linux/fs/btrfs/delayed-ref.c
Filipe Manana c28b97f53b btrfs: qgroups: remove bytenr field from struct btrfs_qgroup_extent_record
Now that we track qgroup extent records in a xarray we don't need to have
a "bytenr" field in  struct btrfs_qgroup_extent_record, since we can get
it from the index of the record in the xarray.

So remove the field and grab the bytenr from either the index key or any
other place where it's available (delayed refs). This reduces the size of
struct btrfs_qgroup_extent_record from 40 bytes down to 32 bytes, meaning
that we now can store 128 instances of this structure instead of 102 per
4K page.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-11-11 14:34:13 +01:00

1267 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2009 Oracle. All rights reserved.
*/
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include "messages.h"
#include "ctree.h"
#include "delayed-ref.h"
#include "transaction.h"
#include "qgroup.h"
#include "space-info.h"
#include "tree-mod-log.h"
#include "fs.h"
struct kmem_cache *btrfs_delayed_ref_head_cachep;
struct kmem_cache *btrfs_delayed_ref_node_cachep;
struct kmem_cache *btrfs_delayed_extent_op_cachep;
/*
* delayed back reference update tracking. For subvolume trees
* we queue up extent allocations and backref maintenance for
* delayed processing. This avoids deep call chains where we
* add extents in the middle of btrfs_search_slot, and it allows
* us to buffer up frequently modified backrefs in an rb tree instead
* of hammering updates on the extent allocation tree.
*/
bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
{
struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
bool ret = false;
u64 reserved;
spin_lock(&global_rsv->lock);
reserved = global_rsv->reserved;
spin_unlock(&global_rsv->lock);
/*
* Since the global reserve is just kind of magic we don't really want
* to rely on it to save our bacon, so if our size is more than the
* delayed_refs_rsv and the global rsv then it's time to think about
* bailing.
*/
spin_lock(&delayed_refs_rsv->lock);
reserved += delayed_refs_rsv->reserved;
if (delayed_refs_rsv->size >= reserved)
ret = true;
spin_unlock(&delayed_refs_rsv->lock);
return ret;
}
/*
* Release a ref head's reservation.
*
* @fs_info: the filesystem
* @nr_refs: number of delayed refs to drop
* @nr_csums: number of csum items to drop
*
* Drops the delayed ref head's count from the delayed refs rsv and free any
* excess reservation we had.
*/
void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
{
struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
u64 num_bytes;
u64 released;
num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
if (released)
trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
0, released, 0);
}
/*
* Adjust the size of the delayed refs rsv.
*
* This is to be called anytime we may have adjusted trans->delayed_ref_updates
* or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
* add it to the delayed_refs_rsv.
*/
void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
u64 num_bytes;
u64 reserved_bytes;
num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
trans->delayed_ref_csum_deletions);
if (num_bytes == 0)
return;
/*
* Try to take num_bytes from the transaction's local delayed reserve.
* If not possible, try to take as much as it's available. If the local
* reserve doesn't have enough reserved space, the delayed refs reserve
* will be refilled next time btrfs_delayed_refs_rsv_refill() is called
* by someone or if a transaction commit is triggered before that, the
* global block reserve will be used. We want to minimize using the
* global block reserve for cases we can account for in advance, to
* avoid exhausting it and reach -ENOSPC during a transaction commit.
*/
spin_lock(&local_rsv->lock);
reserved_bytes = min(num_bytes, local_rsv->reserved);
local_rsv->reserved -= reserved_bytes;
local_rsv->full = (local_rsv->reserved >= local_rsv->size);
spin_unlock(&local_rsv->lock);
spin_lock(&delayed_rsv->lock);
delayed_rsv->size += num_bytes;
delayed_rsv->reserved += reserved_bytes;
delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
spin_unlock(&delayed_rsv->lock);
trans->delayed_ref_updates = 0;
trans->delayed_ref_csum_deletions = 0;
}
/*
* Adjust the size of the delayed refs block reserve for 1 block group item
* insertion, used after allocating a block group.
*/
void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
{
struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
spin_lock(&delayed_rsv->lock);
/*
* Inserting a block group item does not require changing the free space
* tree, only the extent tree or the block group tree, so this is all we
* need.
*/
delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
delayed_rsv->full = false;
spin_unlock(&delayed_rsv->lock);
}
/*
* Adjust the size of the delayed refs block reserve to release space for 1
* block group item insertion.
*/
void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
{
struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
u64 released;
released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
if (released > 0)
trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
0, released, 0);
}
/*
* Adjust the size of the delayed refs block reserve for 1 block group item
* update.
*/
void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
{
struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
spin_lock(&delayed_rsv->lock);
/*
* Updating a block group item does not result in new nodes/leaves and
* does not require changing the free space tree, only the extent tree
* or the block group tree, so this is all we need.
*/
delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
delayed_rsv->full = false;
spin_unlock(&delayed_rsv->lock);
}
/*
* Adjust the size of the delayed refs block reserve to release space for 1
* block group item update.
*/
void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
{
struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
u64 released;
released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
if (released > 0)
trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
0, released, 0);
}
/*
* Refill based on our delayed refs usage.
*
* @fs_info: the filesystem
* @flush: control how we can flush for this reservation.
*
* This will refill the delayed block_rsv up to 1 items size worth of space and
* will return -ENOSPC if we can't make the reservation.
*/
int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
enum btrfs_reserve_flush_enum flush)
{
struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
struct btrfs_space_info *space_info = block_rsv->space_info;
u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
u64 num_bytes = 0;
u64 refilled_bytes;
u64 to_free;
int ret = -ENOSPC;
spin_lock(&block_rsv->lock);
if (block_rsv->reserved < block_rsv->size) {
num_bytes = block_rsv->size - block_rsv->reserved;
num_bytes = min(num_bytes, limit);
}
spin_unlock(&block_rsv->lock);
if (!num_bytes)
return 0;
ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush);
if (ret)
return ret;
/*
* We may have raced with someone else, so check again if we the block
* reserve is still not full and release any excess space.
*/
spin_lock(&block_rsv->lock);
if (block_rsv->reserved < block_rsv->size) {
u64 needed = block_rsv->size - block_rsv->reserved;
if (num_bytes >= needed) {
block_rsv->reserved += needed;
block_rsv->full = true;
to_free = num_bytes - needed;
refilled_bytes = needed;
} else {
block_rsv->reserved += num_bytes;
to_free = 0;
refilled_bytes = num_bytes;
}
} else {
to_free = num_bytes;
refilled_bytes = 0;
}
spin_unlock(&block_rsv->lock);
if (to_free > 0)
btrfs_space_info_free_bytes_may_use(fs_info, space_info, to_free);
if (refilled_bytes > 0)
trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
refilled_bytes, 1);
return 0;
}
/*
* compare two delayed data backrefs with same bytenr and type
*/
static int comp_data_refs(struct btrfs_delayed_ref_node *ref1,
struct btrfs_delayed_ref_node *ref2)
{
if (ref1->data_ref.objectid < ref2->data_ref.objectid)
return -1;
if (ref1->data_ref.objectid > ref2->data_ref.objectid)
return 1;
if (ref1->data_ref.offset < ref2->data_ref.offset)
return -1;
if (ref1->data_ref.offset > ref2->data_ref.offset)
return 1;
return 0;
}
static int comp_refs(struct btrfs_delayed_ref_node *ref1,
struct btrfs_delayed_ref_node *ref2,
bool check_seq)
{
int ret = 0;
if (ref1->type < ref2->type)
return -1;
if (ref1->type > ref2->type)
return 1;
if (ref1->type == BTRFS_SHARED_BLOCK_REF_KEY ||
ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
if (ref1->parent < ref2->parent)
return -1;
if (ref1->parent > ref2->parent)
return 1;
} else {
if (ref1->ref_root < ref2->ref_root)
return -1;
if (ref1->ref_root > ref2->ref_root)
return -1;
if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY)
ret = comp_data_refs(ref1, ref2);
}
if (ret)
return ret;
if (check_seq) {
if (ref1->seq < ref2->seq)
return -1;
if (ref1->seq > ref2->seq)
return 1;
}
return 0;
}
/* insert a new ref to head ref rbtree */
static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
struct rb_node *node)
{
struct rb_node **p = &root->rb_root.rb_node;
struct rb_node *parent_node = NULL;
struct btrfs_delayed_ref_head *entry;
struct btrfs_delayed_ref_head *ins;
u64 bytenr;
bool leftmost = true;
ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
bytenr = ins->bytenr;
while (*p) {
parent_node = *p;
entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
href_node);
if (bytenr < entry->bytenr) {
p = &(*p)->rb_left;
} else if (bytenr > entry->bytenr) {
p = &(*p)->rb_right;
leftmost = false;
} else {
return entry;
}
}
rb_link_node(node, parent_node, p);
rb_insert_color_cached(node, root, leftmost);
return NULL;
}
static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
struct btrfs_delayed_ref_node *ins)
{
struct rb_node **p = &root->rb_root.rb_node;
struct rb_node *node = &ins->ref_node;
struct rb_node *parent_node = NULL;
struct btrfs_delayed_ref_node *entry;
bool leftmost = true;
while (*p) {
int comp;
parent_node = *p;
entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
ref_node);
comp = comp_refs(ins, entry, true);
if (comp < 0) {
p = &(*p)->rb_left;
} else if (comp > 0) {
p = &(*p)->rb_right;
leftmost = false;
} else {
return entry;
}
}
rb_link_node(node, parent_node, p);
rb_insert_color_cached(node, root, leftmost);
return NULL;
}
static struct btrfs_delayed_ref_head *find_first_ref_head(
struct btrfs_delayed_ref_root *dr)
{
struct rb_node *n;
struct btrfs_delayed_ref_head *entry;
n = rb_first_cached(&dr->href_root);
if (!n)
return NULL;
entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
return entry;
}
/*
* Find a head entry based on bytenr. This returns the delayed ref head if it
* was able to find one, or NULL if nothing was in that spot. If return_bigger
* is given, the next bigger entry is returned if no exact match is found.
*/
static struct btrfs_delayed_ref_head *find_ref_head(
struct btrfs_delayed_ref_root *dr, u64 bytenr,
bool return_bigger)
{
struct rb_root *root = &dr->href_root.rb_root;
struct rb_node *n;
struct btrfs_delayed_ref_head *entry;
n = root->rb_node;
entry = NULL;
while (n) {
entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
if (bytenr < entry->bytenr)
n = n->rb_left;
else if (bytenr > entry->bytenr)
n = n->rb_right;
else
return entry;
}
if (entry && return_bigger) {
if (bytenr > entry->bytenr) {
n = rb_next(&entry->href_node);
if (!n)
return NULL;
entry = rb_entry(n, struct btrfs_delayed_ref_head,
href_node);
}
return entry;
}
return NULL;
}
int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
struct btrfs_delayed_ref_head *head)
{
lockdep_assert_held(&delayed_refs->lock);
if (mutex_trylock(&head->mutex))
return 0;
refcount_inc(&head->refs);
spin_unlock(&delayed_refs->lock);
mutex_lock(&head->mutex);
spin_lock(&delayed_refs->lock);
if (RB_EMPTY_NODE(&head->href_node)) {
mutex_unlock(&head->mutex);
btrfs_put_delayed_ref_head(head);
return -EAGAIN;
}
btrfs_put_delayed_ref_head(head);
return 0;
}
static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
struct btrfs_delayed_ref_root *delayed_refs,
struct btrfs_delayed_ref_head *head,
struct btrfs_delayed_ref_node *ref)
{
lockdep_assert_held(&head->lock);
rb_erase_cached(&ref->ref_node, &head->ref_tree);
RB_CLEAR_NODE(&ref->ref_node);
if (!list_empty(&ref->add_list))
list_del(&ref->add_list);
btrfs_put_delayed_ref(ref);
atomic_dec(&delayed_refs->num_entries);
btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
}
static bool merge_ref(struct btrfs_fs_info *fs_info,
struct btrfs_delayed_ref_root *delayed_refs,
struct btrfs_delayed_ref_head *head,
struct btrfs_delayed_ref_node *ref,
u64 seq)
{
struct btrfs_delayed_ref_node *next;
struct rb_node *node = rb_next(&ref->ref_node);
bool done = false;
while (!done && node) {
int mod;
next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
node = rb_next(node);
if (seq && next->seq >= seq)
break;
if (comp_refs(ref, next, false))
break;
if (ref->action == next->action) {
mod = next->ref_mod;
} else {
if (ref->ref_mod < next->ref_mod) {
swap(ref, next);
done = true;
}
mod = -next->ref_mod;
}
drop_delayed_ref(fs_info, delayed_refs, head, next);
ref->ref_mod += mod;
if (ref->ref_mod == 0) {
drop_delayed_ref(fs_info, delayed_refs, head, ref);
done = true;
} else {
/*
* Can't have multiples of the same ref on a tree block.
*/
WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
}
}
return done;
}
void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
struct btrfs_delayed_ref_root *delayed_refs,
struct btrfs_delayed_ref_head *head)
{
struct btrfs_delayed_ref_node *ref;
struct rb_node *node;
u64 seq = 0;
lockdep_assert_held(&head->lock);
if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
return;
/* We don't have too many refs to merge for data. */
if (head->is_data)
return;
seq = btrfs_tree_mod_log_lowest_seq(fs_info);
again:
for (node = rb_first_cached(&head->ref_tree); node;
node = rb_next(node)) {
ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
if (seq && ref->seq >= seq)
continue;
if (merge_ref(fs_info, delayed_refs, head, ref, seq))
goto again;
}
}
int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
{
int ret = 0;
u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
if (min_seq != 0 && seq >= min_seq) {
btrfs_debug(fs_info,
"holding back delayed_ref %llu, lowest is %llu",
seq, min_seq);
ret = 1;
}
return ret;
}
struct btrfs_delayed_ref_head *btrfs_select_ref_head(
struct btrfs_delayed_ref_root *delayed_refs)
{
struct btrfs_delayed_ref_head *head;
lockdep_assert_held(&delayed_refs->lock);
again:
head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
true);
if (!head && delayed_refs->run_delayed_start != 0) {
delayed_refs->run_delayed_start = 0;
head = find_first_ref_head(delayed_refs);
}
if (!head)
return NULL;
while (head->processing) {
struct rb_node *node;
node = rb_next(&head->href_node);
if (!node) {
if (delayed_refs->run_delayed_start == 0)
return NULL;
delayed_refs->run_delayed_start = 0;
goto again;
}
head = rb_entry(node, struct btrfs_delayed_ref_head,
href_node);
}
head->processing = true;
WARN_ON(delayed_refs->num_heads_ready == 0);
delayed_refs->num_heads_ready--;
delayed_refs->run_delayed_start = head->bytenr +
head->num_bytes;
return head;
}
void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
struct btrfs_delayed_ref_head *head)
{
lockdep_assert_held(&delayed_refs->lock);
lockdep_assert_held(&head->lock);
rb_erase_cached(&head->href_node, &delayed_refs->href_root);
RB_CLEAR_NODE(&head->href_node);
atomic_dec(&delayed_refs->num_entries);
delayed_refs->num_heads--;
if (!head->processing)
delayed_refs->num_heads_ready--;
}
/*
* Helper to insert the ref_node to the tail or merge with tail.
*
* Return false if the ref was inserted.
* Return true if the ref was merged into an existing one (and therefore can be
* freed by the caller).
*/
static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
struct btrfs_delayed_ref_head *href,
struct btrfs_delayed_ref_node *ref)
{
struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
struct btrfs_delayed_ref_node *exist;
int mod;
spin_lock(&href->lock);
exist = tree_insert(&href->ref_tree, ref);
if (!exist) {
if (ref->action == BTRFS_ADD_DELAYED_REF)
list_add_tail(&ref->add_list, &href->ref_add_list);
atomic_inc(&root->num_entries);
spin_unlock(&href->lock);
trans->delayed_ref_updates++;
return false;
}
/* Now we are sure we can merge */
if (exist->action == ref->action) {
mod = ref->ref_mod;
} else {
/* Need to change action */
if (exist->ref_mod < ref->ref_mod) {
exist->action = ref->action;
mod = -exist->ref_mod;
exist->ref_mod = ref->ref_mod;
if (ref->action == BTRFS_ADD_DELAYED_REF)
list_add_tail(&exist->add_list,
&href->ref_add_list);
else if (ref->action == BTRFS_DROP_DELAYED_REF) {
ASSERT(!list_empty(&exist->add_list));
list_del_init(&exist->add_list);
} else {
ASSERT(0);
}
} else
mod = -ref->ref_mod;
}
exist->ref_mod += mod;
/* remove existing tail if its ref_mod is zero */
if (exist->ref_mod == 0)
drop_delayed_ref(trans->fs_info, root, href, exist);
spin_unlock(&href->lock);
return true;
}
/*
* helper function to update the accounting in the head ref
* existing and update must have the same bytenr
*/
static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
struct btrfs_delayed_ref_head *existing,
struct btrfs_delayed_ref_head *update)
{
struct btrfs_delayed_ref_root *delayed_refs =
&trans->transaction->delayed_refs;
struct btrfs_fs_info *fs_info = trans->fs_info;
int old_ref_mod;
BUG_ON(existing->is_data != update->is_data);
spin_lock(&existing->lock);
/*
* When freeing an extent, we may not know the owning root when we
* first create the head_ref. However, some deref before the last deref
* will know it, so we just need to update the head_ref accordingly.
*/
if (!existing->owning_root)
existing->owning_root = update->owning_root;
if (update->must_insert_reserved) {
/* if the extent was freed and then
* reallocated before the delayed ref
* entries were processed, we can end up
* with an existing head ref without
* the must_insert_reserved flag set.
* Set it again here
*/
existing->must_insert_reserved = update->must_insert_reserved;
existing->owning_root = update->owning_root;
/*
* update the num_bytes so we make sure the accounting
* is done correctly
*/
existing->num_bytes = update->num_bytes;
}
if (update->extent_op) {
if (!existing->extent_op) {
existing->extent_op = update->extent_op;
} else {
if (update->extent_op->update_key) {
memcpy(&existing->extent_op->key,
&update->extent_op->key,
sizeof(update->extent_op->key));
existing->extent_op->update_key = true;
}
if (update->extent_op->update_flags) {
existing->extent_op->flags_to_set |=
update->extent_op->flags_to_set;
existing->extent_op->update_flags = true;
}
btrfs_free_delayed_extent_op(update->extent_op);
}
}
/*
* update the reference mod on the head to reflect this new operation,
* only need the lock for this case cause we could be processing it
* currently, for refs we just added we know we're a-ok.
*/
old_ref_mod = existing->total_ref_mod;
existing->ref_mod += update->ref_mod;
existing->total_ref_mod += update->ref_mod;
/*
* If we are going to from a positive ref mod to a negative or vice
* versa we need to make sure to adjust pending_csums accordingly.
* We reserve bytes for csum deletion when adding or updating a ref head
* see add_delayed_ref_head() for more details.
*/
if (existing->is_data) {
u64 csum_leaves =
btrfs_csum_bytes_to_leaves(fs_info,
existing->num_bytes);
if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
delayed_refs->pending_csums -= existing->num_bytes;
btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
}
if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
delayed_refs->pending_csums += existing->num_bytes;
trans->delayed_ref_csum_deletions += csum_leaves;
}
}
spin_unlock(&existing->lock);
}
static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
struct btrfs_ref *generic_ref,
struct btrfs_qgroup_extent_record *qrecord,
u64 reserved)
{
int count_mod = 1;
bool must_insert_reserved = false;
/* If reserved is provided, it must be a data extent. */
BUG_ON(generic_ref->type != BTRFS_REF_DATA && reserved);
switch (generic_ref->action) {
case BTRFS_ADD_DELAYED_REF:
/* count_mod is already set to 1. */
break;
case BTRFS_UPDATE_DELAYED_HEAD:
count_mod = 0;
break;
case BTRFS_DROP_DELAYED_REF:
/*
* The head node stores the sum of all the mods, so dropping a ref
* should drop the sum in the head node by one.
*/
count_mod = -1;
break;
case BTRFS_ADD_DELAYED_EXTENT:
/*
* BTRFS_ADD_DELAYED_EXTENT means that we need to update the
* reserved accounting when the extent is finally added, or if a
* later modification deletes the delayed ref without ever
* inserting the extent into the extent allocation tree.
* ref->must_insert_reserved is the flag used to record that
* accounting mods are required.
*
* Once we record must_insert_reserved, switch the action to
* BTRFS_ADD_DELAYED_REF because other special casing is not
* required.
*/
must_insert_reserved = true;
break;
}
refcount_set(&head_ref->refs, 1);
head_ref->bytenr = generic_ref->bytenr;
head_ref->num_bytes = generic_ref->num_bytes;
head_ref->ref_mod = count_mod;
head_ref->reserved_bytes = reserved;
head_ref->must_insert_reserved = must_insert_reserved;
head_ref->owning_root = generic_ref->owning_root;
head_ref->is_data = (generic_ref->type == BTRFS_REF_DATA);
head_ref->is_system = (generic_ref->ref_root == BTRFS_CHUNK_TREE_OBJECTID);
head_ref->ref_tree = RB_ROOT_CACHED;
INIT_LIST_HEAD(&head_ref->ref_add_list);
RB_CLEAR_NODE(&head_ref->href_node);
head_ref->processing = false;
head_ref->total_ref_mod = count_mod;
spin_lock_init(&head_ref->lock);
mutex_init(&head_ref->mutex);
/* If not metadata set an impossible level to help debugging. */
if (generic_ref->type == BTRFS_REF_METADATA)
head_ref->level = generic_ref->tree_ref.level;
else
head_ref->level = U8_MAX;
if (qrecord) {
if (generic_ref->ref_root && reserved) {
qrecord->data_rsv = reserved;
qrecord->data_rsv_refroot = generic_ref->ref_root;
}
qrecord->num_bytes = generic_ref->num_bytes;
qrecord->old_roots = NULL;
}
}
/*
* helper function to actually insert a head node into the rbtree.
* this does all the dirty work in terms of maintaining the correct
* overall modification count.
*
* Returns an error pointer in case of an error.
*/
static noinline struct btrfs_delayed_ref_head *
add_delayed_ref_head(struct btrfs_trans_handle *trans,
struct btrfs_delayed_ref_head *head_ref,
struct btrfs_qgroup_extent_record *qrecord,
int action, bool *qrecord_inserted_ret)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_delayed_ref_head *existing;
struct btrfs_delayed_ref_root *delayed_refs;
bool qrecord_inserted = false;
delayed_refs = &trans->transaction->delayed_refs;
/* Record qgroup extent info if provided */
if (qrecord) {
int ret;
ret = btrfs_qgroup_trace_extent_nolock(fs_info, delayed_refs, qrecord,
head_ref->bytenr);
if (ret) {
/* Clean up if insertion fails or item exists. */
xa_release(&delayed_refs->dirty_extents,
head_ref->bytenr >> fs_info->sectorsize_bits);
/* Caller responsible for freeing qrecord on error. */
if (ret < 0)
return ERR_PTR(ret);
kfree(qrecord);
} else {
qrecord_inserted = true;
}
}
trace_add_delayed_ref_head(fs_info, head_ref, action);
existing = htree_insert(&delayed_refs->href_root,
&head_ref->href_node);
if (existing) {
update_existing_head_ref(trans, existing, head_ref);
/*
* we've updated the existing ref, free the newly
* allocated ref
*/
kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
head_ref = existing;
} else {
/*
* We reserve the amount of bytes needed to delete csums when
* adding the ref head and not when adding individual drop refs
* since the csum items are deleted only after running the last
* delayed drop ref (the data extent's ref count drops to 0).
*/
if (head_ref->is_data && head_ref->ref_mod < 0) {
delayed_refs->pending_csums += head_ref->num_bytes;
trans->delayed_ref_csum_deletions +=
btrfs_csum_bytes_to_leaves(fs_info, head_ref->num_bytes);
}
delayed_refs->num_heads++;
delayed_refs->num_heads_ready++;
atomic_inc(&delayed_refs->num_entries);
}
if (qrecord_inserted_ret)
*qrecord_inserted_ret = qrecord_inserted;
return head_ref;
}
/*
* Initialize the structure which represents a modification to a an extent.
*
* @fs_info: Internal to the mounted filesystem mount structure.
*
* @ref: The structure which is going to be initialized.
*
* @bytenr: The logical address of the extent for which a modification is
* going to be recorded.
*
* @num_bytes: Size of the extent whose modification is being recorded.
*
* @ref_root: The id of the root where this modification has originated, this
* can be either one of the well-known metadata trees or the
* subvolume id which references this extent.
*
* @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
* BTRFS_ADD_DELAYED_EXTENT
*
* @ref_type: Holds the type of the extent which is being recorded, can be
* one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
* when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
* BTRFS_EXTENT_DATA_REF_KEY when recording data extent
*/
static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
struct btrfs_delayed_ref_node *ref,
struct btrfs_ref *generic_ref)
{
int action = generic_ref->action;
u64 seq = 0;
if (action == BTRFS_ADD_DELAYED_EXTENT)
action = BTRFS_ADD_DELAYED_REF;
if (is_fstree(generic_ref->ref_root))
seq = atomic64_read(&fs_info->tree_mod_seq);
refcount_set(&ref->refs, 1);
ref->bytenr = generic_ref->bytenr;
ref->num_bytes = generic_ref->num_bytes;
ref->ref_mod = 1;
ref->action = action;
ref->seq = seq;
ref->type = btrfs_ref_type(generic_ref);
ref->ref_root = generic_ref->ref_root;
ref->parent = generic_ref->parent;
RB_CLEAR_NODE(&ref->ref_node);
INIT_LIST_HEAD(&ref->add_list);
if (generic_ref->type == BTRFS_REF_DATA)
ref->data_ref = generic_ref->data_ref;
else
ref->tree_ref = generic_ref->tree_ref;
}
void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 mod_root,
bool skip_qgroup)
{
#ifdef CONFIG_BTRFS_FS_REF_VERIFY
/* If @real_root not set, use @root as fallback */
generic_ref->real_root = mod_root ?: generic_ref->ref_root;
#endif
generic_ref->tree_ref.level = level;
generic_ref->type = BTRFS_REF_METADATA;
if (skip_qgroup || !(is_fstree(generic_ref->ref_root) &&
(!mod_root || is_fstree(mod_root))))
generic_ref->skip_qgroup = true;
else
generic_ref->skip_qgroup = false;
}
void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ino, u64 offset,
u64 mod_root, bool skip_qgroup)
{
#ifdef CONFIG_BTRFS_FS_REF_VERIFY
/* If @real_root not set, use @root as fallback */
generic_ref->real_root = mod_root ?: generic_ref->ref_root;
#endif
generic_ref->data_ref.objectid = ino;
generic_ref->data_ref.offset = offset;
generic_ref->type = BTRFS_REF_DATA;
if (skip_qgroup || !(is_fstree(generic_ref->ref_root) &&
(!mod_root || is_fstree(mod_root))))
generic_ref->skip_qgroup = true;
else
generic_ref->skip_qgroup = false;
}
static int add_delayed_ref(struct btrfs_trans_handle *trans,
struct btrfs_ref *generic_ref,
struct btrfs_delayed_extent_op *extent_op,
u64 reserved)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_delayed_ref_node *node;
struct btrfs_delayed_ref_head *head_ref;
struct btrfs_delayed_ref_head *new_head_ref;
struct btrfs_delayed_ref_root *delayed_refs;
struct btrfs_qgroup_extent_record *record = NULL;
bool qrecord_inserted;
int action = generic_ref->action;
bool merged;
int ret;
node = kmem_cache_alloc(btrfs_delayed_ref_node_cachep, GFP_NOFS);
if (!node)
return -ENOMEM;
head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
if (!head_ref) {
ret = -ENOMEM;
goto free_node;
}
if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
record = kzalloc(sizeof(*record), GFP_NOFS);
if (!record) {
ret = -ENOMEM;
goto free_head_ref;
}
if (xa_reserve(&trans->transaction->delayed_refs.dirty_extents,
generic_ref->bytenr >> fs_info->sectorsize_bits,
GFP_NOFS)) {
ret = -ENOMEM;
goto free_record;
}
}
init_delayed_ref_common(fs_info, node, generic_ref);
init_delayed_ref_head(head_ref, generic_ref, record, reserved);
head_ref->extent_op = extent_op;
delayed_refs = &trans->transaction->delayed_refs;
spin_lock(&delayed_refs->lock);
/*
* insert both the head node and the new ref without dropping
* the spin lock
*/
new_head_ref = add_delayed_ref_head(trans, head_ref, record,
action, &qrecord_inserted);
if (IS_ERR(new_head_ref)) {
spin_unlock(&delayed_refs->lock);
ret = PTR_ERR(new_head_ref);
goto free_record;
}
head_ref = new_head_ref;
merged = insert_delayed_ref(trans, head_ref, node);
spin_unlock(&delayed_refs->lock);
/*
* Need to update the delayed_refs_rsv with any changes we may have
* made.
*/
btrfs_update_delayed_refs_rsv(trans);
if (generic_ref->type == BTRFS_REF_DATA)
trace_add_delayed_data_ref(trans->fs_info, node);
else
trace_add_delayed_tree_ref(trans->fs_info, node);
if (merged)
kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
if (qrecord_inserted)
return btrfs_qgroup_trace_extent_post(trans, record, generic_ref->bytenr);
return 0;
free_record:
kfree(record);
free_head_ref:
kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
free_node:
kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
return ret;
}
/*
* Add a delayed tree ref. This does all of the accounting required to make sure
* the delayed ref is eventually processed before this transaction commits.
*/
int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
struct btrfs_ref *generic_ref,
struct btrfs_delayed_extent_op *extent_op)
{
ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
return add_delayed_ref(trans, generic_ref, extent_op, 0);
}
/*
* add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
*/
int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
struct btrfs_ref *generic_ref,
u64 reserved)
{
ASSERT(generic_ref->type == BTRFS_REF_DATA && generic_ref->action);
return add_delayed_ref(trans, generic_ref, NULL, reserved);
}
int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
u64 bytenr, u64 num_bytes, u8 level,
struct btrfs_delayed_extent_op *extent_op)
{
struct btrfs_delayed_ref_head *head_ref;
struct btrfs_delayed_ref_head *head_ref_ret;
struct btrfs_delayed_ref_root *delayed_refs;
struct btrfs_ref generic_ref = {
.type = BTRFS_REF_METADATA,
.action = BTRFS_UPDATE_DELAYED_HEAD,
.bytenr = bytenr,
.num_bytes = num_bytes,
.tree_ref.level = level,
};
head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
if (!head_ref)
return -ENOMEM;
init_delayed_ref_head(head_ref, &generic_ref, NULL, 0);
head_ref->extent_op = extent_op;
delayed_refs = &trans->transaction->delayed_refs;
spin_lock(&delayed_refs->lock);
head_ref_ret = add_delayed_ref_head(trans, head_ref, NULL,
BTRFS_UPDATE_DELAYED_HEAD, NULL);
spin_unlock(&delayed_refs->lock);
if (IS_ERR(head_ref_ret)) {
kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
return PTR_ERR(head_ref_ret);
}
/*
* Need to update the delayed_refs_rsv with any changes we may have
* made.
*/
btrfs_update_delayed_refs_rsv(trans);
return 0;
}
void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
{
if (refcount_dec_and_test(&ref->refs)) {
WARN_ON(!RB_EMPTY_NODE(&ref->ref_node));
kmem_cache_free(btrfs_delayed_ref_node_cachep, ref);
}
}
/*
* This does a simple search for the head node for a given extent. Returns the
* head node if found, or NULL if not.
*/
struct btrfs_delayed_ref_head *
btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
{
lockdep_assert_held(&delayed_refs->lock);
return find_ref_head(delayed_refs, bytenr, false);
}
static int find_comp(struct btrfs_delayed_ref_node *entry, u64 root, u64 parent)
{
int type = parent ? BTRFS_SHARED_BLOCK_REF_KEY : BTRFS_TREE_BLOCK_REF_KEY;
if (type < entry->type)
return -1;
if (type > entry->type)
return 1;
if (type == BTRFS_TREE_BLOCK_REF_KEY) {
if (root < entry->ref_root)
return -1;
if (root > entry->ref_root)
return 1;
} else {
if (parent < entry->parent)
return -1;
if (parent > entry->parent)
return 1;
}
return 0;
}
/*
* Check to see if a given root/parent reference is attached to the head. This
* only checks for BTRFS_ADD_DELAYED_REF references that match, as that
* indicates the reference exists for the given root or parent. This is for
* tree blocks only.
*
* @head: the head of the bytenr we're searching.
* @root: the root objectid of the reference if it is a normal reference.
* @parent: the parent if this is a shared backref.
*/
bool btrfs_find_delayed_tree_ref(struct btrfs_delayed_ref_head *head,
u64 root, u64 parent)
{
struct rb_node *node;
bool found = false;
lockdep_assert_held(&head->mutex);
spin_lock(&head->lock);
node = head->ref_tree.rb_root.rb_node;
while (node) {
struct btrfs_delayed_ref_node *entry;
int ret;
entry = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
ret = find_comp(entry, root, parent);
if (ret < 0) {
node = node->rb_left;
} else if (ret > 0) {
node = node->rb_right;
} else {
/*
* We only want to count ADD actions, as drops mean the
* ref doesn't exist.
*/
if (entry->action == BTRFS_ADD_DELAYED_REF)
found = true;
break;
}
}
spin_unlock(&head->lock);
return found;
}
void __cold btrfs_delayed_ref_exit(void)
{
kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
kmem_cache_destroy(btrfs_delayed_ref_node_cachep);
kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
}
int __init btrfs_delayed_ref_init(void)
{
btrfs_delayed_ref_head_cachep = KMEM_CACHE(btrfs_delayed_ref_head, 0);
if (!btrfs_delayed_ref_head_cachep)
goto fail;
btrfs_delayed_ref_node_cachep = KMEM_CACHE(btrfs_delayed_ref_node, 0);
if (!btrfs_delayed_ref_node_cachep)
goto fail;
btrfs_delayed_extent_op_cachep = KMEM_CACHE(btrfs_delayed_extent_op, 0);
if (!btrfs_delayed_extent_op_cachep)
goto fail;
return 0;
fail:
btrfs_delayed_ref_exit();
return -ENOMEM;
}