linux/net/openvswitch/flow.c
Daniel Borkmann 3bf4b5b11d net: ovs: flow: fix potential illegal memory access in __parse_flow_nlattrs
In function __parse_flow_nlattrs(), we check for condition
(type > OVS_KEY_ATTR_MAX) and if true, print an error, but we do
not return from this function as in other checks. It seems this
has been forgotten, as otherwise, we could access beyond the
memory of ovs_key_lens, which is of ovs_key_lens[OVS_KEY_ATTR_MAX + 1].
Hence, a maliciously prepared nla_type from user space could access
beyond this upper limit.

Introduced by 03f0d916a ("openvswitch: Mega flow implementation").

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Andy Zhou <azhou@nicira.com>
Acked-by: Jesse Gross <jesse@nicira.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-09-11 16:09:58 -04:00

2082 lines
55 KiB
C

/*
* Copyright (c) 2007-2013 Nicira, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
*/
#include "flow.h"
#include "datapath.h"
#include <linux/uaccess.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/llc_pdu.h>
#include <linux/kernel.h>
#include <linux/jhash.h>
#include <linux/jiffies.h>
#include <linux/llc.h>
#include <linux/module.h>
#include <linux/in.h>
#include <linux/rcupdate.h>
#include <linux/if_arp.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/sctp.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/rculist.h>
#include <net/ip.h>
#include <net/ip_tunnels.h>
#include <net/ipv6.h>
#include <net/ndisc.h>
static struct kmem_cache *flow_cache;
static void ovs_sw_flow_mask_set(struct sw_flow_mask *mask,
struct sw_flow_key_range *range, u8 val);
static void update_range__(struct sw_flow_match *match,
size_t offset, size_t size, bool is_mask)
{
struct sw_flow_key_range *range = NULL;
size_t start = rounddown(offset, sizeof(long));
size_t end = roundup(offset + size, sizeof(long));
if (!is_mask)
range = &match->range;
else if (match->mask)
range = &match->mask->range;
if (!range)
return;
if (range->start == range->end) {
range->start = start;
range->end = end;
return;
}
if (range->start > start)
range->start = start;
if (range->end < end)
range->end = end;
}
#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
do { \
update_range__(match, offsetof(struct sw_flow_key, field), \
sizeof((match)->key->field), is_mask); \
if (is_mask) { \
if ((match)->mask) \
(match)->mask->key.field = value; \
} else { \
(match)->key->field = value; \
} \
} while (0)
#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
do { \
update_range__(match, offsetof(struct sw_flow_key, field), \
len, is_mask); \
if (is_mask) { \
if ((match)->mask) \
memcpy(&(match)->mask->key.field, value_p, len);\
} else { \
memcpy(&(match)->key->field, value_p, len); \
} \
} while (0)
static u16 range_n_bytes(const struct sw_flow_key_range *range)
{
return range->end - range->start;
}
void ovs_match_init(struct sw_flow_match *match,
struct sw_flow_key *key,
struct sw_flow_mask *mask)
{
memset(match, 0, sizeof(*match));
match->key = key;
match->mask = mask;
memset(key, 0, sizeof(*key));
if (mask) {
memset(&mask->key, 0, sizeof(mask->key));
mask->range.start = mask->range.end = 0;
}
}
static bool ovs_match_validate(const struct sw_flow_match *match,
u64 key_attrs, u64 mask_attrs)
{
u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
u64 mask_allowed = key_attrs; /* At most allow all key attributes */
/* The following mask attributes allowed only if they
* pass the validation tests. */
mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
| (1 << OVS_KEY_ATTR_IPV6)
| (1 << OVS_KEY_ATTR_TCP)
| (1 << OVS_KEY_ATTR_UDP)
| (1 << OVS_KEY_ATTR_SCTP)
| (1 << OVS_KEY_ATTR_ICMP)
| (1 << OVS_KEY_ATTR_ICMPV6)
| (1 << OVS_KEY_ATTR_ARP)
| (1 << OVS_KEY_ATTR_ND));
/* Always allowed mask fields. */
mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
| (1 << OVS_KEY_ATTR_IN_PORT)
| (1 << OVS_KEY_ATTR_ETHERTYPE));
/* Check key attributes. */
if (match->key->eth.type == htons(ETH_P_ARP)
|| match->key->eth.type == htons(ETH_P_RARP)) {
key_expected |= 1 << OVS_KEY_ATTR_ARP;
if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
}
if (match->key->eth.type == htons(ETH_P_IP)) {
key_expected |= 1 << OVS_KEY_ATTR_IPV4;
if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
if (match->key->ip.proto == IPPROTO_UDP) {
key_expected |= 1 << OVS_KEY_ATTR_UDP;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
}
if (match->key->ip.proto == IPPROTO_SCTP) {
key_expected |= 1 << OVS_KEY_ATTR_SCTP;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
}
if (match->key->ip.proto == IPPROTO_TCP) {
key_expected |= 1 << OVS_KEY_ATTR_TCP;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
}
if (match->key->ip.proto == IPPROTO_ICMP) {
key_expected |= 1 << OVS_KEY_ATTR_ICMP;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
}
}
}
if (match->key->eth.type == htons(ETH_P_IPV6)) {
key_expected |= 1 << OVS_KEY_ATTR_IPV6;
if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
if (match->key->ip.proto == IPPROTO_UDP) {
key_expected |= 1 << OVS_KEY_ATTR_UDP;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
}
if (match->key->ip.proto == IPPROTO_SCTP) {
key_expected |= 1 << OVS_KEY_ATTR_SCTP;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
}
if (match->key->ip.proto == IPPROTO_TCP) {
key_expected |= 1 << OVS_KEY_ATTR_TCP;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
}
if (match->key->ip.proto == IPPROTO_ICMPV6) {
key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
if (match->key->ipv6.tp.src ==
htons(NDISC_NEIGHBOUR_SOLICITATION) ||
match->key->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
key_expected |= 1 << OVS_KEY_ATTR_ND;
if (match->mask && (match->mask->key.ipv6.tp.src == htons(0xffff)))
mask_allowed |= 1 << OVS_KEY_ATTR_ND;
}
}
}
}
if ((key_attrs & key_expected) != key_expected) {
/* Key attributes check failed. */
OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n",
key_attrs, key_expected);
return false;
}
if ((mask_attrs & mask_allowed) != mask_attrs) {
/* Mask attributes check failed. */
OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n",
mask_attrs, mask_allowed);
return false;
}
return true;
}
static int check_header(struct sk_buff *skb, int len)
{
if (unlikely(skb->len < len))
return -EINVAL;
if (unlikely(!pskb_may_pull(skb, len)))
return -ENOMEM;
return 0;
}
static bool arphdr_ok(struct sk_buff *skb)
{
return pskb_may_pull(skb, skb_network_offset(skb) +
sizeof(struct arp_eth_header));
}
static int check_iphdr(struct sk_buff *skb)
{
unsigned int nh_ofs = skb_network_offset(skb);
unsigned int ip_len;
int err;
err = check_header(skb, nh_ofs + sizeof(struct iphdr));
if (unlikely(err))
return err;
ip_len = ip_hdrlen(skb);
if (unlikely(ip_len < sizeof(struct iphdr) ||
skb->len < nh_ofs + ip_len))
return -EINVAL;
skb_set_transport_header(skb, nh_ofs + ip_len);
return 0;
}
static bool tcphdr_ok(struct sk_buff *skb)
{
int th_ofs = skb_transport_offset(skb);
int tcp_len;
if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
return false;
tcp_len = tcp_hdrlen(skb);
if (unlikely(tcp_len < sizeof(struct tcphdr) ||
skb->len < th_ofs + tcp_len))
return false;
return true;
}
static bool udphdr_ok(struct sk_buff *skb)
{
return pskb_may_pull(skb, skb_transport_offset(skb) +
sizeof(struct udphdr));
}
static bool sctphdr_ok(struct sk_buff *skb)
{
return pskb_may_pull(skb, skb_transport_offset(skb) +
sizeof(struct sctphdr));
}
static bool icmphdr_ok(struct sk_buff *skb)
{
return pskb_may_pull(skb, skb_transport_offset(skb) +
sizeof(struct icmphdr));
}
u64 ovs_flow_used_time(unsigned long flow_jiffies)
{
struct timespec cur_ts;
u64 cur_ms, idle_ms;
ktime_get_ts(&cur_ts);
idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
cur_ts.tv_nsec / NSEC_PER_MSEC;
return cur_ms - idle_ms;
}
static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
{
unsigned int nh_ofs = skb_network_offset(skb);
unsigned int nh_len;
int payload_ofs;
struct ipv6hdr *nh;
uint8_t nexthdr;
__be16 frag_off;
int err;
err = check_header(skb, nh_ofs + sizeof(*nh));
if (unlikely(err))
return err;
nh = ipv6_hdr(skb);
nexthdr = nh->nexthdr;
payload_ofs = (u8 *)(nh + 1) - skb->data;
key->ip.proto = NEXTHDR_NONE;
key->ip.tos = ipv6_get_dsfield(nh);
key->ip.ttl = nh->hop_limit;
key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
key->ipv6.addr.src = nh->saddr;
key->ipv6.addr.dst = nh->daddr;
payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
if (unlikely(payload_ofs < 0))
return -EINVAL;
if (frag_off) {
if (frag_off & htons(~0x7))
key->ip.frag = OVS_FRAG_TYPE_LATER;
else
key->ip.frag = OVS_FRAG_TYPE_FIRST;
}
nh_len = payload_ofs - nh_ofs;
skb_set_transport_header(skb, nh_ofs + nh_len);
key->ip.proto = nexthdr;
return nh_len;
}
static bool icmp6hdr_ok(struct sk_buff *skb)
{
return pskb_may_pull(skb, skb_transport_offset(skb) +
sizeof(struct icmp6hdr));
}
void ovs_flow_key_mask(struct sw_flow_key *dst, const struct sw_flow_key *src,
const struct sw_flow_mask *mask)
{
const long *m = (long *)((u8 *)&mask->key + mask->range.start);
const long *s = (long *)((u8 *)src + mask->range.start);
long *d = (long *)((u8 *)dst + mask->range.start);
int i;
/* The memory outside of the 'mask->range' are not set since
* further operations on 'dst' only uses contents within
* 'mask->range'.
*/
for (i = 0; i < range_n_bytes(&mask->range); i += sizeof(long))
*d++ = *s++ & *m++;
}
#define TCP_FLAGS_OFFSET 13
#define TCP_FLAG_MASK 0x3f
void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
{
u8 tcp_flags = 0;
if ((flow->key.eth.type == htons(ETH_P_IP) ||
flow->key.eth.type == htons(ETH_P_IPV6)) &&
flow->key.ip.proto == IPPROTO_TCP &&
likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
u8 *tcp = (u8 *)tcp_hdr(skb);
tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
}
spin_lock(&flow->lock);
flow->used = jiffies;
flow->packet_count++;
flow->byte_count += skb->len;
flow->tcp_flags |= tcp_flags;
spin_unlock(&flow->lock);
}
struct sw_flow_actions *ovs_flow_actions_alloc(int size)
{
struct sw_flow_actions *sfa;
if (size > MAX_ACTIONS_BUFSIZE)
return ERR_PTR(-EINVAL);
sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
if (!sfa)
return ERR_PTR(-ENOMEM);
sfa->actions_len = 0;
return sfa;
}
struct sw_flow *ovs_flow_alloc(void)
{
struct sw_flow *flow;
flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
if (!flow)
return ERR_PTR(-ENOMEM);
spin_lock_init(&flow->lock);
flow->sf_acts = NULL;
flow->mask = NULL;
return flow;
}
static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
{
hash = jhash_1word(hash, table->hash_seed);
return flex_array_get(table->buckets,
(hash & (table->n_buckets - 1)));
}
static struct flex_array *alloc_buckets(unsigned int n_buckets)
{
struct flex_array *buckets;
int i, err;
buckets = flex_array_alloc(sizeof(struct hlist_head),
n_buckets, GFP_KERNEL);
if (!buckets)
return NULL;
err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
if (err) {
flex_array_free(buckets);
return NULL;
}
for (i = 0; i < n_buckets; i++)
INIT_HLIST_HEAD((struct hlist_head *)
flex_array_get(buckets, i));
return buckets;
}
static void free_buckets(struct flex_array *buckets)
{
flex_array_free(buckets);
}
static struct flow_table *__flow_tbl_alloc(int new_size)
{
struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
if (!table)
return NULL;
table->buckets = alloc_buckets(new_size);
if (!table->buckets) {
kfree(table);
return NULL;
}
table->n_buckets = new_size;
table->count = 0;
table->node_ver = 0;
table->keep_flows = false;
get_random_bytes(&table->hash_seed, sizeof(u32));
table->mask_list = NULL;
return table;
}
static void __flow_tbl_destroy(struct flow_table *table)
{
int i;
if (table->keep_flows)
goto skip_flows;
for (i = 0; i < table->n_buckets; i++) {
struct sw_flow *flow;
struct hlist_head *head = flex_array_get(table->buckets, i);
struct hlist_node *n;
int ver = table->node_ver;
hlist_for_each_entry_safe(flow, n, head, hash_node[ver]) {
hlist_del(&flow->hash_node[ver]);
ovs_flow_free(flow, false);
}
}
BUG_ON(!list_empty(table->mask_list));
kfree(table->mask_list);
skip_flows:
free_buckets(table->buckets);
kfree(table);
}
struct flow_table *ovs_flow_tbl_alloc(int new_size)
{
struct flow_table *table = __flow_tbl_alloc(new_size);
if (!table)
return NULL;
table->mask_list = kmalloc(sizeof(struct list_head), GFP_KERNEL);
if (!table->mask_list) {
table->keep_flows = true;
__flow_tbl_destroy(table);
return NULL;
}
INIT_LIST_HEAD(table->mask_list);
return table;
}
static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
{
struct flow_table *table = container_of(rcu, struct flow_table, rcu);
__flow_tbl_destroy(table);
}
void ovs_flow_tbl_destroy(struct flow_table *table, bool deferred)
{
if (!table)
return;
if (deferred)
call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
else
__flow_tbl_destroy(table);
}
struct sw_flow *ovs_flow_dump_next(struct flow_table *table, u32 *bucket, u32 *last)
{
struct sw_flow *flow;
struct hlist_head *head;
int ver;
int i;
ver = table->node_ver;
while (*bucket < table->n_buckets) {
i = 0;
head = flex_array_get(table->buckets, *bucket);
hlist_for_each_entry_rcu(flow, head, hash_node[ver]) {
if (i < *last) {
i++;
continue;
}
*last = i + 1;
return flow;
}
(*bucket)++;
*last = 0;
}
return NULL;
}
static void __tbl_insert(struct flow_table *table, struct sw_flow *flow)
{
struct hlist_head *head;
head = find_bucket(table, flow->hash);
hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
table->count++;
}
static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
{
int old_ver;
int i;
old_ver = old->node_ver;
new->node_ver = !old_ver;
/* Insert in new table. */
for (i = 0; i < old->n_buckets; i++) {
struct sw_flow *flow;
struct hlist_head *head;
head = flex_array_get(old->buckets, i);
hlist_for_each_entry(flow, head, hash_node[old_ver])
__tbl_insert(new, flow);
}
new->mask_list = old->mask_list;
old->keep_flows = true;
}
static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
{
struct flow_table *new_table;
new_table = __flow_tbl_alloc(n_buckets);
if (!new_table)
return ERR_PTR(-ENOMEM);
flow_table_copy_flows(table, new_table);
return new_table;
}
struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
{
return __flow_tbl_rehash(table, table->n_buckets);
}
struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
{
return __flow_tbl_rehash(table, table->n_buckets * 2);
}
static void __flow_free(struct sw_flow *flow)
{
kfree((struct sf_flow_acts __force *)flow->sf_acts);
kmem_cache_free(flow_cache, flow);
}
static void rcu_free_flow_callback(struct rcu_head *rcu)
{
struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
__flow_free(flow);
}
void ovs_flow_free(struct sw_flow *flow, bool deferred)
{
if (!flow)
return;
ovs_sw_flow_mask_del_ref(flow->mask, deferred);
if (deferred)
call_rcu(&flow->rcu, rcu_free_flow_callback);
else
__flow_free(flow);
}
/* Schedules 'sf_acts' to be freed after the next RCU grace period.
* The caller must hold rcu_read_lock for this to be sensible. */
void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
{
kfree_rcu(sf_acts, rcu);
}
static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
{
struct qtag_prefix {
__be16 eth_type; /* ETH_P_8021Q */
__be16 tci;
};
struct qtag_prefix *qp;
if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
return 0;
if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
sizeof(__be16))))
return -ENOMEM;
qp = (struct qtag_prefix *) skb->data;
key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
__skb_pull(skb, sizeof(struct qtag_prefix));
return 0;
}
static __be16 parse_ethertype(struct sk_buff *skb)
{
struct llc_snap_hdr {
u8 dsap; /* Always 0xAA */
u8 ssap; /* Always 0xAA */
u8 ctrl;
u8 oui[3];
__be16 ethertype;
};
struct llc_snap_hdr *llc;
__be16 proto;
proto = *(__be16 *) skb->data;
__skb_pull(skb, sizeof(__be16));
if (ntohs(proto) >= ETH_P_802_3_MIN)
return proto;
if (skb->len < sizeof(struct llc_snap_hdr))
return htons(ETH_P_802_2);
if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
return htons(0);
llc = (struct llc_snap_hdr *) skb->data;
if (llc->dsap != LLC_SAP_SNAP ||
llc->ssap != LLC_SAP_SNAP ||
(llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
return htons(ETH_P_802_2);
__skb_pull(skb, sizeof(struct llc_snap_hdr));
if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN)
return llc->ethertype;
return htons(ETH_P_802_2);
}
static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
int nh_len)
{
struct icmp6hdr *icmp = icmp6_hdr(skb);
/* The ICMPv6 type and code fields use the 16-bit transport port
* fields, so we need to store them in 16-bit network byte order.
*/
key->ipv6.tp.src = htons(icmp->icmp6_type);
key->ipv6.tp.dst = htons(icmp->icmp6_code);
if (icmp->icmp6_code == 0 &&
(icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
int icmp_len = skb->len - skb_transport_offset(skb);
struct nd_msg *nd;
int offset;
/* In order to process neighbor discovery options, we need the
* entire packet.
*/
if (unlikely(icmp_len < sizeof(*nd)))
return 0;
if (unlikely(skb_linearize(skb)))
return -ENOMEM;
nd = (struct nd_msg *)skb_transport_header(skb);
key->ipv6.nd.target = nd->target;
icmp_len -= sizeof(*nd);
offset = 0;
while (icmp_len >= 8) {
struct nd_opt_hdr *nd_opt =
(struct nd_opt_hdr *)(nd->opt + offset);
int opt_len = nd_opt->nd_opt_len * 8;
if (unlikely(!opt_len || opt_len > icmp_len))
return 0;
/* Store the link layer address if the appropriate
* option is provided. It is considered an error if
* the same link layer option is specified twice.
*/
if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
&& opt_len == 8) {
if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
goto invalid;
memcpy(key->ipv6.nd.sll,
&nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
&& opt_len == 8) {
if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
goto invalid;
memcpy(key->ipv6.nd.tll,
&nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
}
icmp_len -= opt_len;
offset += opt_len;
}
}
return 0;
invalid:
memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
return 0;
}
/**
* ovs_flow_extract - extracts a flow key from an Ethernet frame.
* @skb: sk_buff that contains the frame, with skb->data pointing to the
* Ethernet header
* @in_port: port number on which @skb was received.
* @key: output flow key
*
* The caller must ensure that skb->len >= ETH_HLEN.
*
* Returns 0 if successful, otherwise a negative errno value.
*
* Initializes @skb header pointers as follows:
*
* - skb->mac_header: the Ethernet header.
*
* - skb->network_header: just past the Ethernet header, or just past the
* VLAN header, to the first byte of the Ethernet payload.
*
* - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
* on output, then just past the IP header, if one is present and
* of a correct length, otherwise the same as skb->network_header.
* For other key->eth.type values it is left untouched.
*/
int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key)
{
int error;
struct ethhdr *eth;
memset(key, 0, sizeof(*key));
key->phy.priority = skb->priority;
if (OVS_CB(skb)->tun_key)
memcpy(&key->tun_key, OVS_CB(skb)->tun_key, sizeof(key->tun_key));
key->phy.in_port = in_port;
key->phy.skb_mark = skb->mark;
skb_reset_mac_header(skb);
/* Link layer. We are guaranteed to have at least the 14 byte Ethernet
* header in the linear data area.
*/
eth = eth_hdr(skb);
memcpy(key->eth.src, eth->h_source, ETH_ALEN);
memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
__skb_pull(skb, 2 * ETH_ALEN);
/* We are going to push all headers that we pull, so no need to
* update skb->csum here.
*/
if (vlan_tx_tag_present(skb))
key->eth.tci = htons(skb->vlan_tci);
else if (eth->h_proto == htons(ETH_P_8021Q))
if (unlikely(parse_vlan(skb, key)))
return -ENOMEM;
key->eth.type = parse_ethertype(skb);
if (unlikely(key->eth.type == htons(0)))
return -ENOMEM;
skb_reset_network_header(skb);
__skb_push(skb, skb->data - skb_mac_header(skb));
/* Network layer. */
if (key->eth.type == htons(ETH_P_IP)) {
struct iphdr *nh;
__be16 offset;
error = check_iphdr(skb);
if (unlikely(error)) {
if (error == -EINVAL) {
skb->transport_header = skb->network_header;
error = 0;
}
return error;
}
nh = ip_hdr(skb);
key->ipv4.addr.src = nh->saddr;
key->ipv4.addr.dst = nh->daddr;
key->ip.proto = nh->protocol;
key->ip.tos = nh->tos;
key->ip.ttl = nh->ttl;
offset = nh->frag_off & htons(IP_OFFSET);
if (offset) {
key->ip.frag = OVS_FRAG_TYPE_LATER;
return 0;
}
if (nh->frag_off & htons(IP_MF) ||
skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
key->ip.frag = OVS_FRAG_TYPE_FIRST;
/* Transport layer. */
if (key->ip.proto == IPPROTO_TCP) {
if (tcphdr_ok(skb)) {
struct tcphdr *tcp = tcp_hdr(skb);
key->ipv4.tp.src = tcp->source;
key->ipv4.tp.dst = tcp->dest;
}
} else if (key->ip.proto == IPPROTO_UDP) {
if (udphdr_ok(skb)) {
struct udphdr *udp = udp_hdr(skb);
key->ipv4.tp.src = udp->source;
key->ipv4.tp.dst = udp->dest;
}
} else if (key->ip.proto == IPPROTO_SCTP) {
if (sctphdr_ok(skb)) {
struct sctphdr *sctp = sctp_hdr(skb);
key->ipv4.tp.src = sctp->source;
key->ipv4.tp.dst = sctp->dest;
}
} else if (key->ip.proto == IPPROTO_ICMP) {
if (icmphdr_ok(skb)) {
struct icmphdr *icmp = icmp_hdr(skb);
/* The ICMP type and code fields use the 16-bit
* transport port fields, so we need to store
* them in 16-bit network byte order. */
key->ipv4.tp.src = htons(icmp->type);
key->ipv4.tp.dst = htons(icmp->code);
}
}
} else if ((key->eth.type == htons(ETH_P_ARP) ||
key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) {
struct arp_eth_header *arp;
arp = (struct arp_eth_header *)skb_network_header(skb);
if (arp->ar_hrd == htons(ARPHRD_ETHER)
&& arp->ar_pro == htons(ETH_P_IP)
&& arp->ar_hln == ETH_ALEN
&& arp->ar_pln == 4) {
/* We only match on the lower 8 bits of the opcode. */
if (ntohs(arp->ar_op) <= 0xff)
key->ip.proto = ntohs(arp->ar_op);
memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
}
} else if (key->eth.type == htons(ETH_P_IPV6)) {
int nh_len; /* IPv6 Header + Extensions */
nh_len = parse_ipv6hdr(skb, key);
if (unlikely(nh_len < 0)) {
if (nh_len == -EINVAL) {
skb->transport_header = skb->network_header;
error = 0;
} else {
error = nh_len;
}
return error;
}
if (key->ip.frag == OVS_FRAG_TYPE_LATER)
return 0;
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
key->ip.frag = OVS_FRAG_TYPE_FIRST;
/* Transport layer. */
if (key->ip.proto == NEXTHDR_TCP) {
if (tcphdr_ok(skb)) {
struct tcphdr *tcp = tcp_hdr(skb);
key->ipv6.tp.src = tcp->source;
key->ipv6.tp.dst = tcp->dest;
}
} else if (key->ip.proto == NEXTHDR_UDP) {
if (udphdr_ok(skb)) {
struct udphdr *udp = udp_hdr(skb);
key->ipv6.tp.src = udp->source;
key->ipv6.tp.dst = udp->dest;
}
} else if (key->ip.proto == NEXTHDR_SCTP) {
if (sctphdr_ok(skb)) {
struct sctphdr *sctp = sctp_hdr(skb);
key->ipv6.tp.src = sctp->source;
key->ipv6.tp.dst = sctp->dest;
}
} else if (key->ip.proto == NEXTHDR_ICMP) {
if (icmp6hdr_ok(skb)) {
error = parse_icmpv6(skb, key, nh_len);
if (error)
return error;
}
}
}
return 0;
}
static u32 ovs_flow_hash(const struct sw_flow_key *key, int key_start,
int key_end)
{
u32 *hash_key = (u32 *)((u8 *)key + key_start);
int hash_u32s = (key_end - key_start) >> 2;
/* Make sure number of hash bytes are multiple of u32. */
BUILD_BUG_ON(sizeof(long) % sizeof(u32));
return jhash2(hash_key, hash_u32s, 0);
}
static int flow_key_start(const struct sw_flow_key *key)
{
if (key->tun_key.ipv4_dst)
return 0;
else
return rounddown(offsetof(struct sw_flow_key, phy),
sizeof(long));
}
static bool __cmp_key(const struct sw_flow_key *key1,
const struct sw_flow_key *key2, int key_start, int key_end)
{
const long *cp1 = (long *)((u8 *)key1 + key_start);
const long *cp2 = (long *)((u8 *)key2 + key_start);
long diffs = 0;
int i;
for (i = key_start; i < key_end; i += sizeof(long))
diffs |= *cp1++ ^ *cp2++;
return diffs == 0;
}
static bool __flow_cmp_masked_key(const struct sw_flow *flow,
const struct sw_flow_key *key, int key_start, int key_end)
{
return __cmp_key(&flow->key, key, key_start, key_end);
}
static bool __flow_cmp_unmasked_key(const struct sw_flow *flow,
const struct sw_flow_key *key, int key_start, int key_end)
{
return __cmp_key(&flow->unmasked_key, key, key_start, key_end);
}
bool ovs_flow_cmp_unmasked_key(const struct sw_flow *flow,
const struct sw_flow_key *key, int key_end)
{
int key_start;
key_start = flow_key_start(key);
return __flow_cmp_unmasked_key(flow, key, key_start, key_end);
}
struct sw_flow *ovs_flow_lookup_unmasked_key(struct flow_table *table,
struct sw_flow_match *match)
{
struct sw_flow_key *unmasked = match->key;
int key_end = match->range.end;
struct sw_flow *flow;
flow = ovs_flow_lookup(table, unmasked);
if (flow && (!ovs_flow_cmp_unmasked_key(flow, unmasked, key_end)))
flow = NULL;
return flow;
}
static struct sw_flow *ovs_masked_flow_lookup(struct flow_table *table,
const struct sw_flow_key *unmasked,
struct sw_flow_mask *mask)
{
struct sw_flow *flow;
struct hlist_head *head;
int key_start = mask->range.start;
int key_end = mask->range.end;
u32 hash;
struct sw_flow_key masked_key;
ovs_flow_key_mask(&masked_key, unmasked, mask);
hash = ovs_flow_hash(&masked_key, key_start, key_end);
head = find_bucket(table, hash);
hlist_for_each_entry_rcu(flow, head, hash_node[table->node_ver]) {
if (flow->mask == mask &&
__flow_cmp_masked_key(flow, &masked_key,
key_start, key_end))
return flow;
}
return NULL;
}
struct sw_flow *ovs_flow_lookup(struct flow_table *tbl,
const struct sw_flow_key *key)
{
struct sw_flow *flow = NULL;
struct sw_flow_mask *mask;
list_for_each_entry_rcu(mask, tbl->mask_list, list) {
flow = ovs_masked_flow_lookup(tbl, key, mask);
if (flow) /* Found */
break;
}
return flow;
}
void ovs_flow_insert(struct flow_table *table, struct sw_flow *flow)
{
flow->hash = ovs_flow_hash(&flow->key, flow->mask->range.start,
flow->mask->range.end);
__tbl_insert(table, flow);
}
void ovs_flow_remove(struct flow_table *table, struct sw_flow *flow)
{
BUG_ON(table->count == 0);
hlist_del_rcu(&flow->hash_node[table->node_ver]);
table->count--;
}
/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
[OVS_KEY_ATTR_ENCAP] = -1,
[OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
[OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
[OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
[OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
[OVS_KEY_ATTR_VLAN] = sizeof(__be16),
[OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
[OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
[OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
[OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
[OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
[OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp),
[OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
[OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
[OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
[OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
[OVS_KEY_ATTR_TUNNEL] = -1,
};
static bool is_all_zero(const u8 *fp, size_t size)
{
int i;
if (!fp)
return false;
for (i = 0; i < size; i++)
if (fp[i])
return false;
return true;
}
static int __parse_flow_nlattrs(const struct nlattr *attr,
const struct nlattr *a[],
u64 *attrsp, bool nz)
{
const struct nlattr *nla;
u32 attrs;
int rem;
attrs = *attrsp;
nla_for_each_nested(nla, attr, rem) {
u16 type = nla_type(nla);
int expected_len;
if (type > OVS_KEY_ATTR_MAX) {
OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n",
type, OVS_KEY_ATTR_MAX);
return -EINVAL;
}
if (attrs & (1 << type)) {
OVS_NLERR("Duplicate key attribute (type %d).\n", type);
return -EINVAL;
}
expected_len = ovs_key_lens[type];
if (nla_len(nla) != expected_len && expected_len != -1) {
OVS_NLERR("Key attribute has unexpected length (type=%d"
", length=%d, expected=%d).\n", type,
nla_len(nla), expected_len);
return -EINVAL;
}
if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
attrs |= 1 << type;
a[type] = nla;
}
}
if (rem) {
OVS_NLERR("Message has %d unknown bytes.\n", rem);
return -EINVAL;
}
*attrsp = attrs;
return 0;
}
static int parse_flow_mask_nlattrs(const struct nlattr *attr,
const struct nlattr *a[], u64 *attrsp)
{
return __parse_flow_nlattrs(attr, a, attrsp, true);
}
static int parse_flow_nlattrs(const struct nlattr *attr,
const struct nlattr *a[], u64 *attrsp)
{
return __parse_flow_nlattrs(attr, a, attrsp, false);
}
int ovs_ipv4_tun_from_nlattr(const struct nlattr *attr,
struct sw_flow_match *match, bool is_mask)
{
struct nlattr *a;
int rem;
bool ttl = false;
__be16 tun_flags = 0;
nla_for_each_nested(a, attr, rem) {
int type = nla_type(a);
static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
[OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
[OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
[OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
[OVS_TUNNEL_KEY_ATTR_TOS] = 1,
[OVS_TUNNEL_KEY_ATTR_TTL] = 1,
[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
[OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
};
if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n",
type, OVS_TUNNEL_KEY_ATTR_MAX);
return -EINVAL;
}
if (ovs_tunnel_key_lens[type] != nla_len(a)) {
OVS_NLERR("IPv4 tunnel attribute type has unexpected "
" length (type=%d, length=%d, expected=%d).\n",
type, nla_len(a), ovs_tunnel_key_lens[type]);
return -EINVAL;
}
switch (type) {
case OVS_TUNNEL_KEY_ATTR_ID:
SW_FLOW_KEY_PUT(match, tun_key.tun_id,
nla_get_be64(a), is_mask);
tun_flags |= TUNNEL_KEY;
break;
case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
nla_get_be32(a), is_mask);
break;
case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
nla_get_be32(a), is_mask);
break;
case OVS_TUNNEL_KEY_ATTR_TOS:
SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
nla_get_u8(a), is_mask);
break;
case OVS_TUNNEL_KEY_ATTR_TTL:
SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
nla_get_u8(a), is_mask);
ttl = true;
break;
case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
tun_flags |= TUNNEL_DONT_FRAGMENT;
break;
case OVS_TUNNEL_KEY_ATTR_CSUM:
tun_flags |= TUNNEL_CSUM;
break;
default:
return -EINVAL;
}
}
SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
if (rem > 0) {
OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem);
return -EINVAL;
}
if (!is_mask) {
if (!match->key->tun_key.ipv4_dst) {
OVS_NLERR("IPv4 tunnel destination address is zero.\n");
return -EINVAL;
}
if (!ttl) {
OVS_NLERR("IPv4 tunnel TTL not specified.\n");
return -EINVAL;
}
}
return 0;
}
int ovs_ipv4_tun_to_nlattr(struct sk_buff *skb,
const struct ovs_key_ipv4_tunnel *tun_key,
const struct ovs_key_ipv4_tunnel *output)
{
struct nlattr *nla;
nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
if (!nla)
return -EMSGSIZE;
if (output->tun_flags & TUNNEL_KEY &&
nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
return -EMSGSIZE;
if (output->ipv4_src &&
nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
return -EMSGSIZE;
if (output->ipv4_dst &&
nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
return -EMSGSIZE;
if (output->ipv4_tos &&
nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
return -EMSGSIZE;
if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
return -EMSGSIZE;
if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
return -EMSGSIZE;
if ((output->tun_flags & TUNNEL_CSUM) &&
nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
return -EMSGSIZE;
nla_nest_end(skb, nla);
return 0;
}
static int metadata_from_nlattrs(struct sw_flow_match *match, u64 *attrs,
const struct nlattr **a, bool is_mask)
{
if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
SW_FLOW_KEY_PUT(match, phy.priority,
nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
}
if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
if (is_mask)
in_port = 0xffffffff; /* Always exact match in_port. */
else if (in_port >= DP_MAX_PORTS)
return -EINVAL;
SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
} else if (!is_mask) {
SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
}
if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
}
if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
if (ovs_ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
is_mask))
return -EINVAL;
*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
}
return 0;
}
static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
const struct nlattr **a, bool is_mask)
{
int err;
u64 orig_attrs = attrs;
err = metadata_from_nlattrs(match, &attrs, a, is_mask);
if (err)
return err;
if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
const struct ovs_key_ethernet *eth_key;
eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
SW_FLOW_KEY_MEMCPY(match, eth.src,
eth_key->eth_src, ETH_ALEN, is_mask);
SW_FLOW_KEY_MEMCPY(match, eth.dst,
eth_key->eth_dst, ETH_ALEN, is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
}
if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
__be16 tci;
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
if (!(tci & htons(VLAN_TAG_PRESENT))) {
if (is_mask)
OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n");
else
OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n");
return -EINVAL;
}
SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
} else if (!is_mask)
SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
__be16 eth_type;
eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
if (is_mask) {
/* Always exact match EtherType. */
eth_type = htons(0xffff);
} else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n",
ntohs(eth_type), ETH_P_802_3_MIN);
return -EINVAL;
}
SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
} else if (!is_mask) {
SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
}
if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
const struct ovs_key_ipv4 *ipv4_key;
ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n",
ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
return -EINVAL;
}
SW_FLOW_KEY_PUT(match, ip.proto,
ipv4_key->ipv4_proto, is_mask);
SW_FLOW_KEY_PUT(match, ip.tos,
ipv4_key->ipv4_tos, is_mask);
SW_FLOW_KEY_PUT(match, ip.ttl,
ipv4_key->ipv4_ttl, is_mask);
SW_FLOW_KEY_PUT(match, ip.frag,
ipv4_key->ipv4_frag, is_mask);
SW_FLOW_KEY_PUT(match, ipv4.addr.src,
ipv4_key->ipv4_src, is_mask);
SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
ipv4_key->ipv4_dst, is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
}
if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
const struct ovs_key_ipv6 *ipv6_key;
ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n",
ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
return -EINVAL;
}
SW_FLOW_KEY_PUT(match, ipv6.label,
ipv6_key->ipv6_label, is_mask);
SW_FLOW_KEY_PUT(match, ip.proto,
ipv6_key->ipv6_proto, is_mask);
SW_FLOW_KEY_PUT(match, ip.tos,
ipv6_key->ipv6_tclass, is_mask);
SW_FLOW_KEY_PUT(match, ip.ttl,
ipv6_key->ipv6_hlimit, is_mask);
SW_FLOW_KEY_PUT(match, ip.frag,
ipv6_key->ipv6_frag, is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
ipv6_key->ipv6_src,
sizeof(match->key->ipv6.addr.src),
is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
ipv6_key->ipv6_dst,
sizeof(match->key->ipv6.addr.dst),
is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
}
if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
const struct ovs_key_arp *arp_key;
arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
OVS_NLERR("Unknown ARP opcode (opcode=%d).\n",
arp_key->arp_op);
return -EINVAL;
}
SW_FLOW_KEY_PUT(match, ipv4.addr.src,
arp_key->arp_sip, is_mask);
SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
arp_key->arp_tip, is_mask);
SW_FLOW_KEY_PUT(match, ip.proto,
ntohs(arp_key->arp_op), is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
arp_key->arp_sha, ETH_ALEN, is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
arp_key->arp_tha, ETH_ALEN, is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_ARP);
}
if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
const struct ovs_key_tcp *tcp_key;
tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
SW_FLOW_KEY_PUT(match, ipv4.tp.src,
tcp_key->tcp_src, is_mask);
SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
tcp_key->tcp_dst, is_mask);
} else {
SW_FLOW_KEY_PUT(match, ipv6.tp.src,
tcp_key->tcp_src, is_mask);
SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
tcp_key->tcp_dst, is_mask);
}
attrs &= ~(1 << OVS_KEY_ATTR_TCP);
}
if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
const struct ovs_key_udp *udp_key;
udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
SW_FLOW_KEY_PUT(match, ipv4.tp.src,
udp_key->udp_src, is_mask);
SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
udp_key->udp_dst, is_mask);
} else {
SW_FLOW_KEY_PUT(match, ipv6.tp.src,
udp_key->udp_src, is_mask);
SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
udp_key->udp_dst, is_mask);
}
attrs &= ~(1 << OVS_KEY_ATTR_UDP);
}
if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
const struct ovs_key_sctp *sctp_key;
sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
SW_FLOW_KEY_PUT(match, ipv4.tp.src,
sctp_key->sctp_src, is_mask);
SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
sctp_key->sctp_dst, is_mask);
} else {
SW_FLOW_KEY_PUT(match, ipv6.tp.src,
sctp_key->sctp_src, is_mask);
SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
sctp_key->sctp_dst, is_mask);
}
attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
}
if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
const struct ovs_key_icmp *icmp_key;
icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
SW_FLOW_KEY_PUT(match, ipv4.tp.src,
htons(icmp_key->icmp_type), is_mask);
SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
htons(icmp_key->icmp_code), is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
}
if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
const struct ovs_key_icmpv6 *icmpv6_key;
icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
SW_FLOW_KEY_PUT(match, ipv6.tp.src,
htons(icmpv6_key->icmpv6_type), is_mask);
SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
htons(icmpv6_key->icmpv6_code), is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
}
if (attrs & (1 << OVS_KEY_ATTR_ND)) {
const struct ovs_key_nd *nd_key;
nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
nd_key->nd_target,
sizeof(match->key->ipv6.nd.target),
is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
nd_key->nd_sll, ETH_ALEN, is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
nd_key->nd_tll, ETH_ALEN, is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_ND);
}
if (attrs != 0)
return -EINVAL;
return 0;
}
/**
* ovs_match_from_nlattrs - parses Netlink attributes into a flow key and
* mask. In case the 'mask' is NULL, the flow is treated as exact match
* flow. Otherwise, it is treated as a wildcarded flow, except the mask
* does not include any don't care bit.
* @match: receives the extracted flow match information.
* @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
* sequence. The fields should of the packet that triggered the creation
* of this flow.
* @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
* attribute specifies the mask field of the wildcarded flow.
*/
int ovs_match_from_nlattrs(struct sw_flow_match *match,
const struct nlattr *key,
const struct nlattr *mask)
{
const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
const struct nlattr *encap;
u64 key_attrs = 0;
u64 mask_attrs = 0;
bool encap_valid = false;
int err;
err = parse_flow_nlattrs(key, a, &key_attrs);
if (err)
return err;
if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
(key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
__be16 tci;
if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
(key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
OVS_NLERR("Invalid Vlan frame.\n");
return -EINVAL;
}
key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
encap = a[OVS_KEY_ATTR_ENCAP];
key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
encap_valid = true;
if (tci & htons(VLAN_TAG_PRESENT)) {
err = parse_flow_nlattrs(encap, a, &key_attrs);
if (err)
return err;
} else if (!tci) {
/* Corner case for truncated 802.1Q header. */
if (nla_len(encap)) {
OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n");
return -EINVAL;
}
} else {
OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n");
return -EINVAL;
}
}
err = ovs_key_from_nlattrs(match, key_attrs, a, false);
if (err)
return err;
if (mask) {
err = parse_flow_mask_nlattrs(mask, a, &mask_attrs);
if (err)
return err;
if (mask_attrs & 1ULL << OVS_KEY_ATTR_ENCAP) {
__be16 eth_type = 0;
__be16 tci = 0;
if (!encap_valid) {
OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n");
return -EINVAL;
}
mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
if (a[OVS_KEY_ATTR_ETHERTYPE])
eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
if (eth_type == htons(0xffff)) {
mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
encap = a[OVS_KEY_ATTR_ENCAP];
err = parse_flow_mask_nlattrs(encap, a, &mask_attrs);
} else {
OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n",
ntohs(eth_type));
return -EINVAL;
}
if (a[OVS_KEY_ATTR_VLAN])
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
if (!(tci & htons(VLAN_TAG_PRESENT))) {
OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci));
return -EINVAL;
}
}
err = ovs_key_from_nlattrs(match, mask_attrs, a, true);
if (err)
return err;
} else {
/* Populate exact match flow's key mask. */
if (match->mask)
ovs_sw_flow_mask_set(match->mask, &match->range, 0xff);
}
if (!ovs_match_validate(match, key_attrs, mask_attrs))
return -EINVAL;
return 0;
}
/**
* ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
* @flow: Receives extracted in_port, priority, tun_key and skb_mark.
* @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
* sequence.
*
* This parses a series of Netlink attributes that form a flow key, which must
* take the same form accepted by flow_from_nlattrs(), but only enough of it to
* get the metadata, that is, the parts of the flow key that cannot be
* extracted from the packet itself.
*/
int ovs_flow_metadata_from_nlattrs(struct sw_flow *flow,
const struct nlattr *attr)
{
struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key;
const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
u64 attrs = 0;
int err;
struct sw_flow_match match;
flow->key.phy.in_port = DP_MAX_PORTS;
flow->key.phy.priority = 0;
flow->key.phy.skb_mark = 0;
memset(tun_key, 0, sizeof(flow->key.tun_key));
err = parse_flow_nlattrs(attr, a, &attrs);
if (err)
return -EINVAL;
memset(&match, 0, sizeof(match));
match.key = &flow->key;
err = metadata_from_nlattrs(&match, &attrs, a, false);
if (err)
return err;
return 0;
}
int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey,
const struct sw_flow_key *output, struct sk_buff *skb)
{
struct ovs_key_ethernet *eth_key;
struct nlattr *nla, *encap;
bool is_mask = (swkey != output);
if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
goto nla_put_failure;
if ((swkey->tun_key.ipv4_dst || is_mask) &&
ovs_ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key))
goto nla_put_failure;
if (swkey->phy.in_port == DP_MAX_PORTS) {
if (is_mask && (output->phy.in_port == 0xffff))
if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
goto nla_put_failure;
} else {
u16 upper_u16;
upper_u16 = !is_mask ? 0 : 0xffff;
if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
(upper_u16 << 16) | output->phy.in_port))
goto nla_put_failure;
}
if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
goto nla_put_failure;
nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
if (!nla)
goto nla_put_failure;
eth_key = nla_data(nla);
memcpy(eth_key->eth_src, output->eth.src, ETH_ALEN);
memcpy(eth_key->eth_dst, output->eth.dst, ETH_ALEN);
if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
__be16 eth_type;
eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
goto nla_put_failure;
encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
if (!swkey->eth.tci)
goto unencap;
} else
encap = NULL;
if (swkey->eth.type == htons(ETH_P_802_2)) {
/*
* Ethertype 802.2 is represented in the netlink with omitted
* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
* 0xffff in the mask attribute. Ethertype can also
* be wildcarded.
*/
if (is_mask && output->eth.type)
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
output->eth.type))
goto nla_put_failure;
goto unencap;
}
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
goto nla_put_failure;
if (swkey->eth.type == htons(ETH_P_IP)) {
struct ovs_key_ipv4 *ipv4_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
if (!nla)
goto nla_put_failure;
ipv4_key = nla_data(nla);
ipv4_key->ipv4_src = output->ipv4.addr.src;
ipv4_key->ipv4_dst = output->ipv4.addr.dst;
ipv4_key->ipv4_proto = output->ip.proto;
ipv4_key->ipv4_tos = output->ip.tos;
ipv4_key->ipv4_ttl = output->ip.ttl;
ipv4_key->ipv4_frag = output->ip.frag;
} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
struct ovs_key_ipv6 *ipv6_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
if (!nla)
goto nla_put_failure;
ipv6_key = nla_data(nla);
memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
sizeof(ipv6_key->ipv6_src));
memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
sizeof(ipv6_key->ipv6_dst));
ipv6_key->ipv6_label = output->ipv6.label;
ipv6_key->ipv6_proto = output->ip.proto;
ipv6_key->ipv6_tclass = output->ip.tos;
ipv6_key->ipv6_hlimit = output->ip.ttl;
ipv6_key->ipv6_frag = output->ip.frag;
} else if (swkey->eth.type == htons(ETH_P_ARP) ||
swkey->eth.type == htons(ETH_P_RARP)) {
struct ovs_key_arp *arp_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
if (!nla)
goto nla_put_failure;
arp_key = nla_data(nla);
memset(arp_key, 0, sizeof(struct ovs_key_arp));
arp_key->arp_sip = output->ipv4.addr.src;
arp_key->arp_tip = output->ipv4.addr.dst;
arp_key->arp_op = htons(output->ip.proto);
memcpy(arp_key->arp_sha, output->ipv4.arp.sha, ETH_ALEN);
memcpy(arp_key->arp_tha, output->ipv4.arp.tha, ETH_ALEN);
}
if ((swkey->eth.type == htons(ETH_P_IP) ||
swkey->eth.type == htons(ETH_P_IPV6)) &&
swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
if (swkey->ip.proto == IPPROTO_TCP) {
struct ovs_key_tcp *tcp_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
if (!nla)
goto nla_put_failure;
tcp_key = nla_data(nla);
if (swkey->eth.type == htons(ETH_P_IP)) {
tcp_key->tcp_src = output->ipv4.tp.src;
tcp_key->tcp_dst = output->ipv4.tp.dst;
} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
tcp_key->tcp_src = output->ipv6.tp.src;
tcp_key->tcp_dst = output->ipv6.tp.dst;
}
} else if (swkey->ip.proto == IPPROTO_UDP) {
struct ovs_key_udp *udp_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
if (!nla)
goto nla_put_failure;
udp_key = nla_data(nla);
if (swkey->eth.type == htons(ETH_P_IP)) {
udp_key->udp_src = output->ipv4.tp.src;
udp_key->udp_dst = output->ipv4.tp.dst;
} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
udp_key->udp_src = output->ipv6.tp.src;
udp_key->udp_dst = output->ipv6.tp.dst;
}
} else if (swkey->ip.proto == IPPROTO_SCTP) {
struct ovs_key_sctp *sctp_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
if (!nla)
goto nla_put_failure;
sctp_key = nla_data(nla);
if (swkey->eth.type == htons(ETH_P_IP)) {
sctp_key->sctp_src = swkey->ipv4.tp.src;
sctp_key->sctp_dst = swkey->ipv4.tp.dst;
} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
sctp_key->sctp_src = swkey->ipv6.tp.src;
sctp_key->sctp_dst = swkey->ipv6.tp.dst;
}
} else if (swkey->eth.type == htons(ETH_P_IP) &&
swkey->ip.proto == IPPROTO_ICMP) {
struct ovs_key_icmp *icmp_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
if (!nla)
goto nla_put_failure;
icmp_key = nla_data(nla);
icmp_key->icmp_type = ntohs(output->ipv4.tp.src);
icmp_key->icmp_code = ntohs(output->ipv4.tp.dst);
} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
swkey->ip.proto == IPPROTO_ICMPV6) {
struct ovs_key_icmpv6 *icmpv6_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
sizeof(*icmpv6_key));
if (!nla)
goto nla_put_failure;
icmpv6_key = nla_data(nla);
icmpv6_key->icmpv6_type = ntohs(output->ipv6.tp.src);
icmpv6_key->icmpv6_code = ntohs(output->ipv6.tp.dst);
if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
struct ovs_key_nd *nd_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
if (!nla)
goto nla_put_failure;
nd_key = nla_data(nla);
memcpy(nd_key->nd_target, &output->ipv6.nd.target,
sizeof(nd_key->nd_target));
memcpy(nd_key->nd_sll, output->ipv6.nd.sll, ETH_ALEN);
memcpy(nd_key->nd_tll, output->ipv6.nd.tll, ETH_ALEN);
}
}
}
unencap:
if (encap)
nla_nest_end(skb, encap);
return 0;
nla_put_failure:
return -EMSGSIZE;
}
/* Initializes the flow module.
* Returns zero if successful or a negative error code. */
int ovs_flow_init(void)
{
BUILD_BUG_ON(__alignof__(struct sw_flow_key) % __alignof__(long));
BUILD_BUG_ON(sizeof(struct sw_flow_key) % sizeof(long));
flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
0, NULL);
if (flow_cache == NULL)
return -ENOMEM;
return 0;
}
/* Uninitializes the flow module. */
void ovs_flow_exit(void)
{
kmem_cache_destroy(flow_cache);
}
struct sw_flow_mask *ovs_sw_flow_mask_alloc(void)
{
struct sw_flow_mask *mask;
mask = kmalloc(sizeof(*mask), GFP_KERNEL);
if (mask)
mask->ref_count = 0;
return mask;
}
void ovs_sw_flow_mask_add_ref(struct sw_flow_mask *mask)
{
mask->ref_count++;
}
void ovs_sw_flow_mask_del_ref(struct sw_flow_mask *mask, bool deferred)
{
if (!mask)
return;
BUG_ON(!mask->ref_count);
mask->ref_count--;
if (!mask->ref_count) {
list_del_rcu(&mask->list);
if (deferred)
kfree_rcu(mask, rcu);
else
kfree(mask);
}
}
static bool ovs_sw_flow_mask_equal(const struct sw_flow_mask *a,
const struct sw_flow_mask *b)
{
u8 *a_ = (u8 *)&a->key + a->range.start;
u8 *b_ = (u8 *)&b->key + b->range.start;
return (a->range.end == b->range.end)
&& (a->range.start == b->range.start)
&& (memcmp(a_, b_, range_n_bytes(&a->range)) == 0);
}
struct sw_flow_mask *ovs_sw_flow_mask_find(const struct flow_table *tbl,
const struct sw_flow_mask *mask)
{
struct list_head *ml;
list_for_each(ml, tbl->mask_list) {
struct sw_flow_mask *m;
m = container_of(ml, struct sw_flow_mask, list);
if (ovs_sw_flow_mask_equal(mask, m))
return m;
}
return NULL;
}
/**
* add a new mask into the mask list.
* The caller needs to make sure that 'mask' is not the same
* as any masks that are already on the list.
*/
void ovs_sw_flow_mask_insert(struct flow_table *tbl, struct sw_flow_mask *mask)
{
list_add_rcu(&mask->list, tbl->mask_list);
}
/**
* Set 'range' fields in the mask to the value of 'val'.
*/
static void ovs_sw_flow_mask_set(struct sw_flow_mask *mask,
struct sw_flow_key_range *range, u8 val)
{
u8 *m = (u8 *)&mask->key + range->start;
mask->range = *range;
memset(m, val, range_n_bytes(range));
}