mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 21:51:40 +00:00
ecec7c9f29
head is defined in idxd->evl as a shadow of head in the EVLSTATUS register.
There are two issues related to the shadow head:
1. Mismatch between the shadow head and the state of the EVLSTATUS
register:
If Event Log is supported, upon completion of the Enable Device command,
the Event Log head in the variable idxd->evl->head should be cleared to
match the state of the EVLSTATUS register. But the variable is not reset
currently, leading mismatch between the variable and the register state.
The mismatch causes incorrect processing of Event Log entries.
2. Unnecessary shadow head definition:
The shadow head is unnecessary as head can be read directly from the
EVLSTATUS register. Reading head from the register incurs no additional
cost because event log head and tail are always read together and
tail is already read directly from the register as required by hardware.
Remove the shadow Event Log head stored in idxd->evl to address the
mentioned issues.
Fixes: 244da66cda
("dmaengine: idxd: setup event log configuration")
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20240215024931.1739621-1-fenghua.yu@intel.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
655 lines
18 KiB
C
655 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/io-64-nonatomic-lo-hi.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <uapi/linux/idxd.h>
|
|
#include "../dmaengine.h"
|
|
#include "idxd.h"
|
|
#include "registers.h"
|
|
|
|
enum irq_work_type {
|
|
IRQ_WORK_NORMAL = 0,
|
|
IRQ_WORK_PROCESS_FAULT,
|
|
};
|
|
|
|
struct idxd_resubmit {
|
|
struct work_struct work;
|
|
struct idxd_desc *desc;
|
|
};
|
|
|
|
struct idxd_int_handle_revoke {
|
|
struct work_struct work;
|
|
struct idxd_device *idxd;
|
|
};
|
|
|
|
static void idxd_device_reinit(struct work_struct *work)
|
|
{
|
|
struct idxd_device *idxd = container_of(work, struct idxd_device, work);
|
|
struct device *dev = &idxd->pdev->dev;
|
|
int rc, i;
|
|
|
|
idxd_device_reset(idxd);
|
|
rc = idxd_device_config(idxd);
|
|
if (rc < 0)
|
|
goto out;
|
|
|
|
rc = idxd_device_enable(idxd);
|
|
if (rc < 0)
|
|
goto out;
|
|
|
|
for (i = 0; i < idxd->max_wqs; i++) {
|
|
if (test_bit(i, idxd->wq_enable_map)) {
|
|
struct idxd_wq *wq = idxd->wqs[i];
|
|
|
|
rc = idxd_wq_enable(wq);
|
|
if (rc < 0) {
|
|
clear_bit(i, idxd->wq_enable_map);
|
|
dev_warn(dev, "Unable to re-enable wq %s\n",
|
|
dev_name(wq_confdev(wq)));
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
|
|
out:
|
|
idxd_device_clear_state(idxd);
|
|
}
|
|
|
|
/*
|
|
* The function sends a drain descriptor for the interrupt handle. The drain ensures
|
|
* all descriptors with this interrupt handle is flushed and the interrupt
|
|
* will allow the cleanup of the outstanding descriptors.
|
|
*/
|
|
static void idxd_int_handle_revoke_drain(struct idxd_irq_entry *ie)
|
|
{
|
|
struct idxd_wq *wq = ie_to_wq(ie);
|
|
struct idxd_device *idxd = wq->idxd;
|
|
struct device *dev = &idxd->pdev->dev;
|
|
struct dsa_hw_desc desc = {};
|
|
void __iomem *portal;
|
|
int rc;
|
|
|
|
/* Issue a simple drain operation with interrupt but no completion record */
|
|
desc.flags = IDXD_OP_FLAG_RCI;
|
|
desc.opcode = DSA_OPCODE_DRAIN;
|
|
desc.priv = 1;
|
|
|
|
if (ie->pasid != IOMMU_PASID_INVALID)
|
|
desc.pasid = ie->pasid;
|
|
desc.int_handle = ie->int_handle;
|
|
portal = idxd_wq_portal_addr(wq);
|
|
|
|
/*
|
|
* The wmb() makes sure that the descriptor is all there before we
|
|
* issue.
|
|
*/
|
|
wmb();
|
|
if (wq_dedicated(wq)) {
|
|
iosubmit_cmds512(portal, &desc, 1);
|
|
} else {
|
|
rc = idxd_enqcmds(wq, portal, &desc);
|
|
/* This should not fail unless hardware failed. */
|
|
if (rc < 0)
|
|
dev_warn(dev, "Failed to submit drain desc on wq %d\n", wq->id);
|
|
}
|
|
}
|
|
|
|
static void idxd_abort_invalid_int_handle_descs(struct idxd_irq_entry *ie)
|
|
{
|
|
LIST_HEAD(flist);
|
|
struct idxd_desc *d, *t;
|
|
struct llist_node *head;
|
|
|
|
spin_lock(&ie->list_lock);
|
|
head = llist_del_all(&ie->pending_llist);
|
|
if (head) {
|
|
llist_for_each_entry_safe(d, t, head, llnode)
|
|
list_add_tail(&d->list, &ie->work_list);
|
|
}
|
|
|
|
list_for_each_entry_safe(d, t, &ie->work_list, list) {
|
|
if (d->completion->status == DSA_COMP_INT_HANDLE_INVAL)
|
|
list_move_tail(&d->list, &flist);
|
|
}
|
|
spin_unlock(&ie->list_lock);
|
|
|
|
list_for_each_entry_safe(d, t, &flist, list) {
|
|
list_del(&d->list);
|
|
idxd_desc_complete(d, IDXD_COMPLETE_ABORT, true);
|
|
}
|
|
}
|
|
|
|
static void idxd_int_handle_revoke(struct work_struct *work)
|
|
{
|
|
struct idxd_int_handle_revoke *revoke =
|
|
container_of(work, struct idxd_int_handle_revoke, work);
|
|
struct idxd_device *idxd = revoke->idxd;
|
|
struct pci_dev *pdev = idxd->pdev;
|
|
struct device *dev = &pdev->dev;
|
|
int i, new_handle, rc;
|
|
|
|
if (!idxd->request_int_handles) {
|
|
kfree(revoke);
|
|
dev_warn(dev, "Unexpected int handle refresh interrupt.\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The loop attempts to acquire new interrupt handle for all interrupt
|
|
* vectors that supports a handle. If a new interrupt handle is acquired and the
|
|
* wq is kernel type, the driver will kill the percpu_ref to pause all
|
|
* ongoing descriptor submissions. The interrupt handle is then changed.
|
|
* After change, the percpu_ref is revived and all the pending submissions
|
|
* are woken to try again. A drain is sent to for the interrupt handle
|
|
* at the end to make sure all invalid int handle descriptors are processed.
|
|
*/
|
|
for (i = 1; i < idxd->irq_cnt; i++) {
|
|
struct idxd_irq_entry *ie = idxd_get_ie(idxd, i);
|
|
struct idxd_wq *wq = ie_to_wq(ie);
|
|
|
|
if (ie->int_handle == INVALID_INT_HANDLE)
|
|
continue;
|
|
|
|
rc = idxd_device_request_int_handle(idxd, i, &new_handle, IDXD_IRQ_MSIX);
|
|
if (rc < 0) {
|
|
dev_warn(dev, "get int handle %d failed: %d\n", i, rc);
|
|
/*
|
|
* Failed to acquire new interrupt handle. Kill the WQ
|
|
* and release all the pending submitters. The submitters will
|
|
* get error return code and handle appropriately.
|
|
*/
|
|
ie->int_handle = INVALID_INT_HANDLE;
|
|
idxd_wq_quiesce(wq);
|
|
idxd_abort_invalid_int_handle_descs(ie);
|
|
continue;
|
|
}
|
|
|
|
/* No change in interrupt handle, nothing needs to be done */
|
|
if (ie->int_handle == new_handle)
|
|
continue;
|
|
|
|
if (wq->state != IDXD_WQ_ENABLED || wq->type != IDXD_WQT_KERNEL) {
|
|
/*
|
|
* All the MSIX interrupts are allocated at once during probe.
|
|
* Therefore we need to update all interrupts even if the WQ
|
|
* isn't supporting interrupt operations.
|
|
*/
|
|
ie->int_handle = new_handle;
|
|
continue;
|
|
}
|
|
|
|
mutex_lock(&wq->wq_lock);
|
|
reinit_completion(&wq->wq_resurrect);
|
|
|
|
/* Kill percpu_ref to pause additional descriptor submissions */
|
|
percpu_ref_kill(&wq->wq_active);
|
|
|
|
/* Wait for all submitters quiesce before we change interrupt handle */
|
|
wait_for_completion(&wq->wq_dead);
|
|
|
|
ie->int_handle = new_handle;
|
|
|
|
/* Revive percpu ref and wake up all the waiting submitters */
|
|
percpu_ref_reinit(&wq->wq_active);
|
|
complete_all(&wq->wq_resurrect);
|
|
mutex_unlock(&wq->wq_lock);
|
|
|
|
/*
|
|
* The delay here is to wait for all possible MOVDIR64B that
|
|
* are issued before percpu_ref_kill() has happened to have
|
|
* reached the PCIe domain before the drain is issued. The driver
|
|
* needs to ensure that the drain descriptor issued does not pass
|
|
* all the other issued descriptors that contain the invalid
|
|
* interrupt handle in order to ensure that the drain descriptor
|
|
* interrupt will allow the cleanup of all the descriptors with
|
|
* invalid interrupt handle.
|
|
*/
|
|
if (wq_dedicated(wq))
|
|
udelay(100);
|
|
idxd_int_handle_revoke_drain(ie);
|
|
}
|
|
kfree(revoke);
|
|
}
|
|
|
|
static void idxd_evl_fault_work(struct work_struct *work)
|
|
{
|
|
struct idxd_evl_fault *fault = container_of(work, struct idxd_evl_fault, work);
|
|
struct idxd_wq *wq = fault->wq;
|
|
struct idxd_device *idxd = wq->idxd;
|
|
struct device *dev = &idxd->pdev->dev;
|
|
struct idxd_evl *evl = idxd->evl;
|
|
struct __evl_entry *entry_head = fault->entry;
|
|
void *cr = (void *)entry_head + idxd->data->evl_cr_off;
|
|
int cr_size = idxd->data->compl_size;
|
|
u8 *status = (u8 *)cr + idxd->data->cr_status_off;
|
|
u8 *result = (u8 *)cr + idxd->data->cr_result_off;
|
|
int copied, copy_size;
|
|
bool *bf;
|
|
|
|
switch (fault->status) {
|
|
case DSA_COMP_CRA_XLAT:
|
|
if (entry_head->batch && entry_head->first_err_in_batch)
|
|
evl->batch_fail[entry_head->batch_id] = false;
|
|
|
|
copy_size = cr_size;
|
|
idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULTS);
|
|
break;
|
|
case DSA_COMP_BATCH_EVL_ERR:
|
|
bf = &evl->batch_fail[entry_head->batch_id];
|
|
|
|
copy_size = entry_head->rcr || *bf ? cr_size : 0;
|
|
if (*bf) {
|
|
if (*status == DSA_COMP_SUCCESS)
|
|
*status = DSA_COMP_BATCH_FAIL;
|
|
*result = 1;
|
|
*bf = false;
|
|
}
|
|
idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULTS);
|
|
break;
|
|
case DSA_COMP_DRAIN_EVL:
|
|
copy_size = cr_size;
|
|
break;
|
|
default:
|
|
copy_size = 0;
|
|
dev_dbg_ratelimited(dev, "Unrecognized error code: %#x\n", fault->status);
|
|
break;
|
|
}
|
|
|
|
if (copy_size == 0)
|
|
return;
|
|
|
|
/*
|
|
* Copy completion record to fault_addr in user address space
|
|
* that is found by wq and PASID.
|
|
*/
|
|
copied = idxd_copy_cr(wq, entry_head->pasid, entry_head->fault_addr,
|
|
cr, copy_size);
|
|
/*
|
|
* The task that triggered the page fault is unknown currently
|
|
* because multiple threads may share the user address
|
|
* space or the task exits already before this fault.
|
|
* So if the copy fails, SIGSEGV can not be sent to the task.
|
|
* Just print an error for the failure. The user application
|
|
* waiting for the completion record will time out on this
|
|
* failure.
|
|
*/
|
|
switch (fault->status) {
|
|
case DSA_COMP_CRA_XLAT:
|
|
if (copied != copy_size) {
|
|
idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULT_FAILS);
|
|
dev_dbg_ratelimited(dev, "Failed to write to completion record: (%d:%d)\n",
|
|
copy_size, copied);
|
|
if (entry_head->batch)
|
|
evl->batch_fail[entry_head->batch_id] = true;
|
|
}
|
|
break;
|
|
case DSA_COMP_BATCH_EVL_ERR:
|
|
if (copied != copy_size) {
|
|
idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULT_FAILS);
|
|
dev_dbg_ratelimited(dev, "Failed to write to batch completion record: (%d:%d)\n",
|
|
copy_size, copied);
|
|
}
|
|
break;
|
|
case DSA_COMP_DRAIN_EVL:
|
|
if (copied != copy_size)
|
|
dev_dbg_ratelimited(dev, "Failed to write to drain completion record: (%d:%d)\n",
|
|
copy_size, copied);
|
|
break;
|
|
}
|
|
|
|
kmem_cache_free(idxd->evl_cache, fault);
|
|
}
|
|
|
|
static void process_evl_entry(struct idxd_device *idxd,
|
|
struct __evl_entry *entry_head, unsigned int index)
|
|
{
|
|
struct device *dev = &idxd->pdev->dev;
|
|
struct idxd_evl *evl = idxd->evl;
|
|
u8 status;
|
|
|
|
if (test_bit(index, evl->bmap)) {
|
|
clear_bit(index, evl->bmap);
|
|
} else {
|
|
status = DSA_COMP_STATUS(entry_head->error);
|
|
|
|
if (status == DSA_COMP_CRA_XLAT || status == DSA_COMP_DRAIN_EVL ||
|
|
status == DSA_COMP_BATCH_EVL_ERR) {
|
|
struct idxd_evl_fault *fault;
|
|
int ent_size = evl_ent_size(idxd);
|
|
|
|
if (entry_head->rci)
|
|
dev_dbg(dev, "Completion Int Req set, ignoring!\n");
|
|
|
|
if (!entry_head->rcr && status == DSA_COMP_DRAIN_EVL)
|
|
return;
|
|
|
|
fault = kmem_cache_alloc(idxd->evl_cache, GFP_ATOMIC);
|
|
if (fault) {
|
|
struct idxd_wq *wq = idxd->wqs[entry_head->wq_idx];
|
|
|
|
fault->wq = wq;
|
|
fault->status = status;
|
|
memcpy(&fault->entry, entry_head, ent_size);
|
|
INIT_WORK(&fault->work, idxd_evl_fault_work);
|
|
queue_work(wq->wq, &fault->work);
|
|
} else {
|
|
dev_warn(dev, "Failed to service fault work.\n");
|
|
}
|
|
} else {
|
|
dev_warn_ratelimited(dev, "Device error %#x operation: %#x fault addr: %#llx\n",
|
|
status, entry_head->operation,
|
|
entry_head->fault_addr);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void process_evl_entries(struct idxd_device *idxd)
|
|
{
|
|
union evl_status_reg evl_status;
|
|
unsigned int h, t;
|
|
struct idxd_evl *evl = idxd->evl;
|
|
struct __evl_entry *entry_head;
|
|
unsigned int ent_size = evl_ent_size(idxd);
|
|
u32 size;
|
|
|
|
evl_status.bits = 0;
|
|
evl_status.int_pending = 1;
|
|
|
|
spin_lock(&evl->lock);
|
|
/* Clear interrupt pending bit */
|
|
iowrite32(evl_status.bits_upper32,
|
|
idxd->reg_base + IDXD_EVLSTATUS_OFFSET + sizeof(u32));
|
|
evl_status.bits = ioread64(idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
|
|
t = evl_status.tail;
|
|
h = evl_status.head;
|
|
size = idxd->evl->size;
|
|
|
|
while (h != t) {
|
|
entry_head = (struct __evl_entry *)(evl->log + (h * ent_size));
|
|
process_evl_entry(idxd, entry_head, h);
|
|
h = (h + 1) % size;
|
|
}
|
|
|
|
evl_status.head = h;
|
|
iowrite32(evl_status.bits_lower32, idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
|
|
spin_unlock(&evl->lock);
|
|
}
|
|
|
|
irqreturn_t idxd_misc_thread(int vec, void *data)
|
|
{
|
|
struct idxd_irq_entry *irq_entry = data;
|
|
struct idxd_device *idxd = ie_to_idxd(irq_entry);
|
|
struct device *dev = &idxd->pdev->dev;
|
|
union gensts_reg gensts;
|
|
u32 val = 0;
|
|
int i;
|
|
bool err = false;
|
|
u32 cause;
|
|
|
|
cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
|
|
if (!cause)
|
|
return IRQ_NONE;
|
|
|
|
iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
|
|
|
|
if (cause & IDXD_INTC_HALT_STATE)
|
|
goto halt;
|
|
|
|
if (cause & IDXD_INTC_ERR) {
|
|
spin_lock(&idxd->dev_lock);
|
|
for (i = 0; i < 4; i++)
|
|
idxd->sw_err.bits[i] = ioread64(idxd->reg_base +
|
|
IDXD_SWERR_OFFSET + i * sizeof(u64));
|
|
|
|
iowrite64(idxd->sw_err.bits[0] & IDXD_SWERR_ACK,
|
|
idxd->reg_base + IDXD_SWERR_OFFSET);
|
|
|
|
if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
|
|
int id = idxd->sw_err.wq_idx;
|
|
struct idxd_wq *wq = idxd->wqs[id];
|
|
|
|
if (wq->type == IDXD_WQT_USER)
|
|
wake_up_interruptible(&wq->err_queue);
|
|
} else {
|
|
int i;
|
|
|
|
for (i = 0; i < idxd->max_wqs; i++) {
|
|
struct idxd_wq *wq = idxd->wqs[i];
|
|
|
|
if (wq->type == IDXD_WQT_USER)
|
|
wake_up_interruptible(&wq->err_queue);
|
|
}
|
|
}
|
|
|
|
spin_unlock(&idxd->dev_lock);
|
|
val |= IDXD_INTC_ERR;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
dev_warn_ratelimited(dev, "err[%d]: %#16.16llx\n",
|
|
i, idxd->sw_err.bits[i]);
|
|
err = true;
|
|
}
|
|
|
|
if (cause & IDXD_INTC_INT_HANDLE_REVOKED) {
|
|
struct idxd_int_handle_revoke *revoke;
|
|
|
|
val |= IDXD_INTC_INT_HANDLE_REVOKED;
|
|
|
|
revoke = kzalloc(sizeof(*revoke), GFP_ATOMIC);
|
|
if (revoke) {
|
|
revoke->idxd = idxd;
|
|
INIT_WORK(&revoke->work, idxd_int_handle_revoke);
|
|
queue_work(idxd->wq, &revoke->work);
|
|
|
|
} else {
|
|
dev_err(dev, "Failed to allocate work for int handle revoke\n");
|
|
idxd_wqs_quiesce(idxd);
|
|
}
|
|
}
|
|
|
|
if (cause & IDXD_INTC_CMD) {
|
|
val |= IDXD_INTC_CMD;
|
|
complete(idxd->cmd_done);
|
|
}
|
|
|
|
if (cause & IDXD_INTC_OCCUPY) {
|
|
/* Driver does not utilize occupancy interrupt */
|
|
val |= IDXD_INTC_OCCUPY;
|
|
}
|
|
|
|
if (cause & IDXD_INTC_PERFMON_OVFL) {
|
|
val |= IDXD_INTC_PERFMON_OVFL;
|
|
perfmon_counter_overflow(idxd);
|
|
}
|
|
|
|
if (cause & IDXD_INTC_EVL) {
|
|
val |= IDXD_INTC_EVL;
|
|
process_evl_entries(idxd);
|
|
}
|
|
|
|
val ^= cause;
|
|
if (val)
|
|
dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
|
|
val);
|
|
|
|
if (!err)
|
|
goto out;
|
|
|
|
halt:
|
|
gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
|
|
if (gensts.state == IDXD_DEVICE_STATE_HALT) {
|
|
idxd->state = IDXD_DEV_HALTED;
|
|
if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
|
|
/*
|
|
* If we need a software reset, we will throw the work
|
|
* on a system workqueue in order to allow interrupts
|
|
* for the device command completions.
|
|
*/
|
|
INIT_WORK(&idxd->work, idxd_device_reinit);
|
|
queue_work(idxd->wq, &idxd->work);
|
|
} else {
|
|
idxd->state = IDXD_DEV_HALTED;
|
|
idxd_wqs_quiesce(idxd);
|
|
idxd_wqs_unmap_portal(idxd);
|
|
idxd_device_clear_state(idxd);
|
|
dev_err(&idxd->pdev->dev,
|
|
"idxd halted, need %s.\n",
|
|
gensts.reset_type == IDXD_DEVICE_RESET_FLR ?
|
|
"FLR" : "system reset");
|
|
}
|
|
}
|
|
|
|
out:
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void idxd_int_handle_resubmit_work(struct work_struct *work)
|
|
{
|
|
struct idxd_resubmit *irw = container_of(work, struct idxd_resubmit, work);
|
|
struct idxd_desc *desc = irw->desc;
|
|
struct idxd_wq *wq = desc->wq;
|
|
int rc;
|
|
|
|
desc->completion->status = 0;
|
|
rc = idxd_submit_desc(wq, desc);
|
|
if (rc < 0) {
|
|
dev_dbg(&wq->idxd->pdev->dev, "Failed to resubmit desc %d to wq %d.\n",
|
|
desc->id, wq->id);
|
|
/*
|
|
* If the error is not -EAGAIN, it means the submission failed due to wq
|
|
* has been killed instead of ENQCMDS failure. Here the driver needs to
|
|
* notify the submitter of the failure by reporting abort status.
|
|
*
|
|
* -EAGAIN comes from ENQCMDS failure. idxd_submit_desc() will handle the
|
|
* abort.
|
|
*/
|
|
if (rc != -EAGAIN) {
|
|
desc->completion->status = IDXD_COMP_DESC_ABORT;
|
|
idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, false);
|
|
}
|
|
idxd_free_desc(wq, desc);
|
|
}
|
|
kfree(irw);
|
|
}
|
|
|
|
bool idxd_queue_int_handle_resubmit(struct idxd_desc *desc)
|
|
{
|
|
struct idxd_wq *wq = desc->wq;
|
|
struct idxd_device *idxd = wq->idxd;
|
|
struct idxd_resubmit *irw;
|
|
|
|
irw = kzalloc(sizeof(*irw), GFP_KERNEL);
|
|
if (!irw)
|
|
return false;
|
|
|
|
irw->desc = desc;
|
|
INIT_WORK(&irw->work, idxd_int_handle_resubmit_work);
|
|
queue_work(idxd->wq, &irw->work);
|
|
return true;
|
|
}
|
|
|
|
static void irq_process_pending_llist(struct idxd_irq_entry *irq_entry)
|
|
{
|
|
struct idxd_desc *desc, *t;
|
|
struct llist_node *head;
|
|
|
|
head = llist_del_all(&irq_entry->pending_llist);
|
|
if (!head)
|
|
return;
|
|
|
|
llist_for_each_entry_safe(desc, t, head, llnode) {
|
|
u8 status = desc->completion->status & DSA_COMP_STATUS_MASK;
|
|
|
|
if (status) {
|
|
/*
|
|
* Check against the original status as ABORT is software defined
|
|
* and 0xff, which DSA_COMP_STATUS_MASK can mask out.
|
|
*/
|
|
if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
|
|
idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, true);
|
|
continue;
|
|
}
|
|
|
|
idxd_desc_complete(desc, IDXD_COMPLETE_NORMAL, true);
|
|
} else {
|
|
spin_lock(&irq_entry->list_lock);
|
|
list_add_tail(&desc->list,
|
|
&irq_entry->work_list);
|
|
spin_unlock(&irq_entry->list_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void irq_process_work_list(struct idxd_irq_entry *irq_entry)
|
|
{
|
|
LIST_HEAD(flist);
|
|
struct idxd_desc *desc, *n;
|
|
|
|
/*
|
|
* This lock protects list corruption from access of list outside of the irq handler
|
|
* thread.
|
|
*/
|
|
spin_lock(&irq_entry->list_lock);
|
|
if (list_empty(&irq_entry->work_list)) {
|
|
spin_unlock(&irq_entry->list_lock);
|
|
return;
|
|
}
|
|
|
|
list_for_each_entry_safe(desc, n, &irq_entry->work_list, list) {
|
|
if (desc->completion->status) {
|
|
list_move_tail(&desc->list, &flist);
|
|
}
|
|
}
|
|
|
|
spin_unlock(&irq_entry->list_lock);
|
|
|
|
list_for_each_entry(desc, &flist, list) {
|
|
/*
|
|
* Check against the original status as ABORT is software defined
|
|
* and 0xff, which DSA_COMP_STATUS_MASK can mask out.
|
|
*/
|
|
if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
|
|
idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, true);
|
|
continue;
|
|
}
|
|
|
|
idxd_desc_complete(desc, IDXD_COMPLETE_NORMAL, true);
|
|
}
|
|
}
|
|
|
|
irqreturn_t idxd_wq_thread(int irq, void *data)
|
|
{
|
|
struct idxd_irq_entry *irq_entry = data;
|
|
|
|
/*
|
|
* There are two lists we are processing. The pending_llist is where
|
|
* submmiter adds all the submitted descriptor after sending it to
|
|
* the workqueue. It's a lockless singly linked list. The work_list
|
|
* is the common linux double linked list. We are in a scenario of
|
|
* multiple producers and a single consumer. The producers are all
|
|
* the kernel submitters of descriptors, and the consumer is the
|
|
* kernel irq handler thread for the msix vector when using threaded
|
|
* irq. To work with the restrictions of llist to remain lockless,
|
|
* we are doing the following steps:
|
|
* 1. Iterate through the work_list and process any completed
|
|
* descriptor. Delete the completed entries during iteration.
|
|
* 2. llist_del_all() from the pending list.
|
|
* 3. Iterate through the llist that was deleted from the pending list
|
|
* and process the completed entries.
|
|
* 4. If the entry is still waiting on hardware, list_add_tail() to
|
|
* the work_list.
|
|
*/
|
|
irq_process_work_list(irq_entry);
|
|
irq_process_pending_llist(irq_entry);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|