mirror of
https://github.com/torvalds/linux.git
synced 2024-11-29 15:41:36 +00:00
8ac5b996bf
The recent writeback corruption fixes changed the code in
xfs_discard_folio() to calculate a byte range to for punching
delalloc extents. A mistake was made in using round_up(pos) for the
end offset, because when pos points at the first byte of a block, it
does not get rounded up to point to the end byte of the block. hence
the punch range is short, and this leads to unexpected behaviour in
certain cases in xfs_bmap_punch_delalloc_range.
e.g. pos = 0 means we call xfs_bmap_punch_delalloc_range(0,0), so
there is no previous extent and it rounds up the punch to the end of
the delalloc extent it found at offset 0, not the end of the range
given to xfs_bmap_punch_delalloc_range().
Fix this by handling the zero block offset case correctly.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=217030
Link: https://lore.kernel.org/linux-xfs/Y+vOfaxIWX1c%2Fyy9@bfoster/
Fixes: 7348b32233
("xfs: xfs_bmap_punch_delalloc_range() should take a byte range")
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Found-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
598 lines
17 KiB
C
598 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* Copyright (c) 2016-2018 Christoph Hellwig.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_iomap.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_bmap_util.h"
|
|
#include "xfs_reflink.h"
|
|
#include "xfs_errortag.h"
|
|
#include "xfs_error.h"
|
|
|
|
struct xfs_writepage_ctx {
|
|
struct iomap_writepage_ctx ctx;
|
|
unsigned int data_seq;
|
|
unsigned int cow_seq;
|
|
};
|
|
|
|
static inline struct xfs_writepage_ctx *
|
|
XFS_WPC(struct iomap_writepage_ctx *ctx)
|
|
{
|
|
return container_of(ctx, struct xfs_writepage_ctx, ctx);
|
|
}
|
|
|
|
/*
|
|
* Fast and loose check if this write could update the on-disk inode size.
|
|
*/
|
|
static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
|
|
{
|
|
return ioend->io_offset + ioend->io_size >
|
|
XFS_I(ioend->io_inode)->i_disk_size;
|
|
}
|
|
|
|
/*
|
|
* Update on-disk file size now that data has been written to disk.
|
|
*/
|
|
int
|
|
xfs_setfilesize(
|
|
struct xfs_inode *ip,
|
|
xfs_off_t offset,
|
|
size_t size)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_trans *tp;
|
|
xfs_fsize_t isize;
|
|
int error;
|
|
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
|
|
if (error)
|
|
return error;
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
isize = xfs_new_eof(ip, offset + size);
|
|
if (!isize) {
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_cancel(tp);
|
|
return 0;
|
|
}
|
|
|
|
trace_xfs_setfilesize(ip, offset, size);
|
|
|
|
ip->i_disk_size = isize;
|
|
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
|
|
return xfs_trans_commit(tp);
|
|
}
|
|
|
|
/*
|
|
* IO write completion.
|
|
*/
|
|
STATIC void
|
|
xfs_end_ioend(
|
|
struct iomap_ioend *ioend)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(ioend->io_inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
xfs_off_t offset = ioend->io_offset;
|
|
size_t size = ioend->io_size;
|
|
unsigned int nofs_flag;
|
|
int error;
|
|
|
|
/*
|
|
* We can allocate memory here while doing writeback on behalf of
|
|
* memory reclaim. To avoid memory allocation deadlocks set the
|
|
* task-wide nofs context for the following operations.
|
|
*/
|
|
nofs_flag = memalloc_nofs_save();
|
|
|
|
/*
|
|
* Just clean up the in-memory structures if the fs has been shut down.
|
|
*/
|
|
if (xfs_is_shutdown(mp)) {
|
|
error = -EIO;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Clean up all COW blocks and underlying data fork delalloc blocks on
|
|
* I/O error. The delalloc punch is required because this ioend was
|
|
* mapped to blocks in the COW fork and the associated pages are no
|
|
* longer dirty. If we don't remove delalloc blocks here, they become
|
|
* stale and can corrupt free space accounting on unmount.
|
|
*/
|
|
error = blk_status_to_errno(ioend->io_bio->bi_status);
|
|
if (unlikely(error)) {
|
|
if (ioend->io_flags & IOMAP_F_SHARED) {
|
|
xfs_reflink_cancel_cow_range(ip, offset, size, true);
|
|
xfs_bmap_punch_delalloc_range(ip, offset,
|
|
offset + size);
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Success: commit the COW or unwritten blocks if needed.
|
|
*/
|
|
if (ioend->io_flags & IOMAP_F_SHARED)
|
|
error = xfs_reflink_end_cow(ip, offset, size);
|
|
else if (ioend->io_type == IOMAP_UNWRITTEN)
|
|
error = xfs_iomap_write_unwritten(ip, offset, size, false);
|
|
|
|
if (!error && xfs_ioend_is_append(ioend))
|
|
error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
|
|
done:
|
|
iomap_finish_ioends(ioend, error);
|
|
memalloc_nofs_restore(nofs_flag);
|
|
}
|
|
|
|
/*
|
|
* Finish all pending IO completions that require transactional modifications.
|
|
*
|
|
* We try to merge physical and logically contiguous ioends before completion to
|
|
* minimise the number of transactions we need to perform during IO completion.
|
|
* Both unwritten extent conversion and COW remapping need to iterate and modify
|
|
* one physical extent at a time, so we gain nothing by merging physically
|
|
* discontiguous extents here.
|
|
*
|
|
* The ioend chain length that we can be processing here is largely unbound in
|
|
* length and we may have to perform significant amounts of work on each ioend
|
|
* to complete it. Hence we have to be careful about holding the CPU for too
|
|
* long in this loop.
|
|
*/
|
|
void
|
|
xfs_end_io(
|
|
struct work_struct *work)
|
|
{
|
|
struct xfs_inode *ip =
|
|
container_of(work, struct xfs_inode, i_ioend_work);
|
|
struct iomap_ioend *ioend;
|
|
struct list_head tmp;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ip->i_ioend_lock, flags);
|
|
list_replace_init(&ip->i_ioend_list, &tmp);
|
|
spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
|
|
|
|
iomap_sort_ioends(&tmp);
|
|
while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
|
|
io_list))) {
|
|
list_del_init(&ioend->io_list);
|
|
iomap_ioend_try_merge(ioend, &tmp);
|
|
xfs_end_ioend(ioend);
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
STATIC void
|
|
xfs_end_bio(
|
|
struct bio *bio)
|
|
{
|
|
struct iomap_ioend *ioend = bio->bi_private;
|
|
struct xfs_inode *ip = XFS_I(ioend->io_inode);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ip->i_ioend_lock, flags);
|
|
if (list_empty(&ip->i_ioend_list))
|
|
WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
|
|
&ip->i_ioend_work));
|
|
list_add_tail(&ioend->io_list, &ip->i_ioend_list);
|
|
spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Fast revalidation of the cached writeback mapping. Return true if the current
|
|
* mapping is valid, false otherwise.
|
|
*/
|
|
static bool
|
|
xfs_imap_valid(
|
|
struct iomap_writepage_ctx *wpc,
|
|
struct xfs_inode *ip,
|
|
loff_t offset)
|
|
{
|
|
if (offset < wpc->iomap.offset ||
|
|
offset >= wpc->iomap.offset + wpc->iomap.length)
|
|
return false;
|
|
/*
|
|
* If this is a COW mapping, it is sufficient to check that the mapping
|
|
* covers the offset. Be careful to check this first because the caller
|
|
* can revalidate a COW mapping without updating the data seqno.
|
|
*/
|
|
if (wpc->iomap.flags & IOMAP_F_SHARED)
|
|
return true;
|
|
|
|
/*
|
|
* This is not a COW mapping. Check the sequence number of the data fork
|
|
* because concurrent changes could have invalidated the extent. Check
|
|
* the COW fork because concurrent changes since the last time we
|
|
* checked (and found nothing at this offset) could have added
|
|
* overlapping blocks.
|
|
*/
|
|
if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) {
|
|
trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap,
|
|
XFS_WPC(wpc)->data_seq, XFS_DATA_FORK);
|
|
return false;
|
|
}
|
|
if (xfs_inode_has_cow_data(ip) &&
|
|
XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) {
|
|
trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap,
|
|
XFS_WPC(wpc)->cow_seq, XFS_COW_FORK);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Pass in a dellalloc extent and convert it to real extents, return the real
|
|
* extent that maps offset_fsb in wpc->iomap.
|
|
*
|
|
* The current page is held locked so nothing could have removed the block
|
|
* backing offset_fsb, although it could have moved from the COW to the data
|
|
* fork by another thread.
|
|
*/
|
|
static int
|
|
xfs_convert_blocks(
|
|
struct iomap_writepage_ctx *wpc,
|
|
struct xfs_inode *ip,
|
|
int whichfork,
|
|
loff_t offset)
|
|
{
|
|
int error;
|
|
unsigned *seq;
|
|
|
|
if (whichfork == XFS_COW_FORK)
|
|
seq = &XFS_WPC(wpc)->cow_seq;
|
|
else
|
|
seq = &XFS_WPC(wpc)->data_seq;
|
|
|
|
/*
|
|
* Attempt to allocate whatever delalloc extent currently backs offset
|
|
* and put the result into wpc->iomap. Allocate in a loop because it
|
|
* may take several attempts to allocate real blocks for a contiguous
|
|
* delalloc extent if free space is sufficiently fragmented.
|
|
*/
|
|
do {
|
|
error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
|
|
&wpc->iomap, seq);
|
|
if (error)
|
|
return error;
|
|
} while (wpc->iomap.offset + wpc->iomap.length <= offset);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
xfs_map_blocks(
|
|
struct iomap_writepage_ctx *wpc,
|
|
struct inode *inode,
|
|
loff_t offset)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
ssize_t count = i_blocksize(inode);
|
|
xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
|
|
xfs_fileoff_t cow_fsb;
|
|
int whichfork;
|
|
struct xfs_bmbt_irec imap;
|
|
struct xfs_iext_cursor icur;
|
|
int retries = 0;
|
|
int error = 0;
|
|
|
|
if (xfs_is_shutdown(mp))
|
|
return -EIO;
|
|
|
|
XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS);
|
|
|
|
/*
|
|
* COW fork blocks can overlap data fork blocks even if the blocks
|
|
* aren't shared. COW I/O always takes precedent, so we must always
|
|
* check for overlap on reflink inodes unless the mapping is already a
|
|
* COW one, or the COW fork hasn't changed from the last time we looked
|
|
* at it.
|
|
*
|
|
* It's safe to check the COW fork if_seq here without the ILOCK because
|
|
* we've indirectly protected against concurrent updates: writeback has
|
|
* the page locked, which prevents concurrent invalidations by reflink
|
|
* and directio and prevents concurrent buffered writes to the same
|
|
* page. Changes to if_seq always happen under i_lock, which protects
|
|
* against concurrent updates and provides a memory barrier on the way
|
|
* out that ensures that we always see the current value.
|
|
*/
|
|
if (xfs_imap_valid(wpc, ip, offset))
|
|
return 0;
|
|
|
|
/*
|
|
* If we don't have a valid map, now it's time to get a new one for this
|
|
* offset. This will convert delayed allocations (including COW ones)
|
|
* into real extents. If we return without a valid map, it means we
|
|
* landed in a hole and we skip the block.
|
|
*/
|
|
retry:
|
|
cow_fsb = NULLFILEOFF;
|
|
whichfork = XFS_DATA_FORK;
|
|
xfs_ilock(ip, XFS_ILOCK_SHARED);
|
|
ASSERT(!xfs_need_iread_extents(&ip->i_df));
|
|
|
|
/*
|
|
* Check if this is offset is covered by a COW extents, and if yes use
|
|
* it directly instead of looking up anything in the data fork.
|
|
*/
|
|
if (xfs_inode_has_cow_data(ip) &&
|
|
xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
|
|
cow_fsb = imap.br_startoff;
|
|
if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
|
|
XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
|
|
whichfork = XFS_COW_FORK;
|
|
goto allocate_blocks;
|
|
}
|
|
|
|
/*
|
|
* No COW extent overlap. Revalidate now that we may have updated
|
|
* ->cow_seq. If the data mapping is still valid, we're done.
|
|
*/
|
|
if (xfs_imap_valid(wpc, ip, offset)) {
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we don't have a valid map, now it's time to get a new one for this
|
|
* offset. This will convert delayed allocations (including COW ones)
|
|
* into real extents.
|
|
*/
|
|
if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
|
|
imap.br_startoff = end_fsb; /* fake a hole past EOF */
|
|
XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
|
|
/* landed in a hole or beyond EOF? */
|
|
if (imap.br_startoff > offset_fsb) {
|
|
imap.br_blockcount = imap.br_startoff - offset_fsb;
|
|
imap.br_startoff = offset_fsb;
|
|
imap.br_startblock = HOLESTARTBLOCK;
|
|
imap.br_state = XFS_EXT_NORM;
|
|
}
|
|
|
|
/*
|
|
* Truncate to the next COW extent if there is one. This is the only
|
|
* opportunity to do this because we can skip COW fork lookups for the
|
|
* subsequent blocks in the mapping; however, the requirement to treat
|
|
* the COW range separately remains.
|
|
*/
|
|
if (cow_fsb != NULLFILEOFF &&
|
|
cow_fsb < imap.br_startoff + imap.br_blockcount)
|
|
imap.br_blockcount = cow_fsb - imap.br_startoff;
|
|
|
|
/* got a delalloc extent? */
|
|
if (imap.br_startblock != HOLESTARTBLOCK &&
|
|
isnullstartblock(imap.br_startblock))
|
|
goto allocate_blocks;
|
|
|
|
xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq);
|
|
trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
|
|
return 0;
|
|
allocate_blocks:
|
|
error = xfs_convert_blocks(wpc, ip, whichfork, offset);
|
|
if (error) {
|
|
/*
|
|
* If we failed to find the extent in the COW fork we might have
|
|
* raced with a COW to data fork conversion or truncate.
|
|
* Restart the lookup to catch the extent in the data fork for
|
|
* the former case, but prevent additional retries to avoid
|
|
* looping forever for the latter case.
|
|
*/
|
|
if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
|
|
goto retry;
|
|
ASSERT(error != -EAGAIN);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Due to merging the return real extent might be larger than the
|
|
* original delalloc one. Trim the return extent to the next COW
|
|
* boundary again to force a re-lookup.
|
|
*/
|
|
if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
|
|
loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
|
|
|
|
if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
|
|
wpc->iomap.length = cow_offset - wpc->iomap.offset;
|
|
}
|
|
|
|
ASSERT(wpc->iomap.offset <= offset);
|
|
ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
|
|
trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
xfs_prepare_ioend(
|
|
struct iomap_ioend *ioend,
|
|
int status)
|
|
{
|
|
unsigned int nofs_flag;
|
|
|
|
/*
|
|
* We can allocate memory here while doing writeback on behalf of
|
|
* memory reclaim. To avoid memory allocation deadlocks set the
|
|
* task-wide nofs context for the following operations.
|
|
*/
|
|
nofs_flag = memalloc_nofs_save();
|
|
|
|
/* Convert CoW extents to regular */
|
|
if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
|
|
status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
|
|
ioend->io_offset, ioend->io_size);
|
|
}
|
|
|
|
memalloc_nofs_restore(nofs_flag);
|
|
|
|
/* send ioends that might require a transaction to the completion wq */
|
|
if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN ||
|
|
(ioend->io_flags & IOMAP_F_SHARED))
|
|
ioend->io_bio->bi_end_io = xfs_end_bio;
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* If the folio has delalloc blocks on it, the caller is asking us to punch them
|
|
* out. If we don't, we can leave a stale delalloc mapping covered by a clean
|
|
* page that needs to be dirtied again before the delalloc mapping can be
|
|
* converted. This stale delalloc mapping can trip up a later direct I/O read
|
|
* operation on the same region.
|
|
*
|
|
* We prevent this by truncating away the delalloc regions on the folio. Because
|
|
* they are delalloc, we can do this without needing a transaction. Indeed - if
|
|
* we get ENOSPC errors, we have to be able to do this truncation without a
|
|
* transaction as there is no space left for block reservation (typically why
|
|
* we see a ENOSPC in writeback).
|
|
*/
|
|
static void
|
|
xfs_discard_folio(
|
|
struct folio *folio,
|
|
loff_t pos)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(folio->mapping->host);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
int error;
|
|
|
|
if (xfs_is_shutdown(mp))
|
|
return;
|
|
|
|
xfs_alert_ratelimited(mp,
|
|
"page discard on page "PTR_FMT", inode 0x%llx, pos %llu.",
|
|
folio, ip->i_ino, pos);
|
|
|
|
/*
|
|
* The end of the punch range is always the offset of the the first
|
|
* byte of the next folio. Hence the end offset is only dependent on the
|
|
* folio itself and not the start offset that is passed in.
|
|
*/
|
|
error = xfs_bmap_punch_delalloc_range(ip, pos,
|
|
folio_pos(folio) + folio_size(folio));
|
|
|
|
if (error && !xfs_is_shutdown(mp))
|
|
xfs_alert(mp, "page discard unable to remove delalloc mapping.");
|
|
}
|
|
|
|
static const struct iomap_writeback_ops xfs_writeback_ops = {
|
|
.map_blocks = xfs_map_blocks,
|
|
.prepare_ioend = xfs_prepare_ioend,
|
|
.discard_folio = xfs_discard_folio,
|
|
};
|
|
|
|
STATIC int
|
|
xfs_vm_writepages(
|
|
struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct xfs_writepage_ctx wpc = { };
|
|
|
|
/*
|
|
* Writing back data in a transaction context can result in recursive
|
|
* transactions. This is bad, so issue a warning and get out of here.
|
|
*/
|
|
if (WARN_ON_ONCE(current->journal_info))
|
|
return 0;
|
|
|
|
xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
|
|
return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_dax_writepages(
|
|
struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(mapping->host);
|
|
|
|
xfs_iflags_clear(ip, XFS_ITRUNCATED);
|
|
return dax_writeback_mapping_range(mapping,
|
|
xfs_inode_buftarg(ip)->bt_daxdev, wbc);
|
|
}
|
|
|
|
STATIC sector_t
|
|
xfs_vm_bmap(
|
|
struct address_space *mapping,
|
|
sector_t block)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(mapping->host);
|
|
|
|
trace_xfs_vm_bmap(ip);
|
|
|
|
/*
|
|
* The swap code (ab-)uses ->bmap to get a block mapping and then
|
|
* bypasses the file system for actual I/O. We really can't allow
|
|
* that on reflinks inodes, so we have to skip out here. And yes,
|
|
* 0 is the magic code for a bmap error.
|
|
*
|
|
* Since we don't pass back blockdev info, we can't return bmap
|
|
* information for rt files either.
|
|
*/
|
|
if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
|
|
return 0;
|
|
return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_vm_read_folio(
|
|
struct file *unused,
|
|
struct folio *folio)
|
|
{
|
|
return iomap_read_folio(folio, &xfs_read_iomap_ops);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_vm_readahead(
|
|
struct readahead_control *rac)
|
|
{
|
|
iomap_readahead(rac, &xfs_read_iomap_ops);
|
|
}
|
|
|
|
static int
|
|
xfs_iomap_swapfile_activate(
|
|
struct swap_info_struct *sis,
|
|
struct file *swap_file,
|
|
sector_t *span)
|
|
{
|
|
sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
|
|
return iomap_swapfile_activate(sis, swap_file, span,
|
|
&xfs_read_iomap_ops);
|
|
}
|
|
|
|
const struct address_space_operations xfs_address_space_operations = {
|
|
.read_folio = xfs_vm_read_folio,
|
|
.readahead = xfs_vm_readahead,
|
|
.writepages = xfs_vm_writepages,
|
|
.dirty_folio = filemap_dirty_folio,
|
|
.release_folio = iomap_release_folio,
|
|
.invalidate_folio = iomap_invalidate_folio,
|
|
.bmap = xfs_vm_bmap,
|
|
.direct_IO = noop_direct_IO,
|
|
.migrate_folio = filemap_migrate_folio,
|
|
.is_partially_uptodate = iomap_is_partially_uptodate,
|
|
.error_remove_page = generic_error_remove_page,
|
|
.swap_activate = xfs_iomap_swapfile_activate,
|
|
};
|
|
|
|
const struct address_space_operations xfs_dax_aops = {
|
|
.writepages = xfs_dax_writepages,
|
|
.direct_IO = noop_direct_IO,
|
|
.dirty_folio = noop_dirty_folio,
|
|
.swap_activate = xfs_iomap_swapfile_activate,
|
|
};
|