linux/arch/powerpc/kvm/booke.c
Scott Wood c59a6a3e4e KVM: PPC: booke: Check for MSR[WE] in prepare_to_enter
This prevents us from inappropriately blocking in a KVM_SET_REGS
ioctl -- the MSR[WE] will take effect when the guest is next entered.

It also causes SRR1[WE] to be set when we enter the guest's interrupt
handler, which is what e500 hardware is documented to do.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:26 +02:00

982 lines
27 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright IBM Corp. 2007
* Copyright 2010-2011 Freescale Semiconductor, Inc.
*
* Authors: Hollis Blanchard <hollisb@us.ibm.com>
* Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
*/
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/gfp.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <asm/cputable.h>
#include <asm/uaccess.h>
#include <asm/kvm_ppc.h>
#include "timing.h"
#include <asm/cacheflush.h>
#include "booke.h"
unsigned long kvmppc_booke_handlers;
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "mmio", VCPU_STAT(mmio_exits) },
{ "dcr", VCPU_STAT(dcr_exits) },
{ "sig", VCPU_STAT(signal_exits) },
{ "itlb_r", VCPU_STAT(itlb_real_miss_exits) },
{ "itlb_v", VCPU_STAT(itlb_virt_miss_exits) },
{ "dtlb_r", VCPU_STAT(dtlb_real_miss_exits) },
{ "dtlb_v", VCPU_STAT(dtlb_virt_miss_exits) },
{ "sysc", VCPU_STAT(syscall_exits) },
{ "isi", VCPU_STAT(isi_exits) },
{ "dsi", VCPU_STAT(dsi_exits) },
{ "inst_emu", VCPU_STAT(emulated_inst_exits) },
{ "dec", VCPU_STAT(dec_exits) },
{ "ext_intr", VCPU_STAT(ext_intr_exits) },
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
{ NULL }
};
/* TODO: use vcpu_printf() */
void kvmppc_dump_vcpu(struct kvm_vcpu *vcpu)
{
int i;
printk("pc: %08lx msr: %08llx\n", vcpu->arch.pc, vcpu->arch.shared->msr);
printk("lr: %08lx ctr: %08lx\n", vcpu->arch.lr, vcpu->arch.ctr);
printk("srr0: %08llx srr1: %08llx\n", vcpu->arch.shared->srr0,
vcpu->arch.shared->srr1);
printk("exceptions: %08lx\n", vcpu->arch.pending_exceptions);
for (i = 0; i < 32; i += 4) {
printk("gpr%02d: %08lx %08lx %08lx %08lx\n", i,
kvmppc_get_gpr(vcpu, i),
kvmppc_get_gpr(vcpu, i+1),
kvmppc_get_gpr(vcpu, i+2),
kvmppc_get_gpr(vcpu, i+3));
}
}
#ifdef CONFIG_SPE
void kvmppc_vcpu_disable_spe(struct kvm_vcpu *vcpu)
{
preempt_disable();
enable_kernel_spe();
kvmppc_save_guest_spe(vcpu);
vcpu->arch.shadow_msr &= ~MSR_SPE;
preempt_enable();
}
static void kvmppc_vcpu_enable_spe(struct kvm_vcpu *vcpu)
{
preempt_disable();
enable_kernel_spe();
kvmppc_load_guest_spe(vcpu);
vcpu->arch.shadow_msr |= MSR_SPE;
preempt_enable();
}
static void kvmppc_vcpu_sync_spe(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.shared->msr & MSR_SPE) {
if (!(vcpu->arch.shadow_msr & MSR_SPE))
kvmppc_vcpu_enable_spe(vcpu);
} else if (vcpu->arch.shadow_msr & MSR_SPE) {
kvmppc_vcpu_disable_spe(vcpu);
}
}
#else
static void kvmppc_vcpu_sync_spe(struct kvm_vcpu *vcpu)
{
}
#endif
/*
* Helper function for "full" MSR writes. No need to call this if only
* EE/CE/ME/DE/RI are changing.
*/
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u32 new_msr)
{
u32 old_msr = vcpu->arch.shared->msr;
vcpu->arch.shared->msr = new_msr;
kvmppc_mmu_msr_notify(vcpu, old_msr);
kvmppc_vcpu_sync_spe(vcpu);
}
static void kvmppc_booke_queue_irqprio(struct kvm_vcpu *vcpu,
unsigned int priority)
{
set_bit(priority, &vcpu->arch.pending_exceptions);
}
static void kvmppc_core_queue_dtlb_miss(struct kvm_vcpu *vcpu,
ulong dear_flags, ulong esr_flags)
{
vcpu->arch.queued_dear = dear_flags;
vcpu->arch.queued_esr = esr_flags;
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DTLB_MISS);
}
static void kvmppc_core_queue_data_storage(struct kvm_vcpu *vcpu,
ulong dear_flags, ulong esr_flags)
{
vcpu->arch.queued_dear = dear_flags;
vcpu->arch.queued_esr = esr_flags;
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DATA_STORAGE);
}
static void kvmppc_core_queue_inst_storage(struct kvm_vcpu *vcpu,
ulong esr_flags)
{
vcpu->arch.queued_esr = esr_flags;
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_INST_STORAGE);
}
void kvmppc_core_queue_program(struct kvm_vcpu *vcpu, ulong esr_flags)
{
vcpu->arch.queued_esr = esr_flags;
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_PROGRAM);
}
void kvmppc_core_queue_dec(struct kvm_vcpu *vcpu)
{
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DECREMENTER);
}
int kvmppc_core_pending_dec(struct kvm_vcpu *vcpu)
{
return test_bit(BOOKE_IRQPRIO_DECREMENTER, &vcpu->arch.pending_exceptions);
}
void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu)
{
clear_bit(BOOKE_IRQPRIO_DECREMENTER, &vcpu->arch.pending_exceptions);
}
void kvmppc_core_queue_external(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
unsigned int prio = BOOKE_IRQPRIO_EXTERNAL;
if (irq->irq == KVM_INTERRUPT_SET_LEVEL)
prio = BOOKE_IRQPRIO_EXTERNAL_LEVEL;
kvmppc_booke_queue_irqprio(vcpu, prio);
}
void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
clear_bit(BOOKE_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions);
clear_bit(BOOKE_IRQPRIO_EXTERNAL_LEVEL, &vcpu->arch.pending_exceptions);
}
/* Deliver the interrupt of the corresponding priority, if possible. */
static int kvmppc_booke_irqprio_deliver(struct kvm_vcpu *vcpu,
unsigned int priority)
{
int allowed = 0;
ulong uninitialized_var(msr_mask);
bool update_esr = false, update_dear = false;
ulong crit_raw = vcpu->arch.shared->critical;
ulong crit_r1 = kvmppc_get_gpr(vcpu, 1);
bool crit;
bool keep_irq = false;
/* Truncate crit indicators in 32 bit mode */
if (!(vcpu->arch.shared->msr & MSR_SF)) {
crit_raw &= 0xffffffff;
crit_r1 &= 0xffffffff;
}
/* Critical section when crit == r1 */
crit = (crit_raw == crit_r1);
/* ... and we're in supervisor mode */
crit = crit && !(vcpu->arch.shared->msr & MSR_PR);
if (priority == BOOKE_IRQPRIO_EXTERNAL_LEVEL) {
priority = BOOKE_IRQPRIO_EXTERNAL;
keep_irq = true;
}
switch (priority) {
case BOOKE_IRQPRIO_DTLB_MISS:
case BOOKE_IRQPRIO_DATA_STORAGE:
update_dear = true;
/* fall through */
case BOOKE_IRQPRIO_INST_STORAGE:
case BOOKE_IRQPRIO_PROGRAM:
update_esr = true;
/* fall through */
case BOOKE_IRQPRIO_ITLB_MISS:
case BOOKE_IRQPRIO_SYSCALL:
case BOOKE_IRQPRIO_FP_UNAVAIL:
case BOOKE_IRQPRIO_SPE_UNAVAIL:
case BOOKE_IRQPRIO_SPE_FP_DATA:
case BOOKE_IRQPRIO_SPE_FP_ROUND:
case BOOKE_IRQPRIO_AP_UNAVAIL:
case BOOKE_IRQPRIO_ALIGNMENT:
allowed = 1;
msr_mask = MSR_CE|MSR_ME|MSR_DE;
break;
case BOOKE_IRQPRIO_CRITICAL:
case BOOKE_IRQPRIO_WATCHDOG:
allowed = vcpu->arch.shared->msr & MSR_CE;
msr_mask = MSR_ME;
break;
case BOOKE_IRQPRIO_MACHINE_CHECK:
allowed = vcpu->arch.shared->msr & MSR_ME;
msr_mask = 0;
break;
case BOOKE_IRQPRIO_EXTERNAL:
case BOOKE_IRQPRIO_DECREMENTER:
case BOOKE_IRQPRIO_FIT:
allowed = vcpu->arch.shared->msr & MSR_EE;
allowed = allowed && !crit;
msr_mask = MSR_CE|MSR_ME|MSR_DE;
break;
case BOOKE_IRQPRIO_DEBUG:
allowed = vcpu->arch.shared->msr & MSR_DE;
msr_mask = MSR_ME;
break;
}
if (allowed) {
vcpu->arch.shared->srr0 = vcpu->arch.pc;
vcpu->arch.shared->srr1 = vcpu->arch.shared->msr;
vcpu->arch.pc = vcpu->arch.ivpr | vcpu->arch.ivor[priority];
if (update_esr == true)
vcpu->arch.esr = vcpu->arch.queued_esr;
if (update_dear == true)
vcpu->arch.shared->dar = vcpu->arch.queued_dear;
kvmppc_set_msr(vcpu, vcpu->arch.shared->msr & msr_mask);
if (!keep_irq)
clear_bit(priority, &vcpu->arch.pending_exceptions);
}
return allowed;
}
static void kvmppc_core_check_exceptions(struct kvm_vcpu *vcpu)
{
unsigned long *pending = &vcpu->arch.pending_exceptions;
unsigned long old_pending = vcpu->arch.pending_exceptions;
unsigned int priority;
priority = __ffs(*pending);
while (priority <= BOOKE_IRQPRIO_MAX) {
if (kvmppc_booke_irqprio_deliver(vcpu, priority))
break;
priority = find_next_bit(pending,
BITS_PER_BYTE * sizeof(*pending),
priority + 1);
}
/* Tell the guest about our interrupt status */
if (*pending)
vcpu->arch.shared->int_pending = 1;
else if (old_pending)
vcpu->arch.shared->int_pending = 0;
}
/* Check pending exceptions and deliver one, if possible. */
void kvmppc_core_prepare_to_enter(struct kvm_vcpu *vcpu)
{
WARN_ON_ONCE(!irqs_disabled());
kvmppc_core_check_exceptions(vcpu);
if (vcpu->arch.shared->msr & MSR_WE) {
local_irq_enable();
kvm_vcpu_block(vcpu);
local_irq_disable();
kvmppc_set_exit_type(vcpu, EMULATED_MTMSRWE_EXITS);
kvmppc_core_check_exceptions(vcpu);
};
}
int kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
int ret;
if (!vcpu->arch.sane) {
kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
return -EINVAL;
}
local_irq_disable();
kvmppc_core_prepare_to_enter(vcpu);
if (signal_pending(current)) {
kvm_run->exit_reason = KVM_EXIT_INTR;
ret = -EINTR;
goto out;
}
kvm_guest_enter();
ret = __kvmppc_vcpu_run(kvm_run, vcpu);
kvm_guest_exit();
out:
local_irq_enable();
return ret;
}
/**
* kvmppc_handle_exit
*
* Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
*/
int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int exit_nr)
{
enum emulation_result er;
int r = RESUME_HOST;
/* update before a new last_exit_type is rewritten */
kvmppc_update_timing_stats(vcpu);
local_irq_enable();
run->exit_reason = KVM_EXIT_UNKNOWN;
run->ready_for_interrupt_injection = 1;
switch (exit_nr) {
case BOOKE_INTERRUPT_MACHINE_CHECK:
printk("MACHINE CHECK: %lx\n", mfspr(SPRN_MCSR));
kvmppc_dump_vcpu(vcpu);
r = RESUME_HOST;
break;
case BOOKE_INTERRUPT_EXTERNAL:
kvmppc_account_exit(vcpu, EXT_INTR_EXITS);
if (need_resched())
cond_resched();
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_DECREMENTER:
/* Since we switched IVPR back to the host's value, the host
* handled this interrupt the moment we enabled interrupts.
* Now we just offer it a chance to reschedule the guest. */
kvmppc_account_exit(vcpu, DEC_EXITS);
if (need_resched())
cond_resched();
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_PROGRAM:
if (vcpu->arch.shared->msr & MSR_PR) {
/* Program traps generated by user-level software must be handled
* by the guest kernel. */
kvmppc_core_queue_program(vcpu, vcpu->arch.fault_esr);
r = RESUME_GUEST;
kvmppc_account_exit(vcpu, USR_PR_INST);
break;
}
er = kvmppc_emulate_instruction(run, vcpu);
switch (er) {
case EMULATE_DONE:
/* don't overwrite subtypes, just account kvm_stats */
kvmppc_account_exit_stat(vcpu, EMULATED_INST_EXITS);
/* Future optimization: only reload non-volatiles if
* they were actually modified by emulation. */
r = RESUME_GUEST_NV;
break;
case EMULATE_DO_DCR:
run->exit_reason = KVM_EXIT_DCR;
r = RESUME_HOST;
break;
case EMULATE_FAIL:
/* XXX Deliver Program interrupt to guest. */
printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
__func__, vcpu->arch.pc, vcpu->arch.last_inst);
/* For debugging, encode the failing instruction and
* report it to userspace. */
run->hw.hardware_exit_reason = ~0ULL << 32;
run->hw.hardware_exit_reason |= vcpu->arch.last_inst;
r = RESUME_HOST;
break;
default:
BUG();
}
break;
case BOOKE_INTERRUPT_FP_UNAVAIL:
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_FP_UNAVAIL);
kvmppc_account_exit(vcpu, FP_UNAVAIL);
r = RESUME_GUEST;
break;
#ifdef CONFIG_SPE
case BOOKE_INTERRUPT_SPE_UNAVAIL: {
if (vcpu->arch.shared->msr & MSR_SPE)
kvmppc_vcpu_enable_spe(vcpu);
else
kvmppc_booke_queue_irqprio(vcpu,
BOOKE_IRQPRIO_SPE_UNAVAIL);
r = RESUME_GUEST;
break;
}
case BOOKE_INTERRUPT_SPE_FP_DATA:
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SPE_FP_DATA);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_SPE_FP_ROUND:
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SPE_FP_ROUND);
r = RESUME_GUEST;
break;
#else
case BOOKE_INTERRUPT_SPE_UNAVAIL:
/*
* Guest wants SPE, but host kernel doesn't support it. Send
* an "unimplemented operation" program check to the guest.
*/
kvmppc_core_queue_program(vcpu, ESR_PUO | ESR_SPV);
r = RESUME_GUEST;
break;
/*
* These really should never happen without CONFIG_SPE,
* as we should never enable the real MSR[SPE] in the guest.
*/
case BOOKE_INTERRUPT_SPE_FP_DATA:
case BOOKE_INTERRUPT_SPE_FP_ROUND:
printk(KERN_CRIT "%s: unexpected SPE interrupt %u at %08lx\n",
__func__, exit_nr, vcpu->arch.pc);
run->hw.hardware_exit_reason = exit_nr;
r = RESUME_HOST;
break;
#endif
case BOOKE_INTERRUPT_DATA_STORAGE:
kvmppc_core_queue_data_storage(vcpu, vcpu->arch.fault_dear,
vcpu->arch.fault_esr);
kvmppc_account_exit(vcpu, DSI_EXITS);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_INST_STORAGE:
kvmppc_core_queue_inst_storage(vcpu, vcpu->arch.fault_esr);
kvmppc_account_exit(vcpu, ISI_EXITS);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_SYSCALL:
if (!(vcpu->arch.shared->msr & MSR_PR) &&
(((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
/* KVM PV hypercalls */
kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
r = RESUME_GUEST;
} else {
/* Guest syscalls */
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SYSCALL);
}
kvmppc_account_exit(vcpu, SYSCALL_EXITS);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_DTLB_MISS: {
unsigned long eaddr = vcpu->arch.fault_dear;
int gtlb_index;
gpa_t gpaddr;
gfn_t gfn;
#ifdef CONFIG_KVM_E500
if (!(vcpu->arch.shared->msr & MSR_PR) &&
(eaddr & PAGE_MASK) == vcpu->arch.magic_page_ea) {
kvmppc_map_magic(vcpu);
kvmppc_account_exit(vcpu, DTLB_VIRT_MISS_EXITS);
r = RESUME_GUEST;
break;
}
#endif
/* Check the guest TLB. */
gtlb_index = kvmppc_mmu_dtlb_index(vcpu, eaddr);
if (gtlb_index < 0) {
/* The guest didn't have a mapping for it. */
kvmppc_core_queue_dtlb_miss(vcpu,
vcpu->arch.fault_dear,
vcpu->arch.fault_esr);
kvmppc_mmu_dtlb_miss(vcpu);
kvmppc_account_exit(vcpu, DTLB_REAL_MISS_EXITS);
r = RESUME_GUEST;
break;
}
gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr);
gfn = gpaddr >> PAGE_SHIFT;
if (kvm_is_visible_gfn(vcpu->kvm, gfn)) {
/* The guest TLB had a mapping, but the shadow TLB
* didn't, and it is RAM. This could be because:
* a) the entry is mapping the host kernel, or
* b) the guest used a large mapping which we're faking
* Either way, we need to satisfy the fault without
* invoking the guest. */
kvmppc_mmu_map(vcpu, eaddr, gpaddr, gtlb_index);
kvmppc_account_exit(vcpu, DTLB_VIRT_MISS_EXITS);
r = RESUME_GUEST;
} else {
/* Guest has mapped and accessed a page which is not
* actually RAM. */
vcpu->arch.paddr_accessed = gpaddr;
r = kvmppc_emulate_mmio(run, vcpu);
kvmppc_account_exit(vcpu, MMIO_EXITS);
}
break;
}
case BOOKE_INTERRUPT_ITLB_MISS: {
unsigned long eaddr = vcpu->arch.pc;
gpa_t gpaddr;
gfn_t gfn;
int gtlb_index;
r = RESUME_GUEST;
/* Check the guest TLB. */
gtlb_index = kvmppc_mmu_itlb_index(vcpu, eaddr);
if (gtlb_index < 0) {
/* The guest didn't have a mapping for it. */
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ITLB_MISS);
kvmppc_mmu_itlb_miss(vcpu);
kvmppc_account_exit(vcpu, ITLB_REAL_MISS_EXITS);
break;
}
kvmppc_account_exit(vcpu, ITLB_VIRT_MISS_EXITS);
gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr);
gfn = gpaddr >> PAGE_SHIFT;
if (kvm_is_visible_gfn(vcpu->kvm, gfn)) {
/* The guest TLB had a mapping, but the shadow TLB
* didn't. This could be because:
* a) the entry is mapping the host kernel, or
* b) the guest used a large mapping which we're faking
* Either way, we need to satisfy the fault without
* invoking the guest. */
kvmppc_mmu_map(vcpu, eaddr, gpaddr, gtlb_index);
} else {
/* Guest mapped and leaped at non-RAM! */
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_MACHINE_CHECK);
}
break;
}
case BOOKE_INTERRUPT_DEBUG: {
u32 dbsr;
vcpu->arch.pc = mfspr(SPRN_CSRR0);
/* clear IAC events in DBSR register */
dbsr = mfspr(SPRN_DBSR);
dbsr &= DBSR_IAC1 | DBSR_IAC2 | DBSR_IAC3 | DBSR_IAC4;
mtspr(SPRN_DBSR, dbsr);
run->exit_reason = KVM_EXIT_DEBUG;
kvmppc_account_exit(vcpu, DEBUG_EXITS);
r = RESUME_HOST;
break;
}
default:
printk(KERN_EMERG "exit_nr %d\n", exit_nr);
BUG();
}
local_irq_disable();
kvmppc_core_prepare_to_enter(vcpu);
if (!(r & RESUME_HOST)) {
/* To avoid clobbering exit_reason, only check for signals if
* we aren't already exiting to userspace for some other
* reason. */
if (signal_pending(current)) {
run->exit_reason = KVM_EXIT_INTR;
r = (-EINTR << 2) | RESUME_HOST | (r & RESUME_FLAG_NV);
kvmppc_account_exit(vcpu, SIGNAL_EXITS);
}
}
return r;
}
/* Initial guest state: 16MB mapping 0 -> 0, PC = 0, MSR = 0, R1 = 16MB */
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
int i;
int r;
vcpu->arch.pc = 0;
vcpu->arch.shared->msr = 0;
vcpu->arch.shadow_msr = MSR_USER | MSR_DE | MSR_IS | MSR_DS;
kvmppc_set_gpr(vcpu, 1, (16<<20) - 8); /* -8 for the callee-save LR slot */
vcpu->arch.shadow_pid = 1;
/* Eye-catching numbers so we know if the guest takes an interrupt
* before it's programmed its own IVPR/IVORs. */
vcpu->arch.ivpr = 0x55550000;
for (i = 0; i < BOOKE_IRQPRIO_MAX; i++)
vcpu->arch.ivor[i] = 0x7700 | i * 4;
kvmppc_init_timing_stats(vcpu);
r = kvmppc_core_vcpu_setup(vcpu);
kvmppc_sanity_check(vcpu);
return r;
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
regs->pc = vcpu->arch.pc;
regs->cr = kvmppc_get_cr(vcpu);
regs->ctr = vcpu->arch.ctr;
regs->lr = vcpu->arch.lr;
regs->xer = kvmppc_get_xer(vcpu);
regs->msr = vcpu->arch.shared->msr;
regs->srr0 = vcpu->arch.shared->srr0;
regs->srr1 = vcpu->arch.shared->srr1;
regs->pid = vcpu->arch.pid;
regs->sprg0 = vcpu->arch.shared->sprg0;
regs->sprg1 = vcpu->arch.shared->sprg1;
regs->sprg2 = vcpu->arch.shared->sprg2;
regs->sprg3 = vcpu->arch.shared->sprg3;
regs->sprg4 = vcpu->arch.sprg4;
regs->sprg5 = vcpu->arch.sprg5;
regs->sprg6 = vcpu->arch.sprg6;
regs->sprg7 = vcpu->arch.sprg7;
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
regs->gpr[i] = kvmppc_get_gpr(vcpu, i);
return 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
vcpu->arch.pc = regs->pc;
kvmppc_set_cr(vcpu, regs->cr);
vcpu->arch.ctr = regs->ctr;
vcpu->arch.lr = regs->lr;
kvmppc_set_xer(vcpu, regs->xer);
kvmppc_set_msr(vcpu, regs->msr);
vcpu->arch.shared->srr0 = regs->srr0;
vcpu->arch.shared->srr1 = regs->srr1;
kvmppc_set_pid(vcpu, regs->pid);
vcpu->arch.shared->sprg0 = regs->sprg0;
vcpu->arch.shared->sprg1 = regs->sprg1;
vcpu->arch.shared->sprg2 = regs->sprg2;
vcpu->arch.shared->sprg3 = regs->sprg3;
vcpu->arch.sprg4 = regs->sprg4;
vcpu->arch.sprg5 = regs->sprg5;
vcpu->arch.sprg6 = regs->sprg6;
vcpu->arch.sprg7 = regs->sprg7;
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
kvmppc_set_gpr(vcpu, i, regs->gpr[i]);
return 0;
}
static void get_sregs_base(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
u64 tb = get_tb();
sregs->u.e.features |= KVM_SREGS_E_BASE;
sregs->u.e.csrr0 = vcpu->arch.csrr0;
sregs->u.e.csrr1 = vcpu->arch.csrr1;
sregs->u.e.mcsr = vcpu->arch.mcsr;
sregs->u.e.esr = vcpu->arch.esr;
sregs->u.e.dear = vcpu->arch.shared->dar;
sregs->u.e.tsr = vcpu->arch.tsr;
sregs->u.e.tcr = vcpu->arch.tcr;
sregs->u.e.dec = kvmppc_get_dec(vcpu, tb);
sregs->u.e.tb = tb;
sregs->u.e.vrsave = vcpu->arch.vrsave;
}
static int set_sregs_base(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
if (!(sregs->u.e.features & KVM_SREGS_E_BASE))
return 0;
vcpu->arch.csrr0 = sregs->u.e.csrr0;
vcpu->arch.csrr1 = sregs->u.e.csrr1;
vcpu->arch.mcsr = sregs->u.e.mcsr;
vcpu->arch.esr = sregs->u.e.esr;
vcpu->arch.shared->dar = sregs->u.e.dear;
vcpu->arch.vrsave = sregs->u.e.vrsave;
vcpu->arch.tcr = sregs->u.e.tcr;
if (sregs->u.e.update_special & KVM_SREGS_E_UPDATE_DEC)
vcpu->arch.dec = sregs->u.e.dec;
kvmppc_emulate_dec(vcpu);
if (sregs->u.e.update_special & KVM_SREGS_E_UPDATE_TSR) {
/*
* FIXME: existing KVM timer handling is incomplete.
* TSR cannot be read by the guest, and its value in
* vcpu->arch is always zero. For now, just handle
* the case where the caller is trying to inject a
* decrementer interrupt.
*/
if ((sregs->u.e.tsr & TSR_DIS) &&
(vcpu->arch.tcr & TCR_DIE))
kvmppc_core_queue_dec(vcpu);
}
return 0;
}
static void get_sregs_arch206(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
sregs->u.e.features |= KVM_SREGS_E_ARCH206;
sregs->u.e.pir = vcpu->vcpu_id;
sregs->u.e.mcsrr0 = vcpu->arch.mcsrr0;
sregs->u.e.mcsrr1 = vcpu->arch.mcsrr1;
sregs->u.e.decar = vcpu->arch.decar;
sregs->u.e.ivpr = vcpu->arch.ivpr;
}
static int set_sregs_arch206(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
if (!(sregs->u.e.features & KVM_SREGS_E_ARCH206))
return 0;
if (sregs->u.e.pir != vcpu->vcpu_id)
return -EINVAL;
vcpu->arch.mcsrr0 = sregs->u.e.mcsrr0;
vcpu->arch.mcsrr1 = sregs->u.e.mcsrr1;
vcpu->arch.decar = sregs->u.e.decar;
vcpu->arch.ivpr = sregs->u.e.ivpr;
return 0;
}
void kvmppc_get_sregs_ivor(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
sregs->u.e.features |= KVM_SREGS_E_IVOR;
sregs->u.e.ivor_low[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_CRITICAL];
sregs->u.e.ivor_low[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_MACHINE_CHECK];
sregs->u.e.ivor_low[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE];
sregs->u.e.ivor_low[3] = vcpu->arch.ivor[BOOKE_IRQPRIO_INST_STORAGE];
sregs->u.e.ivor_low[4] = vcpu->arch.ivor[BOOKE_IRQPRIO_EXTERNAL];
sregs->u.e.ivor_low[5] = vcpu->arch.ivor[BOOKE_IRQPRIO_ALIGNMENT];
sregs->u.e.ivor_low[6] = vcpu->arch.ivor[BOOKE_IRQPRIO_PROGRAM];
sregs->u.e.ivor_low[7] = vcpu->arch.ivor[BOOKE_IRQPRIO_FP_UNAVAIL];
sregs->u.e.ivor_low[8] = vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL];
sregs->u.e.ivor_low[9] = vcpu->arch.ivor[BOOKE_IRQPRIO_AP_UNAVAIL];
sregs->u.e.ivor_low[10] = vcpu->arch.ivor[BOOKE_IRQPRIO_DECREMENTER];
sregs->u.e.ivor_low[11] = vcpu->arch.ivor[BOOKE_IRQPRIO_FIT];
sregs->u.e.ivor_low[12] = vcpu->arch.ivor[BOOKE_IRQPRIO_WATCHDOG];
sregs->u.e.ivor_low[13] = vcpu->arch.ivor[BOOKE_IRQPRIO_DTLB_MISS];
sregs->u.e.ivor_low[14] = vcpu->arch.ivor[BOOKE_IRQPRIO_ITLB_MISS];
sregs->u.e.ivor_low[15] = vcpu->arch.ivor[BOOKE_IRQPRIO_DEBUG];
}
int kvmppc_set_sregs_ivor(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
return 0;
vcpu->arch.ivor[BOOKE_IRQPRIO_CRITICAL] = sregs->u.e.ivor_low[0];
vcpu->arch.ivor[BOOKE_IRQPRIO_MACHINE_CHECK] = sregs->u.e.ivor_low[1];
vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE] = sregs->u.e.ivor_low[2];
vcpu->arch.ivor[BOOKE_IRQPRIO_INST_STORAGE] = sregs->u.e.ivor_low[3];
vcpu->arch.ivor[BOOKE_IRQPRIO_EXTERNAL] = sregs->u.e.ivor_low[4];
vcpu->arch.ivor[BOOKE_IRQPRIO_ALIGNMENT] = sregs->u.e.ivor_low[5];
vcpu->arch.ivor[BOOKE_IRQPRIO_PROGRAM] = sregs->u.e.ivor_low[6];
vcpu->arch.ivor[BOOKE_IRQPRIO_FP_UNAVAIL] = sregs->u.e.ivor_low[7];
vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL] = sregs->u.e.ivor_low[8];
vcpu->arch.ivor[BOOKE_IRQPRIO_AP_UNAVAIL] = sregs->u.e.ivor_low[9];
vcpu->arch.ivor[BOOKE_IRQPRIO_DECREMENTER] = sregs->u.e.ivor_low[10];
vcpu->arch.ivor[BOOKE_IRQPRIO_FIT] = sregs->u.e.ivor_low[11];
vcpu->arch.ivor[BOOKE_IRQPRIO_WATCHDOG] = sregs->u.e.ivor_low[12];
vcpu->arch.ivor[BOOKE_IRQPRIO_DTLB_MISS] = sregs->u.e.ivor_low[13];
vcpu->arch.ivor[BOOKE_IRQPRIO_ITLB_MISS] = sregs->u.e.ivor_low[14];
vcpu->arch.ivor[BOOKE_IRQPRIO_DEBUG] = sregs->u.e.ivor_low[15];
return 0;
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
sregs->pvr = vcpu->arch.pvr;
get_sregs_base(vcpu, sregs);
get_sregs_arch206(vcpu, sregs);
kvmppc_core_get_sregs(vcpu, sregs);
return 0;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
int ret;
if (vcpu->arch.pvr != sregs->pvr)
return -EINVAL;
ret = set_sregs_base(vcpu, sregs);
if (ret < 0)
return ret;
ret = set_sregs_arch206(vcpu, sregs);
if (ret < 0)
return ret;
return kvmppc_core_set_sregs(vcpu, sregs);
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
int r;
r = kvmppc_core_vcpu_translate(vcpu, tr);
return r;
}
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
return -ENOTSUPP;
}
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem)
{
return 0;
}
void kvmppc_core_commit_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem)
{
}
int kvmppc_core_init_vm(struct kvm *kvm)
{
return 0;
}
void kvmppc_core_destroy_vm(struct kvm *kvm)
{
}
int __init kvmppc_booke_init(void)
{
unsigned long ivor[16];
unsigned long max_ivor = 0;
int i;
/* We install our own exception handlers by hijacking IVPR. IVPR must
* be 16-bit aligned, so we need a 64KB allocation. */
kvmppc_booke_handlers = __get_free_pages(GFP_KERNEL | __GFP_ZERO,
VCPU_SIZE_ORDER);
if (!kvmppc_booke_handlers)
return -ENOMEM;
/* XXX make sure our handlers are smaller than Linux's */
/* Copy our interrupt handlers to match host IVORs. That way we don't
* have to swap the IVORs on every guest/host transition. */
ivor[0] = mfspr(SPRN_IVOR0);
ivor[1] = mfspr(SPRN_IVOR1);
ivor[2] = mfspr(SPRN_IVOR2);
ivor[3] = mfspr(SPRN_IVOR3);
ivor[4] = mfspr(SPRN_IVOR4);
ivor[5] = mfspr(SPRN_IVOR5);
ivor[6] = mfspr(SPRN_IVOR6);
ivor[7] = mfspr(SPRN_IVOR7);
ivor[8] = mfspr(SPRN_IVOR8);
ivor[9] = mfspr(SPRN_IVOR9);
ivor[10] = mfspr(SPRN_IVOR10);
ivor[11] = mfspr(SPRN_IVOR11);
ivor[12] = mfspr(SPRN_IVOR12);
ivor[13] = mfspr(SPRN_IVOR13);
ivor[14] = mfspr(SPRN_IVOR14);
ivor[15] = mfspr(SPRN_IVOR15);
for (i = 0; i < 16; i++) {
if (ivor[i] > max_ivor)
max_ivor = ivor[i];
memcpy((void *)kvmppc_booke_handlers + ivor[i],
kvmppc_handlers_start + i * kvmppc_handler_len,
kvmppc_handler_len);
}
flush_icache_range(kvmppc_booke_handlers,
kvmppc_booke_handlers + max_ivor + kvmppc_handler_len);
return 0;
}
void __exit kvmppc_booke_exit(void)
{
free_pages(kvmppc_booke_handlers, VCPU_SIZE_ORDER);
kvm_exit();
}