
|
struct gpmi_nand_data *this = platform_get_drvdata(pdev);
|
|
|
|
gpmi_nfc_exit(this);
|
|
release_resources(this);
|
|
kfree(this);
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver gpmi_nand_driver = {
|
|
.driver = {
|
|
.name = "gpmi-nand",
|
|
.of_match_table = gpmi_nand_id_table,
|
|
},
|
|
.probe = gpmi_nand_probe,
|
|
.remove = gpmi_nand_remove,
|
|
.id_table = gpmi_ids,
|
|
};
|
|
module_platform_driver(gpmi_nand_driver);
|
|
|
|
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
|
|
MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
|
|
MODULE_LICENSE("GPL");
|