mirror of
https://github.com/torvalds/linux.git
synced 2024-12-21 02:21:36 +00:00
73f9b911fa
Use rethook for kretprobe function return hooking if the arch sets CONFIG_HAVE_RETHOOK=y. In this case, CONFIG_KRETPROBE_ON_RETHOOK is set to 'y' automatically, and the kretprobe internal data fields switches to use rethook. If not, it continues to use kretprobe specific function return hooks. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/164826162556.2455864.12255833167233452047.stgit@devnote2
3024 lines
74 KiB
C
3024 lines
74 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Kernel Probes (KProbes)
|
|
*
|
|
* Copyright (C) IBM Corporation, 2002, 2004
|
|
*
|
|
* 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
|
|
* Probes initial implementation (includes suggestions from
|
|
* Rusty Russell).
|
|
* 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
|
|
* hlists and exceptions notifier as suggested by Andi Kleen.
|
|
* 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
|
|
* interface to access function arguments.
|
|
* 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
|
|
* exceptions notifier to be first on the priority list.
|
|
* 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
|
|
* <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
|
|
* <prasanna@in.ibm.com> added function-return probes.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "kprobes: " fmt
|
|
|
|
#include <linux/kprobes.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/export.h>
|
|
#include <linux/moduleloader.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/jump_label.h>
|
|
#include <linux/static_call.h>
|
|
#include <linux/perf_event.h>
|
|
|
|
#include <asm/sections.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/errno.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#define KPROBE_HASH_BITS 6
|
|
#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
|
|
|
|
#if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
|
|
#define kprobe_sysctls_init() do { } while (0)
|
|
#endif
|
|
|
|
static int kprobes_initialized;
|
|
/* kprobe_table can be accessed by
|
|
* - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
|
|
* Or
|
|
* - RCU hlist traversal under disabling preempt (breakpoint handlers)
|
|
*/
|
|
static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
|
|
|
|
/* NOTE: change this value only with 'kprobe_mutex' held */
|
|
static bool kprobes_all_disarmed;
|
|
|
|
/* This protects 'kprobe_table' and 'optimizing_list' */
|
|
static DEFINE_MUTEX(kprobe_mutex);
|
|
static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
|
|
|
|
kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
|
|
unsigned int __unused)
|
|
{
|
|
return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
|
|
}
|
|
|
|
/*
|
|
* Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
|
|
* kprobes can not probe.
|
|
*/
|
|
static LIST_HEAD(kprobe_blacklist);
|
|
|
|
#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
|
|
/*
|
|
* 'kprobe::ainsn.insn' points to the copy of the instruction to be
|
|
* single-stepped. x86_64, POWER4 and above have no-exec support and
|
|
* stepping on the instruction on a vmalloced/kmalloced/data page
|
|
* is a recipe for disaster
|
|
*/
|
|
struct kprobe_insn_page {
|
|
struct list_head list;
|
|
kprobe_opcode_t *insns; /* Page of instruction slots */
|
|
struct kprobe_insn_cache *cache;
|
|
int nused;
|
|
int ngarbage;
|
|
char slot_used[];
|
|
};
|
|
|
|
#define KPROBE_INSN_PAGE_SIZE(slots) \
|
|
(offsetof(struct kprobe_insn_page, slot_used) + \
|
|
(sizeof(char) * (slots)))
|
|
|
|
static int slots_per_page(struct kprobe_insn_cache *c)
|
|
{
|
|
return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
|
|
}
|
|
|
|
enum kprobe_slot_state {
|
|
SLOT_CLEAN = 0,
|
|
SLOT_DIRTY = 1,
|
|
SLOT_USED = 2,
|
|
};
|
|
|
|
void __weak *alloc_insn_page(void)
|
|
{
|
|
/*
|
|
* Use module_alloc() so this page is within +/- 2GB of where the
|
|
* kernel image and loaded module images reside. This is required
|
|
* for most of the architectures.
|
|
* (e.g. x86-64 needs this to handle the %rip-relative fixups.)
|
|
*/
|
|
return module_alloc(PAGE_SIZE);
|
|
}
|
|
|
|
static void free_insn_page(void *page)
|
|
{
|
|
module_memfree(page);
|
|
}
|
|
|
|
struct kprobe_insn_cache kprobe_insn_slots = {
|
|
.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
|
|
.alloc = alloc_insn_page,
|
|
.free = free_insn_page,
|
|
.sym = KPROBE_INSN_PAGE_SYM,
|
|
.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
|
|
.insn_size = MAX_INSN_SIZE,
|
|
.nr_garbage = 0,
|
|
};
|
|
static int collect_garbage_slots(struct kprobe_insn_cache *c);
|
|
|
|
/**
|
|
* __get_insn_slot() - Find a slot on an executable page for an instruction.
|
|
* We allocate an executable page if there's no room on existing ones.
|
|
*/
|
|
kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
|
|
{
|
|
struct kprobe_insn_page *kip;
|
|
kprobe_opcode_t *slot = NULL;
|
|
|
|
/* Since the slot array is not protected by rcu, we need a mutex */
|
|
mutex_lock(&c->mutex);
|
|
retry:
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(kip, &c->pages, list) {
|
|
if (kip->nused < slots_per_page(c)) {
|
|
int i;
|
|
|
|
for (i = 0; i < slots_per_page(c); i++) {
|
|
if (kip->slot_used[i] == SLOT_CLEAN) {
|
|
kip->slot_used[i] = SLOT_USED;
|
|
kip->nused++;
|
|
slot = kip->insns + (i * c->insn_size);
|
|
rcu_read_unlock();
|
|
goto out;
|
|
}
|
|
}
|
|
/* kip->nused is broken. Fix it. */
|
|
kip->nused = slots_per_page(c);
|
|
WARN_ON(1);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
/* If there are any garbage slots, collect it and try again. */
|
|
if (c->nr_garbage && collect_garbage_slots(c) == 0)
|
|
goto retry;
|
|
|
|
/* All out of space. Need to allocate a new page. */
|
|
kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
|
|
if (!kip)
|
|
goto out;
|
|
|
|
kip->insns = c->alloc();
|
|
if (!kip->insns) {
|
|
kfree(kip);
|
|
goto out;
|
|
}
|
|
INIT_LIST_HEAD(&kip->list);
|
|
memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
|
|
kip->slot_used[0] = SLOT_USED;
|
|
kip->nused = 1;
|
|
kip->ngarbage = 0;
|
|
kip->cache = c;
|
|
list_add_rcu(&kip->list, &c->pages);
|
|
slot = kip->insns;
|
|
|
|
/* Record the perf ksymbol register event after adding the page */
|
|
perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
|
|
PAGE_SIZE, false, c->sym);
|
|
out:
|
|
mutex_unlock(&c->mutex);
|
|
return slot;
|
|
}
|
|
|
|
/* Return true if all garbages are collected, otherwise false. */
|
|
static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
|
|
{
|
|
kip->slot_used[idx] = SLOT_CLEAN;
|
|
kip->nused--;
|
|
if (kip->nused == 0) {
|
|
/*
|
|
* Page is no longer in use. Free it unless
|
|
* it's the last one. We keep the last one
|
|
* so as not to have to set it up again the
|
|
* next time somebody inserts a probe.
|
|
*/
|
|
if (!list_is_singular(&kip->list)) {
|
|
/*
|
|
* Record perf ksymbol unregister event before removing
|
|
* the page.
|
|
*/
|
|
perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
|
|
(unsigned long)kip->insns, PAGE_SIZE, true,
|
|
kip->cache->sym);
|
|
list_del_rcu(&kip->list);
|
|
synchronize_rcu();
|
|
kip->cache->free(kip->insns);
|
|
kfree(kip);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int collect_garbage_slots(struct kprobe_insn_cache *c)
|
|
{
|
|
struct kprobe_insn_page *kip, *next;
|
|
|
|
/* Ensure no-one is interrupted on the garbages */
|
|
synchronize_rcu();
|
|
|
|
list_for_each_entry_safe(kip, next, &c->pages, list) {
|
|
int i;
|
|
|
|
if (kip->ngarbage == 0)
|
|
continue;
|
|
kip->ngarbage = 0; /* we will collect all garbages */
|
|
for (i = 0; i < slots_per_page(c); i++) {
|
|
if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
|
|
break;
|
|
}
|
|
}
|
|
c->nr_garbage = 0;
|
|
return 0;
|
|
}
|
|
|
|
void __free_insn_slot(struct kprobe_insn_cache *c,
|
|
kprobe_opcode_t *slot, int dirty)
|
|
{
|
|
struct kprobe_insn_page *kip;
|
|
long idx;
|
|
|
|
mutex_lock(&c->mutex);
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(kip, &c->pages, list) {
|
|
idx = ((long)slot - (long)kip->insns) /
|
|
(c->insn_size * sizeof(kprobe_opcode_t));
|
|
if (idx >= 0 && idx < slots_per_page(c))
|
|
goto out;
|
|
}
|
|
/* Could not find this slot. */
|
|
WARN_ON(1);
|
|
kip = NULL;
|
|
out:
|
|
rcu_read_unlock();
|
|
/* Mark and sweep: this may sleep */
|
|
if (kip) {
|
|
/* Check double free */
|
|
WARN_ON(kip->slot_used[idx] != SLOT_USED);
|
|
if (dirty) {
|
|
kip->slot_used[idx] = SLOT_DIRTY;
|
|
kip->ngarbage++;
|
|
if (++c->nr_garbage > slots_per_page(c))
|
|
collect_garbage_slots(c);
|
|
} else {
|
|
collect_one_slot(kip, idx);
|
|
}
|
|
}
|
|
mutex_unlock(&c->mutex);
|
|
}
|
|
|
|
/*
|
|
* Check given address is on the page of kprobe instruction slots.
|
|
* This will be used for checking whether the address on a stack
|
|
* is on a text area or not.
|
|
*/
|
|
bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
|
|
{
|
|
struct kprobe_insn_page *kip;
|
|
bool ret = false;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(kip, &c->pages, list) {
|
|
if (addr >= (unsigned long)kip->insns &&
|
|
addr < (unsigned long)kip->insns + PAGE_SIZE) {
|
|
ret = true;
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
|
|
unsigned long *value, char *type, char *sym)
|
|
{
|
|
struct kprobe_insn_page *kip;
|
|
int ret = -ERANGE;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(kip, &c->pages, list) {
|
|
if ((*symnum)--)
|
|
continue;
|
|
strscpy(sym, c->sym, KSYM_NAME_LEN);
|
|
*type = 't';
|
|
*value = (unsigned long)kip->insns;
|
|
ret = 0;
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_OPTPROBES
|
|
void __weak *alloc_optinsn_page(void)
|
|
{
|
|
return alloc_insn_page();
|
|
}
|
|
|
|
void __weak free_optinsn_page(void *page)
|
|
{
|
|
free_insn_page(page);
|
|
}
|
|
|
|
/* For optimized_kprobe buffer */
|
|
struct kprobe_insn_cache kprobe_optinsn_slots = {
|
|
.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
|
|
.alloc = alloc_optinsn_page,
|
|
.free = free_optinsn_page,
|
|
.sym = KPROBE_OPTINSN_PAGE_SYM,
|
|
.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
|
|
/* .insn_size is initialized later */
|
|
.nr_garbage = 0,
|
|
};
|
|
#endif
|
|
#endif
|
|
|
|
/* We have preemption disabled.. so it is safe to use __ versions */
|
|
static inline void set_kprobe_instance(struct kprobe *kp)
|
|
{
|
|
__this_cpu_write(kprobe_instance, kp);
|
|
}
|
|
|
|
static inline void reset_kprobe_instance(void)
|
|
{
|
|
__this_cpu_write(kprobe_instance, NULL);
|
|
}
|
|
|
|
/*
|
|
* This routine is called either:
|
|
* - under the 'kprobe_mutex' - during kprobe_[un]register().
|
|
* OR
|
|
* - with preemption disabled - from architecture specific code.
|
|
*/
|
|
struct kprobe *get_kprobe(void *addr)
|
|
{
|
|
struct hlist_head *head;
|
|
struct kprobe *p;
|
|
|
|
head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
|
|
hlist_for_each_entry_rcu(p, head, hlist,
|
|
lockdep_is_held(&kprobe_mutex)) {
|
|
if (p->addr == addr)
|
|
return p;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
NOKPROBE_SYMBOL(get_kprobe);
|
|
|
|
static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
|
|
|
|
/* Return true if 'p' is an aggregator */
|
|
static inline bool kprobe_aggrprobe(struct kprobe *p)
|
|
{
|
|
return p->pre_handler == aggr_pre_handler;
|
|
}
|
|
|
|
/* Return true if 'p' is unused */
|
|
static inline bool kprobe_unused(struct kprobe *p)
|
|
{
|
|
return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
|
|
list_empty(&p->list);
|
|
}
|
|
|
|
/* Keep all fields in the kprobe consistent. */
|
|
static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
|
|
{
|
|
memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
|
|
memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
|
|
}
|
|
|
|
#ifdef CONFIG_OPTPROBES
|
|
/* NOTE: This is protected by 'kprobe_mutex'. */
|
|
static bool kprobes_allow_optimization;
|
|
|
|
/*
|
|
* Call all 'kprobe::pre_handler' on the list, but ignores its return value.
|
|
* This must be called from arch-dep optimized caller.
|
|
*/
|
|
void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kprobe *kp;
|
|
|
|
list_for_each_entry_rcu(kp, &p->list, list) {
|
|
if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
|
|
set_kprobe_instance(kp);
|
|
kp->pre_handler(kp, regs);
|
|
}
|
|
reset_kprobe_instance();
|
|
}
|
|
}
|
|
NOKPROBE_SYMBOL(opt_pre_handler);
|
|
|
|
/* Free optimized instructions and optimized_kprobe */
|
|
static void free_aggr_kprobe(struct kprobe *p)
|
|
{
|
|
struct optimized_kprobe *op;
|
|
|
|
op = container_of(p, struct optimized_kprobe, kp);
|
|
arch_remove_optimized_kprobe(op);
|
|
arch_remove_kprobe(p);
|
|
kfree(op);
|
|
}
|
|
|
|
/* Return true if the kprobe is ready for optimization. */
|
|
static inline int kprobe_optready(struct kprobe *p)
|
|
{
|
|
struct optimized_kprobe *op;
|
|
|
|
if (kprobe_aggrprobe(p)) {
|
|
op = container_of(p, struct optimized_kprobe, kp);
|
|
return arch_prepared_optinsn(&op->optinsn);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Return true if the kprobe is disarmed. Note: p must be on hash list */
|
|
static inline bool kprobe_disarmed(struct kprobe *p)
|
|
{
|
|
struct optimized_kprobe *op;
|
|
|
|
/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
|
|
if (!kprobe_aggrprobe(p))
|
|
return kprobe_disabled(p);
|
|
|
|
op = container_of(p, struct optimized_kprobe, kp);
|
|
|
|
return kprobe_disabled(p) && list_empty(&op->list);
|
|
}
|
|
|
|
/* Return true if the probe is queued on (un)optimizing lists */
|
|
static bool kprobe_queued(struct kprobe *p)
|
|
{
|
|
struct optimized_kprobe *op;
|
|
|
|
if (kprobe_aggrprobe(p)) {
|
|
op = container_of(p, struct optimized_kprobe, kp);
|
|
if (!list_empty(&op->list))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Return an optimized kprobe whose optimizing code replaces
|
|
* instructions including 'addr' (exclude breakpoint).
|
|
*/
|
|
static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
|
|
{
|
|
int i;
|
|
struct kprobe *p = NULL;
|
|
struct optimized_kprobe *op;
|
|
|
|
/* Don't check i == 0, since that is a breakpoint case. */
|
|
for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
|
|
p = get_kprobe(addr - i);
|
|
|
|
if (p && kprobe_optready(p)) {
|
|
op = container_of(p, struct optimized_kprobe, kp);
|
|
if (arch_within_optimized_kprobe(op, addr))
|
|
return p;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Optimization staging list, protected by 'kprobe_mutex' */
|
|
static LIST_HEAD(optimizing_list);
|
|
static LIST_HEAD(unoptimizing_list);
|
|
static LIST_HEAD(freeing_list);
|
|
|
|
static void kprobe_optimizer(struct work_struct *work);
|
|
static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
|
|
#define OPTIMIZE_DELAY 5
|
|
|
|
/*
|
|
* Optimize (replace a breakpoint with a jump) kprobes listed on
|
|
* 'optimizing_list'.
|
|
*/
|
|
static void do_optimize_kprobes(void)
|
|
{
|
|
lockdep_assert_held(&text_mutex);
|
|
/*
|
|
* The optimization/unoptimization refers 'online_cpus' via
|
|
* stop_machine() and cpu-hotplug modifies the 'online_cpus'.
|
|
* And same time, 'text_mutex' will be held in cpu-hotplug and here.
|
|
* This combination can cause a deadlock (cpu-hotplug tries to lock
|
|
* 'text_mutex' but stop_machine() can not be done because
|
|
* the 'online_cpus' has been changed)
|
|
* To avoid this deadlock, caller must have locked cpu-hotplug
|
|
* for preventing cpu-hotplug outside of 'text_mutex' locking.
|
|
*/
|
|
lockdep_assert_cpus_held();
|
|
|
|
/* Optimization never be done when disarmed */
|
|
if (kprobes_all_disarmed || !kprobes_allow_optimization ||
|
|
list_empty(&optimizing_list))
|
|
return;
|
|
|
|
arch_optimize_kprobes(&optimizing_list);
|
|
}
|
|
|
|
/*
|
|
* Unoptimize (replace a jump with a breakpoint and remove the breakpoint
|
|
* if need) kprobes listed on 'unoptimizing_list'.
|
|
*/
|
|
static void do_unoptimize_kprobes(void)
|
|
{
|
|
struct optimized_kprobe *op, *tmp;
|
|
|
|
lockdep_assert_held(&text_mutex);
|
|
/* See comment in do_optimize_kprobes() */
|
|
lockdep_assert_cpus_held();
|
|
|
|
/* Unoptimization must be done anytime */
|
|
if (list_empty(&unoptimizing_list))
|
|
return;
|
|
|
|
arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
|
|
/* Loop on 'freeing_list' for disarming */
|
|
list_for_each_entry_safe(op, tmp, &freeing_list, list) {
|
|
/* Switching from detour code to origin */
|
|
op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
|
|
/* Disarm probes if marked disabled */
|
|
if (kprobe_disabled(&op->kp))
|
|
arch_disarm_kprobe(&op->kp);
|
|
if (kprobe_unused(&op->kp)) {
|
|
/*
|
|
* Remove unused probes from hash list. After waiting
|
|
* for synchronization, these probes are reclaimed.
|
|
* (reclaiming is done by do_free_cleaned_kprobes().)
|
|
*/
|
|
hlist_del_rcu(&op->kp.hlist);
|
|
} else
|
|
list_del_init(&op->list);
|
|
}
|
|
}
|
|
|
|
/* Reclaim all kprobes on the 'freeing_list' */
|
|
static void do_free_cleaned_kprobes(void)
|
|
{
|
|
struct optimized_kprobe *op, *tmp;
|
|
|
|
list_for_each_entry_safe(op, tmp, &freeing_list, list) {
|
|
list_del_init(&op->list);
|
|
if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
|
|
/*
|
|
* This must not happen, but if there is a kprobe
|
|
* still in use, keep it on kprobes hash list.
|
|
*/
|
|
continue;
|
|
}
|
|
free_aggr_kprobe(&op->kp);
|
|
}
|
|
}
|
|
|
|
/* Start optimizer after OPTIMIZE_DELAY passed */
|
|
static void kick_kprobe_optimizer(void)
|
|
{
|
|
schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
|
|
}
|
|
|
|
/* Kprobe jump optimizer */
|
|
static void kprobe_optimizer(struct work_struct *work)
|
|
{
|
|
mutex_lock(&kprobe_mutex);
|
|
cpus_read_lock();
|
|
mutex_lock(&text_mutex);
|
|
|
|
/*
|
|
* Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
|
|
* kprobes before waiting for quiesence period.
|
|
*/
|
|
do_unoptimize_kprobes();
|
|
|
|
/*
|
|
* Step 2: Wait for quiesence period to ensure all potentially
|
|
* preempted tasks to have normally scheduled. Because optprobe
|
|
* may modify multiple instructions, there is a chance that Nth
|
|
* instruction is preempted. In that case, such tasks can return
|
|
* to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
|
|
* Note that on non-preemptive kernel, this is transparently converted
|
|
* to synchronoze_sched() to wait for all interrupts to have completed.
|
|
*/
|
|
synchronize_rcu_tasks();
|
|
|
|
/* Step 3: Optimize kprobes after quiesence period */
|
|
do_optimize_kprobes();
|
|
|
|
/* Step 4: Free cleaned kprobes after quiesence period */
|
|
do_free_cleaned_kprobes();
|
|
|
|
mutex_unlock(&text_mutex);
|
|
cpus_read_unlock();
|
|
|
|
/* Step 5: Kick optimizer again if needed */
|
|
if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
|
|
kick_kprobe_optimizer();
|
|
|
|
mutex_unlock(&kprobe_mutex);
|
|
}
|
|
|
|
/* Wait for completing optimization and unoptimization */
|
|
void wait_for_kprobe_optimizer(void)
|
|
{
|
|
mutex_lock(&kprobe_mutex);
|
|
|
|
while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
|
|
mutex_unlock(&kprobe_mutex);
|
|
|
|
/* This will also make 'optimizing_work' execute immmediately */
|
|
flush_delayed_work(&optimizing_work);
|
|
/* 'optimizing_work' might not have been queued yet, relax */
|
|
cpu_relax();
|
|
|
|
mutex_lock(&kprobe_mutex);
|
|
}
|
|
|
|
mutex_unlock(&kprobe_mutex);
|
|
}
|
|
|
|
static bool optprobe_queued_unopt(struct optimized_kprobe *op)
|
|
{
|
|
struct optimized_kprobe *_op;
|
|
|
|
list_for_each_entry(_op, &unoptimizing_list, list) {
|
|
if (op == _op)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Optimize kprobe if p is ready to be optimized */
|
|
static void optimize_kprobe(struct kprobe *p)
|
|
{
|
|
struct optimized_kprobe *op;
|
|
|
|
/* Check if the kprobe is disabled or not ready for optimization. */
|
|
if (!kprobe_optready(p) || !kprobes_allow_optimization ||
|
|
(kprobe_disabled(p) || kprobes_all_disarmed))
|
|
return;
|
|
|
|
/* kprobes with 'post_handler' can not be optimized */
|
|
if (p->post_handler)
|
|
return;
|
|
|
|
op = container_of(p, struct optimized_kprobe, kp);
|
|
|
|
/* Check there is no other kprobes at the optimized instructions */
|
|
if (arch_check_optimized_kprobe(op) < 0)
|
|
return;
|
|
|
|
/* Check if it is already optimized. */
|
|
if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
|
|
if (optprobe_queued_unopt(op)) {
|
|
/* This is under unoptimizing. Just dequeue the probe */
|
|
list_del_init(&op->list);
|
|
}
|
|
return;
|
|
}
|
|
op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
|
|
|
|
/*
|
|
* On the 'unoptimizing_list' and 'optimizing_list',
|
|
* 'op' must have OPTIMIZED flag
|
|
*/
|
|
if (WARN_ON_ONCE(!list_empty(&op->list)))
|
|
return;
|
|
|
|
list_add(&op->list, &optimizing_list);
|
|
kick_kprobe_optimizer();
|
|
}
|
|
|
|
/* Short cut to direct unoptimizing */
|
|
static void force_unoptimize_kprobe(struct optimized_kprobe *op)
|
|
{
|
|
lockdep_assert_cpus_held();
|
|
arch_unoptimize_kprobe(op);
|
|
op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
|
|
}
|
|
|
|
/* Unoptimize a kprobe if p is optimized */
|
|
static void unoptimize_kprobe(struct kprobe *p, bool force)
|
|
{
|
|
struct optimized_kprobe *op;
|
|
|
|
if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
|
|
return; /* This is not an optprobe nor optimized */
|
|
|
|
op = container_of(p, struct optimized_kprobe, kp);
|
|
if (!kprobe_optimized(p))
|
|
return;
|
|
|
|
if (!list_empty(&op->list)) {
|
|
if (optprobe_queued_unopt(op)) {
|
|
/* Queued in unoptimizing queue */
|
|
if (force) {
|
|
/*
|
|
* Forcibly unoptimize the kprobe here, and queue it
|
|
* in the freeing list for release afterwards.
|
|
*/
|
|
force_unoptimize_kprobe(op);
|
|
list_move(&op->list, &freeing_list);
|
|
}
|
|
} else {
|
|
/* Dequeue from the optimizing queue */
|
|
list_del_init(&op->list);
|
|
op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Optimized kprobe case */
|
|
if (force) {
|
|
/* Forcibly update the code: this is a special case */
|
|
force_unoptimize_kprobe(op);
|
|
} else {
|
|
list_add(&op->list, &unoptimizing_list);
|
|
kick_kprobe_optimizer();
|
|
}
|
|
}
|
|
|
|
/* Cancel unoptimizing for reusing */
|
|
static int reuse_unused_kprobe(struct kprobe *ap)
|
|
{
|
|
struct optimized_kprobe *op;
|
|
|
|
/*
|
|
* Unused kprobe MUST be on the way of delayed unoptimizing (means
|
|
* there is still a relative jump) and disabled.
|
|
*/
|
|
op = container_of(ap, struct optimized_kprobe, kp);
|
|
WARN_ON_ONCE(list_empty(&op->list));
|
|
/* Enable the probe again */
|
|
ap->flags &= ~KPROBE_FLAG_DISABLED;
|
|
/* Optimize it again. (remove from 'op->list') */
|
|
if (!kprobe_optready(ap))
|
|
return -EINVAL;
|
|
|
|
optimize_kprobe(ap);
|
|
return 0;
|
|
}
|
|
|
|
/* Remove optimized instructions */
|
|
static void kill_optimized_kprobe(struct kprobe *p)
|
|
{
|
|
struct optimized_kprobe *op;
|
|
|
|
op = container_of(p, struct optimized_kprobe, kp);
|
|
if (!list_empty(&op->list))
|
|
/* Dequeue from the (un)optimization queue */
|
|
list_del_init(&op->list);
|
|
op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
|
|
|
|
if (kprobe_unused(p)) {
|
|
/* Enqueue if it is unused */
|
|
list_add(&op->list, &freeing_list);
|
|
/*
|
|
* Remove unused probes from the hash list. After waiting
|
|
* for synchronization, this probe is reclaimed.
|
|
* (reclaiming is done by do_free_cleaned_kprobes().)
|
|
*/
|
|
hlist_del_rcu(&op->kp.hlist);
|
|
}
|
|
|
|
/* Don't touch the code, because it is already freed. */
|
|
arch_remove_optimized_kprobe(op);
|
|
}
|
|
|
|
static inline
|
|
void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
|
|
{
|
|
if (!kprobe_ftrace(p))
|
|
arch_prepare_optimized_kprobe(op, p);
|
|
}
|
|
|
|
/* Try to prepare optimized instructions */
|
|
static void prepare_optimized_kprobe(struct kprobe *p)
|
|
{
|
|
struct optimized_kprobe *op;
|
|
|
|
op = container_of(p, struct optimized_kprobe, kp);
|
|
__prepare_optimized_kprobe(op, p);
|
|
}
|
|
|
|
/* Allocate new optimized_kprobe and try to prepare optimized instructions. */
|
|
static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
|
|
{
|
|
struct optimized_kprobe *op;
|
|
|
|
op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
|
|
if (!op)
|
|
return NULL;
|
|
|
|
INIT_LIST_HEAD(&op->list);
|
|
op->kp.addr = p->addr;
|
|
__prepare_optimized_kprobe(op, p);
|
|
|
|
return &op->kp;
|
|
}
|
|
|
|
static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
|
|
|
|
/*
|
|
* Prepare an optimized_kprobe and optimize it.
|
|
* NOTE: 'p' must be a normal registered kprobe.
|
|
*/
|
|
static void try_to_optimize_kprobe(struct kprobe *p)
|
|
{
|
|
struct kprobe *ap;
|
|
struct optimized_kprobe *op;
|
|
|
|
/* Impossible to optimize ftrace-based kprobe. */
|
|
if (kprobe_ftrace(p))
|
|
return;
|
|
|
|
/* For preparing optimization, jump_label_text_reserved() is called. */
|
|
cpus_read_lock();
|
|
jump_label_lock();
|
|
mutex_lock(&text_mutex);
|
|
|
|
ap = alloc_aggr_kprobe(p);
|
|
if (!ap)
|
|
goto out;
|
|
|
|
op = container_of(ap, struct optimized_kprobe, kp);
|
|
if (!arch_prepared_optinsn(&op->optinsn)) {
|
|
/* If failed to setup optimizing, fallback to kprobe. */
|
|
arch_remove_optimized_kprobe(op);
|
|
kfree(op);
|
|
goto out;
|
|
}
|
|
|
|
init_aggr_kprobe(ap, p);
|
|
optimize_kprobe(ap); /* This just kicks optimizer thread. */
|
|
|
|
out:
|
|
mutex_unlock(&text_mutex);
|
|
jump_label_unlock();
|
|
cpus_read_unlock();
|
|
}
|
|
|
|
static void optimize_all_kprobes(void)
|
|
{
|
|
struct hlist_head *head;
|
|
struct kprobe *p;
|
|
unsigned int i;
|
|
|
|
mutex_lock(&kprobe_mutex);
|
|
/* If optimization is already allowed, just return. */
|
|
if (kprobes_allow_optimization)
|
|
goto out;
|
|
|
|
cpus_read_lock();
|
|
kprobes_allow_optimization = true;
|
|
for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
|
|
head = &kprobe_table[i];
|
|
hlist_for_each_entry(p, head, hlist)
|
|
if (!kprobe_disabled(p))
|
|
optimize_kprobe(p);
|
|
}
|
|
cpus_read_unlock();
|
|
pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
|
|
out:
|
|
mutex_unlock(&kprobe_mutex);
|
|
}
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
static void unoptimize_all_kprobes(void)
|
|
{
|
|
struct hlist_head *head;
|
|
struct kprobe *p;
|
|
unsigned int i;
|
|
|
|
mutex_lock(&kprobe_mutex);
|
|
/* If optimization is already prohibited, just return. */
|
|
if (!kprobes_allow_optimization) {
|
|
mutex_unlock(&kprobe_mutex);
|
|
return;
|
|
}
|
|
|
|
cpus_read_lock();
|
|
kprobes_allow_optimization = false;
|
|
for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
|
|
head = &kprobe_table[i];
|
|
hlist_for_each_entry(p, head, hlist) {
|
|
if (!kprobe_disabled(p))
|
|
unoptimize_kprobe(p, false);
|
|
}
|
|
}
|
|
cpus_read_unlock();
|
|
mutex_unlock(&kprobe_mutex);
|
|
|
|
/* Wait for unoptimizing completion. */
|
|
wait_for_kprobe_optimizer();
|
|
pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
|
|
}
|
|
|
|
static DEFINE_MUTEX(kprobe_sysctl_mutex);
|
|
static int sysctl_kprobes_optimization;
|
|
static int proc_kprobes_optimization_handler(struct ctl_table *table,
|
|
int write, void *buffer,
|
|
size_t *length, loff_t *ppos)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&kprobe_sysctl_mutex);
|
|
sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
|
|
ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
|
|
|
|
if (sysctl_kprobes_optimization)
|
|
optimize_all_kprobes();
|
|
else
|
|
unoptimize_all_kprobes();
|
|
mutex_unlock(&kprobe_sysctl_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct ctl_table kprobe_sysctls[] = {
|
|
{
|
|
.procname = "kprobes-optimization",
|
|
.data = &sysctl_kprobes_optimization,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_kprobes_optimization_handler,
|
|
.extra1 = SYSCTL_ZERO,
|
|
.extra2 = SYSCTL_ONE,
|
|
},
|
|
{}
|
|
};
|
|
|
|
static void __init kprobe_sysctls_init(void)
|
|
{
|
|
register_sysctl_init("debug", kprobe_sysctls);
|
|
}
|
|
#endif /* CONFIG_SYSCTL */
|
|
|
|
/* Put a breakpoint for a probe. */
|
|
static void __arm_kprobe(struct kprobe *p)
|
|
{
|
|
struct kprobe *_p;
|
|
|
|
lockdep_assert_held(&text_mutex);
|
|
|
|
/* Find the overlapping optimized kprobes. */
|
|
_p = get_optimized_kprobe(p->addr);
|
|
if (unlikely(_p))
|
|
/* Fallback to unoptimized kprobe */
|
|
unoptimize_kprobe(_p, true);
|
|
|
|
arch_arm_kprobe(p);
|
|
optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
|
|
}
|
|
|
|
/* Remove the breakpoint of a probe. */
|
|
static void __disarm_kprobe(struct kprobe *p, bool reopt)
|
|
{
|
|
struct kprobe *_p;
|
|
|
|
lockdep_assert_held(&text_mutex);
|
|
|
|
/* Try to unoptimize */
|
|
unoptimize_kprobe(p, kprobes_all_disarmed);
|
|
|
|
if (!kprobe_queued(p)) {
|
|
arch_disarm_kprobe(p);
|
|
/* If another kprobe was blocked, re-optimize it. */
|
|
_p = get_optimized_kprobe(p->addr);
|
|
if (unlikely(_p) && reopt)
|
|
optimize_kprobe(_p);
|
|
}
|
|
/*
|
|
* TODO: Since unoptimization and real disarming will be done by
|
|
* the worker thread, we can not check whether another probe are
|
|
* unoptimized because of this probe here. It should be re-optimized
|
|
* by the worker thread.
|
|
*/
|
|
}
|
|
|
|
#else /* !CONFIG_OPTPROBES */
|
|
|
|
#define optimize_kprobe(p) do {} while (0)
|
|
#define unoptimize_kprobe(p, f) do {} while (0)
|
|
#define kill_optimized_kprobe(p) do {} while (0)
|
|
#define prepare_optimized_kprobe(p) do {} while (0)
|
|
#define try_to_optimize_kprobe(p) do {} while (0)
|
|
#define __arm_kprobe(p) arch_arm_kprobe(p)
|
|
#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
|
|
#define kprobe_disarmed(p) kprobe_disabled(p)
|
|
#define wait_for_kprobe_optimizer() do {} while (0)
|
|
|
|
static int reuse_unused_kprobe(struct kprobe *ap)
|
|
{
|
|
/*
|
|
* If the optimized kprobe is NOT supported, the aggr kprobe is
|
|
* released at the same time that the last aggregated kprobe is
|
|
* unregistered.
|
|
* Thus there should be no chance to reuse unused kprobe.
|
|
*/
|
|
WARN_ON_ONCE(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void free_aggr_kprobe(struct kprobe *p)
|
|
{
|
|
arch_remove_kprobe(p);
|
|
kfree(p);
|
|
}
|
|
|
|
static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
|
|
{
|
|
return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
|
|
}
|
|
#endif /* CONFIG_OPTPROBES */
|
|
|
|
#ifdef CONFIG_KPROBES_ON_FTRACE
|
|
static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
|
|
.func = kprobe_ftrace_handler,
|
|
.flags = FTRACE_OPS_FL_SAVE_REGS,
|
|
};
|
|
|
|
static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
|
|
.func = kprobe_ftrace_handler,
|
|
.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
|
|
};
|
|
|
|
static int kprobe_ipmodify_enabled;
|
|
static int kprobe_ftrace_enabled;
|
|
|
|
static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
|
|
int *cnt)
|
|
{
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held(&kprobe_mutex);
|
|
|
|
ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
|
|
if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
|
|
return ret;
|
|
|
|
if (*cnt == 0) {
|
|
ret = register_ftrace_function(ops);
|
|
if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
|
|
goto err_ftrace;
|
|
}
|
|
|
|
(*cnt)++;
|
|
return ret;
|
|
|
|
err_ftrace:
|
|
/*
|
|
* At this point, sinec ops is not registered, we should be sefe from
|
|
* registering empty filter.
|
|
*/
|
|
ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
|
|
return ret;
|
|
}
|
|
|
|
static int arm_kprobe_ftrace(struct kprobe *p)
|
|
{
|
|
bool ipmodify = (p->post_handler != NULL);
|
|
|
|
return __arm_kprobe_ftrace(p,
|
|
ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
|
|
ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
|
|
}
|
|
|
|
static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
|
|
int *cnt)
|
|
{
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held(&kprobe_mutex);
|
|
|
|
if (*cnt == 1) {
|
|
ret = unregister_ftrace_function(ops);
|
|
if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
|
|
return ret;
|
|
}
|
|
|
|
(*cnt)--;
|
|
|
|
ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
|
|
WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
|
|
p->addr, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int disarm_kprobe_ftrace(struct kprobe *p)
|
|
{
|
|
bool ipmodify = (p->post_handler != NULL);
|
|
|
|
return __disarm_kprobe_ftrace(p,
|
|
ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
|
|
ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
|
|
}
|
|
#else /* !CONFIG_KPROBES_ON_FTRACE */
|
|
static inline int arm_kprobe_ftrace(struct kprobe *p)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
static inline int disarm_kprobe_ftrace(struct kprobe *p)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
#endif
|
|
|
|
static int prepare_kprobe(struct kprobe *p)
|
|
{
|
|
/* Must ensure p->addr is really on ftrace */
|
|
if (kprobe_ftrace(p))
|
|
return arch_prepare_kprobe_ftrace(p);
|
|
|
|
return arch_prepare_kprobe(p);
|
|
}
|
|
|
|
static int arm_kprobe(struct kprobe *kp)
|
|
{
|
|
if (unlikely(kprobe_ftrace(kp)))
|
|
return arm_kprobe_ftrace(kp);
|
|
|
|
cpus_read_lock();
|
|
mutex_lock(&text_mutex);
|
|
__arm_kprobe(kp);
|
|
mutex_unlock(&text_mutex);
|
|
cpus_read_unlock();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int disarm_kprobe(struct kprobe *kp, bool reopt)
|
|
{
|
|
if (unlikely(kprobe_ftrace(kp)))
|
|
return disarm_kprobe_ftrace(kp);
|
|
|
|
cpus_read_lock();
|
|
mutex_lock(&text_mutex);
|
|
__disarm_kprobe(kp, reopt);
|
|
mutex_unlock(&text_mutex);
|
|
cpus_read_unlock();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Aggregate handlers for multiple kprobes support - these handlers
|
|
* take care of invoking the individual kprobe handlers on p->list
|
|
*/
|
|
static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kprobe *kp;
|
|
|
|
list_for_each_entry_rcu(kp, &p->list, list) {
|
|
if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
|
|
set_kprobe_instance(kp);
|
|
if (kp->pre_handler(kp, regs))
|
|
return 1;
|
|
}
|
|
reset_kprobe_instance();
|
|
}
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(aggr_pre_handler);
|
|
|
|
static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
|
|
unsigned long flags)
|
|
{
|
|
struct kprobe *kp;
|
|
|
|
list_for_each_entry_rcu(kp, &p->list, list) {
|
|
if (kp->post_handler && likely(!kprobe_disabled(kp))) {
|
|
set_kprobe_instance(kp);
|
|
kp->post_handler(kp, regs, flags);
|
|
reset_kprobe_instance();
|
|
}
|
|
}
|
|
}
|
|
NOKPROBE_SYMBOL(aggr_post_handler);
|
|
|
|
/* Walks the list and increments 'nmissed' if 'p' has child probes. */
|
|
void kprobes_inc_nmissed_count(struct kprobe *p)
|
|
{
|
|
struct kprobe *kp;
|
|
|
|
if (!kprobe_aggrprobe(p)) {
|
|
p->nmissed++;
|
|
} else {
|
|
list_for_each_entry_rcu(kp, &p->list, list)
|
|
kp->nmissed++;
|
|
}
|
|
}
|
|
NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
|
|
|
|
static struct kprobe kprobe_busy = {
|
|
.addr = (void *) get_kprobe,
|
|
};
|
|
|
|
void kprobe_busy_begin(void)
|
|
{
|
|
struct kprobe_ctlblk *kcb;
|
|
|
|
preempt_disable();
|
|
__this_cpu_write(current_kprobe, &kprobe_busy);
|
|
kcb = get_kprobe_ctlblk();
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
}
|
|
|
|
void kprobe_busy_end(void)
|
|
{
|
|
__this_cpu_write(current_kprobe, NULL);
|
|
preempt_enable();
|
|
}
|
|
|
|
#if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
|
|
static void free_rp_inst_rcu(struct rcu_head *head)
|
|
{
|
|
struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
|
|
|
|
if (refcount_dec_and_test(&ri->rph->ref))
|
|
kfree(ri->rph);
|
|
kfree(ri);
|
|
}
|
|
NOKPROBE_SYMBOL(free_rp_inst_rcu);
|
|
|
|
static void recycle_rp_inst(struct kretprobe_instance *ri)
|
|
{
|
|
struct kretprobe *rp = get_kretprobe(ri);
|
|
|
|
if (likely(rp))
|
|
freelist_add(&ri->freelist, &rp->freelist);
|
|
else
|
|
call_rcu(&ri->rcu, free_rp_inst_rcu);
|
|
}
|
|
NOKPROBE_SYMBOL(recycle_rp_inst);
|
|
|
|
/*
|
|
* This function is called from delayed_put_task_struct() when a task is
|
|
* dead and cleaned up to recycle any kretprobe instances associated with
|
|
* this task. These left over instances represent probed functions that
|
|
* have been called but will never return.
|
|
*/
|
|
void kprobe_flush_task(struct task_struct *tk)
|
|
{
|
|
struct kretprobe_instance *ri;
|
|
struct llist_node *node;
|
|
|
|
/* Early boot, not yet initialized. */
|
|
if (unlikely(!kprobes_initialized))
|
|
return;
|
|
|
|
kprobe_busy_begin();
|
|
|
|
node = __llist_del_all(&tk->kretprobe_instances);
|
|
while (node) {
|
|
ri = container_of(node, struct kretprobe_instance, llist);
|
|
node = node->next;
|
|
|
|
recycle_rp_inst(ri);
|
|
}
|
|
|
|
kprobe_busy_end();
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_flush_task);
|
|
|
|
static inline void free_rp_inst(struct kretprobe *rp)
|
|
{
|
|
struct kretprobe_instance *ri;
|
|
struct freelist_node *node;
|
|
int count = 0;
|
|
|
|
node = rp->freelist.head;
|
|
while (node) {
|
|
ri = container_of(node, struct kretprobe_instance, freelist);
|
|
node = node->next;
|
|
|
|
kfree(ri);
|
|
count++;
|
|
}
|
|
|
|
if (refcount_sub_and_test(count, &rp->rph->ref)) {
|
|
kfree(rp->rph);
|
|
rp->rph = NULL;
|
|
}
|
|
}
|
|
#endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
|
|
|
|
/* Add the new probe to 'ap->list'. */
|
|
static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
|
|
{
|
|
if (p->post_handler)
|
|
unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
|
|
|
|
list_add_rcu(&p->list, &ap->list);
|
|
if (p->post_handler && !ap->post_handler)
|
|
ap->post_handler = aggr_post_handler;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Fill in the required fields of the aggregator kprobe. Replace the
|
|
* earlier kprobe in the hlist with the aggregator kprobe.
|
|
*/
|
|
static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
|
|
{
|
|
/* Copy the insn slot of 'p' to 'ap'. */
|
|
copy_kprobe(p, ap);
|
|
flush_insn_slot(ap);
|
|
ap->addr = p->addr;
|
|
ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
|
|
ap->pre_handler = aggr_pre_handler;
|
|
/* We don't care the kprobe which has gone. */
|
|
if (p->post_handler && !kprobe_gone(p))
|
|
ap->post_handler = aggr_post_handler;
|
|
|
|
INIT_LIST_HEAD(&ap->list);
|
|
INIT_HLIST_NODE(&ap->hlist);
|
|
|
|
list_add_rcu(&p->list, &ap->list);
|
|
hlist_replace_rcu(&p->hlist, &ap->hlist);
|
|
}
|
|
|
|
/*
|
|
* This registers the second or subsequent kprobe at the same address.
|
|
*/
|
|
static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
|
|
{
|
|
int ret = 0;
|
|
struct kprobe *ap = orig_p;
|
|
|
|
cpus_read_lock();
|
|
|
|
/* For preparing optimization, jump_label_text_reserved() is called */
|
|
jump_label_lock();
|
|
mutex_lock(&text_mutex);
|
|
|
|
if (!kprobe_aggrprobe(orig_p)) {
|
|
/* If 'orig_p' is not an 'aggr_kprobe', create new one. */
|
|
ap = alloc_aggr_kprobe(orig_p);
|
|
if (!ap) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
init_aggr_kprobe(ap, orig_p);
|
|
} else if (kprobe_unused(ap)) {
|
|
/* This probe is going to die. Rescue it */
|
|
ret = reuse_unused_kprobe(ap);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
if (kprobe_gone(ap)) {
|
|
/*
|
|
* Attempting to insert new probe at the same location that
|
|
* had a probe in the module vaddr area which already
|
|
* freed. So, the instruction slot has already been
|
|
* released. We need a new slot for the new probe.
|
|
*/
|
|
ret = arch_prepare_kprobe(ap);
|
|
if (ret)
|
|
/*
|
|
* Even if fail to allocate new slot, don't need to
|
|
* free the 'ap'. It will be used next time, or
|
|
* freed by unregister_kprobe().
|
|
*/
|
|
goto out;
|
|
|
|
/* Prepare optimized instructions if possible. */
|
|
prepare_optimized_kprobe(ap);
|
|
|
|
/*
|
|
* Clear gone flag to prevent allocating new slot again, and
|
|
* set disabled flag because it is not armed yet.
|
|
*/
|
|
ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
|
|
| KPROBE_FLAG_DISABLED;
|
|
}
|
|
|
|
/* Copy the insn slot of 'p' to 'ap'. */
|
|
copy_kprobe(ap, p);
|
|
ret = add_new_kprobe(ap, p);
|
|
|
|
out:
|
|
mutex_unlock(&text_mutex);
|
|
jump_label_unlock();
|
|
cpus_read_unlock();
|
|
|
|
if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
|
|
ap->flags &= ~KPROBE_FLAG_DISABLED;
|
|
if (!kprobes_all_disarmed) {
|
|
/* Arm the breakpoint again. */
|
|
ret = arm_kprobe(ap);
|
|
if (ret) {
|
|
ap->flags |= KPROBE_FLAG_DISABLED;
|
|
list_del_rcu(&p->list);
|
|
synchronize_rcu();
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
bool __weak arch_within_kprobe_blacklist(unsigned long addr)
|
|
{
|
|
/* The '__kprobes' functions and entry code must not be probed. */
|
|
return addr >= (unsigned long)__kprobes_text_start &&
|
|
addr < (unsigned long)__kprobes_text_end;
|
|
}
|
|
|
|
static bool __within_kprobe_blacklist(unsigned long addr)
|
|
{
|
|
struct kprobe_blacklist_entry *ent;
|
|
|
|
if (arch_within_kprobe_blacklist(addr))
|
|
return true;
|
|
/*
|
|
* If 'kprobe_blacklist' is defined, check the address and
|
|
* reject any probe registration in the prohibited area.
|
|
*/
|
|
list_for_each_entry(ent, &kprobe_blacklist, list) {
|
|
if (addr >= ent->start_addr && addr < ent->end_addr)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool within_kprobe_blacklist(unsigned long addr)
|
|
{
|
|
char symname[KSYM_NAME_LEN], *p;
|
|
|
|
if (__within_kprobe_blacklist(addr))
|
|
return true;
|
|
|
|
/* Check if the address is on a suffixed-symbol */
|
|
if (!lookup_symbol_name(addr, symname)) {
|
|
p = strchr(symname, '.');
|
|
if (!p)
|
|
return false;
|
|
*p = '\0';
|
|
addr = (unsigned long)kprobe_lookup_name(symname, 0);
|
|
if (addr)
|
|
return __within_kprobe_blacklist(addr);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* arch_adjust_kprobe_addr - adjust the address
|
|
* @addr: symbol base address
|
|
* @offset: offset within the symbol
|
|
* @on_func_entry: was this @addr+@offset on the function entry
|
|
*
|
|
* Typically returns @addr + @offset, except for special cases where the
|
|
* function might be prefixed by a CFI landing pad, in that case any offset
|
|
* inside the landing pad is mapped to the first 'real' instruction of the
|
|
* symbol.
|
|
*
|
|
* Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
|
|
* instruction at +0.
|
|
*/
|
|
kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
|
|
unsigned long offset,
|
|
bool *on_func_entry)
|
|
{
|
|
*on_func_entry = !offset;
|
|
return (kprobe_opcode_t *)(addr + offset);
|
|
}
|
|
|
|
/*
|
|
* If 'symbol_name' is specified, look it up and add the 'offset'
|
|
* to it. This way, we can specify a relative address to a symbol.
|
|
* This returns encoded errors if it fails to look up symbol or invalid
|
|
* combination of parameters.
|
|
*/
|
|
static kprobe_opcode_t *
|
|
_kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
|
|
unsigned long offset, bool *on_func_entry)
|
|
{
|
|
if ((symbol_name && addr) || (!symbol_name && !addr))
|
|
goto invalid;
|
|
|
|
if (symbol_name) {
|
|
/*
|
|
* Input: @sym + @offset
|
|
* Output: @addr + @offset
|
|
*
|
|
* NOTE: kprobe_lookup_name() does *NOT* fold the offset
|
|
* argument into it's output!
|
|
*/
|
|
addr = kprobe_lookup_name(symbol_name, offset);
|
|
if (!addr)
|
|
return ERR_PTR(-ENOENT);
|
|
}
|
|
|
|
/*
|
|
* So here we have @addr + @offset, displace it into a new
|
|
* @addr' + @offset' where @addr' is the symbol start address.
|
|
*/
|
|
addr = (void *)addr + offset;
|
|
if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
|
|
return ERR_PTR(-ENOENT);
|
|
addr = (void *)addr - offset;
|
|
|
|
/*
|
|
* Then ask the architecture to re-combine them, taking care of
|
|
* magical function entry details while telling us if this was indeed
|
|
* at the start of the function.
|
|
*/
|
|
addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
|
|
if (addr)
|
|
return addr;
|
|
|
|
invalid:
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
|
|
{
|
|
bool on_func_entry;
|
|
return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
|
|
}
|
|
|
|
/*
|
|
* Check the 'p' is valid and return the aggregator kprobe
|
|
* at the same address.
|
|
*/
|
|
static struct kprobe *__get_valid_kprobe(struct kprobe *p)
|
|
{
|
|
struct kprobe *ap, *list_p;
|
|
|
|
lockdep_assert_held(&kprobe_mutex);
|
|
|
|
ap = get_kprobe(p->addr);
|
|
if (unlikely(!ap))
|
|
return NULL;
|
|
|
|
if (p != ap) {
|
|
list_for_each_entry(list_p, &ap->list, list)
|
|
if (list_p == p)
|
|
/* kprobe p is a valid probe */
|
|
goto valid;
|
|
return NULL;
|
|
}
|
|
valid:
|
|
return ap;
|
|
}
|
|
|
|
/*
|
|
* Warn and return error if the kprobe is being re-registered since
|
|
* there must be a software bug.
|
|
*/
|
|
static inline int warn_kprobe_rereg(struct kprobe *p)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&kprobe_mutex);
|
|
if (WARN_ON_ONCE(__get_valid_kprobe(p)))
|
|
ret = -EINVAL;
|
|
mutex_unlock(&kprobe_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int check_ftrace_location(struct kprobe *p)
|
|
{
|
|
unsigned long addr = (unsigned long)p->addr;
|
|
|
|
if (ftrace_location(addr) == addr) {
|
|
#ifdef CONFIG_KPROBES_ON_FTRACE
|
|
p->flags |= KPROBE_FLAG_FTRACE;
|
|
#else /* !CONFIG_KPROBES_ON_FTRACE */
|
|
return -EINVAL;
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int check_kprobe_address_safe(struct kprobe *p,
|
|
struct module **probed_mod)
|
|
{
|
|
int ret;
|
|
|
|
ret = check_ftrace_location(p);
|
|
if (ret)
|
|
return ret;
|
|
jump_label_lock();
|
|
preempt_disable();
|
|
|
|
/* Ensure it is not in reserved area nor out of text */
|
|
if (!kernel_text_address((unsigned long) p->addr) ||
|
|
within_kprobe_blacklist((unsigned long) p->addr) ||
|
|
jump_label_text_reserved(p->addr, p->addr) ||
|
|
static_call_text_reserved(p->addr, p->addr) ||
|
|
find_bug((unsigned long)p->addr)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Check if 'p' is probing a module. */
|
|
*probed_mod = __module_text_address((unsigned long) p->addr);
|
|
if (*probed_mod) {
|
|
/*
|
|
* We must hold a refcount of the probed module while updating
|
|
* its code to prohibit unexpected unloading.
|
|
*/
|
|
if (unlikely(!try_module_get(*probed_mod))) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If the module freed '.init.text', we couldn't insert
|
|
* kprobes in there.
|
|
*/
|
|
if (within_module_init((unsigned long)p->addr, *probed_mod) &&
|
|
(*probed_mod)->state != MODULE_STATE_COMING) {
|
|
module_put(*probed_mod);
|
|
*probed_mod = NULL;
|
|
ret = -ENOENT;
|
|
}
|
|
}
|
|
out:
|
|
preempt_enable();
|
|
jump_label_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
int register_kprobe(struct kprobe *p)
|
|
{
|
|
int ret;
|
|
struct kprobe *old_p;
|
|
struct module *probed_mod;
|
|
kprobe_opcode_t *addr;
|
|
|
|
/* Adjust probe address from symbol */
|
|
addr = kprobe_addr(p);
|
|
if (IS_ERR(addr))
|
|
return PTR_ERR(addr);
|
|
p->addr = addr;
|
|
|
|
ret = warn_kprobe_rereg(p);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
|
|
p->flags &= KPROBE_FLAG_DISABLED;
|
|
p->nmissed = 0;
|
|
INIT_LIST_HEAD(&p->list);
|
|
|
|
ret = check_kprobe_address_safe(p, &probed_mod);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&kprobe_mutex);
|
|
|
|
old_p = get_kprobe(p->addr);
|
|
if (old_p) {
|
|
/* Since this may unoptimize 'old_p', locking 'text_mutex'. */
|
|
ret = register_aggr_kprobe(old_p, p);
|
|
goto out;
|
|
}
|
|
|
|
cpus_read_lock();
|
|
/* Prevent text modification */
|
|
mutex_lock(&text_mutex);
|
|
ret = prepare_kprobe(p);
|
|
mutex_unlock(&text_mutex);
|
|
cpus_read_unlock();
|
|
if (ret)
|
|
goto out;
|
|
|
|
INIT_HLIST_NODE(&p->hlist);
|
|
hlist_add_head_rcu(&p->hlist,
|
|
&kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
|
|
|
|
if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
|
|
ret = arm_kprobe(p);
|
|
if (ret) {
|
|
hlist_del_rcu(&p->hlist);
|
|
synchronize_rcu();
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Try to optimize kprobe */
|
|
try_to_optimize_kprobe(p);
|
|
out:
|
|
mutex_unlock(&kprobe_mutex);
|
|
|
|
if (probed_mod)
|
|
module_put(probed_mod);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_kprobe);
|
|
|
|
/* Check if all probes on the 'ap' are disabled. */
|
|
static bool aggr_kprobe_disabled(struct kprobe *ap)
|
|
{
|
|
struct kprobe *kp;
|
|
|
|
lockdep_assert_held(&kprobe_mutex);
|
|
|
|
list_for_each_entry(kp, &ap->list, list)
|
|
if (!kprobe_disabled(kp))
|
|
/*
|
|
* Since there is an active probe on the list,
|
|
* we can't disable this 'ap'.
|
|
*/
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct kprobe *__disable_kprobe(struct kprobe *p)
|
|
{
|
|
struct kprobe *orig_p;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&kprobe_mutex);
|
|
|
|
/* Get an original kprobe for return */
|
|
orig_p = __get_valid_kprobe(p);
|
|
if (unlikely(orig_p == NULL))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (!kprobe_disabled(p)) {
|
|
/* Disable probe if it is a child probe */
|
|
if (p != orig_p)
|
|
p->flags |= KPROBE_FLAG_DISABLED;
|
|
|
|
/* Try to disarm and disable this/parent probe */
|
|
if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
|
|
/*
|
|
* If 'kprobes_all_disarmed' is set, 'orig_p'
|
|
* should have already been disarmed, so
|
|
* skip unneed disarming process.
|
|
*/
|
|
if (!kprobes_all_disarmed) {
|
|
ret = disarm_kprobe(orig_p, true);
|
|
if (ret) {
|
|
p->flags &= ~KPROBE_FLAG_DISABLED;
|
|
return ERR_PTR(ret);
|
|
}
|
|
}
|
|
orig_p->flags |= KPROBE_FLAG_DISABLED;
|
|
}
|
|
}
|
|
|
|
return orig_p;
|
|
}
|
|
|
|
/*
|
|
* Unregister a kprobe without a scheduler synchronization.
|
|
*/
|
|
static int __unregister_kprobe_top(struct kprobe *p)
|
|
{
|
|
struct kprobe *ap, *list_p;
|
|
|
|
/* Disable kprobe. This will disarm it if needed. */
|
|
ap = __disable_kprobe(p);
|
|
if (IS_ERR(ap))
|
|
return PTR_ERR(ap);
|
|
|
|
if (ap == p)
|
|
/*
|
|
* This probe is an independent(and non-optimized) kprobe
|
|
* (not an aggrprobe). Remove from the hash list.
|
|
*/
|
|
goto disarmed;
|
|
|
|
/* Following process expects this probe is an aggrprobe */
|
|
WARN_ON(!kprobe_aggrprobe(ap));
|
|
|
|
if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
|
|
/*
|
|
* !disarmed could be happen if the probe is under delayed
|
|
* unoptimizing.
|
|
*/
|
|
goto disarmed;
|
|
else {
|
|
/* If disabling probe has special handlers, update aggrprobe */
|
|
if (p->post_handler && !kprobe_gone(p)) {
|
|
list_for_each_entry(list_p, &ap->list, list) {
|
|
if ((list_p != p) && (list_p->post_handler))
|
|
goto noclean;
|
|
}
|
|
ap->post_handler = NULL;
|
|
}
|
|
noclean:
|
|
/*
|
|
* Remove from the aggrprobe: this path will do nothing in
|
|
* __unregister_kprobe_bottom().
|
|
*/
|
|
list_del_rcu(&p->list);
|
|
if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
|
|
/*
|
|
* Try to optimize this probe again, because post
|
|
* handler may have been changed.
|
|
*/
|
|
optimize_kprobe(ap);
|
|
}
|
|
return 0;
|
|
|
|
disarmed:
|
|
hlist_del_rcu(&ap->hlist);
|
|
return 0;
|
|
}
|
|
|
|
static void __unregister_kprobe_bottom(struct kprobe *p)
|
|
{
|
|
struct kprobe *ap;
|
|
|
|
if (list_empty(&p->list))
|
|
/* This is an independent kprobe */
|
|
arch_remove_kprobe(p);
|
|
else if (list_is_singular(&p->list)) {
|
|
/* This is the last child of an aggrprobe */
|
|
ap = list_entry(p->list.next, struct kprobe, list);
|
|
list_del(&p->list);
|
|
free_aggr_kprobe(ap);
|
|
}
|
|
/* Otherwise, do nothing. */
|
|
}
|
|
|
|
int register_kprobes(struct kprobe **kps, int num)
|
|
{
|
|
int i, ret = 0;
|
|
|
|
if (num <= 0)
|
|
return -EINVAL;
|
|
for (i = 0; i < num; i++) {
|
|
ret = register_kprobe(kps[i]);
|
|
if (ret < 0) {
|
|
if (i > 0)
|
|
unregister_kprobes(kps, i);
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_kprobes);
|
|
|
|
void unregister_kprobe(struct kprobe *p)
|
|
{
|
|
unregister_kprobes(&p, 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_kprobe);
|
|
|
|
void unregister_kprobes(struct kprobe **kps, int num)
|
|
{
|
|
int i;
|
|
|
|
if (num <= 0)
|
|
return;
|
|
mutex_lock(&kprobe_mutex);
|
|
for (i = 0; i < num; i++)
|
|
if (__unregister_kprobe_top(kps[i]) < 0)
|
|
kps[i]->addr = NULL;
|
|
mutex_unlock(&kprobe_mutex);
|
|
|
|
synchronize_rcu();
|
|
for (i = 0; i < num; i++)
|
|
if (kps[i]->addr)
|
|
__unregister_kprobe_bottom(kps[i]);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_kprobes);
|
|
|
|
int __weak kprobe_exceptions_notify(struct notifier_block *self,
|
|
unsigned long val, void *data)
|
|
{
|
|
return NOTIFY_DONE;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_exceptions_notify);
|
|
|
|
static struct notifier_block kprobe_exceptions_nb = {
|
|
.notifier_call = kprobe_exceptions_notify,
|
|
.priority = 0x7fffffff /* we need to be notified first */
|
|
};
|
|
|
|
#ifdef CONFIG_KRETPROBES
|
|
|
|
#if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
|
|
/* This assumes the 'tsk' is the current task or the is not running. */
|
|
static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
|
|
struct llist_node **cur)
|
|
{
|
|
struct kretprobe_instance *ri = NULL;
|
|
struct llist_node *node = *cur;
|
|
|
|
if (!node)
|
|
node = tsk->kretprobe_instances.first;
|
|
else
|
|
node = node->next;
|
|
|
|
while (node) {
|
|
ri = container_of(node, struct kretprobe_instance, llist);
|
|
if (ri->ret_addr != kretprobe_trampoline_addr()) {
|
|
*cur = node;
|
|
return ri->ret_addr;
|
|
}
|
|
node = node->next;
|
|
}
|
|
return NULL;
|
|
}
|
|
NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
|
|
|
|
/**
|
|
* kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
|
|
* @tsk: Target task
|
|
* @fp: A frame pointer
|
|
* @cur: a storage of the loop cursor llist_node pointer for next call
|
|
*
|
|
* Find the correct return address modified by a kretprobe on @tsk in unsigned
|
|
* long type. If it finds the return address, this returns that address value,
|
|
* or this returns 0.
|
|
* The @tsk must be 'current' or a task which is not running. @fp is a hint
|
|
* to get the currect return address - which is compared with the
|
|
* kretprobe_instance::fp field. The @cur is a loop cursor for searching the
|
|
* kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
|
|
* first call, but '@cur' itself must NOT NULL.
|
|
*/
|
|
unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
|
|
struct llist_node **cur)
|
|
{
|
|
struct kretprobe_instance *ri = NULL;
|
|
kprobe_opcode_t *ret;
|
|
|
|
if (WARN_ON_ONCE(!cur))
|
|
return 0;
|
|
|
|
do {
|
|
ret = __kretprobe_find_ret_addr(tsk, cur);
|
|
if (!ret)
|
|
break;
|
|
ri = container_of(*cur, struct kretprobe_instance, llist);
|
|
} while (ri->fp != fp);
|
|
|
|
return (unsigned long)ret;
|
|
}
|
|
NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
|
|
|
|
void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
|
|
kprobe_opcode_t *correct_ret_addr)
|
|
{
|
|
/*
|
|
* Do nothing by default. Please fill this to update the fake return
|
|
* address on the stack with the correct one on each arch if possible.
|
|
*/
|
|
}
|
|
|
|
unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
|
|
void *frame_pointer)
|
|
{
|
|
kprobe_opcode_t *correct_ret_addr = NULL;
|
|
struct kretprobe_instance *ri = NULL;
|
|
struct llist_node *first, *node = NULL;
|
|
struct kretprobe *rp;
|
|
|
|
/* Find correct address and all nodes for this frame. */
|
|
correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
|
|
if (!correct_ret_addr) {
|
|
pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
|
|
BUG_ON(1);
|
|
}
|
|
|
|
/*
|
|
* Set the return address as the instruction pointer, because if the
|
|
* user handler calls stack_trace_save_regs() with this 'regs',
|
|
* the stack trace will start from the instruction pointer.
|
|
*/
|
|
instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
|
|
|
|
/* Run the user handler of the nodes. */
|
|
first = current->kretprobe_instances.first;
|
|
while (first) {
|
|
ri = container_of(first, struct kretprobe_instance, llist);
|
|
|
|
if (WARN_ON_ONCE(ri->fp != frame_pointer))
|
|
break;
|
|
|
|
rp = get_kretprobe(ri);
|
|
if (rp && rp->handler) {
|
|
struct kprobe *prev = kprobe_running();
|
|
|
|
__this_cpu_write(current_kprobe, &rp->kp);
|
|
ri->ret_addr = correct_ret_addr;
|
|
rp->handler(ri, regs);
|
|
__this_cpu_write(current_kprobe, prev);
|
|
}
|
|
if (first == node)
|
|
break;
|
|
|
|
first = first->next;
|
|
}
|
|
|
|
arch_kretprobe_fixup_return(regs, correct_ret_addr);
|
|
|
|
/* Unlink all nodes for this frame. */
|
|
first = current->kretprobe_instances.first;
|
|
current->kretprobe_instances.first = node->next;
|
|
node->next = NULL;
|
|
|
|
/* Recycle free instances. */
|
|
while (first) {
|
|
ri = container_of(first, struct kretprobe_instance, llist);
|
|
first = first->next;
|
|
|
|
recycle_rp_inst(ri);
|
|
}
|
|
|
|
return (unsigned long)correct_ret_addr;
|
|
}
|
|
NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
|
|
|
|
/*
|
|
* This kprobe pre_handler is registered with every kretprobe. When probe
|
|
* hits it will set up the return probe.
|
|
*/
|
|
static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kretprobe *rp = container_of(p, struct kretprobe, kp);
|
|
struct kretprobe_instance *ri;
|
|
struct freelist_node *fn;
|
|
|
|
fn = freelist_try_get(&rp->freelist);
|
|
if (!fn) {
|
|
rp->nmissed++;
|
|
return 0;
|
|
}
|
|
|
|
ri = container_of(fn, struct kretprobe_instance, freelist);
|
|
|
|
if (rp->entry_handler && rp->entry_handler(ri, regs)) {
|
|
freelist_add(&ri->freelist, &rp->freelist);
|
|
return 0;
|
|
}
|
|
|
|
arch_prepare_kretprobe(ri, regs);
|
|
|
|
__llist_add(&ri->llist, ¤t->kretprobe_instances);
|
|
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(pre_handler_kretprobe);
|
|
#else /* CONFIG_KRETPROBE_ON_RETHOOK */
|
|
/*
|
|
* This kprobe pre_handler is registered with every kretprobe. When probe
|
|
* hits it will set up the return probe.
|
|
*/
|
|
static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kretprobe *rp = container_of(p, struct kretprobe, kp);
|
|
struct kretprobe_instance *ri;
|
|
struct rethook_node *rhn;
|
|
|
|
rhn = rethook_try_get(rp->rh);
|
|
if (!rhn) {
|
|
rp->nmissed++;
|
|
return 0;
|
|
}
|
|
|
|
ri = container_of(rhn, struct kretprobe_instance, node);
|
|
|
|
if (rp->entry_handler && rp->entry_handler(ri, regs))
|
|
rethook_recycle(rhn);
|
|
else
|
|
rethook_hook(rhn, regs, kprobe_ftrace(p));
|
|
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(pre_handler_kretprobe);
|
|
|
|
static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct kretprobe *rp = (struct kretprobe *)data;
|
|
struct kretprobe_instance *ri;
|
|
struct kprobe_ctlblk *kcb;
|
|
|
|
/* The data must NOT be null. This means rethook data structure is broken. */
|
|
if (WARN_ON_ONCE(!data))
|
|
return;
|
|
|
|
__this_cpu_write(current_kprobe, &rp->kp);
|
|
kcb = get_kprobe_ctlblk();
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
|
ri = container_of(rh, struct kretprobe_instance, node);
|
|
rp->handler(ri, regs);
|
|
|
|
__this_cpu_write(current_kprobe, NULL);
|
|
}
|
|
NOKPROBE_SYMBOL(kretprobe_rethook_handler);
|
|
|
|
#endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
|
|
|
|
/**
|
|
* kprobe_on_func_entry() -- check whether given address is function entry
|
|
* @addr: Target address
|
|
* @sym: Target symbol name
|
|
* @offset: The offset from the symbol or the address
|
|
*
|
|
* This checks whether the given @addr+@offset or @sym+@offset is on the
|
|
* function entry address or not.
|
|
* This returns 0 if it is the function entry, or -EINVAL if it is not.
|
|
* And also it returns -ENOENT if it fails the symbol or address lookup.
|
|
* Caller must pass @addr or @sym (either one must be NULL), or this
|
|
* returns -EINVAL.
|
|
*/
|
|
int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
|
|
{
|
|
bool on_func_entry;
|
|
kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
|
|
|
|
if (IS_ERR(kp_addr))
|
|
return PTR_ERR(kp_addr);
|
|
|
|
if (!on_func_entry)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int register_kretprobe(struct kretprobe *rp)
|
|
{
|
|
int ret;
|
|
struct kretprobe_instance *inst;
|
|
int i;
|
|
void *addr;
|
|
|
|
ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* If only 'rp->kp.addr' is specified, check reregistering kprobes */
|
|
if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
|
|
return -EINVAL;
|
|
|
|
if (kretprobe_blacklist_size) {
|
|
addr = kprobe_addr(&rp->kp);
|
|
if (IS_ERR(addr))
|
|
return PTR_ERR(addr);
|
|
|
|
for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
|
|
if (kretprobe_blacklist[i].addr == addr)
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
|
|
return -E2BIG;
|
|
|
|
rp->kp.pre_handler = pre_handler_kretprobe;
|
|
rp->kp.post_handler = NULL;
|
|
|
|
/* Pre-allocate memory for max kretprobe instances */
|
|
if (rp->maxactive <= 0) {
|
|
#ifdef CONFIG_PREEMPTION
|
|
rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
|
|
#else
|
|
rp->maxactive = num_possible_cpus();
|
|
#endif
|
|
}
|
|
#ifdef CONFIG_KRETPROBE_ON_RETHOOK
|
|
rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler);
|
|
if (!rp->rh)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < rp->maxactive; i++) {
|
|
inst = kzalloc(sizeof(struct kretprobe_instance) +
|
|
rp->data_size, GFP_KERNEL);
|
|
if (inst == NULL) {
|
|
rethook_free(rp->rh);
|
|
rp->rh = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
rethook_add_node(rp->rh, &inst->node);
|
|
}
|
|
rp->nmissed = 0;
|
|
/* Establish function entry probe point */
|
|
ret = register_kprobe(&rp->kp);
|
|
if (ret != 0) {
|
|
rethook_free(rp->rh);
|
|
rp->rh = NULL;
|
|
}
|
|
#else /* !CONFIG_KRETPROBE_ON_RETHOOK */
|
|
rp->freelist.head = NULL;
|
|
rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
|
|
if (!rp->rph)
|
|
return -ENOMEM;
|
|
|
|
rp->rph->rp = rp;
|
|
for (i = 0; i < rp->maxactive; i++) {
|
|
inst = kzalloc(sizeof(struct kretprobe_instance) +
|
|
rp->data_size, GFP_KERNEL);
|
|
if (inst == NULL) {
|
|
refcount_set(&rp->rph->ref, i);
|
|
free_rp_inst(rp);
|
|
return -ENOMEM;
|
|
}
|
|
inst->rph = rp->rph;
|
|
freelist_add(&inst->freelist, &rp->freelist);
|
|
}
|
|
refcount_set(&rp->rph->ref, i);
|
|
|
|
rp->nmissed = 0;
|
|
/* Establish function entry probe point */
|
|
ret = register_kprobe(&rp->kp);
|
|
if (ret != 0)
|
|
free_rp_inst(rp);
|
|
#endif
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_kretprobe);
|
|
|
|
int register_kretprobes(struct kretprobe **rps, int num)
|
|
{
|
|
int ret = 0, i;
|
|
|
|
if (num <= 0)
|
|
return -EINVAL;
|
|
for (i = 0; i < num; i++) {
|
|
ret = register_kretprobe(rps[i]);
|
|
if (ret < 0) {
|
|
if (i > 0)
|
|
unregister_kretprobes(rps, i);
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_kretprobes);
|
|
|
|
void unregister_kretprobe(struct kretprobe *rp)
|
|
{
|
|
unregister_kretprobes(&rp, 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_kretprobe);
|
|
|
|
void unregister_kretprobes(struct kretprobe **rps, int num)
|
|
{
|
|
int i;
|
|
|
|
if (num <= 0)
|
|
return;
|
|
mutex_lock(&kprobe_mutex);
|
|
for (i = 0; i < num; i++) {
|
|
if (__unregister_kprobe_top(&rps[i]->kp) < 0)
|
|
rps[i]->kp.addr = NULL;
|
|
#ifdef CONFIG_KRETPROBE_ON_RETHOOK
|
|
rethook_free(rps[i]->rh);
|
|
#else
|
|
rps[i]->rph->rp = NULL;
|
|
#endif
|
|
}
|
|
mutex_unlock(&kprobe_mutex);
|
|
|
|
synchronize_rcu();
|
|
for (i = 0; i < num; i++) {
|
|
if (rps[i]->kp.addr) {
|
|
__unregister_kprobe_bottom(&rps[i]->kp);
|
|
#ifndef CONFIG_KRETPROBE_ON_RETHOOK
|
|
free_rp_inst(rps[i]);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_kretprobes);
|
|
|
|
#else /* CONFIG_KRETPROBES */
|
|
int register_kretprobe(struct kretprobe *rp)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_kretprobe);
|
|
|
|
int register_kretprobes(struct kretprobe **rps, int num)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_kretprobes);
|
|
|
|
void unregister_kretprobe(struct kretprobe *rp)
|
|
{
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_kretprobe);
|
|
|
|
void unregister_kretprobes(struct kretprobe **rps, int num)
|
|
{
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_kretprobes);
|
|
|
|
static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(pre_handler_kretprobe);
|
|
|
|
#endif /* CONFIG_KRETPROBES */
|
|
|
|
/* Set the kprobe gone and remove its instruction buffer. */
|
|
static void kill_kprobe(struct kprobe *p)
|
|
{
|
|
struct kprobe *kp;
|
|
|
|
lockdep_assert_held(&kprobe_mutex);
|
|
|
|
p->flags |= KPROBE_FLAG_GONE;
|
|
if (kprobe_aggrprobe(p)) {
|
|
/*
|
|
* If this is an aggr_kprobe, we have to list all the
|
|
* chained probes and mark them GONE.
|
|
*/
|
|
list_for_each_entry(kp, &p->list, list)
|
|
kp->flags |= KPROBE_FLAG_GONE;
|
|
p->post_handler = NULL;
|
|
kill_optimized_kprobe(p);
|
|
}
|
|
/*
|
|
* Here, we can remove insn_slot safely, because no thread calls
|
|
* the original probed function (which will be freed soon) any more.
|
|
*/
|
|
arch_remove_kprobe(p);
|
|
|
|
/*
|
|
* The module is going away. We should disarm the kprobe which
|
|
* is using ftrace, because ftrace framework is still available at
|
|
* 'MODULE_STATE_GOING' notification.
|
|
*/
|
|
if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
|
|
disarm_kprobe_ftrace(p);
|
|
}
|
|
|
|
/* Disable one kprobe */
|
|
int disable_kprobe(struct kprobe *kp)
|
|
{
|
|
int ret = 0;
|
|
struct kprobe *p;
|
|
|
|
mutex_lock(&kprobe_mutex);
|
|
|
|
/* Disable this kprobe */
|
|
p = __disable_kprobe(kp);
|
|
if (IS_ERR(p))
|
|
ret = PTR_ERR(p);
|
|
|
|
mutex_unlock(&kprobe_mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(disable_kprobe);
|
|
|
|
/* Enable one kprobe */
|
|
int enable_kprobe(struct kprobe *kp)
|
|
{
|
|
int ret = 0;
|
|
struct kprobe *p;
|
|
|
|
mutex_lock(&kprobe_mutex);
|
|
|
|
/* Check whether specified probe is valid. */
|
|
p = __get_valid_kprobe(kp);
|
|
if (unlikely(p == NULL)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (kprobe_gone(kp)) {
|
|
/* This kprobe has gone, we couldn't enable it. */
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (p != kp)
|
|
kp->flags &= ~KPROBE_FLAG_DISABLED;
|
|
|
|
if (!kprobes_all_disarmed && kprobe_disabled(p)) {
|
|
p->flags &= ~KPROBE_FLAG_DISABLED;
|
|
ret = arm_kprobe(p);
|
|
if (ret)
|
|
p->flags |= KPROBE_FLAG_DISABLED;
|
|
}
|
|
out:
|
|
mutex_unlock(&kprobe_mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(enable_kprobe);
|
|
|
|
/* Caller must NOT call this in usual path. This is only for critical case */
|
|
void dump_kprobe(struct kprobe *kp)
|
|
{
|
|
pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
|
|
kp->symbol_name, kp->offset, kp->addr);
|
|
}
|
|
NOKPROBE_SYMBOL(dump_kprobe);
|
|
|
|
int kprobe_add_ksym_blacklist(unsigned long entry)
|
|
{
|
|
struct kprobe_blacklist_entry *ent;
|
|
unsigned long offset = 0, size = 0;
|
|
|
|
if (!kernel_text_address(entry) ||
|
|
!kallsyms_lookup_size_offset(entry, &size, &offset))
|
|
return -EINVAL;
|
|
|
|
ent = kmalloc(sizeof(*ent), GFP_KERNEL);
|
|
if (!ent)
|
|
return -ENOMEM;
|
|
ent->start_addr = entry;
|
|
ent->end_addr = entry + size;
|
|
INIT_LIST_HEAD(&ent->list);
|
|
list_add_tail(&ent->list, &kprobe_blacklist);
|
|
|
|
return (int)size;
|
|
}
|
|
|
|
/* Add all symbols in given area into kprobe blacklist */
|
|
int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long entry;
|
|
int ret = 0;
|
|
|
|
for (entry = start; entry < end; entry += ret) {
|
|
ret = kprobe_add_ksym_blacklist(entry);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret == 0) /* In case of alias symbol */
|
|
ret = 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Remove all symbols in given area from kprobe blacklist */
|
|
static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
|
|
{
|
|
struct kprobe_blacklist_entry *ent, *n;
|
|
|
|
list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
|
|
if (ent->start_addr < start || ent->start_addr >= end)
|
|
continue;
|
|
list_del(&ent->list);
|
|
kfree(ent);
|
|
}
|
|
}
|
|
|
|
static void kprobe_remove_ksym_blacklist(unsigned long entry)
|
|
{
|
|
kprobe_remove_area_blacklist(entry, entry + 1);
|
|
}
|
|
|
|
int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
|
|
char *type, char *sym)
|
|
{
|
|
return -ERANGE;
|
|
}
|
|
|
|
int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
|
|
char *sym)
|
|
{
|
|
#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
|
|
if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
|
|
return 0;
|
|
#ifdef CONFIG_OPTPROBES
|
|
if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
|
|
return 0;
|
|
#endif
|
|
#endif
|
|
if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
|
|
return 0;
|
|
return -ERANGE;
|
|
}
|
|
|
|
int __init __weak arch_populate_kprobe_blacklist(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Lookup and populate the kprobe_blacklist.
|
|
*
|
|
* Unlike the kretprobe blacklist, we'll need to determine
|
|
* the range of addresses that belong to the said functions,
|
|
* since a kprobe need not necessarily be at the beginning
|
|
* of a function.
|
|
*/
|
|
static int __init populate_kprobe_blacklist(unsigned long *start,
|
|
unsigned long *end)
|
|
{
|
|
unsigned long entry;
|
|
unsigned long *iter;
|
|
int ret;
|
|
|
|
for (iter = start; iter < end; iter++) {
|
|
entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
|
|
ret = kprobe_add_ksym_blacklist(entry);
|
|
if (ret == -EINVAL)
|
|
continue;
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/* Symbols in '__kprobes_text' are blacklisted */
|
|
ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
|
|
(unsigned long)__kprobes_text_end);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Symbols in 'noinstr' section are blacklisted */
|
|
ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
|
|
(unsigned long)__noinstr_text_end);
|
|
|
|
return ret ? : arch_populate_kprobe_blacklist();
|
|
}
|
|
|
|
static void add_module_kprobe_blacklist(struct module *mod)
|
|
{
|
|
unsigned long start, end;
|
|
int i;
|
|
|
|
if (mod->kprobe_blacklist) {
|
|
for (i = 0; i < mod->num_kprobe_blacklist; i++)
|
|
kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
|
|
}
|
|
|
|
start = (unsigned long)mod->kprobes_text_start;
|
|
if (start) {
|
|
end = start + mod->kprobes_text_size;
|
|
kprobe_add_area_blacklist(start, end);
|
|
}
|
|
|
|
start = (unsigned long)mod->noinstr_text_start;
|
|
if (start) {
|
|
end = start + mod->noinstr_text_size;
|
|
kprobe_add_area_blacklist(start, end);
|
|
}
|
|
}
|
|
|
|
static void remove_module_kprobe_blacklist(struct module *mod)
|
|
{
|
|
unsigned long start, end;
|
|
int i;
|
|
|
|
if (mod->kprobe_blacklist) {
|
|
for (i = 0; i < mod->num_kprobe_blacklist; i++)
|
|
kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
|
|
}
|
|
|
|
start = (unsigned long)mod->kprobes_text_start;
|
|
if (start) {
|
|
end = start + mod->kprobes_text_size;
|
|
kprobe_remove_area_blacklist(start, end);
|
|
}
|
|
|
|
start = (unsigned long)mod->noinstr_text_start;
|
|
if (start) {
|
|
end = start + mod->noinstr_text_size;
|
|
kprobe_remove_area_blacklist(start, end);
|
|
}
|
|
}
|
|
|
|
/* Module notifier call back, checking kprobes on the module */
|
|
static int kprobes_module_callback(struct notifier_block *nb,
|
|
unsigned long val, void *data)
|
|
{
|
|
struct module *mod = data;
|
|
struct hlist_head *head;
|
|
struct kprobe *p;
|
|
unsigned int i;
|
|
int checkcore = (val == MODULE_STATE_GOING);
|
|
|
|
if (val == MODULE_STATE_COMING) {
|
|
mutex_lock(&kprobe_mutex);
|
|
add_module_kprobe_blacklist(mod);
|
|
mutex_unlock(&kprobe_mutex);
|
|
}
|
|
if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
|
|
return NOTIFY_DONE;
|
|
|
|
/*
|
|
* When 'MODULE_STATE_GOING' was notified, both of module '.text' and
|
|
* '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
|
|
* notified, only '.init.text' section would be freed. We need to
|
|
* disable kprobes which have been inserted in the sections.
|
|
*/
|
|
mutex_lock(&kprobe_mutex);
|
|
for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
|
|
head = &kprobe_table[i];
|
|
hlist_for_each_entry(p, head, hlist)
|
|
if (within_module_init((unsigned long)p->addr, mod) ||
|
|
(checkcore &&
|
|
within_module_core((unsigned long)p->addr, mod))) {
|
|
/*
|
|
* The vaddr this probe is installed will soon
|
|
* be vfreed buy not synced to disk. Hence,
|
|
* disarming the breakpoint isn't needed.
|
|
*
|
|
* Note, this will also move any optimized probes
|
|
* that are pending to be removed from their
|
|
* corresponding lists to the 'freeing_list' and
|
|
* will not be touched by the delayed
|
|
* kprobe_optimizer() work handler.
|
|
*/
|
|
kill_kprobe(p);
|
|
}
|
|
}
|
|
if (val == MODULE_STATE_GOING)
|
|
remove_module_kprobe_blacklist(mod);
|
|
mutex_unlock(&kprobe_mutex);
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block kprobe_module_nb = {
|
|
.notifier_call = kprobes_module_callback,
|
|
.priority = 0
|
|
};
|
|
|
|
void kprobe_free_init_mem(void)
|
|
{
|
|
void *start = (void *)(&__init_begin);
|
|
void *end = (void *)(&__init_end);
|
|
struct hlist_head *head;
|
|
struct kprobe *p;
|
|
int i;
|
|
|
|
mutex_lock(&kprobe_mutex);
|
|
|
|
/* Kill all kprobes on initmem because the target code has been freed. */
|
|
for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
|
|
head = &kprobe_table[i];
|
|
hlist_for_each_entry(p, head, hlist) {
|
|
if (start <= (void *)p->addr && (void *)p->addr < end)
|
|
kill_kprobe(p);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&kprobe_mutex);
|
|
}
|
|
|
|
static int __init init_kprobes(void)
|
|
{
|
|
int i, err = 0;
|
|
|
|
/* FIXME allocate the probe table, currently defined statically */
|
|
/* initialize all list heads */
|
|
for (i = 0; i < KPROBE_TABLE_SIZE; i++)
|
|
INIT_HLIST_HEAD(&kprobe_table[i]);
|
|
|
|
err = populate_kprobe_blacklist(__start_kprobe_blacklist,
|
|
__stop_kprobe_blacklist);
|
|
if (err)
|
|
pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
|
|
|
|
if (kretprobe_blacklist_size) {
|
|
/* lookup the function address from its name */
|
|
for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
|
|
kretprobe_blacklist[i].addr =
|
|
kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
|
|
if (!kretprobe_blacklist[i].addr)
|
|
pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
|
|
kretprobe_blacklist[i].name);
|
|
}
|
|
}
|
|
|
|
/* By default, kprobes are armed */
|
|
kprobes_all_disarmed = false;
|
|
|
|
#if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
|
|
/* Init 'kprobe_optinsn_slots' for allocation */
|
|
kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
|
|
#endif
|
|
|
|
err = arch_init_kprobes();
|
|
if (!err)
|
|
err = register_die_notifier(&kprobe_exceptions_nb);
|
|
if (!err)
|
|
err = register_module_notifier(&kprobe_module_nb);
|
|
|
|
kprobes_initialized = (err == 0);
|
|
kprobe_sysctls_init();
|
|
return err;
|
|
}
|
|
early_initcall(init_kprobes);
|
|
|
|
#if defined(CONFIG_OPTPROBES)
|
|
static int __init init_optprobes(void)
|
|
{
|
|
/*
|
|
* Enable kprobe optimization - this kicks the optimizer which
|
|
* depends on synchronize_rcu_tasks() and ksoftirqd, that is
|
|
* not spawned in early initcall. So delay the optimization.
|
|
*/
|
|
optimize_all_kprobes();
|
|
|
|
return 0;
|
|
}
|
|
subsys_initcall(init_optprobes);
|
|
#endif
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static void report_probe(struct seq_file *pi, struct kprobe *p,
|
|
const char *sym, int offset, char *modname, struct kprobe *pp)
|
|
{
|
|
char *kprobe_type;
|
|
void *addr = p->addr;
|
|
|
|
if (p->pre_handler == pre_handler_kretprobe)
|
|
kprobe_type = "r";
|
|
else
|
|
kprobe_type = "k";
|
|
|
|
if (!kallsyms_show_value(pi->file->f_cred))
|
|
addr = NULL;
|
|
|
|
if (sym)
|
|
seq_printf(pi, "%px %s %s+0x%x %s ",
|
|
addr, kprobe_type, sym, offset,
|
|
(modname ? modname : " "));
|
|
else /* try to use %pS */
|
|
seq_printf(pi, "%px %s %pS ",
|
|
addr, kprobe_type, p->addr);
|
|
|
|
if (!pp)
|
|
pp = p;
|
|
seq_printf(pi, "%s%s%s%s\n",
|
|
(kprobe_gone(p) ? "[GONE]" : ""),
|
|
((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
|
|
(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
|
|
(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
|
|
}
|
|
|
|
static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
|
|
{
|
|
return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
|
|
}
|
|
|
|
static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
|
|
{
|
|
(*pos)++;
|
|
if (*pos >= KPROBE_TABLE_SIZE)
|
|
return NULL;
|
|
return pos;
|
|
}
|
|
|
|
static void kprobe_seq_stop(struct seq_file *f, void *v)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
|
|
static int show_kprobe_addr(struct seq_file *pi, void *v)
|
|
{
|
|
struct hlist_head *head;
|
|
struct kprobe *p, *kp;
|
|
const char *sym = NULL;
|
|
unsigned int i = *(loff_t *) v;
|
|
unsigned long offset = 0;
|
|
char *modname, namebuf[KSYM_NAME_LEN];
|
|
|
|
head = &kprobe_table[i];
|
|
preempt_disable();
|
|
hlist_for_each_entry_rcu(p, head, hlist) {
|
|
sym = kallsyms_lookup((unsigned long)p->addr, NULL,
|
|
&offset, &modname, namebuf);
|
|
if (kprobe_aggrprobe(p)) {
|
|
list_for_each_entry_rcu(kp, &p->list, list)
|
|
report_probe(pi, kp, sym, offset, modname, p);
|
|
} else
|
|
report_probe(pi, p, sym, offset, modname, NULL);
|
|
}
|
|
preempt_enable();
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations kprobes_sops = {
|
|
.start = kprobe_seq_start,
|
|
.next = kprobe_seq_next,
|
|
.stop = kprobe_seq_stop,
|
|
.show = show_kprobe_addr
|
|
};
|
|
|
|
DEFINE_SEQ_ATTRIBUTE(kprobes);
|
|
|
|
/* kprobes/blacklist -- shows which functions can not be probed */
|
|
static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
mutex_lock(&kprobe_mutex);
|
|
return seq_list_start(&kprobe_blacklist, *pos);
|
|
}
|
|
|
|
static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
|
|
{
|
|
return seq_list_next(v, &kprobe_blacklist, pos);
|
|
}
|
|
|
|
static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
|
|
{
|
|
struct kprobe_blacklist_entry *ent =
|
|
list_entry(v, struct kprobe_blacklist_entry, list);
|
|
|
|
/*
|
|
* If '/proc/kallsyms' is not showing kernel address, we won't
|
|
* show them here either.
|
|
*/
|
|
if (!kallsyms_show_value(m->file->f_cred))
|
|
seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
|
|
(void *)ent->start_addr);
|
|
else
|
|
seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
|
|
(void *)ent->end_addr, (void *)ent->start_addr);
|
|
return 0;
|
|
}
|
|
|
|
static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
|
|
{
|
|
mutex_unlock(&kprobe_mutex);
|
|
}
|
|
|
|
static const struct seq_operations kprobe_blacklist_sops = {
|
|
.start = kprobe_blacklist_seq_start,
|
|
.next = kprobe_blacklist_seq_next,
|
|
.stop = kprobe_blacklist_seq_stop,
|
|
.show = kprobe_blacklist_seq_show,
|
|
};
|
|
DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
|
|
|
|
static int arm_all_kprobes(void)
|
|
{
|
|
struct hlist_head *head;
|
|
struct kprobe *p;
|
|
unsigned int i, total = 0, errors = 0;
|
|
int err, ret = 0;
|
|
|
|
mutex_lock(&kprobe_mutex);
|
|
|
|
/* If kprobes are armed, just return */
|
|
if (!kprobes_all_disarmed)
|
|
goto already_enabled;
|
|
|
|
/*
|
|
* optimize_kprobe() called by arm_kprobe() checks
|
|
* kprobes_all_disarmed, so set kprobes_all_disarmed before
|
|
* arm_kprobe.
|
|
*/
|
|
kprobes_all_disarmed = false;
|
|
/* Arming kprobes doesn't optimize kprobe itself */
|
|
for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
|
|
head = &kprobe_table[i];
|
|
/* Arm all kprobes on a best-effort basis */
|
|
hlist_for_each_entry(p, head, hlist) {
|
|
if (!kprobe_disabled(p)) {
|
|
err = arm_kprobe(p);
|
|
if (err) {
|
|
errors++;
|
|
ret = err;
|
|
}
|
|
total++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (errors)
|
|
pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
|
|
errors, total);
|
|
else
|
|
pr_info("Kprobes globally enabled\n");
|
|
|
|
already_enabled:
|
|
mutex_unlock(&kprobe_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int disarm_all_kprobes(void)
|
|
{
|
|
struct hlist_head *head;
|
|
struct kprobe *p;
|
|
unsigned int i, total = 0, errors = 0;
|
|
int err, ret = 0;
|
|
|
|
mutex_lock(&kprobe_mutex);
|
|
|
|
/* If kprobes are already disarmed, just return */
|
|
if (kprobes_all_disarmed) {
|
|
mutex_unlock(&kprobe_mutex);
|
|
return 0;
|
|
}
|
|
|
|
kprobes_all_disarmed = true;
|
|
|
|
for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
|
|
head = &kprobe_table[i];
|
|
/* Disarm all kprobes on a best-effort basis */
|
|
hlist_for_each_entry(p, head, hlist) {
|
|
if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
|
|
err = disarm_kprobe(p, false);
|
|
if (err) {
|
|
errors++;
|
|
ret = err;
|
|
}
|
|
total++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (errors)
|
|
pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
|
|
errors, total);
|
|
else
|
|
pr_info("Kprobes globally disabled\n");
|
|
|
|
mutex_unlock(&kprobe_mutex);
|
|
|
|
/* Wait for disarming all kprobes by optimizer */
|
|
wait_for_kprobe_optimizer();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* XXX: The debugfs bool file interface doesn't allow for callbacks
|
|
* when the bool state is switched. We can reuse that facility when
|
|
* available
|
|
*/
|
|
static ssize_t read_enabled_file_bool(struct file *file,
|
|
char __user *user_buf, size_t count, loff_t *ppos)
|
|
{
|
|
char buf[3];
|
|
|
|
if (!kprobes_all_disarmed)
|
|
buf[0] = '1';
|
|
else
|
|
buf[0] = '0';
|
|
buf[1] = '\n';
|
|
buf[2] = 0x00;
|
|
return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
|
|
}
|
|
|
|
static ssize_t write_enabled_file_bool(struct file *file,
|
|
const char __user *user_buf, size_t count, loff_t *ppos)
|
|
{
|
|
bool enable;
|
|
int ret;
|
|
|
|
ret = kstrtobool_from_user(user_buf, count, &enable);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
|
|
if (ret)
|
|
return ret;
|
|
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations fops_kp = {
|
|
.read = read_enabled_file_bool,
|
|
.write = write_enabled_file_bool,
|
|
.llseek = default_llseek,
|
|
};
|
|
|
|
static int __init debugfs_kprobe_init(void)
|
|
{
|
|
struct dentry *dir;
|
|
|
|
dir = debugfs_create_dir("kprobes", NULL);
|
|
|
|
debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
|
|
|
|
debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
|
|
|
|
debugfs_create_file("blacklist", 0400, dir, NULL,
|
|
&kprobe_blacklist_fops);
|
|
|
|
return 0;
|
|
}
|
|
|
|
late_initcall(debugfs_kprobe_init);
|
|
#endif /* CONFIG_DEBUG_FS */
|