mirror of
https://github.com/torvalds/linux.git
synced 2024-12-01 16:41:39 +00:00
2929bfac00
Push the rounding up of stack offsets into the function responsible for growing the stack, rather than relying on all the callers to do it. Uncertainty about whether the callers did it or not tripped up people in a previous review. Signed-off-by: Andrei Matei <andreimatei1@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/bpf/20231208032519.260451-4-andreimatei1@gmail.com
20798 lines
619 KiB
C
20798 lines
619 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
|
|
* Copyright (c) 2016 Facebook
|
|
* Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
|
|
*/
|
|
#include <uapi/linux/btf.h>
|
|
#include <linux/bpf-cgroup.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/bpf.h>
|
|
#include <linux/btf.h>
|
|
#include <linux/bpf_verifier.h>
|
|
#include <linux/filter.h>
|
|
#include <net/netlink.h>
|
|
#include <linux/file.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/stringify.h>
|
|
#include <linux/bsearch.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/error-injection.h>
|
|
#include <linux/bpf_lsm.h>
|
|
#include <linux/btf_ids.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/module.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/bpf_mem_alloc.h>
|
|
#include <net/xdp.h>
|
|
|
|
#include "disasm.h"
|
|
|
|
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
|
|
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
|
|
[_id] = & _name ## _verifier_ops,
|
|
#define BPF_MAP_TYPE(_id, _ops)
|
|
#define BPF_LINK_TYPE(_id, _name)
|
|
#include <linux/bpf_types.h>
|
|
#undef BPF_PROG_TYPE
|
|
#undef BPF_MAP_TYPE
|
|
#undef BPF_LINK_TYPE
|
|
};
|
|
|
|
struct bpf_mem_alloc bpf_global_percpu_ma;
|
|
static bool bpf_global_percpu_ma_set;
|
|
|
|
/* bpf_check() is a static code analyzer that walks eBPF program
|
|
* instruction by instruction and updates register/stack state.
|
|
* All paths of conditional branches are analyzed until 'bpf_exit' insn.
|
|
*
|
|
* The first pass is depth-first-search to check that the program is a DAG.
|
|
* It rejects the following programs:
|
|
* - larger than BPF_MAXINSNS insns
|
|
* - if loop is present (detected via back-edge)
|
|
* - unreachable insns exist (shouldn't be a forest. program = one function)
|
|
* - out of bounds or malformed jumps
|
|
* The second pass is all possible path descent from the 1st insn.
|
|
* Since it's analyzing all paths through the program, the length of the
|
|
* analysis is limited to 64k insn, which may be hit even if total number of
|
|
* insn is less then 4K, but there are too many branches that change stack/regs.
|
|
* Number of 'branches to be analyzed' is limited to 1k
|
|
*
|
|
* On entry to each instruction, each register has a type, and the instruction
|
|
* changes the types of the registers depending on instruction semantics.
|
|
* If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
|
|
* copied to R1.
|
|
*
|
|
* All registers are 64-bit.
|
|
* R0 - return register
|
|
* R1-R5 argument passing registers
|
|
* R6-R9 callee saved registers
|
|
* R10 - frame pointer read-only
|
|
*
|
|
* At the start of BPF program the register R1 contains a pointer to bpf_context
|
|
* and has type PTR_TO_CTX.
|
|
*
|
|
* Verifier tracks arithmetic operations on pointers in case:
|
|
* BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
|
|
* BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
|
|
* 1st insn copies R10 (which has FRAME_PTR) type into R1
|
|
* and 2nd arithmetic instruction is pattern matched to recognize
|
|
* that it wants to construct a pointer to some element within stack.
|
|
* So after 2nd insn, the register R1 has type PTR_TO_STACK
|
|
* (and -20 constant is saved for further stack bounds checking).
|
|
* Meaning that this reg is a pointer to stack plus known immediate constant.
|
|
*
|
|
* Most of the time the registers have SCALAR_VALUE type, which
|
|
* means the register has some value, but it's not a valid pointer.
|
|
* (like pointer plus pointer becomes SCALAR_VALUE type)
|
|
*
|
|
* When verifier sees load or store instructions the type of base register
|
|
* can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
|
|
* four pointer types recognized by check_mem_access() function.
|
|
*
|
|
* PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
|
|
* and the range of [ptr, ptr + map's value_size) is accessible.
|
|
*
|
|
* registers used to pass values to function calls are checked against
|
|
* function argument constraints.
|
|
*
|
|
* ARG_PTR_TO_MAP_KEY is one of such argument constraints.
|
|
* It means that the register type passed to this function must be
|
|
* PTR_TO_STACK and it will be used inside the function as
|
|
* 'pointer to map element key'
|
|
*
|
|
* For example the argument constraints for bpf_map_lookup_elem():
|
|
* .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
|
|
* .arg1_type = ARG_CONST_MAP_PTR,
|
|
* .arg2_type = ARG_PTR_TO_MAP_KEY,
|
|
*
|
|
* ret_type says that this function returns 'pointer to map elem value or null'
|
|
* function expects 1st argument to be a const pointer to 'struct bpf_map' and
|
|
* 2nd argument should be a pointer to stack, which will be used inside
|
|
* the helper function as a pointer to map element key.
|
|
*
|
|
* On the kernel side the helper function looks like:
|
|
* u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
|
|
* {
|
|
* struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
|
|
* void *key = (void *) (unsigned long) r2;
|
|
* void *value;
|
|
*
|
|
* here kernel can access 'key' and 'map' pointers safely, knowing that
|
|
* [key, key + map->key_size) bytes are valid and were initialized on
|
|
* the stack of eBPF program.
|
|
* }
|
|
*
|
|
* Corresponding eBPF program may look like:
|
|
* BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
|
|
* BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
|
|
* BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
|
|
* BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
|
|
* here verifier looks at prototype of map_lookup_elem() and sees:
|
|
* .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
|
|
* Now verifier knows that this map has key of R1->map_ptr->key_size bytes
|
|
*
|
|
* Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
|
|
* Now verifier checks that [R2, R2 + map's key_size) are within stack limits
|
|
* and were initialized prior to this call.
|
|
* If it's ok, then verifier allows this BPF_CALL insn and looks at
|
|
* .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
|
|
* R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
|
|
* returns either pointer to map value or NULL.
|
|
*
|
|
* When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
|
|
* insn, the register holding that pointer in the true branch changes state to
|
|
* PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
|
|
* branch. See check_cond_jmp_op().
|
|
*
|
|
* After the call R0 is set to return type of the function and registers R1-R5
|
|
* are set to NOT_INIT to indicate that they are no longer readable.
|
|
*
|
|
* The following reference types represent a potential reference to a kernel
|
|
* resource which, after first being allocated, must be checked and freed by
|
|
* the BPF program:
|
|
* - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
|
|
*
|
|
* When the verifier sees a helper call return a reference type, it allocates a
|
|
* pointer id for the reference and stores it in the current function state.
|
|
* Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
|
|
* PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
|
|
* passes through a NULL-check conditional. For the branch wherein the state is
|
|
* changed to CONST_IMM, the verifier releases the reference.
|
|
*
|
|
* For each helper function that allocates a reference, such as
|
|
* bpf_sk_lookup_tcp(), there is a corresponding release function, such as
|
|
* bpf_sk_release(). When a reference type passes into the release function,
|
|
* the verifier also releases the reference. If any unchecked or unreleased
|
|
* reference remains at the end of the program, the verifier rejects it.
|
|
*/
|
|
|
|
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
|
|
struct bpf_verifier_stack_elem {
|
|
/* verifer state is 'st'
|
|
* before processing instruction 'insn_idx'
|
|
* and after processing instruction 'prev_insn_idx'
|
|
*/
|
|
struct bpf_verifier_state st;
|
|
int insn_idx;
|
|
int prev_insn_idx;
|
|
struct bpf_verifier_stack_elem *next;
|
|
/* length of verifier log at the time this state was pushed on stack */
|
|
u32 log_pos;
|
|
};
|
|
|
|
#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
|
|
#define BPF_COMPLEXITY_LIMIT_STATES 64
|
|
|
|
#define BPF_MAP_KEY_POISON (1ULL << 63)
|
|
#define BPF_MAP_KEY_SEEN (1ULL << 62)
|
|
|
|
#define BPF_MAP_PTR_UNPRIV 1UL
|
|
#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
|
|
POISON_POINTER_DELTA))
|
|
#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
|
|
|
|
static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
|
|
static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
|
|
static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
|
|
static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
|
|
static int ref_set_non_owning(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg);
|
|
static void specialize_kfunc(struct bpf_verifier_env *env,
|
|
u32 func_id, u16 offset, unsigned long *addr);
|
|
static bool is_trusted_reg(const struct bpf_reg_state *reg);
|
|
|
|
static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
|
|
{
|
|
return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
|
|
}
|
|
|
|
static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
|
|
{
|
|
return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
|
|
}
|
|
|
|
static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
|
|
const struct bpf_map *map, bool unpriv)
|
|
{
|
|
BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
|
|
unpriv |= bpf_map_ptr_unpriv(aux);
|
|
aux->map_ptr_state = (unsigned long)map |
|
|
(unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
|
|
}
|
|
|
|
static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
|
|
{
|
|
return aux->map_key_state & BPF_MAP_KEY_POISON;
|
|
}
|
|
|
|
static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
|
|
{
|
|
return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
|
|
}
|
|
|
|
static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
|
|
{
|
|
return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
|
|
}
|
|
|
|
static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
|
|
{
|
|
bool poisoned = bpf_map_key_poisoned(aux);
|
|
|
|
aux->map_key_state = state | BPF_MAP_KEY_SEEN |
|
|
(poisoned ? BPF_MAP_KEY_POISON : 0ULL);
|
|
}
|
|
|
|
static bool bpf_helper_call(const struct bpf_insn *insn)
|
|
{
|
|
return insn->code == (BPF_JMP | BPF_CALL) &&
|
|
insn->src_reg == 0;
|
|
}
|
|
|
|
static bool bpf_pseudo_call(const struct bpf_insn *insn)
|
|
{
|
|
return insn->code == (BPF_JMP | BPF_CALL) &&
|
|
insn->src_reg == BPF_PSEUDO_CALL;
|
|
}
|
|
|
|
static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
|
|
{
|
|
return insn->code == (BPF_JMP | BPF_CALL) &&
|
|
insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
|
|
}
|
|
|
|
struct bpf_call_arg_meta {
|
|
struct bpf_map *map_ptr;
|
|
bool raw_mode;
|
|
bool pkt_access;
|
|
u8 release_regno;
|
|
int regno;
|
|
int access_size;
|
|
int mem_size;
|
|
u64 msize_max_value;
|
|
int ref_obj_id;
|
|
int dynptr_id;
|
|
int map_uid;
|
|
int func_id;
|
|
struct btf *btf;
|
|
u32 btf_id;
|
|
struct btf *ret_btf;
|
|
u32 ret_btf_id;
|
|
u32 subprogno;
|
|
struct btf_field *kptr_field;
|
|
};
|
|
|
|
struct bpf_kfunc_call_arg_meta {
|
|
/* In parameters */
|
|
struct btf *btf;
|
|
u32 func_id;
|
|
u32 kfunc_flags;
|
|
const struct btf_type *func_proto;
|
|
const char *func_name;
|
|
/* Out parameters */
|
|
u32 ref_obj_id;
|
|
u8 release_regno;
|
|
bool r0_rdonly;
|
|
u32 ret_btf_id;
|
|
u64 r0_size;
|
|
u32 subprogno;
|
|
struct {
|
|
u64 value;
|
|
bool found;
|
|
} arg_constant;
|
|
|
|
/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
|
|
* generally to pass info about user-defined local kptr types to later
|
|
* verification logic
|
|
* bpf_obj_drop/bpf_percpu_obj_drop
|
|
* Record the local kptr type to be drop'd
|
|
* bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
|
|
* Record the local kptr type to be refcount_incr'd and use
|
|
* arg_owning_ref to determine whether refcount_acquire should be
|
|
* fallible
|
|
*/
|
|
struct btf *arg_btf;
|
|
u32 arg_btf_id;
|
|
bool arg_owning_ref;
|
|
|
|
struct {
|
|
struct btf_field *field;
|
|
} arg_list_head;
|
|
struct {
|
|
struct btf_field *field;
|
|
} arg_rbtree_root;
|
|
struct {
|
|
enum bpf_dynptr_type type;
|
|
u32 id;
|
|
u32 ref_obj_id;
|
|
} initialized_dynptr;
|
|
struct {
|
|
u8 spi;
|
|
u8 frameno;
|
|
} iter;
|
|
u64 mem_size;
|
|
};
|
|
|
|
struct btf *btf_vmlinux;
|
|
|
|
static const char *btf_type_name(const struct btf *btf, u32 id)
|
|
{
|
|
return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
|
|
}
|
|
|
|
static DEFINE_MUTEX(bpf_verifier_lock);
|
|
static DEFINE_MUTEX(bpf_percpu_ma_lock);
|
|
|
|
__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
|
|
{
|
|
struct bpf_verifier_env *env = private_data;
|
|
va_list args;
|
|
|
|
if (!bpf_verifier_log_needed(&env->log))
|
|
return;
|
|
|
|
va_start(args, fmt);
|
|
bpf_verifier_vlog(&env->log, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
static void verbose_invalid_scalar(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg,
|
|
struct bpf_retval_range range, const char *ctx,
|
|
const char *reg_name)
|
|
{
|
|
bool unknown = true;
|
|
|
|
verbose(env, "%s the register %s has", ctx, reg_name);
|
|
if (reg->smin_value > S64_MIN) {
|
|
verbose(env, " smin=%lld", reg->smin_value);
|
|
unknown = false;
|
|
}
|
|
if (reg->smax_value < S64_MAX) {
|
|
verbose(env, " smax=%lld", reg->smax_value);
|
|
unknown = false;
|
|
}
|
|
if (unknown)
|
|
verbose(env, " unknown scalar value");
|
|
verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
|
|
}
|
|
|
|
static bool type_may_be_null(u32 type)
|
|
{
|
|
return type & PTR_MAYBE_NULL;
|
|
}
|
|
|
|
static bool reg_not_null(const struct bpf_reg_state *reg)
|
|
{
|
|
enum bpf_reg_type type;
|
|
|
|
type = reg->type;
|
|
if (type_may_be_null(type))
|
|
return false;
|
|
|
|
type = base_type(type);
|
|
return type == PTR_TO_SOCKET ||
|
|
type == PTR_TO_TCP_SOCK ||
|
|
type == PTR_TO_MAP_VALUE ||
|
|
type == PTR_TO_MAP_KEY ||
|
|
type == PTR_TO_SOCK_COMMON ||
|
|
(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
|
|
type == PTR_TO_MEM;
|
|
}
|
|
|
|
static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
|
|
{
|
|
struct btf_record *rec = NULL;
|
|
struct btf_struct_meta *meta;
|
|
|
|
if (reg->type == PTR_TO_MAP_VALUE) {
|
|
rec = reg->map_ptr->record;
|
|
} else if (type_is_ptr_alloc_obj(reg->type)) {
|
|
meta = btf_find_struct_meta(reg->btf, reg->btf_id);
|
|
if (meta)
|
|
rec = meta->record;
|
|
}
|
|
return rec;
|
|
}
|
|
|
|
static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
|
|
{
|
|
struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
|
|
|
|
return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
|
|
}
|
|
|
|
static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
|
|
{
|
|
struct bpf_func_info *info;
|
|
|
|
if (!env->prog->aux->func_info)
|
|
return "";
|
|
|
|
info = &env->prog->aux->func_info[subprog];
|
|
return btf_type_name(env->prog->aux->btf, info->type_id);
|
|
}
|
|
|
|
static struct bpf_func_info_aux *subprog_aux(const struct bpf_verifier_env *env, int subprog)
|
|
{
|
|
return &env->prog->aux->func_info_aux[subprog];
|
|
}
|
|
|
|
static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
|
|
{
|
|
return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
|
|
}
|
|
|
|
static bool type_is_rdonly_mem(u32 type)
|
|
{
|
|
return type & MEM_RDONLY;
|
|
}
|
|
|
|
static bool is_acquire_function(enum bpf_func_id func_id,
|
|
const struct bpf_map *map)
|
|
{
|
|
enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
|
|
|
|
if (func_id == BPF_FUNC_sk_lookup_tcp ||
|
|
func_id == BPF_FUNC_sk_lookup_udp ||
|
|
func_id == BPF_FUNC_skc_lookup_tcp ||
|
|
func_id == BPF_FUNC_ringbuf_reserve ||
|
|
func_id == BPF_FUNC_kptr_xchg)
|
|
return true;
|
|
|
|
if (func_id == BPF_FUNC_map_lookup_elem &&
|
|
(map_type == BPF_MAP_TYPE_SOCKMAP ||
|
|
map_type == BPF_MAP_TYPE_SOCKHASH))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool is_ptr_cast_function(enum bpf_func_id func_id)
|
|
{
|
|
return func_id == BPF_FUNC_tcp_sock ||
|
|
func_id == BPF_FUNC_sk_fullsock ||
|
|
func_id == BPF_FUNC_skc_to_tcp_sock ||
|
|
func_id == BPF_FUNC_skc_to_tcp6_sock ||
|
|
func_id == BPF_FUNC_skc_to_udp6_sock ||
|
|
func_id == BPF_FUNC_skc_to_mptcp_sock ||
|
|
func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
|
|
func_id == BPF_FUNC_skc_to_tcp_request_sock;
|
|
}
|
|
|
|
static bool is_dynptr_ref_function(enum bpf_func_id func_id)
|
|
{
|
|
return func_id == BPF_FUNC_dynptr_data;
|
|
}
|
|
|
|
static bool is_sync_callback_calling_kfunc(u32 btf_id);
|
|
static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
|
|
|
|
static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
|
|
{
|
|
return func_id == BPF_FUNC_for_each_map_elem ||
|
|
func_id == BPF_FUNC_find_vma ||
|
|
func_id == BPF_FUNC_loop ||
|
|
func_id == BPF_FUNC_user_ringbuf_drain;
|
|
}
|
|
|
|
static bool is_async_callback_calling_function(enum bpf_func_id func_id)
|
|
{
|
|
return func_id == BPF_FUNC_timer_set_callback;
|
|
}
|
|
|
|
static bool is_callback_calling_function(enum bpf_func_id func_id)
|
|
{
|
|
return is_sync_callback_calling_function(func_id) ||
|
|
is_async_callback_calling_function(func_id);
|
|
}
|
|
|
|
static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
|
|
{
|
|
return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
|
|
(bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
|
|
}
|
|
|
|
static bool is_storage_get_function(enum bpf_func_id func_id)
|
|
{
|
|
return func_id == BPF_FUNC_sk_storage_get ||
|
|
func_id == BPF_FUNC_inode_storage_get ||
|
|
func_id == BPF_FUNC_task_storage_get ||
|
|
func_id == BPF_FUNC_cgrp_storage_get;
|
|
}
|
|
|
|
static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
|
|
const struct bpf_map *map)
|
|
{
|
|
int ref_obj_uses = 0;
|
|
|
|
if (is_ptr_cast_function(func_id))
|
|
ref_obj_uses++;
|
|
if (is_acquire_function(func_id, map))
|
|
ref_obj_uses++;
|
|
if (is_dynptr_ref_function(func_id))
|
|
ref_obj_uses++;
|
|
|
|
return ref_obj_uses > 1;
|
|
}
|
|
|
|
static bool is_cmpxchg_insn(const struct bpf_insn *insn)
|
|
{
|
|
return BPF_CLASS(insn->code) == BPF_STX &&
|
|
BPF_MODE(insn->code) == BPF_ATOMIC &&
|
|
insn->imm == BPF_CMPXCHG;
|
|
}
|
|
|
|
static int __get_spi(s32 off)
|
|
{
|
|
return (-off - 1) / BPF_REG_SIZE;
|
|
}
|
|
|
|
static struct bpf_func_state *func(struct bpf_verifier_env *env,
|
|
const struct bpf_reg_state *reg)
|
|
{
|
|
struct bpf_verifier_state *cur = env->cur_state;
|
|
|
|
return cur->frame[reg->frameno];
|
|
}
|
|
|
|
static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
|
|
{
|
|
int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
|
|
|
|
/* We need to check that slots between [spi - nr_slots + 1, spi] are
|
|
* within [0, allocated_stack).
|
|
*
|
|
* Please note that the spi grows downwards. For example, a dynptr
|
|
* takes the size of two stack slots; the first slot will be at
|
|
* spi and the second slot will be at spi - 1.
|
|
*/
|
|
return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
|
|
}
|
|
|
|
static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
|
|
const char *obj_kind, int nr_slots)
|
|
{
|
|
int off, spi;
|
|
|
|
if (!tnum_is_const(reg->var_off)) {
|
|
verbose(env, "%s has to be at a constant offset\n", obj_kind);
|
|
return -EINVAL;
|
|
}
|
|
|
|
off = reg->off + reg->var_off.value;
|
|
if (off % BPF_REG_SIZE) {
|
|
verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
|
|
return -EINVAL;
|
|
}
|
|
|
|
spi = __get_spi(off);
|
|
if (spi + 1 < nr_slots) {
|
|
verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
|
|
return -ERANGE;
|
|
return spi;
|
|
}
|
|
|
|
static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
|
|
{
|
|
return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
|
|
}
|
|
|
|
static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
|
|
{
|
|
return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
|
|
}
|
|
|
|
static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
|
|
{
|
|
switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
|
|
case DYNPTR_TYPE_LOCAL:
|
|
return BPF_DYNPTR_TYPE_LOCAL;
|
|
case DYNPTR_TYPE_RINGBUF:
|
|
return BPF_DYNPTR_TYPE_RINGBUF;
|
|
case DYNPTR_TYPE_SKB:
|
|
return BPF_DYNPTR_TYPE_SKB;
|
|
case DYNPTR_TYPE_XDP:
|
|
return BPF_DYNPTR_TYPE_XDP;
|
|
default:
|
|
return BPF_DYNPTR_TYPE_INVALID;
|
|
}
|
|
}
|
|
|
|
static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
|
|
{
|
|
switch (type) {
|
|
case BPF_DYNPTR_TYPE_LOCAL:
|
|
return DYNPTR_TYPE_LOCAL;
|
|
case BPF_DYNPTR_TYPE_RINGBUF:
|
|
return DYNPTR_TYPE_RINGBUF;
|
|
case BPF_DYNPTR_TYPE_SKB:
|
|
return DYNPTR_TYPE_SKB;
|
|
case BPF_DYNPTR_TYPE_XDP:
|
|
return DYNPTR_TYPE_XDP;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
|
|
{
|
|
return type == BPF_DYNPTR_TYPE_RINGBUF;
|
|
}
|
|
|
|
static void __mark_dynptr_reg(struct bpf_reg_state *reg,
|
|
enum bpf_dynptr_type type,
|
|
bool first_slot, int dynptr_id);
|
|
|
|
static void __mark_reg_not_init(const struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg);
|
|
|
|
static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *sreg1,
|
|
struct bpf_reg_state *sreg2,
|
|
enum bpf_dynptr_type type)
|
|
{
|
|
int id = ++env->id_gen;
|
|
|
|
__mark_dynptr_reg(sreg1, type, true, id);
|
|
__mark_dynptr_reg(sreg2, type, false, id);
|
|
}
|
|
|
|
static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg,
|
|
enum bpf_dynptr_type type)
|
|
{
|
|
__mark_dynptr_reg(reg, type, true, ++env->id_gen);
|
|
}
|
|
|
|
static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
|
|
struct bpf_func_state *state, int spi);
|
|
|
|
static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
|
|
enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
|
|
{
|
|
struct bpf_func_state *state = func(env, reg);
|
|
enum bpf_dynptr_type type;
|
|
int spi, i, err;
|
|
|
|
spi = dynptr_get_spi(env, reg);
|
|
if (spi < 0)
|
|
return spi;
|
|
|
|
/* We cannot assume both spi and spi - 1 belong to the same dynptr,
|
|
* hence we need to call destroy_if_dynptr_stack_slot twice for both,
|
|
* to ensure that for the following example:
|
|
* [d1][d1][d2][d2]
|
|
* spi 3 2 1 0
|
|
* So marking spi = 2 should lead to destruction of both d1 and d2. In
|
|
* case they do belong to same dynptr, second call won't see slot_type
|
|
* as STACK_DYNPTR and will simply skip destruction.
|
|
*/
|
|
err = destroy_if_dynptr_stack_slot(env, state, spi);
|
|
if (err)
|
|
return err;
|
|
err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 0; i < BPF_REG_SIZE; i++) {
|
|
state->stack[spi].slot_type[i] = STACK_DYNPTR;
|
|
state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
|
|
}
|
|
|
|
type = arg_to_dynptr_type(arg_type);
|
|
if (type == BPF_DYNPTR_TYPE_INVALID)
|
|
return -EINVAL;
|
|
|
|
mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
|
|
&state->stack[spi - 1].spilled_ptr, type);
|
|
|
|
if (dynptr_type_refcounted(type)) {
|
|
/* The id is used to track proper releasing */
|
|
int id;
|
|
|
|
if (clone_ref_obj_id)
|
|
id = clone_ref_obj_id;
|
|
else
|
|
id = acquire_reference_state(env, insn_idx);
|
|
|
|
if (id < 0)
|
|
return id;
|
|
|
|
state->stack[spi].spilled_ptr.ref_obj_id = id;
|
|
state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
|
|
}
|
|
|
|
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
|
|
state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BPF_REG_SIZE; i++) {
|
|
state->stack[spi].slot_type[i] = STACK_INVALID;
|
|
state->stack[spi - 1].slot_type[i] = STACK_INVALID;
|
|
}
|
|
|
|
__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
|
|
__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
|
|
|
|
/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
|
|
*
|
|
* While we don't allow reading STACK_INVALID, it is still possible to
|
|
* do <8 byte writes marking some but not all slots as STACK_MISC. Then,
|
|
* helpers or insns can do partial read of that part without failing,
|
|
* but check_stack_range_initialized, check_stack_read_var_off, and
|
|
* check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
|
|
* the slot conservatively. Hence we need to prevent those liveness
|
|
* marking walks.
|
|
*
|
|
* This was not a problem before because STACK_INVALID is only set by
|
|
* default (where the default reg state has its reg->parent as NULL), or
|
|
* in clean_live_states after REG_LIVE_DONE (at which point
|
|
* mark_reg_read won't walk reg->parent chain), but not randomly during
|
|
* verifier state exploration (like we did above). Hence, for our case
|
|
* parentage chain will still be live (i.e. reg->parent may be
|
|
* non-NULL), while earlier reg->parent was NULL, so we need
|
|
* REG_LIVE_WRITTEN to screen off read marker propagation when it is
|
|
* done later on reads or by mark_dynptr_read as well to unnecessary
|
|
* mark registers in verifier state.
|
|
*/
|
|
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
|
|
state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
|
|
}
|
|
|
|
static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
|
|
{
|
|
struct bpf_func_state *state = func(env, reg);
|
|
int spi, ref_obj_id, i;
|
|
|
|
spi = dynptr_get_spi(env, reg);
|
|
if (spi < 0)
|
|
return spi;
|
|
|
|
if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
|
|
invalidate_dynptr(env, state, spi);
|
|
return 0;
|
|
}
|
|
|
|
ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
|
|
|
|
/* If the dynptr has a ref_obj_id, then we need to invalidate
|
|
* two things:
|
|
*
|
|
* 1) Any dynptrs with a matching ref_obj_id (clones)
|
|
* 2) Any slices derived from this dynptr.
|
|
*/
|
|
|
|
/* Invalidate any slices associated with this dynptr */
|
|
WARN_ON_ONCE(release_reference(env, ref_obj_id));
|
|
|
|
/* Invalidate any dynptr clones */
|
|
for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
|
|
if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
|
|
continue;
|
|
|
|
/* it should always be the case that if the ref obj id
|
|
* matches then the stack slot also belongs to a
|
|
* dynptr
|
|
*/
|
|
if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
|
|
verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
|
|
return -EFAULT;
|
|
}
|
|
if (state->stack[i].spilled_ptr.dynptr.first_slot)
|
|
invalidate_dynptr(env, state, i);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __mark_reg_unknown(const struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg);
|
|
|
|
static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
|
|
{
|
|
if (!env->allow_ptr_leaks)
|
|
__mark_reg_not_init(env, reg);
|
|
else
|
|
__mark_reg_unknown(env, reg);
|
|
}
|
|
|
|
static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
|
|
struct bpf_func_state *state, int spi)
|
|
{
|
|
struct bpf_func_state *fstate;
|
|
struct bpf_reg_state *dreg;
|
|
int i, dynptr_id;
|
|
|
|
/* We always ensure that STACK_DYNPTR is never set partially,
|
|
* hence just checking for slot_type[0] is enough. This is
|
|
* different for STACK_SPILL, where it may be only set for
|
|
* 1 byte, so code has to use is_spilled_reg.
|
|
*/
|
|
if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
|
|
return 0;
|
|
|
|
/* Reposition spi to first slot */
|
|
if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
|
|
spi = spi + 1;
|
|
|
|
if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
|
|
verbose(env, "cannot overwrite referenced dynptr\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
mark_stack_slot_scratched(env, spi);
|
|
mark_stack_slot_scratched(env, spi - 1);
|
|
|
|
/* Writing partially to one dynptr stack slot destroys both. */
|
|
for (i = 0; i < BPF_REG_SIZE; i++) {
|
|
state->stack[spi].slot_type[i] = STACK_INVALID;
|
|
state->stack[spi - 1].slot_type[i] = STACK_INVALID;
|
|
}
|
|
|
|
dynptr_id = state->stack[spi].spilled_ptr.id;
|
|
/* Invalidate any slices associated with this dynptr */
|
|
bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
|
|
/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
|
|
if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
|
|
continue;
|
|
if (dreg->dynptr_id == dynptr_id)
|
|
mark_reg_invalid(env, dreg);
|
|
}));
|
|
|
|
/* Do not release reference state, we are destroying dynptr on stack,
|
|
* not using some helper to release it. Just reset register.
|
|
*/
|
|
__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
|
|
__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
|
|
|
|
/* Same reason as unmark_stack_slots_dynptr above */
|
|
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
|
|
state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
|
|
{
|
|
int spi;
|
|
|
|
if (reg->type == CONST_PTR_TO_DYNPTR)
|
|
return false;
|
|
|
|
spi = dynptr_get_spi(env, reg);
|
|
|
|
/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
|
|
* error because this just means the stack state hasn't been updated yet.
|
|
* We will do check_mem_access to check and update stack bounds later.
|
|
*/
|
|
if (spi < 0 && spi != -ERANGE)
|
|
return false;
|
|
|
|
/* We don't need to check if the stack slots are marked by previous
|
|
* dynptr initializations because we allow overwriting existing unreferenced
|
|
* STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
|
|
* destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
|
|
* touching are completely destructed before we reinitialize them for a new
|
|
* one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
|
|
* instead of delaying it until the end where the user will get "Unreleased
|
|
* reference" error.
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
|
|
{
|
|
struct bpf_func_state *state = func(env, reg);
|
|
int i, spi;
|
|
|
|
/* This already represents first slot of initialized bpf_dynptr.
|
|
*
|
|
* CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
|
|
* check_func_arg_reg_off's logic, so we don't need to check its
|
|
* offset and alignment.
|
|
*/
|
|
if (reg->type == CONST_PTR_TO_DYNPTR)
|
|
return true;
|
|
|
|
spi = dynptr_get_spi(env, reg);
|
|
if (spi < 0)
|
|
return false;
|
|
if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
|
|
return false;
|
|
|
|
for (i = 0; i < BPF_REG_SIZE; i++) {
|
|
if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
|
|
state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
|
|
enum bpf_arg_type arg_type)
|
|
{
|
|
struct bpf_func_state *state = func(env, reg);
|
|
enum bpf_dynptr_type dynptr_type;
|
|
int spi;
|
|
|
|
/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
|
|
if (arg_type == ARG_PTR_TO_DYNPTR)
|
|
return true;
|
|
|
|
dynptr_type = arg_to_dynptr_type(arg_type);
|
|
if (reg->type == CONST_PTR_TO_DYNPTR) {
|
|
return reg->dynptr.type == dynptr_type;
|
|
} else {
|
|
spi = dynptr_get_spi(env, reg);
|
|
if (spi < 0)
|
|
return false;
|
|
return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
|
|
}
|
|
}
|
|
|
|
static void __mark_reg_known_zero(struct bpf_reg_state *reg);
|
|
|
|
static bool in_rcu_cs(struct bpf_verifier_env *env);
|
|
|
|
static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
|
|
|
|
static int mark_stack_slots_iter(struct bpf_verifier_env *env,
|
|
struct bpf_kfunc_call_arg_meta *meta,
|
|
struct bpf_reg_state *reg, int insn_idx,
|
|
struct btf *btf, u32 btf_id, int nr_slots)
|
|
{
|
|
struct bpf_func_state *state = func(env, reg);
|
|
int spi, i, j, id;
|
|
|
|
spi = iter_get_spi(env, reg, nr_slots);
|
|
if (spi < 0)
|
|
return spi;
|
|
|
|
id = acquire_reference_state(env, insn_idx);
|
|
if (id < 0)
|
|
return id;
|
|
|
|
for (i = 0; i < nr_slots; i++) {
|
|
struct bpf_stack_state *slot = &state->stack[spi - i];
|
|
struct bpf_reg_state *st = &slot->spilled_ptr;
|
|
|
|
__mark_reg_known_zero(st);
|
|
st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
|
|
if (is_kfunc_rcu_protected(meta)) {
|
|
if (in_rcu_cs(env))
|
|
st->type |= MEM_RCU;
|
|
else
|
|
st->type |= PTR_UNTRUSTED;
|
|
}
|
|
st->live |= REG_LIVE_WRITTEN;
|
|
st->ref_obj_id = i == 0 ? id : 0;
|
|
st->iter.btf = btf;
|
|
st->iter.btf_id = btf_id;
|
|
st->iter.state = BPF_ITER_STATE_ACTIVE;
|
|
st->iter.depth = 0;
|
|
|
|
for (j = 0; j < BPF_REG_SIZE; j++)
|
|
slot->slot_type[j] = STACK_ITER;
|
|
|
|
mark_stack_slot_scratched(env, spi - i);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg, int nr_slots)
|
|
{
|
|
struct bpf_func_state *state = func(env, reg);
|
|
int spi, i, j;
|
|
|
|
spi = iter_get_spi(env, reg, nr_slots);
|
|
if (spi < 0)
|
|
return spi;
|
|
|
|
for (i = 0; i < nr_slots; i++) {
|
|
struct bpf_stack_state *slot = &state->stack[spi - i];
|
|
struct bpf_reg_state *st = &slot->spilled_ptr;
|
|
|
|
if (i == 0)
|
|
WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
|
|
|
|
__mark_reg_not_init(env, st);
|
|
|
|
/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
|
|
st->live |= REG_LIVE_WRITTEN;
|
|
|
|
for (j = 0; j < BPF_REG_SIZE; j++)
|
|
slot->slot_type[j] = STACK_INVALID;
|
|
|
|
mark_stack_slot_scratched(env, spi - i);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg, int nr_slots)
|
|
{
|
|
struct bpf_func_state *state = func(env, reg);
|
|
int spi, i, j;
|
|
|
|
/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
|
|
* will do check_mem_access to check and update stack bounds later, so
|
|
* return true for that case.
|
|
*/
|
|
spi = iter_get_spi(env, reg, nr_slots);
|
|
if (spi == -ERANGE)
|
|
return true;
|
|
if (spi < 0)
|
|
return false;
|
|
|
|
for (i = 0; i < nr_slots; i++) {
|
|
struct bpf_stack_state *slot = &state->stack[spi - i];
|
|
|
|
for (j = 0; j < BPF_REG_SIZE; j++)
|
|
if (slot->slot_type[j] == STACK_ITER)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
|
|
struct btf *btf, u32 btf_id, int nr_slots)
|
|
{
|
|
struct bpf_func_state *state = func(env, reg);
|
|
int spi, i, j;
|
|
|
|
spi = iter_get_spi(env, reg, nr_slots);
|
|
if (spi < 0)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < nr_slots; i++) {
|
|
struct bpf_stack_state *slot = &state->stack[spi - i];
|
|
struct bpf_reg_state *st = &slot->spilled_ptr;
|
|
|
|
if (st->type & PTR_UNTRUSTED)
|
|
return -EPROTO;
|
|
/* only main (first) slot has ref_obj_id set */
|
|
if (i == 0 && !st->ref_obj_id)
|
|
return -EINVAL;
|
|
if (i != 0 && st->ref_obj_id)
|
|
return -EINVAL;
|
|
if (st->iter.btf != btf || st->iter.btf_id != btf_id)
|
|
return -EINVAL;
|
|
|
|
for (j = 0; j < BPF_REG_SIZE; j++)
|
|
if (slot->slot_type[j] != STACK_ITER)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Check if given stack slot is "special":
|
|
* - spilled register state (STACK_SPILL);
|
|
* - dynptr state (STACK_DYNPTR);
|
|
* - iter state (STACK_ITER).
|
|
*/
|
|
static bool is_stack_slot_special(const struct bpf_stack_state *stack)
|
|
{
|
|
enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
|
|
|
|
switch (type) {
|
|
case STACK_SPILL:
|
|
case STACK_DYNPTR:
|
|
case STACK_ITER:
|
|
return true;
|
|
case STACK_INVALID:
|
|
case STACK_MISC:
|
|
case STACK_ZERO:
|
|
return false;
|
|
default:
|
|
WARN_ONCE(1, "unknown stack slot type %d\n", type);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* The reg state of a pointer or a bounded scalar was saved when
|
|
* it was spilled to the stack.
|
|
*/
|
|
static bool is_spilled_reg(const struct bpf_stack_state *stack)
|
|
{
|
|
return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
|
|
}
|
|
|
|
static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
|
|
{
|
|
return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
|
|
stack->spilled_ptr.type == SCALAR_VALUE;
|
|
}
|
|
|
|
/* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
|
|
* case they are equivalent, or it's STACK_ZERO, in which case we preserve
|
|
* more precise STACK_ZERO.
|
|
* Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take
|
|
* env->allow_ptr_leaks into account and force STACK_MISC, if necessary.
|
|
*/
|
|
static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
|
|
{
|
|
if (*stype == STACK_ZERO)
|
|
return;
|
|
if (env->allow_ptr_leaks && *stype == STACK_INVALID)
|
|
return;
|
|
*stype = STACK_MISC;
|
|
}
|
|
|
|
static void scrub_spilled_slot(u8 *stype)
|
|
{
|
|
if (*stype != STACK_INVALID)
|
|
*stype = STACK_MISC;
|
|
}
|
|
|
|
/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
|
|
* small to hold src. This is different from krealloc since we don't want to preserve
|
|
* the contents of dst.
|
|
*
|
|
* Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
|
|
* not be allocated.
|
|
*/
|
|
static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
|
|
{
|
|
size_t alloc_bytes;
|
|
void *orig = dst;
|
|
size_t bytes;
|
|
|
|
if (ZERO_OR_NULL_PTR(src))
|
|
goto out;
|
|
|
|
if (unlikely(check_mul_overflow(n, size, &bytes)))
|
|
return NULL;
|
|
|
|
alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
|
|
dst = krealloc(orig, alloc_bytes, flags);
|
|
if (!dst) {
|
|
kfree(orig);
|
|
return NULL;
|
|
}
|
|
|
|
memcpy(dst, src, bytes);
|
|
out:
|
|
return dst ? dst : ZERO_SIZE_PTR;
|
|
}
|
|
|
|
/* resize an array from old_n items to new_n items. the array is reallocated if it's too
|
|
* small to hold new_n items. new items are zeroed out if the array grows.
|
|
*
|
|
* Contrary to krealloc_array, does not free arr if new_n is zero.
|
|
*/
|
|
static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
|
|
{
|
|
size_t alloc_size;
|
|
void *new_arr;
|
|
|
|
if (!new_n || old_n == new_n)
|
|
goto out;
|
|
|
|
alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
|
|
new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
|
|
if (!new_arr) {
|
|
kfree(arr);
|
|
return NULL;
|
|
}
|
|
arr = new_arr;
|
|
|
|
if (new_n > old_n)
|
|
memset(arr + old_n * size, 0, (new_n - old_n) * size);
|
|
|
|
out:
|
|
return arr ? arr : ZERO_SIZE_PTR;
|
|
}
|
|
|
|
static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
|
|
{
|
|
dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
|
|
sizeof(struct bpf_reference_state), GFP_KERNEL);
|
|
if (!dst->refs)
|
|
return -ENOMEM;
|
|
|
|
dst->acquired_refs = src->acquired_refs;
|
|
return 0;
|
|
}
|
|
|
|
static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
|
|
{
|
|
size_t n = src->allocated_stack / BPF_REG_SIZE;
|
|
|
|
dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
|
|
GFP_KERNEL);
|
|
if (!dst->stack)
|
|
return -ENOMEM;
|
|
|
|
dst->allocated_stack = src->allocated_stack;
|
|
return 0;
|
|
}
|
|
|
|
static int resize_reference_state(struct bpf_func_state *state, size_t n)
|
|
{
|
|
state->refs = realloc_array(state->refs, state->acquired_refs, n,
|
|
sizeof(struct bpf_reference_state));
|
|
if (!state->refs)
|
|
return -ENOMEM;
|
|
|
|
state->acquired_refs = n;
|
|
return 0;
|
|
}
|
|
|
|
/* Possibly update state->allocated_stack to be at least size bytes. Also
|
|
* possibly update the function's high-water mark in its bpf_subprog_info.
|
|
*/
|
|
static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
|
|
{
|
|
size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
|
|
|
|
/* The stack size is always a multiple of BPF_REG_SIZE. */
|
|
size = round_up(size, BPF_REG_SIZE);
|
|
n = size / BPF_REG_SIZE;
|
|
|
|
if (old_n >= n)
|
|
return 0;
|
|
|
|
state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
|
|
if (!state->stack)
|
|
return -ENOMEM;
|
|
|
|
state->allocated_stack = size;
|
|
|
|
/* update known max for given subprogram */
|
|
if (env->subprog_info[state->subprogno].stack_depth < size)
|
|
env->subprog_info[state->subprogno].stack_depth = size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Acquire a pointer id from the env and update the state->refs to include
|
|
* this new pointer reference.
|
|
* On success, returns a valid pointer id to associate with the register
|
|
* On failure, returns a negative errno.
|
|
*/
|
|
static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
|
|
{
|
|
struct bpf_func_state *state = cur_func(env);
|
|
int new_ofs = state->acquired_refs;
|
|
int id, err;
|
|
|
|
err = resize_reference_state(state, state->acquired_refs + 1);
|
|
if (err)
|
|
return err;
|
|
id = ++env->id_gen;
|
|
state->refs[new_ofs].id = id;
|
|
state->refs[new_ofs].insn_idx = insn_idx;
|
|
state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
|
|
|
|
return id;
|
|
}
|
|
|
|
/* release function corresponding to acquire_reference_state(). Idempotent. */
|
|
static int release_reference_state(struct bpf_func_state *state, int ptr_id)
|
|
{
|
|
int i, last_idx;
|
|
|
|
last_idx = state->acquired_refs - 1;
|
|
for (i = 0; i < state->acquired_refs; i++) {
|
|
if (state->refs[i].id == ptr_id) {
|
|
/* Cannot release caller references in callbacks */
|
|
if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
|
|
return -EINVAL;
|
|
if (last_idx && i != last_idx)
|
|
memcpy(&state->refs[i], &state->refs[last_idx],
|
|
sizeof(*state->refs));
|
|
memset(&state->refs[last_idx], 0, sizeof(*state->refs));
|
|
state->acquired_refs--;
|
|
return 0;
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void free_func_state(struct bpf_func_state *state)
|
|
{
|
|
if (!state)
|
|
return;
|
|
kfree(state->refs);
|
|
kfree(state->stack);
|
|
kfree(state);
|
|
}
|
|
|
|
static void clear_jmp_history(struct bpf_verifier_state *state)
|
|
{
|
|
kfree(state->jmp_history);
|
|
state->jmp_history = NULL;
|
|
state->jmp_history_cnt = 0;
|
|
}
|
|
|
|
static void free_verifier_state(struct bpf_verifier_state *state,
|
|
bool free_self)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i <= state->curframe; i++) {
|
|
free_func_state(state->frame[i]);
|
|
state->frame[i] = NULL;
|
|
}
|
|
clear_jmp_history(state);
|
|
if (free_self)
|
|
kfree(state);
|
|
}
|
|
|
|
/* copy verifier state from src to dst growing dst stack space
|
|
* when necessary to accommodate larger src stack
|
|
*/
|
|
static int copy_func_state(struct bpf_func_state *dst,
|
|
const struct bpf_func_state *src)
|
|
{
|
|
int err;
|
|
|
|
memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
|
|
err = copy_reference_state(dst, src);
|
|
if (err)
|
|
return err;
|
|
return copy_stack_state(dst, src);
|
|
}
|
|
|
|
static int copy_verifier_state(struct bpf_verifier_state *dst_state,
|
|
const struct bpf_verifier_state *src)
|
|
{
|
|
struct bpf_func_state *dst;
|
|
int i, err;
|
|
|
|
dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
|
|
src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
|
|
GFP_USER);
|
|
if (!dst_state->jmp_history)
|
|
return -ENOMEM;
|
|
dst_state->jmp_history_cnt = src->jmp_history_cnt;
|
|
|
|
/* if dst has more stack frames then src frame, free them, this is also
|
|
* necessary in case of exceptional exits using bpf_throw.
|
|
*/
|
|
for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
|
|
free_func_state(dst_state->frame[i]);
|
|
dst_state->frame[i] = NULL;
|
|
}
|
|
dst_state->speculative = src->speculative;
|
|
dst_state->active_rcu_lock = src->active_rcu_lock;
|
|
dst_state->curframe = src->curframe;
|
|
dst_state->active_lock.ptr = src->active_lock.ptr;
|
|
dst_state->active_lock.id = src->active_lock.id;
|
|
dst_state->branches = src->branches;
|
|
dst_state->parent = src->parent;
|
|
dst_state->first_insn_idx = src->first_insn_idx;
|
|
dst_state->last_insn_idx = src->last_insn_idx;
|
|
dst_state->dfs_depth = src->dfs_depth;
|
|
dst_state->callback_unroll_depth = src->callback_unroll_depth;
|
|
dst_state->used_as_loop_entry = src->used_as_loop_entry;
|
|
for (i = 0; i <= src->curframe; i++) {
|
|
dst = dst_state->frame[i];
|
|
if (!dst) {
|
|
dst = kzalloc(sizeof(*dst), GFP_KERNEL);
|
|
if (!dst)
|
|
return -ENOMEM;
|
|
dst_state->frame[i] = dst;
|
|
}
|
|
err = copy_func_state(dst, src->frame[i]);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static u32 state_htab_size(struct bpf_verifier_env *env)
|
|
{
|
|
return env->prog->len;
|
|
}
|
|
|
|
static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
|
|
{
|
|
struct bpf_verifier_state *cur = env->cur_state;
|
|
struct bpf_func_state *state = cur->frame[cur->curframe];
|
|
|
|
return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
|
|
}
|
|
|
|
static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
|
|
{
|
|
int fr;
|
|
|
|
if (a->curframe != b->curframe)
|
|
return false;
|
|
|
|
for (fr = a->curframe; fr >= 0; fr--)
|
|
if (a->frame[fr]->callsite != b->frame[fr]->callsite)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Open coded iterators allow back-edges in the state graph in order to
|
|
* check unbounded loops that iterators.
|
|
*
|
|
* In is_state_visited() it is necessary to know if explored states are
|
|
* part of some loops in order to decide whether non-exact states
|
|
* comparison could be used:
|
|
* - non-exact states comparison establishes sub-state relation and uses
|
|
* read and precision marks to do so, these marks are propagated from
|
|
* children states and thus are not guaranteed to be final in a loop;
|
|
* - exact states comparison just checks if current and explored states
|
|
* are identical (and thus form a back-edge).
|
|
*
|
|
* Paper "A New Algorithm for Identifying Loops in Decompilation"
|
|
* by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
|
|
* algorithm for loop structure detection and gives an overview of
|
|
* relevant terminology. It also has helpful illustrations.
|
|
*
|
|
* [1] https://api.semanticscholar.org/CorpusID:15784067
|
|
*
|
|
* We use a similar algorithm but because loop nested structure is
|
|
* irrelevant for verifier ours is significantly simpler and resembles
|
|
* strongly connected components algorithm from Sedgewick's textbook.
|
|
*
|
|
* Define topmost loop entry as a first node of the loop traversed in a
|
|
* depth first search starting from initial state. The goal of the loop
|
|
* tracking algorithm is to associate topmost loop entries with states
|
|
* derived from these entries.
|
|
*
|
|
* For each step in the DFS states traversal algorithm needs to identify
|
|
* the following situations:
|
|
*
|
|
* initial initial initial
|
|
* | | |
|
|
* V V V
|
|
* ... ... .---------> hdr
|
|
* | | | |
|
|
* V V | V
|
|
* cur .-> succ | .------...
|
|
* | | | | | |
|
|
* V | V | V V
|
|
* succ '-- cur | ... ...
|
|
* | | |
|
|
* | V V
|
|
* | succ <- cur
|
|
* | |
|
|
* | V
|
|
* | ...
|
|
* | |
|
|
* '----'
|
|
*
|
|
* (A) successor state of cur (B) successor state of cur or it's entry
|
|
* not yet traversed are in current DFS path, thus cur and succ
|
|
* are members of the same outermost loop
|
|
*
|
|
* initial initial
|
|
* | |
|
|
* V V
|
|
* ... ...
|
|
* | |
|
|
* V V
|
|
* .------... .------...
|
|
* | | | |
|
|
* V V V V
|
|
* .-> hdr ... ... ...
|
|
* | | | | |
|
|
* | V V V V
|
|
* | succ <- cur succ <- cur
|
|
* | | |
|
|
* | V V
|
|
* | ... ...
|
|
* | | |
|
|
* '----' exit
|
|
*
|
|
* (C) successor state of cur is a part of some loop but this loop
|
|
* does not include cur or successor state is not in a loop at all.
|
|
*
|
|
* Algorithm could be described as the following python code:
|
|
*
|
|
* traversed = set() # Set of traversed nodes
|
|
* entries = {} # Mapping from node to loop entry
|
|
* depths = {} # Depth level assigned to graph node
|
|
* path = set() # Current DFS path
|
|
*
|
|
* # Find outermost loop entry known for n
|
|
* def get_loop_entry(n):
|
|
* h = entries.get(n, None)
|
|
* while h in entries and entries[h] != h:
|
|
* h = entries[h]
|
|
* return h
|
|
*
|
|
* # Update n's loop entry if h's outermost entry comes
|
|
* # before n's outermost entry in current DFS path.
|
|
* def update_loop_entry(n, h):
|
|
* n1 = get_loop_entry(n) or n
|
|
* h1 = get_loop_entry(h) or h
|
|
* if h1 in path and depths[h1] <= depths[n1]:
|
|
* entries[n] = h1
|
|
*
|
|
* def dfs(n, depth):
|
|
* traversed.add(n)
|
|
* path.add(n)
|
|
* depths[n] = depth
|
|
* for succ in G.successors(n):
|
|
* if succ not in traversed:
|
|
* # Case A: explore succ and update cur's loop entry
|
|
* # only if succ's entry is in current DFS path.
|
|
* dfs(succ, depth + 1)
|
|
* h = get_loop_entry(succ)
|
|
* update_loop_entry(n, h)
|
|
* else:
|
|
* # Case B or C depending on `h1 in path` check in update_loop_entry().
|
|
* update_loop_entry(n, succ)
|
|
* path.remove(n)
|
|
*
|
|
* To adapt this algorithm for use with verifier:
|
|
* - use st->branch == 0 as a signal that DFS of succ had been finished
|
|
* and cur's loop entry has to be updated (case A), handle this in
|
|
* update_branch_counts();
|
|
* - use st->branch > 0 as a signal that st is in the current DFS path;
|
|
* - handle cases B and C in is_state_visited();
|
|
* - update topmost loop entry for intermediate states in get_loop_entry().
|
|
*/
|
|
static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
|
|
{
|
|
struct bpf_verifier_state *topmost = st->loop_entry, *old;
|
|
|
|
while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
|
|
topmost = topmost->loop_entry;
|
|
/* Update loop entries for intermediate states to avoid this
|
|
* traversal in future get_loop_entry() calls.
|
|
*/
|
|
while (st && st->loop_entry != topmost) {
|
|
old = st->loop_entry;
|
|
st->loop_entry = topmost;
|
|
st = old;
|
|
}
|
|
return topmost;
|
|
}
|
|
|
|
static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
|
|
{
|
|
struct bpf_verifier_state *cur1, *hdr1;
|
|
|
|
cur1 = get_loop_entry(cur) ?: cur;
|
|
hdr1 = get_loop_entry(hdr) ?: hdr;
|
|
/* The head1->branches check decides between cases B and C in
|
|
* comment for get_loop_entry(). If hdr1->branches == 0 then
|
|
* head's topmost loop entry is not in current DFS path,
|
|
* hence 'cur' and 'hdr' are not in the same loop and there is
|
|
* no need to update cur->loop_entry.
|
|
*/
|
|
if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
|
|
cur->loop_entry = hdr;
|
|
hdr->used_as_loop_entry = true;
|
|
}
|
|
}
|
|
|
|
static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
|
|
{
|
|
while (st) {
|
|
u32 br = --st->branches;
|
|
|
|
/* br == 0 signals that DFS exploration for 'st' is finished,
|
|
* thus it is necessary to update parent's loop entry if it
|
|
* turned out that st is a part of some loop.
|
|
* This is a part of 'case A' in get_loop_entry() comment.
|
|
*/
|
|
if (br == 0 && st->parent && st->loop_entry)
|
|
update_loop_entry(st->parent, st->loop_entry);
|
|
|
|
/* WARN_ON(br > 1) technically makes sense here,
|
|
* but see comment in push_stack(), hence:
|
|
*/
|
|
WARN_ONCE((int)br < 0,
|
|
"BUG update_branch_counts:branches_to_explore=%d\n",
|
|
br);
|
|
if (br)
|
|
break;
|
|
st = st->parent;
|
|
}
|
|
}
|
|
|
|
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
|
|
int *insn_idx, bool pop_log)
|
|
{
|
|
struct bpf_verifier_state *cur = env->cur_state;
|
|
struct bpf_verifier_stack_elem *elem, *head = env->head;
|
|
int err;
|
|
|
|
if (env->head == NULL)
|
|
return -ENOENT;
|
|
|
|
if (cur) {
|
|
err = copy_verifier_state(cur, &head->st);
|
|
if (err)
|
|
return err;
|
|
}
|
|
if (pop_log)
|
|
bpf_vlog_reset(&env->log, head->log_pos);
|
|
if (insn_idx)
|
|
*insn_idx = head->insn_idx;
|
|
if (prev_insn_idx)
|
|
*prev_insn_idx = head->prev_insn_idx;
|
|
elem = head->next;
|
|
free_verifier_state(&head->st, false);
|
|
kfree(head);
|
|
env->head = elem;
|
|
env->stack_size--;
|
|
return 0;
|
|
}
|
|
|
|
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
|
|
int insn_idx, int prev_insn_idx,
|
|
bool speculative)
|
|
{
|
|
struct bpf_verifier_state *cur = env->cur_state;
|
|
struct bpf_verifier_stack_elem *elem;
|
|
int err;
|
|
|
|
elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
|
|
if (!elem)
|
|
goto err;
|
|
|
|
elem->insn_idx = insn_idx;
|
|
elem->prev_insn_idx = prev_insn_idx;
|
|
elem->next = env->head;
|
|
elem->log_pos = env->log.end_pos;
|
|
env->head = elem;
|
|
env->stack_size++;
|
|
err = copy_verifier_state(&elem->st, cur);
|
|
if (err)
|
|
goto err;
|
|
elem->st.speculative |= speculative;
|
|
if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
|
|
verbose(env, "The sequence of %d jumps is too complex.\n",
|
|
env->stack_size);
|
|
goto err;
|
|
}
|
|
if (elem->st.parent) {
|
|
++elem->st.parent->branches;
|
|
/* WARN_ON(branches > 2) technically makes sense here,
|
|
* but
|
|
* 1. speculative states will bump 'branches' for non-branch
|
|
* instructions
|
|
* 2. is_state_visited() heuristics may decide not to create
|
|
* a new state for a sequence of branches and all such current
|
|
* and cloned states will be pointing to a single parent state
|
|
* which might have large 'branches' count.
|
|
*/
|
|
}
|
|
return &elem->st;
|
|
err:
|
|
free_verifier_state(env->cur_state, true);
|
|
env->cur_state = NULL;
|
|
/* pop all elements and return */
|
|
while (!pop_stack(env, NULL, NULL, false));
|
|
return NULL;
|
|
}
|
|
|
|
#define CALLER_SAVED_REGS 6
|
|
static const int caller_saved[CALLER_SAVED_REGS] = {
|
|
BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
|
|
};
|
|
|
|
/* This helper doesn't clear reg->id */
|
|
static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
|
|
{
|
|
reg->var_off = tnum_const(imm);
|
|
reg->smin_value = (s64)imm;
|
|
reg->smax_value = (s64)imm;
|
|
reg->umin_value = imm;
|
|
reg->umax_value = imm;
|
|
|
|
reg->s32_min_value = (s32)imm;
|
|
reg->s32_max_value = (s32)imm;
|
|
reg->u32_min_value = (u32)imm;
|
|
reg->u32_max_value = (u32)imm;
|
|
}
|
|
|
|
/* Mark the unknown part of a register (variable offset or scalar value) as
|
|
* known to have the value @imm.
|
|
*/
|
|
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
|
|
{
|
|
/* Clear off and union(map_ptr, range) */
|
|
memset(((u8 *)reg) + sizeof(reg->type), 0,
|
|
offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
|
|
reg->id = 0;
|
|
reg->ref_obj_id = 0;
|
|
___mark_reg_known(reg, imm);
|
|
}
|
|
|
|
static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
|
|
{
|
|
reg->var_off = tnum_const_subreg(reg->var_off, imm);
|
|
reg->s32_min_value = (s32)imm;
|
|
reg->s32_max_value = (s32)imm;
|
|
reg->u32_min_value = (u32)imm;
|
|
reg->u32_max_value = (u32)imm;
|
|
}
|
|
|
|
/* Mark the 'variable offset' part of a register as zero. This should be
|
|
* used only on registers holding a pointer type.
|
|
*/
|
|
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
|
|
{
|
|
__mark_reg_known(reg, 0);
|
|
}
|
|
|
|
static void __mark_reg_const_zero(struct bpf_reg_state *reg)
|
|
{
|
|
__mark_reg_known(reg, 0);
|
|
reg->type = SCALAR_VALUE;
|
|
}
|
|
|
|
static void mark_reg_known_zero(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *regs, u32 regno)
|
|
{
|
|
if (WARN_ON(regno >= MAX_BPF_REG)) {
|
|
verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
|
|
/* Something bad happened, let's kill all regs */
|
|
for (regno = 0; regno < MAX_BPF_REG; regno++)
|
|
__mark_reg_not_init(env, regs + regno);
|
|
return;
|
|
}
|
|
__mark_reg_known_zero(regs + regno);
|
|
}
|
|
|
|
static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
|
|
bool first_slot, int dynptr_id)
|
|
{
|
|
/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
|
|
* callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
|
|
* set it unconditionally as it is ignored for STACK_DYNPTR anyway.
|
|
*/
|
|
__mark_reg_known_zero(reg);
|
|
reg->type = CONST_PTR_TO_DYNPTR;
|
|
/* Give each dynptr a unique id to uniquely associate slices to it. */
|
|
reg->id = dynptr_id;
|
|
reg->dynptr.type = type;
|
|
reg->dynptr.first_slot = first_slot;
|
|
}
|
|
|
|
static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
|
|
{
|
|
if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
|
|
const struct bpf_map *map = reg->map_ptr;
|
|
|
|
if (map->inner_map_meta) {
|
|
reg->type = CONST_PTR_TO_MAP;
|
|
reg->map_ptr = map->inner_map_meta;
|
|
/* transfer reg's id which is unique for every map_lookup_elem
|
|
* as UID of the inner map.
|
|
*/
|
|
if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
|
|
reg->map_uid = reg->id;
|
|
} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
|
|
reg->type = PTR_TO_XDP_SOCK;
|
|
} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
|
|
map->map_type == BPF_MAP_TYPE_SOCKHASH) {
|
|
reg->type = PTR_TO_SOCKET;
|
|
} else {
|
|
reg->type = PTR_TO_MAP_VALUE;
|
|
}
|
|
return;
|
|
}
|
|
|
|
reg->type &= ~PTR_MAYBE_NULL;
|
|
}
|
|
|
|
static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
|
|
struct btf_field_graph_root *ds_head)
|
|
{
|
|
__mark_reg_known_zero(®s[regno]);
|
|
regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
|
|
regs[regno].btf = ds_head->btf;
|
|
regs[regno].btf_id = ds_head->value_btf_id;
|
|
regs[regno].off = ds_head->node_offset;
|
|
}
|
|
|
|
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
|
|
{
|
|
return type_is_pkt_pointer(reg->type);
|
|
}
|
|
|
|
static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
|
|
{
|
|
return reg_is_pkt_pointer(reg) ||
|
|
reg->type == PTR_TO_PACKET_END;
|
|
}
|
|
|
|
static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
|
|
{
|
|
return base_type(reg->type) == PTR_TO_MEM &&
|
|
(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
|
|
}
|
|
|
|
/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
|
|
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
|
|
enum bpf_reg_type which)
|
|
{
|
|
/* The register can already have a range from prior markings.
|
|
* This is fine as long as it hasn't been advanced from its
|
|
* origin.
|
|
*/
|
|
return reg->type == which &&
|
|
reg->id == 0 &&
|
|
reg->off == 0 &&
|
|
tnum_equals_const(reg->var_off, 0);
|
|
}
|
|
|
|
/* Reset the min/max bounds of a register */
|
|
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
|
|
{
|
|
reg->smin_value = S64_MIN;
|
|
reg->smax_value = S64_MAX;
|
|
reg->umin_value = 0;
|
|
reg->umax_value = U64_MAX;
|
|
|
|
reg->s32_min_value = S32_MIN;
|
|
reg->s32_max_value = S32_MAX;
|
|
reg->u32_min_value = 0;
|
|
reg->u32_max_value = U32_MAX;
|
|
}
|
|
|
|
static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
|
|
{
|
|
reg->smin_value = S64_MIN;
|
|
reg->smax_value = S64_MAX;
|
|
reg->umin_value = 0;
|
|
reg->umax_value = U64_MAX;
|
|
}
|
|
|
|
static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
|
|
{
|
|
reg->s32_min_value = S32_MIN;
|
|
reg->s32_max_value = S32_MAX;
|
|
reg->u32_min_value = 0;
|
|
reg->u32_max_value = U32_MAX;
|
|
}
|
|
|
|
static void __update_reg32_bounds(struct bpf_reg_state *reg)
|
|
{
|
|
struct tnum var32_off = tnum_subreg(reg->var_off);
|
|
|
|
/* min signed is max(sign bit) | min(other bits) */
|
|
reg->s32_min_value = max_t(s32, reg->s32_min_value,
|
|
var32_off.value | (var32_off.mask & S32_MIN));
|
|
/* max signed is min(sign bit) | max(other bits) */
|
|
reg->s32_max_value = min_t(s32, reg->s32_max_value,
|
|
var32_off.value | (var32_off.mask & S32_MAX));
|
|
reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
|
|
reg->u32_max_value = min(reg->u32_max_value,
|
|
(u32)(var32_off.value | var32_off.mask));
|
|
}
|
|
|
|
static void __update_reg64_bounds(struct bpf_reg_state *reg)
|
|
{
|
|
/* min signed is max(sign bit) | min(other bits) */
|
|
reg->smin_value = max_t(s64, reg->smin_value,
|
|
reg->var_off.value | (reg->var_off.mask & S64_MIN));
|
|
/* max signed is min(sign bit) | max(other bits) */
|
|
reg->smax_value = min_t(s64, reg->smax_value,
|
|
reg->var_off.value | (reg->var_off.mask & S64_MAX));
|
|
reg->umin_value = max(reg->umin_value, reg->var_off.value);
|
|
reg->umax_value = min(reg->umax_value,
|
|
reg->var_off.value | reg->var_off.mask);
|
|
}
|
|
|
|
static void __update_reg_bounds(struct bpf_reg_state *reg)
|
|
{
|
|
__update_reg32_bounds(reg);
|
|
__update_reg64_bounds(reg);
|
|
}
|
|
|
|
/* Uses signed min/max values to inform unsigned, and vice-versa */
|
|
static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
|
|
{
|
|
/* If upper 32 bits of u64/s64 range don't change, we can use lower 32
|
|
* bits to improve our u32/s32 boundaries.
|
|
*
|
|
* E.g., the case where we have upper 32 bits as zero ([10, 20] in
|
|
* u64) is pretty trivial, it's obvious that in u32 we'll also have
|
|
* [10, 20] range. But this property holds for any 64-bit range as
|
|
* long as upper 32 bits in that entire range of values stay the same.
|
|
*
|
|
* E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
|
|
* in decimal) has the same upper 32 bits throughout all the values in
|
|
* that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
|
|
* range.
|
|
*
|
|
* Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
|
|
* following the rules outlined below about u64/s64 correspondence
|
|
* (which equally applies to u32 vs s32 correspondence). In general it
|
|
* depends on actual hexadecimal values of 32-bit range. They can form
|
|
* only valid u32, or only valid s32 ranges in some cases.
|
|
*
|
|
* So we use all these insights to derive bounds for subregisters here.
|
|
*/
|
|
if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
|
|
/* u64 to u32 casting preserves validity of low 32 bits as
|
|
* a range, if upper 32 bits are the same
|
|
*/
|
|
reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
|
|
reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
|
|
|
|
if ((s32)reg->umin_value <= (s32)reg->umax_value) {
|
|
reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
|
|
reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
|
|
}
|
|
}
|
|
if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
|
|
/* low 32 bits should form a proper u32 range */
|
|
if ((u32)reg->smin_value <= (u32)reg->smax_value) {
|
|
reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
|
|
reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
|
|
}
|
|
/* low 32 bits should form a proper s32 range */
|
|
if ((s32)reg->smin_value <= (s32)reg->smax_value) {
|
|
reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
|
|
reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
|
|
}
|
|
}
|
|
/* Special case where upper bits form a small sequence of two
|
|
* sequential numbers (in 32-bit unsigned space, so 0xffffffff to
|
|
* 0x00000000 is also valid), while lower bits form a proper s32 range
|
|
* going from negative numbers to positive numbers. E.g., let's say we
|
|
* have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
|
|
* Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
|
|
* 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
|
|
* we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
|
|
* Note that it doesn't have to be 0xffffffff going to 0x00000000 in
|
|
* upper 32 bits. As a random example, s64 range
|
|
* [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
|
|
* [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
|
|
*/
|
|
if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
|
|
(s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
|
|
reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
|
|
reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
|
|
}
|
|
if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
|
|
(s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
|
|
reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
|
|
reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
|
|
}
|
|
/* if u32 range forms a valid s32 range (due to matching sign bit),
|
|
* try to learn from that
|
|
*/
|
|
if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
|
|
reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
|
|
reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
|
|
}
|
|
/* If we cannot cross the sign boundary, then signed and unsigned bounds
|
|
* are the same, so combine. This works even in the negative case, e.g.
|
|
* -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
|
|
*/
|
|
if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
|
|
reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
|
|
reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
|
|
}
|
|
}
|
|
|
|
static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
|
|
{
|
|
/* If u64 range forms a valid s64 range (due to matching sign bit),
|
|
* try to learn from that. Let's do a bit of ASCII art to see when
|
|
* this is happening. Let's take u64 range first:
|
|
*
|
|
* 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX
|
|
* |-------------------------------|--------------------------------|
|
|
*
|
|
* Valid u64 range is formed when umin and umax are anywhere in the
|
|
* range [0, U64_MAX], and umin <= umax. u64 case is simple and
|
|
* straightforward. Let's see how s64 range maps onto the same range
|
|
* of values, annotated below the line for comparison:
|
|
*
|
|
* 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX
|
|
* |-------------------------------|--------------------------------|
|
|
* 0 S64_MAX S64_MIN -1
|
|
*
|
|
* So s64 values basically start in the middle and they are logically
|
|
* contiguous to the right of it, wrapping around from -1 to 0, and
|
|
* then finishing as S64_MAX (0x7fffffffffffffff) right before
|
|
* S64_MIN. We can try drawing the continuity of u64 vs s64 values
|
|
* more visually as mapped to sign-agnostic range of hex values.
|
|
*
|
|
* u64 start u64 end
|
|
* _______________________________________________________________
|
|
* / \
|
|
* 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX
|
|
* |-------------------------------|--------------------------------|
|
|
* 0 S64_MAX S64_MIN -1
|
|
* / \
|
|
* >------------------------------ ------------------------------->
|
|
* s64 continues... s64 end s64 start s64 "midpoint"
|
|
*
|
|
* What this means is that, in general, we can't always derive
|
|
* something new about u64 from any random s64 range, and vice versa.
|
|
*
|
|
* But we can do that in two particular cases. One is when entire
|
|
* u64/s64 range is *entirely* contained within left half of the above
|
|
* diagram or when it is *entirely* contained in the right half. I.e.:
|
|
*
|
|
* |-------------------------------|--------------------------------|
|
|
* ^ ^ ^ ^
|
|
* A B C D
|
|
*
|
|
* [A, B] and [C, D] are contained entirely in their respective halves
|
|
* and form valid contiguous ranges as both u64 and s64 values. [A, B]
|
|
* will be non-negative both as u64 and s64 (and in fact it will be
|
|
* identical ranges no matter the signedness). [C, D] treated as s64
|
|
* will be a range of negative values, while in u64 it will be
|
|
* non-negative range of values larger than 0x8000000000000000.
|
|
*
|
|
* Now, any other range here can't be represented in both u64 and s64
|
|
* simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
|
|
* contiguous u64 ranges, but they are discontinuous in s64. [B, C]
|
|
* in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
|
|
* for example. Similarly, valid s64 range [D, A] (going from negative
|
|
* to positive values), would be two separate [D, U64_MAX] and [0, A]
|
|
* ranges as u64. Currently reg_state can't represent two segments per
|
|
* numeric domain, so in such situations we can only derive maximal
|
|
* possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
|
|
*
|
|
* So we use these facts to derive umin/umax from smin/smax and vice
|
|
* versa only if they stay within the same "half". This is equivalent
|
|
* to checking sign bit: lower half will have sign bit as zero, upper
|
|
* half have sign bit 1. Below in code we simplify this by just
|
|
* casting umin/umax as smin/smax and checking if they form valid
|
|
* range, and vice versa. Those are equivalent checks.
|
|
*/
|
|
if ((s64)reg->umin_value <= (s64)reg->umax_value) {
|
|
reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
|
|
reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
|
|
}
|
|
/* If we cannot cross the sign boundary, then signed and unsigned bounds
|
|
* are the same, so combine. This works even in the negative case, e.g.
|
|
* -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
|
|
*/
|
|
if ((u64)reg->smin_value <= (u64)reg->smax_value) {
|
|
reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
|
|
reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
|
|
}
|
|
}
|
|
|
|
static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
|
|
{
|
|
/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
|
|
* values on both sides of 64-bit range in hope to have tigher range.
|
|
* E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
|
|
* 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
|
|
* With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
|
|
* (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
|
|
* _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
|
|
* better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
|
|
* We just need to make sure that derived bounds we are intersecting
|
|
* with are well-formed ranges in respecitve s64 or u64 domain, just
|
|
* like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
|
|
*/
|
|
__u64 new_umin, new_umax;
|
|
__s64 new_smin, new_smax;
|
|
|
|
/* u32 -> u64 tightening, it's always well-formed */
|
|
new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
|
|
new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
|
|
reg->umin_value = max_t(u64, reg->umin_value, new_umin);
|
|
reg->umax_value = min_t(u64, reg->umax_value, new_umax);
|
|
/* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
|
|
new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
|
|
new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
|
|
reg->smin_value = max_t(s64, reg->smin_value, new_smin);
|
|
reg->smax_value = min_t(s64, reg->smax_value, new_smax);
|
|
|
|
/* if s32 can be treated as valid u32 range, we can use it as well */
|
|
if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
|
|
/* s32 -> u64 tightening */
|
|
new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
|
|
new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
|
|
reg->umin_value = max_t(u64, reg->umin_value, new_umin);
|
|
reg->umax_value = min_t(u64, reg->umax_value, new_umax);
|
|
/* s32 -> s64 tightening */
|
|
new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
|
|
new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
|
|
reg->smin_value = max_t(s64, reg->smin_value, new_smin);
|
|
reg->smax_value = min_t(s64, reg->smax_value, new_smax);
|
|
}
|
|
}
|
|
|
|
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
|
|
{
|
|
__reg32_deduce_bounds(reg);
|
|
__reg64_deduce_bounds(reg);
|
|
__reg_deduce_mixed_bounds(reg);
|
|
}
|
|
|
|
/* Attempts to improve var_off based on unsigned min/max information */
|
|
static void __reg_bound_offset(struct bpf_reg_state *reg)
|
|
{
|
|
struct tnum var64_off = tnum_intersect(reg->var_off,
|
|
tnum_range(reg->umin_value,
|
|
reg->umax_value));
|
|
struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
|
|
tnum_range(reg->u32_min_value,
|
|
reg->u32_max_value));
|
|
|
|
reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
|
|
}
|
|
|
|
static void reg_bounds_sync(struct bpf_reg_state *reg)
|
|
{
|
|
/* We might have learned new bounds from the var_off. */
|
|
__update_reg_bounds(reg);
|
|
/* We might have learned something about the sign bit. */
|
|
__reg_deduce_bounds(reg);
|
|
__reg_deduce_bounds(reg);
|
|
/* We might have learned some bits from the bounds. */
|
|
__reg_bound_offset(reg);
|
|
/* Intersecting with the old var_off might have improved our bounds
|
|
* slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
|
|
* then new var_off is (0; 0x7f...fc) which improves our umax.
|
|
*/
|
|
__update_reg_bounds(reg);
|
|
}
|
|
|
|
static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg, const char *ctx)
|
|
{
|
|
const char *msg;
|
|
|
|
if (reg->umin_value > reg->umax_value ||
|
|
reg->smin_value > reg->smax_value ||
|
|
reg->u32_min_value > reg->u32_max_value ||
|
|
reg->s32_min_value > reg->s32_max_value) {
|
|
msg = "range bounds violation";
|
|
goto out;
|
|
}
|
|
|
|
if (tnum_is_const(reg->var_off)) {
|
|
u64 uval = reg->var_off.value;
|
|
s64 sval = (s64)uval;
|
|
|
|
if (reg->umin_value != uval || reg->umax_value != uval ||
|
|
reg->smin_value != sval || reg->smax_value != sval) {
|
|
msg = "const tnum out of sync with range bounds";
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (tnum_subreg_is_const(reg->var_off)) {
|
|
u32 uval32 = tnum_subreg(reg->var_off).value;
|
|
s32 sval32 = (s32)uval32;
|
|
|
|
if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
|
|
reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
|
|
msg = "const subreg tnum out of sync with range bounds";
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
out:
|
|
verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
|
|
"s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n",
|
|
ctx, msg, reg->umin_value, reg->umax_value,
|
|
reg->smin_value, reg->smax_value,
|
|
reg->u32_min_value, reg->u32_max_value,
|
|
reg->s32_min_value, reg->s32_max_value,
|
|
reg->var_off.value, reg->var_off.mask);
|
|
if (env->test_reg_invariants)
|
|
return -EFAULT;
|
|
__mark_reg_unbounded(reg);
|
|
return 0;
|
|
}
|
|
|
|
static bool __reg32_bound_s64(s32 a)
|
|
{
|
|
return a >= 0 && a <= S32_MAX;
|
|
}
|
|
|
|
static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
|
|
{
|
|
reg->umin_value = reg->u32_min_value;
|
|
reg->umax_value = reg->u32_max_value;
|
|
|
|
/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
|
|
* be positive otherwise set to worse case bounds and refine later
|
|
* from tnum.
|
|
*/
|
|
if (__reg32_bound_s64(reg->s32_min_value) &&
|
|
__reg32_bound_s64(reg->s32_max_value)) {
|
|
reg->smin_value = reg->s32_min_value;
|
|
reg->smax_value = reg->s32_max_value;
|
|
} else {
|
|
reg->smin_value = 0;
|
|
reg->smax_value = U32_MAX;
|
|
}
|
|
}
|
|
|
|
/* Mark a register as having a completely unknown (scalar) value. */
|
|
static void __mark_reg_unknown(const struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg)
|
|
{
|
|
/*
|
|
* Clear type, off, and union(map_ptr, range) and
|
|
* padding between 'type' and union
|
|
*/
|
|
memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
|
|
reg->type = SCALAR_VALUE;
|
|
reg->id = 0;
|
|
reg->ref_obj_id = 0;
|
|
reg->var_off = tnum_unknown;
|
|
reg->frameno = 0;
|
|
reg->precise = !env->bpf_capable;
|
|
__mark_reg_unbounded(reg);
|
|
}
|
|
|
|
static void mark_reg_unknown(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *regs, u32 regno)
|
|
{
|
|
if (WARN_ON(regno >= MAX_BPF_REG)) {
|
|
verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
|
|
/* Something bad happened, let's kill all regs except FP */
|
|
for (regno = 0; regno < BPF_REG_FP; regno++)
|
|
__mark_reg_not_init(env, regs + regno);
|
|
return;
|
|
}
|
|
__mark_reg_unknown(env, regs + regno);
|
|
}
|
|
|
|
static void __mark_reg_not_init(const struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg)
|
|
{
|
|
__mark_reg_unknown(env, reg);
|
|
reg->type = NOT_INIT;
|
|
}
|
|
|
|
static void mark_reg_not_init(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *regs, u32 regno)
|
|
{
|
|
if (WARN_ON(regno >= MAX_BPF_REG)) {
|
|
verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
|
|
/* Something bad happened, let's kill all regs except FP */
|
|
for (regno = 0; regno < BPF_REG_FP; regno++)
|
|
__mark_reg_not_init(env, regs + regno);
|
|
return;
|
|
}
|
|
__mark_reg_not_init(env, regs + regno);
|
|
}
|
|
|
|
static void mark_btf_ld_reg(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *regs, u32 regno,
|
|
enum bpf_reg_type reg_type,
|
|
struct btf *btf, u32 btf_id,
|
|
enum bpf_type_flag flag)
|
|
{
|
|
if (reg_type == SCALAR_VALUE) {
|
|
mark_reg_unknown(env, regs, regno);
|
|
return;
|
|
}
|
|
mark_reg_known_zero(env, regs, regno);
|
|
regs[regno].type = PTR_TO_BTF_ID | flag;
|
|
regs[regno].btf = btf;
|
|
regs[regno].btf_id = btf_id;
|
|
}
|
|
|
|
#define DEF_NOT_SUBREG (0)
|
|
static void init_reg_state(struct bpf_verifier_env *env,
|
|
struct bpf_func_state *state)
|
|
{
|
|
struct bpf_reg_state *regs = state->regs;
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_BPF_REG; i++) {
|
|
mark_reg_not_init(env, regs, i);
|
|
regs[i].live = REG_LIVE_NONE;
|
|
regs[i].parent = NULL;
|
|
regs[i].subreg_def = DEF_NOT_SUBREG;
|
|
}
|
|
|
|
/* frame pointer */
|
|
regs[BPF_REG_FP].type = PTR_TO_STACK;
|
|
mark_reg_known_zero(env, regs, BPF_REG_FP);
|
|
regs[BPF_REG_FP].frameno = state->frameno;
|
|
}
|
|
|
|
static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
|
|
{
|
|
return (struct bpf_retval_range){ minval, maxval };
|
|
}
|
|
|
|
#define BPF_MAIN_FUNC (-1)
|
|
static void init_func_state(struct bpf_verifier_env *env,
|
|
struct bpf_func_state *state,
|
|
int callsite, int frameno, int subprogno)
|
|
{
|
|
state->callsite = callsite;
|
|
state->frameno = frameno;
|
|
state->subprogno = subprogno;
|
|
state->callback_ret_range = retval_range(0, 0);
|
|
init_reg_state(env, state);
|
|
mark_verifier_state_scratched(env);
|
|
}
|
|
|
|
/* Similar to push_stack(), but for async callbacks */
|
|
static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
|
|
int insn_idx, int prev_insn_idx,
|
|
int subprog)
|
|
{
|
|
struct bpf_verifier_stack_elem *elem;
|
|
struct bpf_func_state *frame;
|
|
|
|
elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
|
|
if (!elem)
|
|
goto err;
|
|
|
|
elem->insn_idx = insn_idx;
|
|
elem->prev_insn_idx = prev_insn_idx;
|
|
elem->next = env->head;
|
|
elem->log_pos = env->log.end_pos;
|
|
env->head = elem;
|
|
env->stack_size++;
|
|
if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
|
|
verbose(env,
|
|
"The sequence of %d jumps is too complex for async cb.\n",
|
|
env->stack_size);
|
|
goto err;
|
|
}
|
|
/* Unlike push_stack() do not copy_verifier_state().
|
|
* The caller state doesn't matter.
|
|
* This is async callback. It starts in a fresh stack.
|
|
* Initialize it similar to do_check_common().
|
|
*/
|
|
elem->st.branches = 1;
|
|
frame = kzalloc(sizeof(*frame), GFP_KERNEL);
|
|
if (!frame)
|
|
goto err;
|
|
init_func_state(env, frame,
|
|
BPF_MAIN_FUNC /* callsite */,
|
|
0 /* frameno within this callchain */,
|
|
subprog /* subprog number within this prog */);
|
|
elem->st.frame[0] = frame;
|
|
return &elem->st;
|
|
err:
|
|
free_verifier_state(env->cur_state, true);
|
|
env->cur_state = NULL;
|
|
/* pop all elements and return */
|
|
while (!pop_stack(env, NULL, NULL, false));
|
|
return NULL;
|
|
}
|
|
|
|
|
|
enum reg_arg_type {
|
|
SRC_OP, /* register is used as source operand */
|
|
DST_OP, /* register is used as destination operand */
|
|
DST_OP_NO_MARK /* same as above, check only, don't mark */
|
|
};
|
|
|
|
static int cmp_subprogs(const void *a, const void *b)
|
|
{
|
|
return ((struct bpf_subprog_info *)a)->start -
|
|
((struct bpf_subprog_info *)b)->start;
|
|
}
|
|
|
|
static int find_subprog(struct bpf_verifier_env *env, int off)
|
|
{
|
|
struct bpf_subprog_info *p;
|
|
|
|
p = bsearch(&off, env->subprog_info, env->subprog_cnt,
|
|
sizeof(env->subprog_info[0]), cmp_subprogs);
|
|
if (!p)
|
|
return -ENOENT;
|
|
return p - env->subprog_info;
|
|
|
|
}
|
|
|
|
static int add_subprog(struct bpf_verifier_env *env, int off)
|
|
{
|
|
int insn_cnt = env->prog->len;
|
|
int ret;
|
|
|
|
if (off >= insn_cnt || off < 0) {
|
|
verbose(env, "call to invalid destination\n");
|
|
return -EINVAL;
|
|
}
|
|
ret = find_subprog(env, off);
|
|
if (ret >= 0)
|
|
return ret;
|
|
if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
|
|
verbose(env, "too many subprograms\n");
|
|
return -E2BIG;
|
|
}
|
|
/* determine subprog starts. The end is one before the next starts */
|
|
env->subprog_info[env->subprog_cnt++].start = off;
|
|
sort(env->subprog_info, env->subprog_cnt,
|
|
sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
|
|
return env->subprog_cnt - 1;
|
|
}
|
|
|
|
static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_prog_aux *aux = env->prog->aux;
|
|
struct btf *btf = aux->btf;
|
|
const struct btf_type *t;
|
|
u32 main_btf_id, id;
|
|
const char *name;
|
|
int ret, i;
|
|
|
|
/* Non-zero func_info_cnt implies valid btf */
|
|
if (!aux->func_info_cnt)
|
|
return 0;
|
|
main_btf_id = aux->func_info[0].type_id;
|
|
|
|
t = btf_type_by_id(btf, main_btf_id);
|
|
if (!t) {
|
|
verbose(env, "invalid btf id for main subprog in func_info\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
|
|
if (IS_ERR(name)) {
|
|
ret = PTR_ERR(name);
|
|
/* If there is no tag present, there is no exception callback */
|
|
if (ret == -ENOENT)
|
|
ret = 0;
|
|
else if (ret == -EEXIST)
|
|
verbose(env, "multiple exception callback tags for main subprog\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
|
|
if (ret < 0) {
|
|
verbose(env, "exception callback '%s' could not be found in BTF\n", name);
|
|
return ret;
|
|
}
|
|
id = ret;
|
|
t = btf_type_by_id(btf, id);
|
|
if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
|
|
verbose(env, "exception callback '%s' must have global linkage\n", name);
|
|
return -EINVAL;
|
|
}
|
|
ret = 0;
|
|
for (i = 0; i < aux->func_info_cnt; i++) {
|
|
if (aux->func_info[i].type_id != id)
|
|
continue;
|
|
ret = aux->func_info[i].insn_off;
|
|
/* Further func_info and subprog checks will also happen
|
|
* later, so assume this is the right insn_off for now.
|
|
*/
|
|
if (!ret) {
|
|
verbose(env, "invalid exception callback insn_off in func_info: 0\n");
|
|
ret = -EINVAL;
|
|
}
|
|
}
|
|
if (!ret) {
|
|
verbose(env, "exception callback type id not found in func_info\n");
|
|
ret = -EINVAL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define MAX_KFUNC_DESCS 256
|
|
#define MAX_KFUNC_BTFS 256
|
|
|
|
struct bpf_kfunc_desc {
|
|
struct btf_func_model func_model;
|
|
u32 func_id;
|
|
s32 imm;
|
|
u16 offset;
|
|
unsigned long addr;
|
|
};
|
|
|
|
struct bpf_kfunc_btf {
|
|
struct btf *btf;
|
|
struct module *module;
|
|
u16 offset;
|
|
};
|
|
|
|
struct bpf_kfunc_desc_tab {
|
|
/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
|
|
* verification. JITs do lookups by bpf_insn, where func_id may not be
|
|
* available, therefore at the end of verification do_misc_fixups()
|
|
* sorts this by imm and offset.
|
|
*/
|
|
struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
|
|
u32 nr_descs;
|
|
};
|
|
|
|
struct bpf_kfunc_btf_tab {
|
|
struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
|
|
u32 nr_descs;
|
|
};
|
|
|
|
static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
|
|
{
|
|
const struct bpf_kfunc_desc *d0 = a;
|
|
const struct bpf_kfunc_desc *d1 = b;
|
|
|
|
/* func_id is not greater than BTF_MAX_TYPE */
|
|
return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
|
|
}
|
|
|
|
static int kfunc_btf_cmp_by_off(const void *a, const void *b)
|
|
{
|
|
const struct bpf_kfunc_btf *d0 = a;
|
|
const struct bpf_kfunc_btf *d1 = b;
|
|
|
|
return d0->offset - d1->offset;
|
|
}
|
|
|
|
static const struct bpf_kfunc_desc *
|
|
find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
|
|
{
|
|
struct bpf_kfunc_desc desc = {
|
|
.func_id = func_id,
|
|
.offset = offset,
|
|
};
|
|
struct bpf_kfunc_desc_tab *tab;
|
|
|
|
tab = prog->aux->kfunc_tab;
|
|
return bsearch(&desc, tab->descs, tab->nr_descs,
|
|
sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
|
|
}
|
|
|
|
int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
|
|
u16 btf_fd_idx, u8 **func_addr)
|
|
{
|
|
const struct bpf_kfunc_desc *desc;
|
|
|
|
desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
|
|
if (!desc)
|
|
return -EFAULT;
|
|
|
|
*func_addr = (u8 *)desc->addr;
|
|
return 0;
|
|
}
|
|
|
|
static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
|
|
s16 offset)
|
|
{
|
|
struct bpf_kfunc_btf kf_btf = { .offset = offset };
|
|
struct bpf_kfunc_btf_tab *tab;
|
|
struct bpf_kfunc_btf *b;
|
|
struct module *mod;
|
|
struct btf *btf;
|
|
int btf_fd;
|
|
|
|
tab = env->prog->aux->kfunc_btf_tab;
|
|
b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
|
|
sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
|
|
if (!b) {
|
|
if (tab->nr_descs == MAX_KFUNC_BTFS) {
|
|
verbose(env, "too many different module BTFs\n");
|
|
return ERR_PTR(-E2BIG);
|
|
}
|
|
|
|
if (bpfptr_is_null(env->fd_array)) {
|
|
verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
|
|
return ERR_PTR(-EPROTO);
|
|
}
|
|
|
|
if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
|
|
offset * sizeof(btf_fd),
|
|
sizeof(btf_fd)))
|
|
return ERR_PTR(-EFAULT);
|
|
|
|
btf = btf_get_by_fd(btf_fd);
|
|
if (IS_ERR(btf)) {
|
|
verbose(env, "invalid module BTF fd specified\n");
|
|
return btf;
|
|
}
|
|
|
|
if (!btf_is_module(btf)) {
|
|
verbose(env, "BTF fd for kfunc is not a module BTF\n");
|
|
btf_put(btf);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
mod = btf_try_get_module(btf);
|
|
if (!mod) {
|
|
btf_put(btf);
|
|
return ERR_PTR(-ENXIO);
|
|
}
|
|
|
|
b = &tab->descs[tab->nr_descs++];
|
|
b->btf = btf;
|
|
b->module = mod;
|
|
b->offset = offset;
|
|
|
|
sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
|
|
kfunc_btf_cmp_by_off, NULL);
|
|
}
|
|
return b->btf;
|
|
}
|
|
|
|
void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
|
|
{
|
|
if (!tab)
|
|
return;
|
|
|
|
while (tab->nr_descs--) {
|
|
module_put(tab->descs[tab->nr_descs].module);
|
|
btf_put(tab->descs[tab->nr_descs].btf);
|
|
}
|
|
kfree(tab);
|
|
}
|
|
|
|
static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
|
|
{
|
|
if (offset) {
|
|
if (offset < 0) {
|
|
/* In the future, this can be allowed to increase limit
|
|
* of fd index into fd_array, interpreted as u16.
|
|
*/
|
|
verbose(env, "negative offset disallowed for kernel module function call\n");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
return __find_kfunc_desc_btf(env, offset);
|
|
}
|
|
return btf_vmlinux ?: ERR_PTR(-ENOENT);
|
|
}
|
|
|
|
static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
|
|
{
|
|
const struct btf_type *func, *func_proto;
|
|
struct bpf_kfunc_btf_tab *btf_tab;
|
|
struct bpf_kfunc_desc_tab *tab;
|
|
struct bpf_prog_aux *prog_aux;
|
|
struct bpf_kfunc_desc *desc;
|
|
const char *func_name;
|
|
struct btf *desc_btf;
|
|
unsigned long call_imm;
|
|
unsigned long addr;
|
|
int err;
|
|
|
|
prog_aux = env->prog->aux;
|
|
tab = prog_aux->kfunc_tab;
|
|
btf_tab = prog_aux->kfunc_btf_tab;
|
|
if (!tab) {
|
|
if (!btf_vmlinux) {
|
|
verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
if (!env->prog->jit_requested) {
|
|
verbose(env, "JIT is required for calling kernel function\n");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
if (!bpf_jit_supports_kfunc_call()) {
|
|
verbose(env, "JIT does not support calling kernel function\n");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
if (!env->prog->gpl_compatible) {
|
|
verbose(env, "cannot call kernel function from non-GPL compatible program\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
tab = kzalloc(sizeof(*tab), GFP_KERNEL);
|
|
if (!tab)
|
|
return -ENOMEM;
|
|
prog_aux->kfunc_tab = tab;
|
|
}
|
|
|
|
/* func_id == 0 is always invalid, but instead of returning an error, be
|
|
* conservative and wait until the code elimination pass before returning
|
|
* error, so that invalid calls that get pruned out can be in BPF programs
|
|
* loaded from userspace. It is also required that offset be untouched
|
|
* for such calls.
|
|
*/
|
|
if (!func_id && !offset)
|
|
return 0;
|
|
|
|
if (!btf_tab && offset) {
|
|
btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
|
|
if (!btf_tab)
|
|
return -ENOMEM;
|
|
prog_aux->kfunc_btf_tab = btf_tab;
|
|
}
|
|
|
|
desc_btf = find_kfunc_desc_btf(env, offset);
|
|
if (IS_ERR(desc_btf)) {
|
|
verbose(env, "failed to find BTF for kernel function\n");
|
|
return PTR_ERR(desc_btf);
|
|
}
|
|
|
|
if (find_kfunc_desc(env->prog, func_id, offset))
|
|
return 0;
|
|
|
|
if (tab->nr_descs == MAX_KFUNC_DESCS) {
|
|
verbose(env, "too many different kernel function calls\n");
|
|
return -E2BIG;
|
|
}
|
|
|
|
func = btf_type_by_id(desc_btf, func_id);
|
|
if (!func || !btf_type_is_func(func)) {
|
|
verbose(env, "kernel btf_id %u is not a function\n",
|
|
func_id);
|
|
return -EINVAL;
|
|
}
|
|
func_proto = btf_type_by_id(desc_btf, func->type);
|
|
if (!func_proto || !btf_type_is_func_proto(func_proto)) {
|
|
verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
|
|
func_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
func_name = btf_name_by_offset(desc_btf, func->name_off);
|
|
addr = kallsyms_lookup_name(func_name);
|
|
if (!addr) {
|
|
verbose(env, "cannot find address for kernel function %s\n",
|
|
func_name);
|
|
return -EINVAL;
|
|
}
|
|
specialize_kfunc(env, func_id, offset, &addr);
|
|
|
|
if (bpf_jit_supports_far_kfunc_call()) {
|
|
call_imm = func_id;
|
|
} else {
|
|
call_imm = BPF_CALL_IMM(addr);
|
|
/* Check whether the relative offset overflows desc->imm */
|
|
if ((unsigned long)(s32)call_imm != call_imm) {
|
|
verbose(env, "address of kernel function %s is out of range\n",
|
|
func_name);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (bpf_dev_bound_kfunc_id(func_id)) {
|
|
err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
desc = &tab->descs[tab->nr_descs++];
|
|
desc->func_id = func_id;
|
|
desc->imm = call_imm;
|
|
desc->offset = offset;
|
|
desc->addr = addr;
|
|
err = btf_distill_func_proto(&env->log, desc_btf,
|
|
func_proto, func_name,
|
|
&desc->func_model);
|
|
if (!err)
|
|
sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
|
|
kfunc_desc_cmp_by_id_off, NULL);
|
|
return err;
|
|
}
|
|
|
|
static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
|
|
{
|
|
const struct bpf_kfunc_desc *d0 = a;
|
|
const struct bpf_kfunc_desc *d1 = b;
|
|
|
|
if (d0->imm != d1->imm)
|
|
return d0->imm < d1->imm ? -1 : 1;
|
|
if (d0->offset != d1->offset)
|
|
return d0->offset < d1->offset ? -1 : 1;
|
|
return 0;
|
|
}
|
|
|
|
static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
|
|
{
|
|
struct bpf_kfunc_desc_tab *tab;
|
|
|
|
tab = prog->aux->kfunc_tab;
|
|
if (!tab)
|
|
return;
|
|
|
|
sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
|
|
kfunc_desc_cmp_by_imm_off, NULL);
|
|
}
|
|
|
|
bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
|
|
{
|
|
return !!prog->aux->kfunc_tab;
|
|
}
|
|
|
|
const struct btf_func_model *
|
|
bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
|
|
const struct bpf_insn *insn)
|
|
{
|
|
const struct bpf_kfunc_desc desc = {
|
|
.imm = insn->imm,
|
|
.offset = insn->off,
|
|
};
|
|
const struct bpf_kfunc_desc *res;
|
|
struct bpf_kfunc_desc_tab *tab;
|
|
|
|
tab = prog->aux->kfunc_tab;
|
|
res = bsearch(&desc, tab->descs, tab->nr_descs,
|
|
sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
|
|
|
|
return res ? &res->func_model : NULL;
|
|
}
|
|
|
|
static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_subprog_info *subprog = env->subprog_info;
|
|
int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
|
|
struct bpf_insn *insn = env->prog->insnsi;
|
|
|
|
/* Add entry function. */
|
|
ret = add_subprog(env, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < insn_cnt; i++, insn++) {
|
|
if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
|
|
!bpf_pseudo_kfunc_call(insn))
|
|
continue;
|
|
|
|
if (!env->bpf_capable) {
|
|
verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
|
|
ret = add_subprog(env, i + insn->imm + 1);
|
|
else
|
|
ret = add_kfunc_call(env, insn->imm, insn->off);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
ret = bpf_find_exception_callback_insn_off(env);
|
|
if (ret < 0)
|
|
return ret;
|
|
ex_cb_insn = ret;
|
|
|
|
/* If ex_cb_insn > 0, this means that the main program has a subprog
|
|
* marked using BTF decl tag to serve as the exception callback.
|
|
*/
|
|
if (ex_cb_insn) {
|
|
ret = add_subprog(env, ex_cb_insn);
|
|
if (ret < 0)
|
|
return ret;
|
|
for (i = 1; i < env->subprog_cnt; i++) {
|
|
if (env->subprog_info[i].start != ex_cb_insn)
|
|
continue;
|
|
env->exception_callback_subprog = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Add a fake 'exit' subprog which could simplify subprog iteration
|
|
* logic. 'subprog_cnt' should not be increased.
|
|
*/
|
|
subprog[env->subprog_cnt].start = insn_cnt;
|
|
|
|
if (env->log.level & BPF_LOG_LEVEL2)
|
|
for (i = 0; i < env->subprog_cnt; i++)
|
|
verbose(env, "func#%d @%d\n", i, subprog[i].start);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_subprogs(struct bpf_verifier_env *env)
|
|
{
|
|
int i, subprog_start, subprog_end, off, cur_subprog = 0;
|
|
struct bpf_subprog_info *subprog = env->subprog_info;
|
|
struct bpf_insn *insn = env->prog->insnsi;
|
|
int insn_cnt = env->prog->len;
|
|
|
|
/* now check that all jumps are within the same subprog */
|
|
subprog_start = subprog[cur_subprog].start;
|
|
subprog_end = subprog[cur_subprog + 1].start;
|
|
for (i = 0; i < insn_cnt; i++) {
|
|
u8 code = insn[i].code;
|
|
|
|
if (code == (BPF_JMP | BPF_CALL) &&
|
|
insn[i].src_reg == 0 &&
|
|
insn[i].imm == BPF_FUNC_tail_call)
|
|
subprog[cur_subprog].has_tail_call = true;
|
|
if (BPF_CLASS(code) == BPF_LD &&
|
|
(BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
|
|
subprog[cur_subprog].has_ld_abs = true;
|
|
if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
|
|
goto next;
|
|
if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
|
|
goto next;
|
|
if (code == (BPF_JMP32 | BPF_JA))
|
|
off = i + insn[i].imm + 1;
|
|
else
|
|
off = i + insn[i].off + 1;
|
|
if (off < subprog_start || off >= subprog_end) {
|
|
verbose(env, "jump out of range from insn %d to %d\n", i, off);
|
|
return -EINVAL;
|
|
}
|
|
next:
|
|
if (i == subprog_end - 1) {
|
|
/* to avoid fall-through from one subprog into another
|
|
* the last insn of the subprog should be either exit
|
|
* or unconditional jump back or bpf_throw call
|
|
*/
|
|
if (code != (BPF_JMP | BPF_EXIT) &&
|
|
code != (BPF_JMP32 | BPF_JA) &&
|
|
code != (BPF_JMP | BPF_JA)) {
|
|
verbose(env, "last insn is not an exit or jmp\n");
|
|
return -EINVAL;
|
|
}
|
|
subprog_start = subprog_end;
|
|
cur_subprog++;
|
|
if (cur_subprog < env->subprog_cnt)
|
|
subprog_end = subprog[cur_subprog + 1].start;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Parentage chain of this register (or stack slot) should take care of all
|
|
* issues like callee-saved registers, stack slot allocation time, etc.
|
|
*/
|
|
static int mark_reg_read(struct bpf_verifier_env *env,
|
|
const struct bpf_reg_state *state,
|
|
struct bpf_reg_state *parent, u8 flag)
|
|
{
|
|
bool writes = parent == state->parent; /* Observe write marks */
|
|
int cnt = 0;
|
|
|
|
while (parent) {
|
|
/* if read wasn't screened by an earlier write ... */
|
|
if (writes && state->live & REG_LIVE_WRITTEN)
|
|
break;
|
|
if (parent->live & REG_LIVE_DONE) {
|
|
verbose(env, "verifier BUG type %s var_off %lld off %d\n",
|
|
reg_type_str(env, parent->type),
|
|
parent->var_off.value, parent->off);
|
|
return -EFAULT;
|
|
}
|
|
/* The first condition is more likely to be true than the
|
|
* second, checked it first.
|
|
*/
|
|
if ((parent->live & REG_LIVE_READ) == flag ||
|
|
parent->live & REG_LIVE_READ64)
|
|
/* The parentage chain never changes and
|
|
* this parent was already marked as LIVE_READ.
|
|
* There is no need to keep walking the chain again and
|
|
* keep re-marking all parents as LIVE_READ.
|
|
* This case happens when the same register is read
|
|
* multiple times without writes into it in-between.
|
|
* Also, if parent has the stronger REG_LIVE_READ64 set,
|
|
* then no need to set the weak REG_LIVE_READ32.
|
|
*/
|
|
break;
|
|
/* ... then we depend on parent's value */
|
|
parent->live |= flag;
|
|
/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
|
|
if (flag == REG_LIVE_READ64)
|
|
parent->live &= ~REG_LIVE_READ32;
|
|
state = parent;
|
|
parent = state->parent;
|
|
writes = true;
|
|
cnt++;
|
|
}
|
|
|
|
if (env->longest_mark_read_walk < cnt)
|
|
env->longest_mark_read_walk = cnt;
|
|
return 0;
|
|
}
|
|
|
|
static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
|
|
{
|
|
struct bpf_func_state *state = func(env, reg);
|
|
int spi, ret;
|
|
|
|
/* For CONST_PTR_TO_DYNPTR, it must have already been done by
|
|
* check_reg_arg in check_helper_call and mark_btf_func_reg_size in
|
|
* check_kfunc_call.
|
|
*/
|
|
if (reg->type == CONST_PTR_TO_DYNPTR)
|
|
return 0;
|
|
spi = dynptr_get_spi(env, reg);
|
|
if (spi < 0)
|
|
return spi;
|
|
/* Caller ensures dynptr is valid and initialized, which means spi is in
|
|
* bounds and spi is the first dynptr slot. Simply mark stack slot as
|
|
* read.
|
|
*/
|
|
ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
|
|
state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
|
|
if (ret)
|
|
return ret;
|
|
return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
|
|
state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
|
|
}
|
|
|
|
static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
|
|
int spi, int nr_slots)
|
|
{
|
|
struct bpf_func_state *state = func(env, reg);
|
|
int err, i;
|
|
|
|
for (i = 0; i < nr_slots; i++) {
|
|
struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
|
|
|
|
err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
|
|
if (err)
|
|
return err;
|
|
|
|
mark_stack_slot_scratched(env, spi - i);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This function is supposed to be used by the following 32-bit optimization
|
|
* code only. It returns TRUE if the source or destination register operates
|
|
* on 64-bit, otherwise return FALSE.
|
|
*/
|
|
static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
|
|
u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
|
|
{
|
|
u8 code, class, op;
|
|
|
|
code = insn->code;
|
|
class = BPF_CLASS(code);
|
|
op = BPF_OP(code);
|
|
if (class == BPF_JMP) {
|
|
/* BPF_EXIT for "main" will reach here. Return TRUE
|
|
* conservatively.
|
|
*/
|
|
if (op == BPF_EXIT)
|
|
return true;
|
|
if (op == BPF_CALL) {
|
|
/* BPF to BPF call will reach here because of marking
|
|
* caller saved clobber with DST_OP_NO_MARK for which we
|
|
* don't care the register def because they are anyway
|
|
* marked as NOT_INIT already.
|
|
*/
|
|
if (insn->src_reg == BPF_PSEUDO_CALL)
|
|
return false;
|
|
/* Helper call will reach here because of arg type
|
|
* check, conservatively return TRUE.
|
|
*/
|
|
if (t == SRC_OP)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
|
|
return false;
|
|
|
|
if (class == BPF_ALU64 || class == BPF_JMP ||
|
|
(class == BPF_ALU && op == BPF_END && insn->imm == 64))
|
|
return true;
|
|
|
|
if (class == BPF_ALU || class == BPF_JMP32)
|
|
return false;
|
|
|
|
if (class == BPF_LDX) {
|
|
if (t != SRC_OP)
|
|
return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
|
|
/* LDX source must be ptr. */
|
|
return true;
|
|
}
|
|
|
|
if (class == BPF_STX) {
|
|
/* BPF_STX (including atomic variants) has multiple source
|
|
* operands, one of which is a ptr. Check whether the caller is
|
|
* asking about it.
|
|
*/
|
|
if (t == SRC_OP && reg->type != SCALAR_VALUE)
|
|
return true;
|
|
return BPF_SIZE(code) == BPF_DW;
|
|
}
|
|
|
|
if (class == BPF_LD) {
|
|
u8 mode = BPF_MODE(code);
|
|
|
|
/* LD_IMM64 */
|
|
if (mode == BPF_IMM)
|
|
return true;
|
|
|
|
/* Both LD_IND and LD_ABS return 32-bit data. */
|
|
if (t != SRC_OP)
|
|
return false;
|
|
|
|
/* Implicit ctx ptr. */
|
|
if (regno == BPF_REG_6)
|
|
return true;
|
|
|
|
/* Explicit source could be any width. */
|
|
return true;
|
|
}
|
|
|
|
if (class == BPF_ST)
|
|
/* The only source register for BPF_ST is a ptr. */
|
|
return true;
|
|
|
|
/* Conservatively return true at default. */
|
|
return true;
|
|
}
|
|
|
|
/* Return the regno defined by the insn, or -1. */
|
|
static int insn_def_regno(const struct bpf_insn *insn)
|
|
{
|
|
switch (BPF_CLASS(insn->code)) {
|
|
case BPF_JMP:
|
|
case BPF_JMP32:
|
|
case BPF_ST:
|
|
return -1;
|
|
case BPF_STX:
|
|
if (BPF_MODE(insn->code) == BPF_ATOMIC &&
|
|
(insn->imm & BPF_FETCH)) {
|
|
if (insn->imm == BPF_CMPXCHG)
|
|
return BPF_REG_0;
|
|
else
|
|
return insn->src_reg;
|
|
} else {
|
|
return -1;
|
|
}
|
|
default:
|
|
return insn->dst_reg;
|
|
}
|
|
}
|
|
|
|
/* Return TRUE if INSN has defined any 32-bit value explicitly. */
|
|
static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
|
|
{
|
|
int dst_reg = insn_def_regno(insn);
|
|
|
|
if (dst_reg == -1)
|
|
return false;
|
|
|
|
return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
|
|
}
|
|
|
|
static void mark_insn_zext(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg)
|
|
{
|
|
s32 def_idx = reg->subreg_def;
|
|
|
|
if (def_idx == DEF_NOT_SUBREG)
|
|
return;
|
|
|
|
env->insn_aux_data[def_idx - 1].zext_dst = true;
|
|
/* The dst will be zero extended, so won't be sub-register anymore. */
|
|
reg->subreg_def = DEF_NOT_SUBREG;
|
|
}
|
|
|
|
static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
|
|
enum reg_arg_type t)
|
|
{
|
|
struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
|
|
struct bpf_reg_state *reg;
|
|
bool rw64;
|
|
|
|
if (regno >= MAX_BPF_REG) {
|
|
verbose(env, "R%d is invalid\n", regno);
|
|
return -EINVAL;
|
|
}
|
|
|
|
mark_reg_scratched(env, regno);
|
|
|
|
reg = ®s[regno];
|
|
rw64 = is_reg64(env, insn, regno, reg, t);
|
|
if (t == SRC_OP) {
|
|
/* check whether register used as source operand can be read */
|
|
if (reg->type == NOT_INIT) {
|
|
verbose(env, "R%d !read_ok\n", regno);
|
|
return -EACCES;
|
|
}
|
|
/* We don't need to worry about FP liveness because it's read-only */
|
|
if (regno == BPF_REG_FP)
|
|
return 0;
|
|
|
|
if (rw64)
|
|
mark_insn_zext(env, reg);
|
|
|
|
return mark_reg_read(env, reg, reg->parent,
|
|
rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
|
|
} else {
|
|
/* check whether register used as dest operand can be written to */
|
|
if (regno == BPF_REG_FP) {
|
|
verbose(env, "frame pointer is read only\n");
|
|
return -EACCES;
|
|
}
|
|
reg->live |= REG_LIVE_WRITTEN;
|
|
reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
|
|
if (t == DST_OP)
|
|
mark_reg_unknown(env, regs, regno);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
|
|
enum reg_arg_type t)
|
|
{
|
|
struct bpf_verifier_state *vstate = env->cur_state;
|
|
struct bpf_func_state *state = vstate->frame[vstate->curframe];
|
|
|
|
return __check_reg_arg(env, state->regs, regno, t);
|
|
}
|
|
|
|
static int insn_stack_access_flags(int frameno, int spi)
|
|
{
|
|
return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
|
|
}
|
|
|
|
static int insn_stack_access_spi(int insn_flags)
|
|
{
|
|
return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
|
|
}
|
|
|
|
static int insn_stack_access_frameno(int insn_flags)
|
|
{
|
|
return insn_flags & INSN_F_FRAMENO_MASK;
|
|
}
|
|
|
|
static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
|
|
{
|
|
env->insn_aux_data[idx].jmp_point = true;
|
|
}
|
|
|
|
static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
|
|
{
|
|
return env->insn_aux_data[insn_idx].jmp_point;
|
|
}
|
|
|
|
/* for any branch, call, exit record the history of jmps in the given state */
|
|
static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
|
|
int insn_flags)
|
|
{
|
|
u32 cnt = cur->jmp_history_cnt;
|
|
struct bpf_jmp_history_entry *p;
|
|
size_t alloc_size;
|
|
|
|
/* combine instruction flags if we already recorded this instruction */
|
|
if (env->cur_hist_ent) {
|
|
/* atomic instructions push insn_flags twice, for READ and
|
|
* WRITE sides, but they should agree on stack slot
|
|
*/
|
|
WARN_ONCE((env->cur_hist_ent->flags & insn_flags) &&
|
|
(env->cur_hist_ent->flags & insn_flags) != insn_flags,
|
|
"verifier insn history bug: insn_idx %d cur flags %x new flags %x\n",
|
|
env->insn_idx, env->cur_hist_ent->flags, insn_flags);
|
|
env->cur_hist_ent->flags |= insn_flags;
|
|
return 0;
|
|
}
|
|
|
|
cnt++;
|
|
alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
|
|
p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
cur->jmp_history = p;
|
|
|
|
p = &cur->jmp_history[cnt - 1];
|
|
p->idx = env->insn_idx;
|
|
p->prev_idx = env->prev_insn_idx;
|
|
p->flags = insn_flags;
|
|
cur->jmp_history_cnt = cnt;
|
|
env->cur_hist_ent = p;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
|
|
u32 hist_end, int insn_idx)
|
|
{
|
|
if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
|
|
return &st->jmp_history[hist_end - 1];
|
|
return NULL;
|
|
}
|
|
|
|
/* Backtrack one insn at a time. If idx is not at the top of recorded
|
|
* history then previous instruction came from straight line execution.
|
|
* Return -ENOENT if we exhausted all instructions within given state.
|
|
*
|
|
* It's legal to have a bit of a looping with the same starting and ending
|
|
* insn index within the same state, e.g.: 3->4->5->3, so just because current
|
|
* instruction index is the same as state's first_idx doesn't mean we are
|
|
* done. If there is still some jump history left, we should keep going. We
|
|
* need to take into account that we might have a jump history between given
|
|
* state's parent and itself, due to checkpointing. In this case, we'll have
|
|
* history entry recording a jump from last instruction of parent state and
|
|
* first instruction of given state.
|
|
*/
|
|
static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
|
|
u32 *history)
|
|
{
|
|
u32 cnt = *history;
|
|
|
|
if (i == st->first_insn_idx) {
|
|
if (cnt == 0)
|
|
return -ENOENT;
|
|
if (cnt == 1 && st->jmp_history[0].idx == i)
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (cnt && st->jmp_history[cnt - 1].idx == i) {
|
|
i = st->jmp_history[cnt - 1].prev_idx;
|
|
(*history)--;
|
|
} else {
|
|
i--;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
|
|
{
|
|
const struct btf_type *func;
|
|
struct btf *desc_btf;
|
|
|
|
if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
|
|
return NULL;
|
|
|
|
desc_btf = find_kfunc_desc_btf(data, insn->off);
|
|
if (IS_ERR(desc_btf))
|
|
return "<error>";
|
|
|
|
func = btf_type_by_id(desc_btf, insn->imm);
|
|
return btf_name_by_offset(desc_btf, func->name_off);
|
|
}
|
|
|
|
static inline void bt_init(struct backtrack_state *bt, u32 frame)
|
|
{
|
|
bt->frame = frame;
|
|
}
|
|
|
|
static inline void bt_reset(struct backtrack_state *bt)
|
|
{
|
|
struct bpf_verifier_env *env = bt->env;
|
|
|
|
memset(bt, 0, sizeof(*bt));
|
|
bt->env = env;
|
|
}
|
|
|
|
static inline u32 bt_empty(struct backtrack_state *bt)
|
|
{
|
|
u64 mask = 0;
|
|
int i;
|
|
|
|
for (i = 0; i <= bt->frame; i++)
|
|
mask |= bt->reg_masks[i] | bt->stack_masks[i];
|
|
|
|
return mask == 0;
|
|
}
|
|
|
|
static inline int bt_subprog_enter(struct backtrack_state *bt)
|
|
{
|
|
if (bt->frame == MAX_CALL_FRAMES - 1) {
|
|
verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
|
|
WARN_ONCE(1, "verifier backtracking bug");
|
|
return -EFAULT;
|
|
}
|
|
bt->frame++;
|
|
return 0;
|
|
}
|
|
|
|
static inline int bt_subprog_exit(struct backtrack_state *bt)
|
|
{
|
|
if (bt->frame == 0) {
|
|
verbose(bt->env, "BUG subprog exit from frame 0\n");
|
|
WARN_ONCE(1, "verifier backtracking bug");
|
|
return -EFAULT;
|
|
}
|
|
bt->frame--;
|
|
return 0;
|
|
}
|
|
|
|
static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
|
|
{
|
|
bt->reg_masks[frame] |= 1 << reg;
|
|
}
|
|
|
|
static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
|
|
{
|
|
bt->reg_masks[frame] &= ~(1 << reg);
|
|
}
|
|
|
|
static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
|
|
{
|
|
bt_set_frame_reg(bt, bt->frame, reg);
|
|
}
|
|
|
|
static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
|
|
{
|
|
bt_clear_frame_reg(bt, bt->frame, reg);
|
|
}
|
|
|
|
static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
|
|
{
|
|
bt->stack_masks[frame] |= 1ull << slot;
|
|
}
|
|
|
|
static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
|
|
{
|
|
bt->stack_masks[frame] &= ~(1ull << slot);
|
|
}
|
|
|
|
static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
|
|
{
|
|
bt_set_frame_slot(bt, bt->frame, slot);
|
|
}
|
|
|
|
static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
|
|
{
|
|
bt_clear_frame_slot(bt, bt->frame, slot);
|
|
}
|
|
|
|
static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
|
|
{
|
|
return bt->reg_masks[frame];
|
|
}
|
|
|
|
static inline u32 bt_reg_mask(struct backtrack_state *bt)
|
|
{
|
|
return bt->reg_masks[bt->frame];
|
|
}
|
|
|
|
static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
|
|
{
|
|
return bt->stack_masks[frame];
|
|
}
|
|
|
|
static inline u64 bt_stack_mask(struct backtrack_state *bt)
|
|
{
|
|
return bt->stack_masks[bt->frame];
|
|
}
|
|
|
|
static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
|
|
{
|
|
return bt->reg_masks[bt->frame] & (1 << reg);
|
|
}
|
|
|
|
static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
|
|
{
|
|
return bt->stack_masks[frame] & (1ull << slot);
|
|
}
|
|
|
|
static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
|
|
{
|
|
return bt_is_frame_slot_set(bt, bt->frame, slot);
|
|
}
|
|
|
|
/* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
|
|
static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
|
|
{
|
|
DECLARE_BITMAP(mask, 64);
|
|
bool first = true;
|
|
int i, n;
|
|
|
|
buf[0] = '\0';
|
|
|
|
bitmap_from_u64(mask, reg_mask);
|
|
for_each_set_bit(i, mask, 32) {
|
|
n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
|
|
first = false;
|
|
buf += n;
|
|
buf_sz -= n;
|
|
if (buf_sz < 0)
|
|
break;
|
|
}
|
|
}
|
|
/* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
|
|
static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
|
|
{
|
|
DECLARE_BITMAP(mask, 64);
|
|
bool first = true;
|
|
int i, n;
|
|
|
|
buf[0] = '\0';
|
|
|
|
bitmap_from_u64(mask, stack_mask);
|
|
for_each_set_bit(i, mask, 64) {
|
|
n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
|
|
first = false;
|
|
buf += n;
|
|
buf_sz -= n;
|
|
if (buf_sz < 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
|
|
|
|
/* For given verifier state backtrack_insn() is called from the last insn to
|
|
* the first insn. Its purpose is to compute a bitmask of registers and
|
|
* stack slots that needs precision in the parent verifier state.
|
|
*
|
|
* @idx is an index of the instruction we are currently processing;
|
|
* @subseq_idx is an index of the subsequent instruction that:
|
|
* - *would be* executed next, if jump history is viewed in forward order;
|
|
* - *was* processed previously during backtracking.
|
|
*/
|
|
static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
|
|
struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
|
|
{
|
|
const struct bpf_insn_cbs cbs = {
|
|
.cb_call = disasm_kfunc_name,
|
|
.cb_print = verbose,
|
|
.private_data = env,
|
|
};
|
|
struct bpf_insn *insn = env->prog->insnsi + idx;
|
|
u8 class = BPF_CLASS(insn->code);
|
|
u8 opcode = BPF_OP(insn->code);
|
|
u8 mode = BPF_MODE(insn->code);
|
|
u32 dreg = insn->dst_reg;
|
|
u32 sreg = insn->src_reg;
|
|
u32 spi, i, fr;
|
|
|
|
if (insn->code == 0)
|
|
return 0;
|
|
if (env->log.level & BPF_LOG_LEVEL2) {
|
|
fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
|
|
verbose(env, "mark_precise: frame%d: regs=%s ",
|
|
bt->frame, env->tmp_str_buf);
|
|
fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
|
|
verbose(env, "stack=%s before ", env->tmp_str_buf);
|
|
verbose(env, "%d: ", idx);
|
|
print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
|
|
}
|
|
|
|
if (class == BPF_ALU || class == BPF_ALU64) {
|
|
if (!bt_is_reg_set(bt, dreg))
|
|
return 0;
|
|
if (opcode == BPF_END || opcode == BPF_NEG) {
|
|
/* sreg is reserved and unused
|
|
* dreg still need precision before this insn
|
|
*/
|
|
return 0;
|
|
} else if (opcode == BPF_MOV) {
|
|
if (BPF_SRC(insn->code) == BPF_X) {
|
|
/* dreg = sreg or dreg = (s8, s16, s32)sreg
|
|
* dreg needs precision after this insn
|
|
* sreg needs precision before this insn
|
|
*/
|
|
bt_clear_reg(bt, dreg);
|
|
bt_set_reg(bt, sreg);
|
|
} else {
|
|
/* dreg = K
|
|
* dreg needs precision after this insn.
|
|
* Corresponding register is already marked
|
|
* as precise=true in this verifier state.
|
|
* No further markings in parent are necessary
|
|
*/
|
|
bt_clear_reg(bt, dreg);
|
|
}
|
|
} else {
|
|
if (BPF_SRC(insn->code) == BPF_X) {
|
|
/* dreg += sreg
|
|
* both dreg and sreg need precision
|
|
* before this insn
|
|
*/
|
|
bt_set_reg(bt, sreg);
|
|
} /* else dreg += K
|
|
* dreg still needs precision before this insn
|
|
*/
|
|
}
|
|
} else if (class == BPF_LDX) {
|
|
if (!bt_is_reg_set(bt, dreg))
|
|
return 0;
|
|
bt_clear_reg(bt, dreg);
|
|
|
|
/* scalars can only be spilled into stack w/o losing precision.
|
|
* Load from any other memory can be zero extended.
|
|
* The desire to keep that precision is already indicated
|
|
* by 'precise' mark in corresponding register of this state.
|
|
* No further tracking necessary.
|
|
*/
|
|
if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
|
|
return 0;
|
|
/* dreg = *(u64 *)[fp - off] was a fill from the stack.
|
|
* that [fp - off] slot contains scalar that needs to be
|
|
* tracked with precision
|
|
*/
|
|
spi = insn_stack_access_spi(hist->flags);
|
|
fr = insn_stack_access_frameno(hist->flags);
|
|
bt_set_frame_slot(bt, fr, spi);
|
|
} else if (class == BPF_STX || class == BPF_ST) {
|
|
if (bt_is_reg_set(bt, dreg))
|
|
/* stx & st shouldn't be using _scalar_ dst_reg
|
|
* to access memory. It means backtracking
|
|
* encountered a case of pointer subtraction.
|
|
*/
|
|
return -ENOTSUPP;
|
|
/* scalars can only be spilled into stack */
|
|
if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
|
|
return 0;
|
|
spi = insn_stack_access_spi(hist->flags);
|
|
fr = insn_stack_access_frameno(hist->flags);
|
|
if (!bt_is_frame_slot_set(bt, fr, spi))
|
|
return 0;
|
|
bt_clear_frame_slot(bt, fr, spi);
|
|
if (class == BPF_STX)
|
|
bt_set_reg(bt, sreg);
|
|
} else if (class == BPF_JMP || class == BPF_JMP32) {
|
|
if (bpf_pseudo_call(insn)) {
|
|
int subprog_insn_idx, subprog;
|
|
|
|
subprog_insn_idx = idx + insn->imm + 1;
|
|
subprog = find_subprog(env, subprog_insn_idx);
|
|
if (subprog < 0)
|
|
return -EFAULT;
|
|
|
|
if (subprog_is_global(env, subprog)) {
|
|
/* check that jump history doesn't have any
|
|
* extra instructions from subprog; the next
|
|
* instruction after call to global subprog
|
|
* should be literally next instruction in
|
|
* caller program
|
|
*/
|
|
WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
|
|
/* r1-r5 are invalidated after subprog call,
|
|
* so for global func call it shouldn't be set
|
|
* anymore
|
|
*/
|
|
if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
|
|
verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
|
|
WARN_ONCE(1, "verifier backtracking bug");
|
|
return -EFAULT;
|
|
}
|
|
/* global subprog always sets R0 */
|
|
bt_clear_reg(bt, BPF_REG_0);
|
|
return 0;
|
|
} else {
|
|
/* static subprog call instruction, which
|
|
* means that we are exiting current subprog,
|
|
* so only r1-r5 could be still requested as
|
|
* precise, r0 and r6-r10 or any stack slot in
|
|
* the current frame should be zero by now
|
|
*/
|
|
if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
|
|
verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
|
|
WARN_ONCE(1, "verifier backtracking bug");
|
|
return -EFAULT;
|
|
}
|
|
/* we are now tracking register spills correctly,
|
|
* so any instance of leftover slots is a bug
|
|
*/
|
|
if (bt_stack_mask(bt) != 0) {
|
|
verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
|
|
WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)");
|
|
return -EFAULT;
|
|
}
|
|
/* propagate r1-r5 to the caller */
|
|
for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
|
|
if (bt_is_reg_set(bt, i)) {
|
|
bt_clear_reg(bt, i);
|
|
bt_set_frame_reg(bt, bt->frame - 1, i);
|
|
}
|
|
}
|
|
if (bt_subprog_exit(bt))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
|
|
/* exit from callback subprog to callback-calling helper or
|
|
* kfunc call. Use idx/subseq_idx check to discern it from
|
|
* straight line code backtracking.
|
|
* Unlike the subprog call handling above, we shouldn't
|
|
* propagate precision of r1-r5 (if any requested), as they are
|
|
* not actually arguments passed directly to callback subprogs
|
|
*/
|
|
if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
|
|
verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
|
|
WARN_ONCE(1, "verifier backtracking bug");
|
|
return -EFAULT;
|
|
}
|
|
if (bt_stack_mask(bt) != 0) {
|
|
verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
|
|
WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)");
|
|
return -EFAULT;
|
|
}
|
|
/* clear r1-r5 in callback subprog's mask */
|
|
for (i = BPF_REG_1; i <= BPF_REG_5; i++)
|
|
bt_clear_reg(bt, i);
|
|
if (bt_subprog_exit(bt))
|
|
return -EFAULT;
|
|
return 0;
|
|
} else if (opcode == BPF_CALL) {
|
|
/* kfunc with imm==0 is invalid and fixup_kfunc_call will
|
|
* catch this error later. Make backtracking conservative
|
|
* with ENOTSUPP.
|
|
*/
|
|
if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
|
|
return -ENOTSUPP;
|
|
/* regular helper call sets R0 */
|
|
bt_clear_reg(bt, BPF_REG_0);
|
|
if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
|
|
/* if backtracing was looking for registers R1-R5
|
|
* they should have been found already.
|
|
*/
|
|
verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
|
|
WARN_ONCE(1, "verifier backtracking bug");
|
|
return -EFAULT;
|
|
}
|
|
} else if (opcode == BPF_EXIT) {
|
|
bool r0_precise;
|
|
|
|
/* Backtracking to a nested function call, 'idx' is a part of
|
|
* the inner frame 'subseq_idx' is a part of the outer frame.
|
|
* In case of a regular function call, instructions giving
|
|
* precision to registers R1-R5 should have been found already.
|
|
* In case of a callback, it is ok to have R1-R5 marked for
|
|
* backtracking, as these registers are set by the function
|
|
* invoking callback.
|
|
*/
|
|
if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
|
|
for (i = BPF_REG_1; i <= BPF_REG_5; i++)
|
|
bt_clear_reg(bt, i);
|
|
if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
|
|
verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
|
|
WARN_ONCE(1, "verifier backtracking bug");
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* BPF_EXIT in subprog or callback always returns
|
|
* right after the call instruction, so by checking
|
|
* whether the instruction at subseq_idx-1 is subprog
|
|
* call or not we can distinguish actual exit from
|
|
* *subprog* from exit from *callback*. In the former
|
|
* case, we need to propagate r0 precision, if
|
|
* necessary. In the former we never do that.
|
|
*/
|
|
r0_precise = subseq_idx - 1 >= 0 &&
|
|
bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
|
|
bt_is_reg_set(bt, BPF_REG_0);
|
|
|
|
bt_clear_reg(bt, BPF_REG_0);
|
|
if (bt_subprog_enter(bt))
|
|
return -EFAULT;
|
|
|
|
if (r0_precise)
|
|
bt_set_reg(bt, BPF_REG_0);
|
|
/* r6-r9 and stack slots will stay set in caller frame
|
|
* bitmasks until we return back from callee(s)
|
|
*/
|
|
return 0;
|
|
} else if (BPF_SRC(insn->code) == BPF_X) {
|
|
if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
|
|
return 0;
|
|
/* dreg <cond> sreg
|
|
* Both dreg and sreg need precision before
|
|
* this insn. If only sreg was marked precise
|
|
* before it would be equally necessary to
|
|
* propagate it to dreg.
|
|
*/
|
|
bt_set_reg(bt, dreg);
|
|
bt_set_reg(bt, sreg);
|
|
/* else dreg <cond> K
|
|
* Only dreg still needs precision before
|
|
* this insn, so for the K-based conditional
|
|
* there is nothing new to be marked.
|
|
*/
|
|
}
|
|
} else if (class == BPF_LD) {
|
|
if (!bt_is_reg_set(bt, dreg))
|
|
return 0;
|
|
bt_clear_reg(bt, dreg);
|
|
/* It's ld_imm64 or ld_abs or ld_ind.
|
|
* For ld_imm64 no further tracking of precision
|
|
* into parent is necessary
|
|
*/
|
|
if (mode == BPF_IND || mode == BPF_ABS)
|
|
/* to be analyzed */
|
|
return -ENOTSUPP;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* the scalar precision tracking algorithm:
|
|
* . at the start all registers have precise=false.
|
|
* . scalar ranges are tracked as normal through alu and jmp insns.
|
|
* . once precise value of the scalar register is used in:
|
|
* . ptr + scalar alu
|
|
* . if (scalar cond K|scalar)
|
|
* . helper_call(.., scalar, ...) where ARG_CONST is expected
|
|
* backtrack through the verifier states and mark all registers and
|
|
* stack slots with spilled constants that these scalar regisers
|
|
* should be precise.
|
|
* . during state pruning two registers (or spilled stack slots)
|
|
* are equivalent if both are not precise.
|
|
*
|
|
* Note the verifier cannot simply walk register parentage chain,
|
|
* since many different registers and stack slots could have been
|
|
* used to compute single precise scalar.
|
|
*
|
|
* The approach of starting with precise=true for all registers and then
|
|
* backtrack to mark a register as not precise when the verifier detects
|
|
* that program doesn't care about specific value (e.g., when helper
|
|
* takes register as ARG_ANYTHING parameter) is not safe.
|
|
*
|
|
* It's ok to walk single parentage chain of the verifier states.
|
|
* It's possible that this backtracking will go all the way till 1st insn.
|
|
* All other branches will be explored for needing precision later.
|
|
*
|
|
* The backtracking needs to deal with cases like:
|
|
* R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
|
|
* r9 -= r8
|
|
* r5 = r9
|
|
* if r5 > 0x79f goto pc+7
|
|
* R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
|
|
* r5 += 1
|
|
* ...
|
|
* call bpf_perf_event_output#25
|
|
* where .arg5_type = ARG_CONST_SIZE_OR_ZERO
|
|
*
|
|
* and this case:
|
|
* r6 = 1
|
|
* call foo // uses callee's r6 inside to compute r0
|
|
* r0 += r6
|
|
* if r0 == 0 goto
|
|
*
|
|
* to track above reg_mask/stack_mask needs to be independent for each frame.
|
|
*
|
|
* Also if parent's curframe > frame where backtracking started,
|
|
* the verifier need to mark registers in both frames, otherwise callees
|
|
* may incorrectly prune callers. This is similar to
|
|
* commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
|
|
*
|
|
* For now backtracking falls back into conservative marking.
|
|
*/
|
|
static void mark_all_scalars_precise(struct bpf_verifier_env *env,
|
|
struct bpf_verifier_state *st)
|
|
{
|
|
struct bpf_func_state *func;
|
|
struct bpf_reg_state *reg;
|
|
int i, j;
|
|
|
|
if (env->log.level & BPF_LOG_LEVEL2) {
|
|
verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
|
|
st->curframe);
|
|
}
|
|
|
|
/* big hammer: mark all scalars precise in this path.
|
|
* pop_stack may still get !precise scalars.
|
|
* We also skip current state and go straight to first parent state,
|
|
* because precision markings in current non-checkpointed state are
|
|
* not needed. See why in the comment in __mark_chain_precision below.
|
|
*/
|
|
for (st = st->parent; st; st = st->parent) {
|
|
for (i = 0; i <= st->curframe; i++) {
|
|
func = st->frame[i];
|
|
for (j = 0; j < BPF_REG_FP; j++) {
|
|
reg = &func->regs[j];
|
|
if (reg->type != SCALAR_VALUE || reg->precise)
|
|
continue;
|
|
reg->precise = true;
|
|
if (env->log.level & BPF_LOG_LEVEL2) {
|
|
verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
|
|
i, j);
|
|
}
|
|
}
|
|
for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
|
|
if (!is_spilled_reg(&func->stack[j]))
|
|
continue;
|
|
reg = &func->stack[j].spilled_ptr;
|
|
if (reg->type != SCALAR_VALUE || reg->precise)
|
|
continue;
|
|
reg->precise = true;
|
|
if (env->log.level & BPF_LOG_LEVEL2) {
|
|
verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
|
|
i, -(j + 1) * 8);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
|
|
{
|
|
struct bpf_func_state *func;
|
|
struct bpf_reg_state *reg;
|
|
int i, j;
|
|
|
|
for (i = 0; i <= st->curframe; i++) {
|
|
func = st->frame[i];
|
|
for (j = 0; j < BPF_REG_FP; j++) {
|
|
reg = &func->regs[j];
|
|
if (reg->type != SCALAR_VALUE)
|
|
continue;
|
|
reg->precise = false;
|
|
}
|
|
for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
|
|
if (!is_spilled_reg(&func->stack[j]))
|
|
continue;
|
|
reg = &func->stack[j].spilled_ptr;
|
|
if (reg->type != SCALAR_VALUE)
|
|
continue;
|
|
reg->precise = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool idset_contains(struct bpf_idset *s, u32 id)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < s->count; ++i)
|
|
if (s->ids[i] == id)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int idset_push(struct bpf_idset *s, u32 id)
|
|
{
|
|
if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
|
|
return -EFAULT;
|
|
s->ids[s->count++] = id;
|
|
return 0;
|
|
}
|
|
|
|
static void idset_reset(struct bpf_idset *s)
|
|
{
|
|
s->count = 0;
|
|
}
|
|
|
|
/* Collect a set of IDs for all registers currently marked as precise in env->bt.
|
|
* Mark all registers with these IDs as precise.
|
|
*/
|
|
static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
|
|
{
|
|
struct bpf_idset *precise_ids = &env->idset_scratch;
|
|
struct backtrack_state *bt = &env->bt;
|
|
struct bpf_func_state *func;
|
|
struct bpf_reg_state *reg;
|
|
DECLARE_BITMAP(mask, 64);
|
|
int i, fr;
|
|
|
|
idset_reset(precise_ids);
|
|
|
|
for (fr = bt->frame; fr >= 0; fr--) {
|
|
func = st->frame[fr];
|
|
|
|
bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
|
|
for_each_set_bit(i, mask, 32) {
|
|
reg = &func->regs[i];
|
|
if (!reg->id || reg->type != SCALAR_VALUE)
|
|
continue;
|
|
if (idset_push(precise_ids, reg->id))
|
|
return -EFAULT;
|
|
}
|
|
|
|
bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
|
|
for_each_set_bit(i, mask, 64) {
|
|
if (i >= func->allocated_stack / BPF_REG_SIZE)
|
|
break;
|
|
if (!is_spilled_scalar_reg(&func->stack[i]))
|
|
continue;
|
|
reg = &func->stack[i].spilled_ptr;
|
|
if (!reg->id)
|
|
continue;
|
|
if (idset_push(precise_ids, reg->id))
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
|
|
for (fr = 0; fr <= st->curframe; ++fr) {
|
|
func = st->frame[fr];
|
|
|
|
for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
|
|
reg = &func->regs[i];
|
|
if (!reg->id)
|
|
continue;
|
|
if (!idset_contains(precise_ids, reg->id))
|
|
continue;
|
|
bt_set_frame_reg(bt, fr, i);
|
|
}
|
|
for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
|
|
if (!is_spilled_scalar_reg(&func->stack[i]))
|
|
continue;
|
|
reg = &func->stack[i].spilled_ptr;
|
|
if (!reg->id)
|
|
continue;
|
|
if (!idset_contains(precise_ids, reg->id))
|
|
continue;
|
|
bt_set_frame_slot(bt, fr, i);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* __mark_chain_precision() backtracks BPF program instruction sequence and
|
|
* chain of verifier states making sure that register *regno* (if regno >= 0)
|
|
* and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
|
|
* SCALARS, as well as any other registers and slots that contribute to
|
|
* a tracked state of given registers/stack slots, depending on specific BPF
|
|
* assembly instructions (see backtrack_insns() for exact instruction handling
|
|
* logic). This backtracking relies on recorded jmp_history and is able to
|
|
* traverse entire chain of parent states. This process ends only when all the
|
|
* necessary registers/slots and their transitive dependencies are marked as
|
|
* precise.
|
|
*
|
|
* One important and subtle aspect is that precise marks *do not matter* in
|
|
* the currently verified state (current state). It is important to understand
|
|
* why this is the case.
|
|
*
|
|
* First, note that current state is the state that is not yet "checkpointed",
|
|
* i.e., it is not yet put into env->explored_states, and it has no children
|
|
* states as well. It's ephemeral, and can end up either a) being discarded if
|
|
* compatible explored state is found at some point or BPF_EXIT instruction is
|
|
* reached or b) checkpointed and put into env->explored_states, branching out
|
|
* into one or more children states.
|
|
*
|
|
* In the former case, precise markings in current state are completely
|
|
* ignored by state comparison code (see regsafe() for details). Only
|
|
* checkpointed ("old") state precise markings are important, and if old
|
|
* state's register/slot is precise, regsafe() assumes current state's
|
|
* register/slot as precise and checks value ranges exactly and precisely. If
|
|
* states turn out to be compatible, current state's necessary precise
|
|
* markings and any required parent states' precise markings are enforced
|
|
* after the fact with propagate_precision() logic, after the fact. But it's
|
|
* important to realize that in this case, even after marking current state
|
|
* registers/slots as precise, we immediately discard current state. So what
|
|
* actually matters is any of the precise markings propagated into current
|
|
* state's parent states, which are always checkpointed (due to b) case above).
|
|
* As such, for scenario a) it doesn't matter if current state has precise
|
|
* markings set or not.
|
|
*
|
|
* Now, for the scenario b), checkpointing and forking into child(ren)
|
|
* state(s). Note that before current state gets to checkpointing step, any
|
|
* processed instruction always assumes precise SCALAR register/slot
|
|
* knowledge: if precise value or range is useful to prune jump branch, BPF
|
|
* verifier takes this opportunity enthusiastically. Similarly, when
|
|
* register's value is used to calculate offset or memory address, exact
|
|
* knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
|
|
* what we mentioned above about state comparison ignoring precise markings
|
|
* during state comparison, BPF verifier ignores and also assumes precise
|
|
* markings *at will* during instruction verification process. But as verifier
|
|
* assumes precision, it also propagates any precision dependencies across
|
|
* parent states, which are not yet finalized, so can be further restricted
|
|
* based on new knowledge gained from restrictions enforced by their children
|
|
* states. This is so that once those parent states are finalized, i.e., when
|
|
* they have no more active children state, state comparison logic in
|
|
* is_state_visited() would enforce strict and precise SCALAR ranges, if
|
|
* required for correctness.
|
|
*
|
|
* To build a bit more intuition, note also that once a state is checkpointed,
|
|
* the path we took to get to that state is not important. This is crucial
|
|
* property for state pruning. When state is checkpointed and finalized at
|
|
* some instruction index, it can be correctly and safely used to "short
|
|
* circuit" any *compatible* state that reaches exactly the same instruction
|
|
* index. I.e., if we jumped to that instruction from a completely different
|
|
* code path than original finalized state was derived from, it doesn't
|
|
* matter, current state can be discarded because from that instruction
|
|
* forward having a compatible state will ensure we will safely reach the
|
|
* exit. States describe preconditions for further exploration, but completely
|
|
* forget the history of how we got here.
|
|
*
|
|
* This also means that even if we needed precise SCALAR range to get to
|
|
* finalized state, but from that point forward *that same* SCALAR register is
|
|
* never used in a precise context (i.e., it's precise value is not needed for
|
|
* correctness), it's correct and safe to mark such register as "imprecise"
|
|
* (i.e., precise marking set to false). This is what we rely on when we do
|
|
* not set precise marking in current state. If no child state requires
|
|
* precision for any given SCALAR register, it's safe to dictate that it can
|
|
* be imprecise. If any child state does require this register to be precise,
|
|
* we'll mark it precise later retroactively during precise markings
|
|
* propagation from child state to parent states.
|
|
*
|
|
* Skipping precise marking setting in current state is a mild version of
|
|
* relying on the above observation. But we can utilize this property even
|
|
* more aggressively by proactively forgetting any precise marking in the
|
|
* current state (which we inherited from the parent state), right before we
|
|
* checkpoint it and branch off into new child state. This is done by
|
|
* mark_all_scalars_imprecise() to hopefully get more permissive and generic
|
|
* finalized states which help in short circuiting more future states.
|
|
*/
|
|
static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
|
|
{
|
|
struct backtrack_state *bt = &env->bt;
|
|
struct bpf_verifier_state *st = env->cur_state;
|
|
int first_idx = st->first_insn_idx;
|
|
int last_idx = env->insn_idx;
|
|
int subseq_idx = -1;
|
|
struct bpf_func_state *func;
|
|
struct bpf_reg_state *reg;
|
|
bool skip_first = true;
|
|
int i, fr, err;
|
|
|
|
if (!env->bpf_capable)
|
|
return 0;
|
|
|
|
/* set frame number from which we are starting to backtrack */
|
|
bt_init(bt, env->cur_state->curframe);
|
|
|
|
/* Do sanity checks against current state of register and/or stack
|
|
* slot, but don't set precise flag in current state, as precision
|
|
* tracking in the current state is unnecessary.
|
|
*/
|
|
func = st->frame[bt->frame];
|
|
if (regno >= 0) {
|
|
reg = &func->regs[regno];
|
|
if (reg->type != SCALAR_VALUE) {
|
|
WARN_ONCE(1, "backtracing misuse");
|
|
return -EFAULT;
|
|
}
|
|
bt_set_reg(bt, regno);
|
|
}
|
|
|
|
if (bt_empty(bt))
|
|
return 0;
|
|
|
|
for (;;) {
|
|
DECLARE_BITMAP(mask, 64);
|
|
u32 history = st->jmp_history_cnt;
|
|
struct bpf_jmp_history_entry *hist;
|
|
|
|
if (env->log.level & BPF_LOG_LEVEL2) {
|
|
verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
|
|
bt->frame, last_idx, first_idx, subseq_idx);
|
|
}
|
|
|
|
/* If some register with scalar ID is marked as precise,
|
|
* make sure that all registers sharing this ID are also precise.
|
|
* This is needed to estimate effect of find_equal_scalars().
|
|
* Do this at the last instruction of each state,
|
|
* bpf_reg_state::id fields are valid for these instructions.
|
|
*
|
|
* Allows to track precision in situation like below:
|
|
*
|
|
* r2 = unknown value
|
|
* ...
|
|
* --- state #0 ---
|
|
* ...
|
|
* r1 = r2 // r1 and r2 now share the same ID
|
|
* ...
|
|
* --- state #1 {r1.id = A, r2.id = A} ---
|
|
* ...
|
|
* if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
|
|
* ...
|
|
* --- state #2 {r1.id = A, r2.id = A} ---
|
|
* r3 = r10
|
|
* r3 += r1 // need to mark both r1 and r2
|
|
*/
|
|
if (mark_precise_scalar_ids(env, st))
|
|
return -EFAULT;
|
|
|
|
if (last_idx < 0) {
|
|
/* we are at the entry into subprog, which
|
|
* is expected for global funcs, but only if
|
|
* requested precise registers are R1-R5
|
|
* (which are global func's input arguments)
|
|
*/
|
|
if (st->curframe == 0 &&
|
|
st->frame[0]->subprogno > 0 &&
|
|
st->frame[0]->callsite == BPF_MAIN_FUNC &&
|
|
bt_stack_mask(bt) == 0 &&
|
|
(bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
|
|
bitmap_from_u64(mask, bt_reg_mask(bt));
|
|
for_each_set_bit(i, mask, 32) {
|
|
reg = &st->frame[0]->regs[i];
|
|
bt_clear_reg(bt, i);
|
|
if (reg->type == SCALAR_VALUE)
|
|
reg->precise = true;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
|
|
st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
|
|
WARN_ONCE(1, "verifier backtracking bug");
|
|
return -EFAULT;
|
|
}
|
|
|
|
for (i = last_idx;;) {
|
|
if (skip_first) {
|
|
err = 0;
|
|
skip_first = false;
|
|
} else {
|
|
hist = get_jmp_hist_entry(st, history, i);
|
|
err = backtrack_insn(env, i, subseq_idx, hist, bt);
|
|
}
|
|
if (err == -ENOTSUPP) {
|
|
mark_all_scalars_precise(env, env->cur_state);
|
|
bt_reset(bt);
|
|
return 0;
|
|
} else if (err) {
|
|
return err;
|
|
}
|
|
if (bt_empty(bt))
|
|
/* Found assignment(s) into tracked register in this state.
|
|
* Since this state is already marked, just return.
|
|
* Nothing to be tracked further in the parent state.
|
|
*/
|
|
return 0;
|
|
subseq_idx = i;
|
|
i = get_prev_insn_idx(st, i, &history);
|
|
if (i == -ENOENT)
|
|
break;
|
|
if (i >= env->prog->len) {
|
|
/* This can happen if backtracking reached insn 0
|
|
* and there are still reg_mask or stack_mask
|
|
* to backtrack.
|
|
* It means the backtracking missed the spot where
|
|
* particular register was initialized with a constant.
|
|
*/
|
|
verbose(env, "BUG backtracking idx %d\n", i);
|
|
WARN_ONCE(1, "verifier backtracking bug");
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
st = st->parent;
|
|
if (!st)
|
|
break;
|
|
|
|
for (fr = bt->frame; fr >= 0; fr--) {
|
|
func = st->frame[fr];
|
|
bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
|
|
for_each_set_bit(i, mask, 32) {
|
|
reg = &func->regs[i];
|
|
if (reg->type != SCALAR_VALUE) {
|
|
bt_clear_frame_reg(bt, fr, i);
|
|
continue;
|
|
}
|
|
if (reg->precise)
|
|
bt_clear_frame_reg(bt, fr, i);
|
|
else
|
|
reg->precise = true;
|
|
}
|
|
|
|
bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
|
|
for_each_set_bit(i, mask, 64) {
|
|
if (i >= func->allocated_stack / BPF_REG_SIZE) {
|
|
verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n",
|
|
i, func->allocated_stack / BPF_REG_SIZE);
|
|
WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)");
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (!is_spilled_scalar_reg(&func->stack[i])) {
|
|
bt_clear_frame_slot(bt, fr, i);
|
|
continue;
|
|
}
|
|
reg = &func->stack[i].spilled_ptr;
|
|
if (reg->precise)
|
|
bt_clear_frame_slot(bt, fr, i);
|
|
else
|
|
reg->precise = true;
|
|
}
|
|
if (env->log.level & BPF_LOG_LEVEL2) {
|
|
fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
|
|
bt_frame_reg_mask(bt, fr));
|
|
verbose(env, "mark_precise: frame%d: parent state regs=%s ",
|
|
fr, env->tmp_str_buf);
|
|
fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
|
|
bt_frame_stack_mask(bt, fr));
|
|
verbose(env, "stack=%s: ", env->tmp_str_buf);
|
|
print_verifier_state(env, func, true);
|
|
}
|
|
}
|
|
|
|
if (bt_empty(bt))
|
|
return 0;
|
|
|
|
subseq_idx = first_idx;
|
|
last_idx = st->last_insn_idx;
|
|
first_idx = st->first_insn_idx;
|
|
}
|
|
|
|
/* if we still have requested precise regs or slots, we missed
|
|
* something (e.g., stack access through non-r10 register), so
|
|
* fallback to marking all precise
|
|
*/
|
|
if (!bt_empty(bt)) {
|
|
mark_all_scalars_precise(env, env->cur_state);
|
|
bt_reset(bt);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mark_chain_precision(struct bpf_verifier_env *env, int regno)
|
|
{
|
|
return __mark_chain_precision(env, regno);
|
|
}
|
|
|
|
/* mark_chain_precision_batch() assumes that env->bt is set in the caller to
|
|
* desired reg and stack masks across all relevant frames
|
|
*/
|
|
static int mark_chain_precision_batch(struct bpf_verifier_env *env)
|
|
{
|
|
return __mark_chain_precision(env, -1);
|
|
}
|
|
|
|
static bool is_spillable_regtype(enum bpf_reg_type type)
|
|
{
|
|
switch (base_type(type)) {
|
|
case PTR_TO_MAP_VALUE:
|
|
case PTR_TO_STACK:
|
|
case PTR_TO_CTX:
|
|
case PTR_TO_PACKET:
|
|
case PTR_TO_PACKET_META:
|
|
case PTR_TO_PACKET_END:
|
|
case PTR_TO_FLOW_KEYS:
|
|
case CONST_PTR_TO_MAP:
|
|
case PTR_TO_SOCKET:
|
|
case PTR_TO_SOCK_COMMON:
|
|
case PTR_TO_TCP_SOCK:
|
|
case PTR_TO_XDP_SOCK:
|
|
case PTR_TO_BTF_ID:
|
|
case PTR_TO_BUF:
|
|
case PTR_TO_MEM:
|
|
case PTR_TO_FUNC:
|
|
case PTR_TO_MAP_KEY:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Does this register contain a constant zero? */
|
|
static bool register_is_null(struct bpf_reg_state *reg)
|
|
{
|
|
return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
|
|
}
|
|
|
|
/* check if register is a constant scalar value */
|
|
static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
|
|
{
|
|
return reg->type == SCALAR_VALUE &&
|
|
tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
|
|
}
|
|
|
|
/* assuming is_reg_const() is true, return constant value of a register */
|
|
static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
|
|
{
|
|
return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
|
|
}
|
|
|
|
static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
|
|
{
|
|
return tnum_is_unknown(reg->var_off) &&
|
|
reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
|
|
reg->umin_value == 0 && reg->umax_value == U64_MAX &&
|
|
reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
|
|
reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
|
|
}
|
|
|
|
static bool register_is_bounded(struct bpf_reg_state *reg)
|
|
{
|
|
return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
|
|
}
|
|
|
|
static bool __is_pointer_value(bool allow_ptr_leaks,
|
|
const struct bpf_reg_state *reg)
|
|
{
|
|
if (allow_ptr_leaks)
|
|
return false;
|
|
|
|
return reg->type != SCALAR_VALUE;
|
|
}
|
|
|
|
/* Copy src state preserving dst->parent and dst->live fields */
|
|
static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
|
|
{
|
|
struct bpf_reg_state *parent = dst->parent;
|
|
enum bpf_reg_liveness live = dst->live;
|
|
|
|
*dst = *src;
|
|
dst->parent = parent;
|
|
dst->live = live;
|
|
}
|
|
|
|
static void save_register_state(struct bpf_verifier_env *env,
|
|
struct bpf_func_state *state,
|
|
int spi, struct bpf_reg_state *reg,
|
|
int size)
|
|
{
|
|
int i;
|
|
|
|
copy_register_state(&state->stack[spi].spilled_ptr, reg);
|
|
if (size == BPF_REG_SIZE)
|
|
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
|
|
|
|
for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
|
|
state->stack[spi].slot_type[i - 1] = STACK_SPILL;
|
|
|
|
/* size < 8 bytes spill */
|
|
for (; i; i--)
|
|
mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
|
|
}
|
|
|
|
static bool is_bpf_st_mem(struct bpf_insn *insn)
|
|
{
|
|
return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
|
|
}
|
|
|
|
/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
|
|
* stack boundary and alignment are checked in check_mem_access()
|
|
*/
|
|
static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
|
|
/* stack frame we're writing to */
|
|
struct bpf_func_state *state,
|
|
int off, int size, int value_regno,
|
|
int insn_idx)
|
|
{
|
|
struct bpf_func_state *cur; /* state of the current function */
|
|
int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
|
|
struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
|
|
struct bpf_reg_state *reg = NULL;
|
|
int insn_flags = insn_stack_access_flags(state->frameno, spi);
|
|
|
|
/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
|
|
* so it's aligned access and [off, off + size) are within stack limits
|
|
*/
|
|
if (!env->allow_ptr_leaks &&
|
|
is_spilled_reg(&state->stack[spi]) &&
|
|
size != BPF_REG_SIZE) {
|
|
verbose(env, "attempt to corrupt spilled pointer on stack\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
cur = env->cur_state->frame[env->cur_state->curframe];
|
|
if (value_regno >= 0)
|
|
reg = &cur->regs[value_regno];
|
|
if (!env->bypass_spec_v4) {
|
|
bool sanitize = reg && is_spillable_regtype(reg->type);
|
|
|
|
for (i = 0; i < size; i++) {
|
|
u8 type = state->stack[spi].slot_type[i];
|
|
|
|
if (type != STACK_MISC && type != STACK_ZERO) {
|
|
sanitize = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (sanitize)
|
|
env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
|
|
}
|
|
|
|
err = destroy_if_dynptr_stack_slot(env, state, spi);
|
|
if (err)
|
|
return err;
|
|
|
|
mark_stack_slot_scratched(env, spi);
|
|
if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && env->bpf_capable) {
|
|
save_register_state(env, state, spi, reg, size);
|
|
/* Break the relation on a narrowing spill. */
|
|
if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
|
|
state->stack[spi].spilled_ptr.id = 0;
|
|
} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
|
|
insn->imm != 0 && env->bpf_capable) {
|
|
struct bpf_reg_state fake_reg = {};
|
|
|
|
__mark_reg_known(&fake_reg, insn->imm);
|
|
fake_reg.type = SCALAR_VALUE;
|
|
save_register_state(env, state, spi, &fake_reg, size);
|
|
insn_flags = 0; /* not a register spill */
|
|
} else if (reg && is_spillable_regtype(reg->type)) {
|
|
/* register containing pointer is being spilled into stack */
|
|
if (size != BPF_REG_SIZE) {
|
|
verbose_linfo(env, insn_idx, "; ");
|
|
verbose(env, "invalid size of register spill\n");
|
|
return -EACCES;
|
|
}
|
|
if (state != cur && reg->type == PTR_TO_STACK) {
|
|
verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
|
|
return -EINVAL;
|
|
}
|
|
save_register_state(env, state, spi, reg, size);
|
|
} else {
|
|
u8 type = STACK_MISC;
|
|
|
|
/* regular write of data into stack destroys any spilled ptr */
|
|
state->stack[spi].spilled_ptr.type = NOT_INIT;
|
|
/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
|
|
if (is_stack_slot_special(&state->stack[spi]))
|
|
for (i = 0; i < BPF_REG_SIZE; i++)
|
|
scrub_spilled_slot(&state->stack[spi].slot_type[i]);
|
|
|
|
/* only mark the slot as written if all 8 bytes were written
|
|
* otherwise read propagation may incorrectly stop too soon
|
|
* when stack slots are partially written.
|
|
* This heuristic means that read propagation will be
|
|
* conservative, since it will add reg_live_read marks
|
|
* to stack slots all the way to first state when programs
|
|
* writes+reads less than 8 bytes
|
|
*/
|
|
if (size == BPF_REG_SIZE)
|
|
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
|
|
|
|
/* when we zero initialize stack slots mark them as such */
|
|
if ((reg && register_is_null(reg)) ||
|
|
(!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
|
|
/* STACK_ZERO case happened because register spill
|
|
* wasn't properly aligned at the stack slot boundary,
|
|
* so it's not a register spill anymore; force
|
|
* originating register to be precise to make
|
|
* STACK_ZERO correct for subsequent states
|
|
*/
|
|
err = mark_chain_precision(env, value_regno);
|
|
if (err)
|
|
return err;
|
|
type = STACK_ZERO;
|
|
}
|
|
|
|
/* Mark slots affected by this stack write. */
|
|
for (i = 0; i < size; i++)
|
|
state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
|
|
insn_flags = 0; /* not a register spill */
|
|
}
|
|
|
|
if (insn_flags)
|
|
return push_jmp_history(env, env->cur_state, insn_flags);
|
|
return 0;
|
|
}
|
|
|
|
/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
|
|
* known to contain a variable offset.
|
|
* This function checks whether the write is permitted and conservatively
|
|
* tracks the effects of the write, considering that each stack slot in the
|
|
* dynamic range is potentially written to.
|
|
*
|
|
* 'off' includes 'regno->off'.
|
|
* 'value_regno' can be -1, meaning that an unknown value is being written to
|
|
* the stack.
|
|
*
|
|
* Spilled pointers in range are not marked as written because we don't know
|
|
* what's going to be actually written. This means that read propagation for
|
|
* future reads cannot be terminated by this write.
|
|
*
|
|
* For privileged programs, uninitialized stack slots are considered
|
|
* initialized by this write (even though we don't know exactly what offsets
|
|
* are going to be written to). The idea is that we don't want the verifier to
|
|
* reject future reads that access slots written to through variable offsets.
|
|
*/
|
|
static int check_stack_write_var_off(struct bpf_verifier_env *env,
|
|
/* func where register points to */
|
|
struct bpf_func_state *state,
|
|
int ptr_regno, int off, int size,
|
|
int value_regno, int insn_idx)
|
|
{
|
|
struct bpf_func_state *cur; /* state of the current function */
|
|
int min_off, max_off;
|
|
int i, err;
|
|
struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
|
|
struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
|
|
bool writing_zero = false;
|
|
/* set if the fact that we're writing a zero is used to let any
|
|
* stack slots remain STACK_ZERO
|
|
*/
|
|
bool zero_used = false;
|
|
|
|
cur = env->cur_state->frame[env->cur_state->curframe];
|
|
ptr_reg = &cur->regs[ptr_regno];
|
|
min_off = ptr_reg->smin_value + off;
|
|
max_off = ptr_reg->smax_value + off + size;
|
|
if (value_regno >= 0)
|
|
value_reg = &cur->regs[value_regno];
|
|
if ((value_reg && register_is_null(value_reg)) ||
|
|
(!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
|
|
writing_zero = true;
|
|
|
|
for (i = min_off; i < max_off; i++) {
|
|
int spi;
|
|
|
|
spi = __get_spi(i);
|
|
err = destroy_if_dynptr_stack_slot(env, state, spi);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Variable offset writes destroy any spilled pointers in range. */
|
|
for (i = min_off; i < max_off; i++) {
|
|
u8 new_type, *stype;
|
|
int slot, spi;
|
|
|
|
slot = -i - 1;
|
|
spi = slot / BPF_REG_SIZE;
|
|
stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
|
|
mark_stack_slot_scratched(env, spi);
|
|
|
|
if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
|
|
/* Reject the write if range we may write to has not
|
|
* been initialized beforehand. If we didn't reject
|
|
* here, the ptr status would be erased below (even
|
|
* though not all slots are actually overwritten),
|
|
* possibly opening the door to leaks.
|
|
*
|
|
* We do however catch STACK_INVALID case below, and
|
|
* only allow reading possibly uninitialized memory
|
|
* later for CAP_PERFMON, as the write may not happen to
|
|
* that slot.
|
|
*/
|
|
verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
|
|
insn_idx, i);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Erase all spilled pointers. */
|
|
state->stack[spi].spilled_ptr.type = NOT_INIT;
|
|
|
|
/* Update the slot type. */
|
|
new_type = STACK_MISC;
|
|
if (writing_zero && *stype == STACK_ZERO) {
|
|
new_type = STACK_ZERO;
|
|
zero_used = true;
|
|
}
|
|
/* If the slot is STACK_INVALID, we check whether it's OK to
|
|
* pretend that it will be initialized by this write. The slot
|
|
* might not actually be written to, and so if we mark it as
|
|
* initialized future reads might leak uninitialized memory.
|
|
* For privileged programs, we will accept such reads to slots
|
|
* that may or may not be written because, if we're reject
|
|
* them, the error would be too confusing.
|
|
*/
|
|
if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
|
|
verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
|
|
insn_idx, i);
|
|
return -EINVAL;
|
|
}
|
|
*stype = new_type;
|
|
}
|
|
if (zero_used) {
|
|
/* backtracking doesn't work for STACK_ZERO yet. */
|
|
err = mark_chain_precision(env, value_regno);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* When register 'dst_regno' is assigned some values from stack[min_off,
|
|
* max_off), we set the register's type according to the types of the
|
|
* respective stack slots. If all the stack values are known to be zeros, then
|
|
* so is the destination reg. Otherwise, the register is considered to be
|
|
* SCALAR. This function does not deal with register filling; the caller must
|
|
* ensure that all spilled registers in the stack range have been marked as
|
|
* read.
|
|
*/
|
|
static void mark_reg_stack_read(struct bpf_verifier_env *env,
|
|
/* func where src register points to */
|
|
struct bpf_func_state *ptr_state,
|
|
int min_off, int max_off, int dst_regno)
|
|
{
|
|
struct bpf_verifier_state *vstate = env->cur_state;
|
|
struct bpf_func_state *state = vstate->frame[vstate->curframe];
|
|
int i, slot, spi;
|
|
u8 *stype;
|
|
int zeros = 0;
|
|
|
|
for (i = min_off; i < max_off; i++) {
|
|
slot = -i - 1;
|
|
spi = slot / BPF_REG_SIZE;
|
|
mark_stack_slot_scratched(env, spi);
|
|
stype = ptr_state->stack[spi].slot_type;
|
|
if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
|
|
break;
|
|
zeros++;
|
|
}
|
|
if (zeros == max_off - min_off) {
|
|
/* any access_size read into register is zero extended,
|
|
* so the whole register == const_zero
|
|
*/
|
|
__mark_reg_const_zero(&state->regs[dst_regno]);
|
|
/* backtracking doesn't support STACK_ZERO yet,
|
|
* so mark it precise here, so that later
|
|
* backtracking can stop here.
|
|
* Backtracking may not need this if this register
|
|
* doesn't participate in pointer adjustment.
|
|
* Forward propagation of precise flag is not
|
|
* necessary either. This mark is only to stop
|
|
* backtracking. Any register that contributed
|
|
* to const 0 was marked precise before spill.
|
|
*/
|
|
state->regs[dst_regno].precise = true;
|
|
} else {
|
|
/* have read misc data from the stack */
|
|
mark_reg_unknown(env, state->regs, dst_regno);
|
|
}
|
|
state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
|
|
}
|
|
|
|
/* Read the stack at 'off' and put the results into the register indicated by
|
|
* 'dst_regno'. It handles reg filling if the addressed stack slot is a
|
|
* spilled reg.
|
|
*
|
|
* 'dst_regno' can be -1, meaning that the read value is not going to a
|
|
* register.
|
|
*
|
|
* The access is assumed to be within the current stack bounds.
|
|
*/
|
|
static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
|
|
/* func where src register points to */
|
|
struct bpf_func_state *reg_state,
|
|
int off, int size, int dst_regno)
|
|
{
|
|
struct bpf_verifier_state *vstate = env->cur_state;
|
|
struct bpf_func_state *state = vstate->frame[vstate->curframe];
|
|
int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
|
|
struct bpf_reg_state *reg;
|
|
u8 *stype, type;
|
|
int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
|
|
|
|
stype = reg_state->stack[spi].slot_type;
|
|
reg = ®_state->stack[spi].spilled_ptr;
|
|
|
|
mark_stack_slot_scratched(env, spi);
|
|
|
|
if (is_spilled_reg(®_state->stack[spi])) {
|
|
u8 spill_size = 1;
|
|
|
|
for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
|
|
spill_size++;
|
|
|
|
if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
|
|
if (reg->type != SCALAR_VALUE) {
|
|
verbose_linfo(env, env->insn_idx, "; ");
|
|
verbose(env, "invalid size of register fill\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
|
|
if (dst_regno < 0)
|
|
return 0;
|
|
|
|
if (!(off % BPF_REG_SIZE) && size == spill_size) {
|
|
/* The earlier check_reg_arg() has decided the
|
|
* subreg_def for this insn. Save it first.
|
|
*/
|
|
s32 subreg_def = state->regs[dst_regno].subreg_def;
|
|
|
|
copy_register_state(&state->regs[dst_regno], reg);
|
|
state->regs[dst_regno].subreg_def = subreg_def;
|
|
} else {
|
|
int spill_cnt = 0, zero_cnt = 0;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
type = stype[(slot - i) % BPF_REG_SIZE];
|
|
if (type == STACK_SPILL) {
|
|
spill_cnt++;
|
|
continue;
|
|
}
|
|
if (type == STACK_MISC)
|
|
continue;
|
|
if (type == STACK_ZERO) {
|
|
zero_cnt++;
|
|
continue;
|
|
}
|
|
if (type == STACK_INVALID && env->allow_uninit_stack)
|
|
continue;
|
|
verbose(env, "invalid read from stack off %d+%d size %d\n",
|
|
off, i, size);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (spill_cnt == size &&
|
|
tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
|
|
__mark_reg_const_zero(&state->regs[dst_regno]);
|
|
/* this IS register fill, so keep insn_flags */
|
|
} else if (zero_cnt == size) {
|
|
/* similarly to mark_reg_stack_read(), preserve zeroes */
|
|
__mark_reg_const_zero(&state->regs[dst_regno]);
|
|
insn_flags = 0; /* not restoring original register state */
|
|
} else {
|
|
mark_reg_unknown(env, state->regs, dst_regno);
|
|
insn_flags = 0; /* not restoring original register state */
|
|
}
|
|
}
|
|
state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
|
|
} else if (dst_regno >= 0) {
|
|
/* restore register state from stack */
|
|
copy_register_state(&state->regs[dst_regno], reg);
|
|
/* mark reg as written since spilled pointer state likely
|
|
* has its liveness marks cleared by is_state_visited()
|
|
* which resets stack/reg liveness for state transitions
|
|
*/
|
|
state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
|
|
} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
|
|
/* If dst_regno==-1, the caller is asking us whether
|
|
* it is acceptable to use this value as a SCALAR_VALUE
|
|
* (e.g. for XADD).
|
|
* We must not allow unprivileged callers to do that
|
|
* with spilled pointers.
|
|
*/
|
|
verbose(env, "leaking pointer from stack off %d\n",
|
|
off);
|
|
return -EACCES;
|
|
}
|
|
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
|
|
} else {
|
|
for (i = 0; i < size; i++) {
|
|
type = stype[(slot - i) % BPF_REG_SIZE];
|
|
if (type == STACK_MISC)
|
|
continue;
|
|
if (type == STACK_ZERO)
|
|
continue;
|
|
if (type == STACK_INVALID && env->allow_uninit_stack)
|
|
continue;
|
|
verbose(env, "invalid read from stack off %d+%d size %d\n",
|
|
off, i, size);
|
|
return -EACCES;
|
|
}
|
|
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
|
|
if (dst_regno >= 0)
|
|
mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
|
|
insn_flags = 0; /* we are not restoring spilled register */
|
|
}
|
|
if (insn_flags)
|
|
return push_jmp_history(env, env->cur_state, insn_flags);
|
|
return 0;
|
|
}
|
|
|
|
enum bpf_access_src {
|
|
ACCESS_DIRECT = 1, /* the access is performed by an instruction */
|
|
ACCESS_HELPER = 2, /* the access is performed by a helper */
|
|
};
|
|
|
|
static int check_stack_range_initialized(struct bpf_verifier_env *env,
|
|
int regno, int off, int access_size,
|
|
bool zero_size_allowed,
|
|
enum bpf_access_src type,
|
|
struct bpf_call_arg_meta *meta);
|
|
|
|
static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
|
|
{
|
|
return cur_regs(env) + regno;
|
|
}
|
|
|
|
/* Read the stack at 'ptr_regno + off' and put the result into the register
|
|
* 'dst_regno'.
|
|
* 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
|
|
* but not its variable offset.
|
|
* 'size' is assumed to be <= reg size and the access is assumed to be aligned.
|
|
*
|
|
* As opposed to check_stack_read_fixed_off, this function doesn't deal with
|
|
* filling registers (i.e. reads of spilled register cannot be detected when
|
|
* the offset is not fixed). We conservatively mark 'dst_regno' as containing
|
|
* SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
|
|
* offset; for a fixed offset check_stack_read_fixed_off should be used
|
|
* instead.
|
|
*/
|
|
static int check_stack_read_var_off(struct bpf_verifier_env *env,
|
|
int ptr_regno, int off, int size, int dst_regno)
|
|
{
|
|
/* The state of the source register. */
|
|
struct bpf_reg_state *reg = reg_state(env, ptr_regno);
|
|
struct bpf_func_state *ptr_state = func(env, reg);
|
|
int err;
|
|
int min_off, max_off;
|
|
|
|
/* Note that we pass a NULL meta, so raw access will not be permitted.
|
|
*/
|
|
err = check_stack_range_initialized(env, ptr_regno, off, size,
|
|
false, ACCESS_DIRECT, NULL);
|
|
if (err)
|
|
return err;
|
|
|
|
min_off = reg->smin_value + off;
|
|
max_off = reg->smax_value + off;
|
|
mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
|
|
return 0;
|
|
}
|
|
|
|
/* check_stack_read dispatches to check_stack_read_fixed_off or
|
|
* check_stack_read_var_off.
|
|
*
|
|
* The caller must ensure that the offset falls within the allocated stack
|
|
* bounds.
|
|
*
|
|
* 'dst_regno' is a register which will receive the value from the stack. It
|
|
* can be -1, meaning that the read value is not going to a register.
|
|
*/
|
|
static int check_stack_read(struct bpf_verifier_env *env,
|
|
int ptr_regno, int off, int size,
|
|
int dst_regno)
|
|
{
|
|
struct bpf_reg_state *reg = reg_state(env, ptr_regno);
|
|
struct bpf_func_state *state = func(env, reg);
|
|
int err;
|
|
/* Some accesses are only permitted with a static offset. */
|
|
bool var_off = !tnum_is_const(reg->var_off);
|
|
|
|
/* The offset is required to be static when reads don't go to a
|
|
* register, in order to not leak pointers (see
|
|
* check_stack_read_fixed_off).
|
|
*/
|
|
if (dst_regno < 0 && var_off) {
|
|
char tn_buf[48];
|
|
|
|
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
|
|
verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
|
|
tn_buf, off, size);
|
|
return -EACCES;
|
|
}
|
|
/* Variable offset is prohibited for unprivileged mode for simplicity
|
|
* since it requires corresponding support in Spectre masking for stack
|
|
* ALU. See also retrieve_ptr_limit(). The check in
|
|
* check_stack_access_for_ptr_arithmetic() called by
|
|
* adjust_ptr_min_max_vals() prevents users from creating stack pointers
|
|
* with variable offsets, therefore no check is required here. Further,
|
|
* just checking it here would be insufficient as speculative stack
|
|
* writes could still lead to unsafe speculative behaviour.
|
|
*/
|
|
if (!var_off) {
|
|
off += reg->var_off.value;
|
|
err = check_stack_read_fixed_off(env, state, off, size,
|
|
dst_regno);
|
|
} else {
|
|
/* Variable offset stack reads need more conservative handling
|
|
* than fixed offset ones. Note that dst_regno >= 0 on this
|
|
* branch.
|
|
*/
|
|
err = check_stack_read_var_off(env, ptr_regno, off, size,
|
|
dst_regno);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
|
|
/* check_stack_write dispatches to check_stack_write_fixed_off or
|
|
* check_stack_write_var_off.
|
|
*
|
|
* 'ptr_regno' is the register used as a pointer into the stack.
|
|
* 'off' includes 'ptr_regno->off', but not its variable offset (if any).
|
|
* 'value_regno' is the register whose value we're writing to the stack. It can
|
|
* be -1, meaning that we're not writing from a register.
|
|
*
|
|
* The caller must ensure that the offset falls within the maximum stack size.
|
|
*/
|
|
static int check_stack_write(struct bpf_verifier_env *env,
|
|
int ptr_regno, int off, int size,
|
|
int value_regno, int insn_idx)
|
|
{
|
|
struct bpf_reg_state *reg = reg_state(env, ptr_regno);
|
|
struct bpf_func_state *state = func(env, reg);
|
|
int err;
|
|
|
|
if (tnum_is_const(reg->var_off)) {
|
|
off += reg->var_off.value;
|
|
err = check_stack_write_fixed_off(env, state, off, size,
|
|
value_regno, insn_idx);
|
|
} else {
|
|
/* Variable offset stack reads need more conservative handling
|
|
* than fixed offset ones.
|
|
*/
|
|
err = check_stack_write_var_off(env, state,
|
|
ptr_regno, off, size,
|
|
value_regno, insn_idx);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
|
|
int off, int size, enum bpf_access_type type)
|
|
{
|
|
struct bpf_reg_state *regs = cur_regs(env);
|
|
struct bpf_map *map = regs[regno].map_ptr;
|
|
u32 cap = bpf_map_flags_to_cap(map);
|
|
|
|
if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
|
|
verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
|
|
map->value_size, off, size);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
|
|
verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
|
|
map->value_size, off, size);
|
|
return -EACCES;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
|
|
static int __check_mem_access(struct bpf_verifier_env *env, int regno,
|
|
int off, int size, u32 mem_size,
|
|
bool zero_size_allowed)
|
|
{
|
|
bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
|
|
struct bpf_reg_state *reg;
|
|
|
|
if (off >= 0 && size_ok && (u64)off + size <= mem_size)
|
|
return 0;
|
|
|
|
reg = &cur_regs(env)[regno];
|
|
switch (reg->type) {
|
|
case PTR_TO_MAP_KEY:
|
|
verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
|
|
mem_size, off, size);
|
|
break;
|
|
case PTR_TO_MAP_VALUE:
|
|
verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
|
|
mem_size, off, size);
|
|
break;
|
|
case PTR_TO_PACKET:
|
|
case PTR_TO_PACKET_META:
|
|
case PTR_TO_PACKET_END:
|
|
verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
|
|
off, size, regno, reg->id, off, mem_size);
|
|
break;
|
|
case PTR_TO_MEM:
|
|
default:
|
|
verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
|
|
mem_size, off, size);
|
|
}
|
|
|
|
return -EACCES;
|
|
}
|
|
|
|
/* check read/write into a memory region with possible variable offset */
|
|
static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
|
|
int off, int size, u32 mem_size,
|
|
bool zero_size_allowed)
|
|
{
|
|
struct bpf_verifier_state *vstate = env->cur_state;
|
|
struct bpf_func_state *state = vstate->frame[vstate->curframe];
|
|
struct bpf_reg_state *reg = &state->regs[regno];
|
|
int err;
|
|
|
|
/* We may have adjusted the register pointing to memory region, so we
|
|
* need to try adding each of min_value and max_value to off
|
|
* to make sure our theoretical access will be safe.
|
|
*
|
|
* The minimum value is only important with signed
|
|
* comparisons where we can't assume the floor of a
|
|
* value is 0. If we are using signed variables for our
|
|
* index'es we need to make sure that whatever we use
|
|
* will have a set floor within our range.
|
|
*/
|
|
if (reg->smin_value < 0 &&
|
|
(reg->smin_value == S64_MIN ||
|
|
(off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
|
|
reg->smin_value + off < 0)) {
|
|
verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
|
|
regno);
|
|
return -EACCES;
|
|
}
|
|
err = __check_mem_access(env, regno, reg->smin_value + off, size,
|
|
mem_size, zero_size_allowed);
|
|
if (err) {
|
|
verbose(env, "R%d min value is outside of the allowed memory range\n",
|
|
regno);
|
|
return err;
|
|
}
|
|
|
|
/* If we haven't set a max value then we need to bail since we can't be
|
|
* sure we won't do bad things.
|
|
* If reg->umax_value + off could overflow, treat that as unbounded too.
|
|
*/
|
|
if (reg->umax_value >= BPF_MAX_VAR_OFF) {
|
|
verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
|
|
regno);
|
|
return -EACCES;
|
|
}
|
|
err = __check_mem_access(env, regno, reg->umax_value + off, size,
|
|
mem_size, zero_size_allowed);
|
|
if (err) {
|
|
verbose(env, "R%d max value is outside of the allowed memory range\n",
|
|
regno);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __check_ptr_off_reg(struct bpf_verifier_env *env,
|
|
const struct bpf_reg_state *reg, int regno,
|
|
bool fixed_off_ok)
|
|
{
|
|
/* Access to this pointer-typed register or passing it to a helper
|
|
* is only allowed in its original, unmodified form.
|
|
*/
|
|
|
|
if (reg->off < 0) {
|
|
verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
|
|
reg_type_str(env, reg->type), regno, reg->off);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (!fixed_off_ok && reg->off) {
|
|
verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
|
|
reg_type_str(env, reg->type), regno, reg->off);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
|
|
char tn_buf[48];
|
|
|
|
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
|
|
verbose(env, "variable %s access var_off=%s disallowed\n",
|
|
reg_type_str(env, reg->type), tn_buf);
|
|
return -EACCES;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int check_ptr_off_reg(struct bpf_verifier_env *env,
|
|
const struct bpf_reg_state *reg, int regno)
|
|
{
|
|
return __check_ptr_off_reg(env, reg, regno, false);
|
|
}
|
|
|
|
static int map_kptr_match_type(struct bpf_verifier_env *env,
|
|
struct btf_field *kptr_field,
|
|
struct bpf_reg_state *reg, u32 regno)
|
|
{
|
|
const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
|
|
int perm_flags;
|
|
const char *reg_name = "";
|
|
|
|
if (btf_is_kernel(reg->btf)) {
|
|
perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
|
|
|
|
/* Only unreferenced case accepts untrusted pointers */
|
|
if (kptr_field->type == BPF_KPTR_UNREF)
|
|
perm_flags |= PTR_UNTRUSTED;
|
|
} else {
|
|
perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
|
|
if (kptr_field->type == BPF_KPTR_PERCPU)
|
|
perm_flags |= MEM_PERCPU;
|
|
}
|
|
|
|
if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
|
|
goto bad_type;
|
|
|
|
/* We need to verify reg->type and reg->btf, before accessing reg->btf */
|
|
reg_name = btf_type_name(reg->btf, reg->btf_id);
|
|
|
|
/* For ref_ptr case, release function check should ensure we get one
|
|
* referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
|
|
* normal store of unreferenced kptr, we must ensure var_off is zero.
|
|
* Since ref_ptr cannot be accessed directly by BPF insns, checks for
|
|
* reg->off and reg->ref_obj_id are not needed here.
|
|
*/
|
|
if (__check_ptr_off_reg(env, reg, regno, true))
|
|
return -EACCES;
|
|
|
|
/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
|
|
* we also need to take into account the reg->off.
|
|
*
|
|
* We want to support cases like:
|
|
*
|
|
* struct foo {
|
|
* struct bar br;
|
|
* struct baz bz;
|
|
* };
|
|
*
|
|
* struct foo *v;
|
|
* v = func(); // PTR_TO_BTF_ID
|
|
* val->foo = v; // reg->off is zero, btf and btf_id match type
|
|
* val->bar = &v->br; // reg->off is still zero, but we need to retry with
|
|
* // first member type of struct after comparison fails
|
|
* val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
|
|
* // to match type
|
|
*
|
|
* In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
|
|
* is zero. We must also ensure that btf_struct_ids_match does not walk
|
|
* the struct to match type against first member of struct, i.e. reject
|
|
* second case from above. Hence, when type is BPF_KPTR_REF, we set
|
|
* strict mode to true for type match.
|
|
*/
|
|
if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
|
|
kptr_field->kptr.btf, kptr_field->kptr.btf_id,
|
|
kptr_field->type != BPF_KPTR_UNREF))
|
|
goto bad_type;
|
|
return 0;
|
|
bad_type:
|
|
verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
|
|
reg_type_str(env, reg->type), reg_name);
|
|
verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
|
|
if (kptr_field->type == BPF_KPTR_UNREF)
|
|
verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
|
|
targ_name);
|
|
else
|
|
verbose(env, "\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
|
|
* can dereference RCU protected pointers and result is PTR_TRUSTED.
|
|
*/
|
|
static bool in_rcu_cs(struct bpf_verifier_env *env)
|
|
{
|
|
return env->cur_state->active_rcu_lock ||
|
|
env->cur_state->active_lock.ptr ||
|
|
!env->prog->aux->sleepable;
|
|
}
|
|
|
|
/* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
|
|
BTF_SET_START(rcu_protected_types)
|
|
BTF_ID(struct, prog_test_ref_kfunc)
|
|
#ifdef CONFIG_CGROUPS
|
|
BTF_ID(struct, cgroup)
|
|
#endif
|
|
BTF_ID(struct, bpf_cpumask)
|
|
BTF_ID(struct, task_struct)
|
|
BTF_SET_END(rcu_protected_types)
|
|
|
|
static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
|
|
{
|
|
if (!btf_is_kernel(btf))
|
|
return true;
|
|
return btf_id_set_contains(&rcu_protected_types, btf_id);
|
|
}
|
|
|
|
static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
|
|
{
|
|
struct btf_struct_meta *meta;
|
|
|
|
if (btf_is_kernel(kptr_field->kptr.btf))
|
|
return NULL;
|
|
|
|
meta = btf_find_struct_meta(kptr_field->kptr.btf,
|
|
kptr_field->kptr.btf_id);
|
|
|
|
return meta ? meta->record : NULL;
|
|
}
|
|
|
|
static bool rcu_safe_kptr(const struct btf_field *field)
|
|
{
|
|
const struct btf_field_kptr *kptr = &field->kptr;
|
|
|
|
return field->type == BPF_KPTR_PERCPU ||
|
|
(field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
|
|
}
|
|
|
|
static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
|
|
{
|
|
struct btf_record *rec;
|
|
u32 ret;
|
|
|
|
ret = PTR_MAYBE_NULL;
|
|
if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
|
|
ret |= MEM_RCU;
|
|
if (kptr_field->type == BPF_KPTR_PERCPU)
|
|
ret |= MEM_PERCPU;
|
|
else if (!btf_is_kernel(kptr_field->kptr.btf))
|
|
ret |= MEM_ALLOC;
|
|
|
|
rec = kptr_pointee_btf_record(kptr_field);
|
|
if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
|
|
ret |= NON_OWN_REF;
|
|
} else {
|
|
ret |= PTR_UNTRUSTED;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
|
|
int value_regno, int insn_idx,
|
|
struct btf_field *kptr_field)
|
|
{
|
|
struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
|
|
int class = BPF_CLASS(insn->code);
|
|
struct bpf_reg_state *val_reg;
|
|
|
|
/* Things we already checked for in check_map_access and caller:
|
|
* - Reject cases where variable offset may touch kptr
|
|
* - size of access (must be BPF_DW)
|
|
* - tnum_is_const(reg->var_off)
|
|
* - kptr_field->offset == off + reg->var_off.value
|
|
*/
|
|
/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
|
|
if (BPF_MODE(insn->code) != BPF_MEM) {
|
|
verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
/* We only allow loading referenced kptr, since it will be marked as
|
|
* untrusted, similar to unreferenced kptr.
|
|
*/
|
|
if (class != BPF_LDX &&
|
|
(kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
|
|
verbose(env, "store to referenced kptr disallowed\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
if (class == BPF_LDX) {
|
|
val_reg = reg_state(env, value_regno);
|
|
/* We can simply mark the value_regno receiving the pointer
|
|
* value from map as PTR_TO_BTF_ID, with the correct type.
|
|
*/
|
|
mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
|
|
kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
|
|
/* For mark_ptr_or_null_reg */
|
|
val_reg->id = ++env->id_gen;
|
|
} else if (class == BPF_STX) {
|
|
val_reg = reg_state(env, value_regno);
|
|
if (!register_is_null(val_reg) &&
|
|
map_kptr_match_type(env, kptr_field, val_reg, value_regno))
|
|
return -EACCES;
|
|
} else if (class == BPF_ST) {
|
|
if (insn->imm) {
|
|
verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
|
|
kptr_field->offset);
|
|
return -EACCES;
|
|
}
|
|
} else {
|
|
verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
|
|
return -EACCES;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* check read/write into a map element with possible variable offset */
|
|
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
|
|
int off, int size, bool zero_size_allowed,
|
|
enum bpf_access_src src)
|
|
{
|
|
struct bpf_verifier_state *vstate = env->cur_state;
|
|
struct bpf_func_state *state = vstate->frame[vstate->curframe];
|
|
struct bpf_reg_state *reg = &state->regs[regno];
|
|
struct bpf_map *map = reg->map_ptr;
|
|
struct btf_record *rec;
|
|
int err, i;
|
|
|
|
err = check_mem_region_access(env, regno, off, size, map->value_size,
|
|
zero_size_allowed);
|
|
if (err)
|
|
return err;
|
|
|
|
if (IS_ERR_OR_NULL(map->record))
|
|
return 0;
|
|
rec = map->record;
|
|
for (i = 0; i < rec->cnt; i++) {
|
|
struct btf_field *field = &rec->fields[i];
|
|
u32 p = field->offset;
|
|
|
|
/* If any part of a field can be touched by load/store, reject
|
|
* this program. To check that [x1, x2) overlaps with [y1, y2),
|
|
* it is sufficient to check x1 < y2 && y1 < x2.
|
|
*/
|
|
if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
|
|
p < reg->umax_value + off + size) {
|
|
switch (field->type) {
|
|
case BPF_KPTR_UNREF:
|
|
case BPF_KPTR_REF:
|
|
case BPF_KPTR_PERCPU:
|
|
if (src != ACCESS_DIRECT) {
|
|
verbose(env, "kptr cannot be accessed indirectly by helper\n");
|
|
return -EACCES;
|
|
}
|
|
if (!tnum_is_const(reg->var_off)) {
|
|
verbose(env, "kptr access cannot have variable offset\n");
|
|
return -EACCES;
|
|
}
|
|
if (p != off + reg->var_off.value) {
|
|
verbose(env, "kptr access misaligned expected=%u off=%llu\n",
|
|
p, off + reg->var_off.value);
|
|
return -EACCES;
|
|
}
|
|
if (size != bpf_size_to_bytes(BPF_DW)) {
|
|
verbose(env, "kptr access size must be BPF_DW\n");
|
|
return -EACCES;
|
|
}
|
|
break;
|
|
default:
|
|
verbose(env, "%s cannot be accessed directly by load/store\n",
|
|
btf_field_type_name(field->type));
|
|
return -EACCES;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define MAX_PACKET_OFF 0xffff
|
|
|
|
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
|
|
const struct bpf_call_arg_meta *meta,
|
|
enum bpf_access_type t)
|
|
{
|
|
enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
|
|
|
|
switch (prog_type) {
|
|
/* Program types only with direct read access go here! */
|
|
case BPF_PROG_TYPE_LWT_IN:
|
|
case BPF_PROG_TYPE_LWT_OUT:
|
|
case BPF_PROG_TYPE_LWT_SEG6LOCAL:
|
|
case BPF_PROG_TYPE_SK_REUSEPORT:
|
|
case BPF_PROG_TYPE_FLOW_DISSECTOR:
|
|
case BPF_PROG_TYPE_CGROUP_SKB:
|
|
if (t == BPF_WRITE)
|
|
return false;
|
|
fallthrough;
|
|
|
|
/* Program types with direct read + write access go here! */
|
|
case BPF_PROG_TYPE_SCHED_CLS:
|
|
case BPF_PROG_TYPE_SCHED_ACT:
|
|
case BPF_PROG_TYPE_XDP:
|
|
case BPF_PROG_TYPE_LWT_XMIT:
|
|
case BPF_PROG_TYPE_SK_SKB:
|
|
case BPF_PROG_TYPE_SK_MSG:
|
|
if (meta)
|
|
return meta->pkt_access;
|
|
|
|
env->seen_direct_write = true;
|
|
return true;
|
|
|
|
case BPF_PROG_TYPE_CGROUP_SOCKOPT:
|
|
if (t == BPF_WRITE)
|
|
env->seen_direct_write = true;
|
|
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
|
|
int size, bool zero_size_allowed)
|
|
{
|
|
struct bpf_reg_state *regs = cur_regs(env);
|
|
struct bpf_reg_state *reg = ®s[regno];
|
|
int err;
|
|
|
|
/* We may have added a variable offset to the packet pointer; but any
|
|
* reg->range we have comes after that. We are only checking the fixed
|
|
* offset.
|
|
*/
|
|
|
|
/* We don't allow negative numbers, because we aren't tracking enough
|
|
* detail to prove they're safe.
|
|
*/
|
|
if (reg->smin_value < 0) {
|
|
verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
|
|
regno);
|
|
return -EACCES;
|
|
}
|
|
|
|
err = reg->range < 0 ? -EINVAL :
|
|
__check_mem_access(env, regno, off, size, reg->range,
|
|
zero_size_allowed);
|
|
if (err) {
|
|
verbose(env, "R%d offset is outside of the packet\n", regno);
|
|
return err;
|
|
}
|
|
|
|
/* __check_mem_access has made sure "off + size - 1" is within u16.
|
|
* reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
|
|
* otherwise find_good_pkt_pointers would have refused to set range info
|
|
* that __check_mem_access would have rejected this pkt access.
|
|
* Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
|
|
*/
|
|
env->prog->aux->max_pkt_offset =
|
|
max_t(u32, env->prog->aux->max_pkt_offset,
|
|
off + reg->umax_value + size - 1);
|
|
|
|
return err;
|
|
}
|
|
|
|
/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
|
|
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
|
|
enum bpf_access_type t, enum bpf_reg_type *reg_type,
|
|
struct btf **btf, u32 *btf_id)
|
|
{
|
|
struct bpf_insn_access_aux info = {
|
|
.reg_type = *reg_type,
|
|
.log = &env->log,
|
|
};
|
|
|
|
if (env->ops->is_valid_access &&
|
|
env->ops->is_valid_access(off, size, t, env->prog, &info)) {
|
|
/* A non zero info.ctx_field_size indicates that this field is a
|
|
* candidate for later verifier transformation to load the whole
|
|
* field and then apply a mask when accessed with a narrower
|
|
* access than actual ctx access size. A zero info.ctx_field_size
|
|
* will only allow for whole field access and rejects any other
|
|
* type of narrower access.
|
|
*/
|
|
*reg_type = info.reg_type;
|
|
|
|
if (base_type(*reg_type) == PTR_TO_BTF_ID) {
|
|
*btf = info.btf;
|
|
*btf_id = info.btf_id;
|
|
} else {
|
|
env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
|
|
}
|
|
/* remember the offset of last byte accessed in ctx */
|
|
if (env->prog->aux->max_ctx_offset < off + size)
|
|
env->prog->aux->max_ctx_offset = off + size;
|
|
return 0;
|
|
}
|
|
|
|
verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
|
|
return -EACCES;
|
|
}
|
|
|
|
static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
|
|
int size)
|
|
{
|
|
if (size < 0 || off < 0 ||
|
|
(u64)off + size > sizeof(struct bpf_flow_keys)) {
|
|
verbose(env, "invalid access to flow keys off=%d size=%d\n",
|
|
off, size);
|
|
return -EACCES;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
|
|
u32 regno, int off, int size,
|
|
enum bpf_access_type t)
|
|
{
|
|
struct bpf_reg_state *regs = cur_regs(env);
|
|
struct bpf_reg_state *reg = ®s[regno];
|
|
struct bpf_insn_access_aux info = {};
|
|
bool valid;
|
|
|
|
if (reg->smin_value < 0) {
|
|
verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
|
|
regno);
|
|
return -EACCES;
|
|
}
|
|
|
|
switch (reg->type) {
|
|
case PTR_TO_SOCK_COMMON:
|
|
valid = bpf_sock_common_is_valid_access(off, size, t, &info);
|
|
break;
|
|
case PTR_TO_SOCKET:
|
|
valid = bpf_sock_is_valid_access(off, size, t, &info);
|
|
break;
|
|
case PTR_TO_TCP_SOCK:
|
|
valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
|
|
break;
|
|
case PTR_TO_XDP_SOCK:
|
|
valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
|
|
break;
|
|
default:
|
|
valid = false;
|
|
}
|
|
|
|
|
|
if (valid) {
|
|
env->insn_aux_data[insn_idx].ctx_field_size =
|
|
info.ctx_field_size;
|
|
return 0;
|
|
}
|
|
|
|
verbose(env, "R%d invalid %s access off=%d size=%d\n",
|
|
regno, reg_type_str(env, reg->type), off, size);
|
|
|
|
return -EACCES;
|
|
}
|
|
|
|
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
|
|
{
|
|
return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
|
|
}
|
|
|
|
static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
|
|
{
|
|
const struct bpf_reg_state *reg = reg_state(env, regno);
|
|
|
|
return reg->type == PTR_TO_CTX;
|
|
}
|
|
|
|
static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
|
|
{
|
|
const struct bpf_reg_state *reg = reg_state(env, regno);
|
|
|
|
return type_is_sk_pointer(reg->type);
|
|
}
|
|
|
|
static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
|
|
{
|
|
const struct bpf_reg_state *reg = reg_state(env, regno);
|
|
|
|
return type_is_pkt_pointer(reg->type);
|
|
}
|
|
|
|
static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
|
|
{
|
|
const struct bpf_reg_state *reg = reg_state(env, regno);
|
|
|
|
/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
|
|
return reg->type == PTR_TO_FLOW_KEYS;
|
|
}
|
|
|
|
static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
|
|
#ifdef CONFIG_NET
|
|
[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
|
|
[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
|
|
[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
|
|
#endif
|
|
[CONST_PTR_TO_MAP] = btf_bpf_map_id,
|
|
};
|
|
|
|
static bool is_trusted_reg(const struct bpf_reg_state *reg)
|
|
{
|
|
/* A referenced register is always trusted. */
|
|
if (reg->ref_obj_id)
|
|
return true;
|
|
|
|
/* Types listed in the reg2btf_ids are always trusted */
|
|
if (reg2btf_ids[base_type(reg->type)])
|
|
return true;
|
|
|
|
/* If a register is not referenced, it is trusted if it has the
|
|
* MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
|
|
* other type modifiers may be safe, but we elect to take an opt-in
|
|
* approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
|
|
* not.
|
|
*
|
|
* Eventually, we should make PTR_TRUSTED the single source of truth
|
|
* for whether a register is trusted.
|
|
*/
|
|
return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
|
|
!bpf_type_has_unsafe_modifiers(reg->type);
|
|
}
|
|
|
|
static bool is_rcu_reg(const struct bpf_reg_state *reg)
|
|
{
|
|
return reg->type & MEM_RCU;
|
|
}
|
|
|
|
static void clear_trusted_flags(enum bpf_type_flag *flag)
|
|
{
|
|
*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
|
|
}
|
|
|
|
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
|
|
const struct bpf_reg_state *reg,
|
|
int off, int size, bool strict)
|
|
{
|
|
struct tnum reg_off;
|
|
int ip_align;
|
|
|
|
/* Byte size accesses are always allowed. */
|
|
if (!strict || size == 1)
|
|
return 0;
|
|
|
|
/* For platforms that do not have a Kconfig enabling
|
|
* CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
|
|
* NET_IP_ALIGN is universally set to '2'. And on platforms
|
|
* that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
|
|
* to this code only in strict mode where we want to emulate
|
|
* the NET_IP_ALIGN==2 checking. Therefore use an
|
|
* unconditional IP align value of '2'.
|
|
*/
|
|
ip_align = 2;
|
|
|
|
reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
|
|
if (!tnum_is_aligned(reg_off, size)) {
|
|
char tn_buf[48];
|
|
|
|
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
|
|
verbose(env,
|
|
"misaligned packet access off %d+%s+%d+%d size %d\n",
|
|
ip_align, tn_buf, reg->off, off, size);
|
|
return -EACCES;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
|
|
const struct bpf_reg_state *reg,
|
|
const char *pointer_desc,
|
|
int off, int size, bool strict)
|
|
{
|
|
struct tnum reg_off;
|
|
|
|
/* Byte size accesses are always allowed. */
|
|
if (!strict || size == 1)
|
|
return 0;
|
|
|
|
reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
|
|
if (!tnum_is_aligned(reg_off, size)) {
|
|
char tn_buf[48];
|
|
|
|
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
|
|
verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
|
|
pointer_desc, tn_buf, reg->off, off, size);
|
|
return -EACCES;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_ptr_alignment(struct bpf_verifier_env *env,
|
|
const struct bpf_reg_state *reg, int off,
|
|
int size, bool strict_alignment_once)
|
|
{
|
|
bool strict = env->strict_alignment || strict_alignment_once;
|
|
const char *pointer_desc = "";
|
|
|
|
switch (reg->type) {
|
|
case PTR_TO_PACKET:
|
|
case PTR_TO_PACKET_META:
|
|
/* Special case, because of NET_IP_ALIGN. Given metadata sits
|
|
* right in front, treat it the very same way.
|
|
*/
|
|
return check_pkt_ptr_alignment(env, reg, off, size, strict);
|
|
case PTR_TO_FLOW_KEYS:
|
|
pointer_desc = "flow keys ";
|
|
break;
|
|
case PTR_TO_MAP_KEY:
|
|
pointer_desc = "key ";
|
|
break;
|
|
case PTR_TO_MAP_VALUE:
|
|
pointer_desc = "value ";
|
|
break;
|
|
case PTR_TO_CTX:
|
|
pointer_desc = "context ";
|
|
break;
|
|
case PTR_TO_STACK:
|
|
pointer_desc = "stack ";
|
|
/* The stack spill tracking logic in check_stack_write_fixed_off()
|
|
* and check_stack_read_fixed_off() relies on stack accesses being
|
|
* aligned.
|
|
*/
|
|
strict = true;
|
|
break;
|
|
case PTR_TO_SOCKET:
|
|
pointer_desc = "sock ";
|
|
break;
|
|
case PTR_TO_SOCK_COMMON:
|
|
pointer_desc = "sock_common ";
|
|
break;
|
|
case PTR_TO_TCP_SOCK:
|
|
pointer_desc = "tcp_sock ";
|
|
break;
|
|
case PTR_TO_XDP_SOCK:
|
|
pointer_desc = "xdp_sock ";
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
|
|
strict);
|
|
}
|
|
|
|
/* starting from main bpf function walk all instructions of the function
|
|
* and recursively walk all callees that given function can call.
|
|
* Ignore jump and exit insns.
|
|
* Since recursion is prevented by check_cfg() this algorithm
|
|
* only needs a local stack of MAX_CALL_FRAMES to remember callsites
|
|
*/
|
|
static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
|
|
{
|
|
struct bpf_subprog_info *subprog = env->subprog_info;
|
|
struct bpf_insn *insn = env->prog->insnsi;
|
|
int depth = 0, frame = 0, i, subprog_end;
|
|
bool tail_call_reachable = false;
|
|
int ret_insn[MAX_CALL_FRAMES];
|
|
int ret_prog[MAX_CALL_FRAMES];
|
|
int j;
|
|
|
|
i = subprog[idx].start;
|
|
process_func:
|
|
/* protect against potential stack overflow that might happen when
|
|
* bpf2bpf calls get combined with tailcalls. Limit the caller's stack
|
|
* depth for such case down to 256 so that the worst case scenario
|
|
* would result in 8k stack size (32 which is tailcall limit * 256 =
|
|
* 8k).
|
|
*
|
|
* To get the idea what might happen, see an example:
|
|
* func1 -> sub rsp, 128
|
|
* subfunc1 -> sub rsp, 256
|
|
* tailcall1 -> add rsp, 256
|
|
* func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
|
|
* subfunc2 -> sub rsp, 64
|
|
* subfunc22 -> sub rsp, 128
|
|
* tailcall2 -> add rsp, 128
|
|
* func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
|
|
*
|
|
* tailcall will unwind the current stack frame but it will not get rid
|
|
* of caller's stack as shown on the example above.
|
|
*/
|
|
if (idx && subprog[idx].has_tail_call && depth >= 256) {
|
|
verbose(env,
|
|
"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
|
|
depth);
|
|
return -EACCES;
|
|
}
|
|
/* round up to 32-bytes, since this is granularity
|
|
* of interpreter stack size
|
|
*/
|
|
depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
|
|
if (depth > MAX_BPF_STACK) {
|
|
verbose(env, "combined stack size of %d calls is %d. Too large\n",
|
|
frame + 1, depth);
|
|
return -EACCES;
|
|
}
|
|
continue_func:
|
|
subprog_end = subprog[idx + 1].start;
|
|
for (; i < subprog_end; i++) {
|
|
int next_insn, sidx;
|
|
|
|
if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
|
|
bool err = false;
|
|
|
|
if (!is_bpf_throw_kfunc(insn + i))
|
|
continue;
|
|
if (subprog[idx].is_cb)
|
|
err = true;
|
|
for (int c = 0; c < frame && !err; c++) {
|
|
if (subprog[ret_prog[c]].is_cb) {
|
|
err = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!err)
|
|
continue;
|
|
verbose(env,
|
|
"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
|
|
i, idx);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
|
|
continue;
|
|
/* remember insn and function to return to */
|
|
ret_insn[frame] = i + 1;
|
|
ret_prog[frame] = idx;
|
|
|
|
/* find the callee */
|
|
next_insn = i + insn[i].imm + 1;
|
|
sidx = find_subprog(env, next_insn);
|
|
if (sidx < 0) {
|
|
WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
|
|
next_insn);
|
|
return -EFAULT;
|
|
}
|
|
if (subprog[sidx].is_async_cb) {
|
|
if (subprog[sidx].has_tail_call) {
|
|
verbose(env, "verifier bug. subprog has tail_call and async cb\n");
|
|
return -EFAULT;
|
|
}
|
|
/* async callbacks don't increase bpf prog stack size unless called directly */
|
|
if (!bpf_pseudo_call(insn + i))
|
|
continue;
|
|
if (subprog[sidx].is_exception_cb) {
|
|
verbose(env, "insn %d cannot call exception cb directly\n", i);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
i = next_insn;
|
|
idx = sidx;
|
|
|
|
if (subprog[idx].has_tail_call)
|
|
tail_call_reachable = true;
|
|
|
|
frame++;
|
|
if (frame >= MAX_CALL_FRAMES) {
|
|
verbose(env, "the call stack of %d frames is too deep !\n",
|
|
frame);
|
|
return -E2BIG;
|
|
}
|
|
goto process_func;
|
|
}
|
|
/* if tail call got detected across bpf2bpf calls then mark each of the
|
|
* currently present subprog frames as tail call reachable subprogs;
|
|
* this info will be utilized by JIT so that we will be preserving the
|
|
* tail call counter throughout bpf2bpf calls combined with tailcalls
|
|
*/
|
|
if (tail_call_reachable)
|
|
for (j = 0; j < frame; j++) {
|
|
if (subprog[ret_prog[j]].is_exception_cb) {
|
|
verbose(env, "cannot tail call within exception cb\n");
|
|
return -EINVAL;
|
|
}
|
|
subprog[ret_prog[j]].tail_call_reachable = true;
|
|
}
|
|
if (subprog[0].tail_call_reachable)
|
|
env->prog->aux->tail_call_reachable = true;
|
|
|
|
/* end of for() loop means the last insn of the 'subprog'
|
|
* was reached. Doesn't matter whether it was JA or EXIT
|
|
*/
|
|
if (frame == 0)
|
|
return 0;
|
|
depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
|
|
frame--;
|
|
i = ret_insn[frame];
|
|
idx = ret_prog[frame];
|
|
goto continue_func;
|
|
}
|
|
|
|
static int check_max_stack_depth(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_subprog_info *si = env->subprog_info;
|
|
int ret;
|
|
|
|
for (int i = 0; i < env->subprog_cnt; i++) {
|
|
if (!i || si[i].is_async_cb) {
|
|
ret = check_max_stack_depth_subprog(env, i);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
continue;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
|
|
static int get_callee_stack_depth(struct bpf_verifier_env *env,
|
|
const struct bpf_insn *insn, int idx)
|
|
{
|
|
int start = idx + insn->imm + 1, subprog;
|
|
|
|
subprog = find_subprog(env, start);
|
|
if (subprog < 0) {
|
|
WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
|
|
start);
|
|
return -EFAULT;
|
|
}
|
|
return env->subprog_info[subprog].stack_depth;
|
|
}
|
|
#endif
|
|
|
|
static int __check_buffer_access(struct bpf_verifier_env *env,
|
|
const char *buf_info,
|
|
const struct bpf_reg_state *reg,
|
|
int regno, int off, int size)
|
|
{
|
|
if (off < 0) {
|
|
verbose(env,
|
|
"R%d invalid %s buffer access: off=%d, size=%d\n",
|
|
regno, buf_info, off, size);
|
|
return -EACCES;
|
|
}
|
|
if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
|
|
char tn_buf[48];
|
|
|
|
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
|
|
verbose(env,
|
|
"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
|
|
regno, off, tn_buf);
|
|
return -EACCES;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_tp_buffer_access(struct bpf_verifier_env *env,
|
|
const struct bpf_reg_state *reg,
|
|
int regno, int off, int size)
|
|
{
|
|
int err;
|
|
|
|
err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
|
|
if (err)
|
|
return err;
|
|
|
|
if (off + size > env->prog->aux->max_tp_access)
|
|
env->prog->aux->max_tp_access = off + size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_buffer_access(struct bpf_verifier_env *env,
|
|
const struct bpf_reg_state *reg,
|
|
int regno, int off, int size,
|
|
bool zero_size_allowed,
|
|
u32 *max_access)
|
|
{
|
|
const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
|
|
int err;
|
|
|
|
err = __check_buffer_access(env, buf_info, reg, regno, off, size);
|
|
if (err)
|
|
return err;
|
|
|
|
if (off + size > *max_access)
|
|
*max_access = off + size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* BPF architecture zero extends alu32 ops into 64-bit registesr */
|
|
static void zext_32_to_64(struct bpf_reg_state *reg)
|
|
{
|
|
reg->var_off = tnum_subreg(reg->var_off);
|
|
__reg_assign_32_into_64(reg);
|
|
}
|
|
|
|
/* truncate register to smaller size (in bytes)
|
|
* must be called with size < BPF_REG_SIZE
|
|
*/
|
|
static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
|
|
{
|
|
u64 mask;
|
|
|
|
/* clear high bits in bit representation */
|
|
reg->var_off = tnum_cast(reg->var_off, size);
|
|
|
|
/* fix arithmetic bounds */
|
|
mask = ((u64)1 << (size * 8)) - 1;
|
|
if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
|
|
reg->umin_value &= mask;
|
|
reg->umax_value &= mask;
|
|
} else {
|
|
reg->umin_value = 0;
|
|
reg->umax_value = mask;
|
|
}
|
|
reg->smin_value = reg->umin_value;
|
|
reg->smax_value = reg->umax_value;
|
|
|
|
/* If size is smaller than 32bit register the 32bit register
|
|
* values are also truncated so we push 64-bit bounds into
|
|
* 32-bit bounds. Above were truncated < 32-bits already.
|
|
*/
|
|
if (size < 4) {
|
|
__mark_reg32_unbounded(reg);
|
|
reg_bounds_sync(reg);
|
|
}
|
|
}
|
|
|
|
static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
|
|
{
|
|
if (size == 1) {
|
|
reg->smin_value = reg->s32_min_value = S8_MIN;
|
|
reg->smax_value = reg->s32_max_value = S8_MAX;
|
|
} else if (size == 2) {
|
|
reg->smin_value = reg->s32_min_value = S16_MIN;
|
|
reg->smax_value = reg->s32_max_value = S16_MAX;
|
|
} else {
|
|
/* size == 4 */
|
|
reg->smin_value = reg->s32_min_value = S32_MIN;
|
|
reg->smax_value = reg->s32_max_value = S32_MAX;
|
|
}
|
|
reg->umin_value = reg->u32_min_value = 0;
|
|
reg->umax_value = U64_MAX;
|
|
reg->u32_max_value = U32_MAX;
|
|
reg->var_off = tnum_unknown;
|
|
}
|
|
|
|
static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
|
|
{
|
|
s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
|
|
u64 top_smax_value, top_smin_value;
|
|
u64 num_bits = size * 8;
|
|
|
|
if (tnum_is_const(reg->var_off)) {
|
|
u64_cval = reg->var_off.value;
|
|
if (size == 1)
|
|
reg->var_off = tnum_const((s8)u64_cval);
|
|
else if (size == 2)
|
|
reg->var_off = tnum_const((s16)u64_cval);
|
|
else
|
|
/* size == 4 */
|
|
reg->var_off = tnum_const((s32)u64_cval);
|
|
|
|
u64_cval = reg->var_off.value;
|
|
reg->smax_value = reg->smin_value = u64_cval;
|
|
reg->umax_value = reg->umin_value = u64_cval;
|
|
reg->s32_max_value = reg->s32_min_value = u64_cval;
|
|
reg->u32_max_value = reg->u32_min_value = u64_cval;
|
|
return;
|
|
}
|
|
|
|
top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
|
|
top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
|
|
|
|
if (top_smax_value != top_smin_value)
|
|
goto out;
|
|
|
|
/* find the s64_min and s64_min after sign extension */
|
|
if (size == 1) {
|
|
init_s64_max = (s8)reg->smax_value;
|
|
init_s64_min = (s8)reg->smin_value;
|
|
} else if (size == 2) {
|
|
init_s64_max = (s16)reg->smax_value;
|
|
init_s64_min = (s16)reg->smin_value;
|
|
} else {
|
|
init_s64_max = (s32)reg->smax_value;
|
|
init_s64_min = (s32)reg->smin_value;
|
|
}
|
|
|
|
s64_max = max(init_s64_max, init_s64_min);
|
|
s64_min = min(init_s64_max, init_s64_min);
|
|
|
|
/* both of s64_max/s64_min positive or negative */
|
|
if ((s64_max >= 0) == (s64_min >= 0)) {
|
|
reg->smin_value = reg->s32_min_value = s64_min;
|
|
reg->smax_value = reg->s32_max_value = s64_max;
|
|
reg->umin_value = reg->u32_min_value = s64_min;
|
|
reg->umax_value = reg->u32_max_value = s64_max;
|
|
reg->var_off = tnum_range(s64_min, s64_max);
|
|
return;
|
|
}
|
|
|
|
out:
|
|
set_sext64_default_val(reg, size);
|
|
}
|
|
|
|
static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
|
|
{
|
|
if (size == 1) {
|
|
reg->s32_min_value = S8_MIN;
|
|
reg->s32_max_value = S8_MAX;
|
|
} else {
|
|
/* size == 2 */
|
|
reg->s32_min_value = S16_MIN;
|
|
reg->s32_max_value = S16_MAX;
|
|
}
|
|
reg->u32_min_value = 0;
|
|
reg->u32_max_value = U32_MAX;
|
|
}
|
|
|
|
static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
|
|
{
|
|
s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
|
|
u32 top_smax_value, top_smin_value;
|
|
u32 num_bits = size * 8;
|
|
|
|
if (tnum_is_const(reg->var_off)) {
|
|
u32_val = reg->var_off.value;
|
|
if (size == 1)
|
|
reg->var_off = tnum_const((s8)u32_val);
|
|
else
|
|
reg->var_off = tnum_const((s16)u32_val);
|
|
|
|
u32_val = reg->var_off.value;
|
|
reg->s32_min_value = reg->s32_max_value = u32_val;
|
|
reg->u32_min_value = reg->u32_max_value = u32_val;
|
|
return;
|
|
}
|
|
|
|
top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
|
|
top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
|
|
|
|
if (top_smax_value != top_smin_value)
|
|
goto out;
|
|
|
|
/* find the s32_min and s32_min after sign extension */
|
|
if (size == 1) {
|
|
init_s32_max = (s8)reg->s32_max_value;
|
|
init_s32_min = (s8)reg->s32_min_value;
|
|
} else {
|
|
/* size == 2 */
|
|
init_s32_max = (s16)reg->s32_max_value;
|
|
init_s32_min = (s16)reg->s32_min_value;
|
|
}
|
|
s32_max = max(init_s32_max, init_s32_min);
|
|
s32_min = min(init_s32_max, init_s32_min);
|
|
|
|
if ((s32_min >= 0) == (s32_max >= 0)) {
|
|
reg->s32_min_value = s32_min;
|
|
reg->s32_max_value = s32_max;
|
|
reg->u32_min_value = (u32)s32_min;
|
|
reg->u32_max_value = (u32)s32_max;
|
|
return;
|
|
}
|
|
|
|
out:
|
|
set_sext32_default_val(reg, size);
|
|
}
|
|
|
|
static bool bpf_map_is_rdonly(const struct bpf_map *map)
|
|
{
|
|
/* A map is considered read-only if the following condition are true:
|
|
*
|
|
* 1) BPF program side cannot change any of the map content. The
|
|
* BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
|
|
* and was set at map creation time.
|
|
* 2) The map value(s) have been initialized from user space by a
|
|
* loader and then "frozen", such that no new map update/delete
|
|
* operations from syscall side are possible for the rest of
|
|
* the map's lifetime from that point onwards.
|
|
* 3) Any parallel/pending map update/delete operations from syscall
|
|
* side have been completed. Only after that point, it's safe to
|
|
* assume that map value(s) are immutable.
|
|
*/
|
|
return (map->map_flags & BPF_F_RDONLY_PROG) &&
|
|
READ_ONCE(map->frozen) &&
|
|
!bpf_map_write_active(map);
|
|
}
|
|
|
|
static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
|
|
bool is_ldsx)
|
|
{
|
|
void *ptr;
|
|
u64 addr;
|
|
int err;
|
|
|
|
err = map->ops->map_direct_value_addr(map, &addr, off);
|
|
if (err)
|
|
return err;
|
|
ptr = (void *)(long)addr + off;
|
|
|
|
switch (size) {
|
|
case sizeof(u8):
|
|
*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
|
|
break;
|
|
case sizeof(u16):
|
|
*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
|
|
break;
|
|
case sizeof(u32):
|
|
*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
|
|
break;
|
|
case sizeof(u64):
|
|
*val = *(u64 *)ptr;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu)
|
|
#define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null)
|
|
#define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted)
|
|
|
|
/*
|
|
* Allow list few fields as RCU trusted or full trusted.
|
|
* This logic doesn't allow mix tagging and will be removed once GCC supports
|
|
* btf_type_tag.
|
|
*/
|
|
|
|
/* RCU trusted: these fields are trusted in RCU CS and never NULL */
|
|
BTF_TYPE_SAFE_RCU(struct task_struct) {
|
|
const cpumask_t *cpus_ptr;
|
|
struct css_set __rcu *cgroups;
|
|
struct task_struct __rcu *real_parent;
|
|
struct task_struct *group_leader;
|
|
};
|
|
|
|
BTF_TYPE_SAFE_RCU(struct cgroup) {
|
|
/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
|
|
struct kernfs_node *kn;
|
|
};
|
|
|
|
BTF_TYPE_SAFE_RCU(struct css_set) {
|
|
struct cgroup *dfl_cgrp;
|
|
};
|
|
|
|
/* RCU trusted: these fields are trusted in RCU CS and can be NULL */
|
|
BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
|
|
struct file __rcu *exe_file;
|
|
};
|
|
|
|
/* skb->sk, req->sk are not RCU protected, but we mark them as such
|
|
* because bpf prog accessible sockets are SOCK_RCU_FREE.
|
|
*/
|
|
BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
|
|
struct sock *sk;
|
|
};
|
|
|
|
BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
|
|
struct sock *sk;
|
|
};
|
|
|
|
/* full trusted: these fields are trusted even outside of RCU CS and never NULL */
|
|
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
|
|
struct seq_file *seq;
|
|
};
|
|
|
|
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
|
|
struct bpf_iter_meta *meta;
|
|
struct task_struct *task;
|
|
};
|
|
|
|
BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
|
|
struct file *file;
|
|
};
|
|
|
|
BTF_TYPE_SAFE_TRUSTED(struct file) {
|
|
struct inode *f_inode;
|
|
};
|
|
|
|
BTF_TYPE_SAFE_TRUSTED(struct dentry) {
|
|
/* no negative dentry-s in places where bpf can see it */
|
|
struct inode *d_inode;
|
|
};
|
|
|
|
BTF_TYPE_SAFE_TRUSTED(struct socket) {
|
|
struct sock *sk;
|
|
};
|
|
|
|
static bool type_is_rcu(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg,
|
|
const char *field_name, u32 btf_id)
|
|
{
|
|
BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
|
|
BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
|
|
BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
|
|
|
|
return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
|
|
}
|
|
|
|
static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg,
|
|
const char *field_name, u32 btf_id)
|
|
{
|
|
BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
|
|
BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
|
|
BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
|
|
|
|
return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
|
|
}
|
|
|
|
static bool type_is_trusted(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg,
|
|
const char *field_name, u32 btf_id)
|
|
{
|
|
BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
|
|
BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
|
|
BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
|
|
BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
|
|
BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
|
|
BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
|
|
|
|
return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
|
|
}
|
|
|
|
static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *regs,
|
|
int regno, int off, int size,
|
|
enum bpf_access_type atype,
|
|
int value_regno)
|
|
{
|
|
struct bpf_reg_state *reg = regs + regno;
|
|
const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
|
|
const char *tname = btf_name_by_offset(reg->btf, t->name_off);
|
|
const char *field_name = NULL;
|
|
enum bpf_type_flag flag = 0;
|
|
u32 btf_id = 0;
|
|
int ret;
|
|
|
|
if (!env->allow_ptr_leaks) {
|
|
verbose(env,
|
|
"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
|
|
tname);
|
|
return -EPERM;
|
|
}
|
|
if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
|
|
verbose(env,
|
|
"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
|
|
tname);
|
|
return -EINVAL;
|
|
}
|
|
if (off < 0) {
|
|
verbose(env,
|
|
"R%d is ptr_%s invalid negative access: off=%d\n",
|
|
regno, tname, off);
|
|
return -EACCES;
|
|
}
|
|
if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
|
|
char tn_buf[48];
|
|
|
|
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
|
|
verbose(env,
|
|
"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
|
|
regno, tname, off, tn_buf);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (reg->type & MEM_USER) {
|
|
verbose(env,
|
|
"R%d is ptr_%s access user memory: off=%d\n",
|
|
regno, tname, off);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (reg->type & MEM_PERCPU) {
|
|
verbose(env,
|
|
"R%d is ptr_%s access percpu memory: off=%d\n",
|
|
regno, tname, off);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
|
|
if (!btf_is_kernel(reg->btf)) {
|
|
verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
|
|
return -EFAULT;
|
|
}
|
|
ret = env->ops->btf_struct_access(&env->log, reg, off, size);
|
|
} else {
|
|
/* Writes are permitted with default btf_struct_access for
|
|
* program allocated objects (which always have ref_obj_id > 0),
|
|
* but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
|
|
*/
|
|
if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
|
|
verbose(env, "only read is supported\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
|
|
!(reg->type & MEM_RCU) && !reg->ref_obj_id) {
|
|
verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
|
|
}
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (ret != PTR_TO_BTF_ID) {
|
|
/* just mark; */
|
|
|
|
} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
|
|
/* If this is an untrusted pointer, all pointers formed by walking it
|
|
* also inherit the untrusted flag.
|
|
*/
|
|
flag = PTR_UNTRUSTED;
|
|
|
|
} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
|
|
/* By default any pointer obtained from walking a trusted pointer is no
|
|
* longer trusted, unless the field being accessed has explicitly been
|
|
* marked as inheriting its parent's state of trust (either full or RCU).
|
|
* For example:
|
|
* 'cgroups' pointer is untrusted if task->cgroups dereference
|
|
* happened in a sleepable program outside of bpf_rcu_read_lock()
|
|
* section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
|
|
* Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
|
|
*
|
|
* A regular RCU-protected pointer with __rcu tag can also be deemed
|
|
* trusted if we are in an RCU CS. Such pointer can be NULL.
|
|
*/
|
|
if (type_is_trusted(env, reg, field_name, btf_id)) {
|
|
flag |= PTR_TRUSTED;
|
|
} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
|
|
if (type_is_rcu(env, reg, field_name, btf_id)) {
|
|
/* ignore __rcu tag and mark it MEM_RCU */
|
|
flag |= MEM_RCU;
|
|
} else if (flag & MEM_RCU ||
|
|
type_is_rcu_or_null(env, reg, field_name, btf_id)) {
|
|
/* __rcu tagged pointers can be NULL */
|
|
flag |= MEM_RCU | PTR_MAYBE_NULL;
|
|
|
|
/* We always trust them */
|
|
if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
|
|
flag & PTR_UNTRUSTED)
|
|
flag &= ~PTR_UNTRUSTED;
|
|
} else if (flag & (MEM_PERCPU | MEM_USER)) {
|
|
/* keep as-is */
|
|
} else {
|
|
/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
|
|
clear_trusted_flags(&flag);
|
|
}
|
|
} else {
|
|
/*
|
|
* If not in RCU CS or MEM_RCU pointer can be NULL then
|
|
* aggressively mark as untrusted otherwise such
|
|
* pointers will be plain PTR_TO_BTF_ID without flags
|
|
* and will be allowed to be passed into helpers for
|
|
* compat reasons.
|
|
*/
|
|
flag = PTR_UNTRUSTED;
|
|
}
|
|
} else {
|
|
/* Old compat. Deprecated */
|
|
clear_trusted_flags(&flag);
|
|
}
|
|
|
|
if (atype == BPF_READ && value_regno >= 0)
|
|
mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_ptr_to_map_access(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *regs,
|
|
int regno, int off, int size,
|
|
enum bpf_access_type atype,
|
|
int value_regno)
|
|
{
|
|
struct bpf_reg_state *reg = regs + regno;
|
|
struct bpf_map *map = reg->map_ptr;
|
|
struct bpf_reg_state map_reg;
|
|
enum bpf_type_flag flag = 0;
|
|
const struct btf_type *t;
|
|
const char *tname;
|
|
u32 btf_id;
|
|
int ret;
|
|
|
|
if (!btf_vmlinux) {
|
|
verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
|
|
verbose(env, "map_ptr access not supported for map type %d\n",
|
|
map->map_type);
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
|
|
tname = btf_name_by_offset(btf_vmlinux, t->name_off);
|
|
|
|
if (!env->allow_ptr_leaks) {
|
|
verbose(env,
|
|
"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
|
|
tname);
|
|
return -EPERM;
|
|
}
|
|
|
|
if (off < 0) {
|
|
verbose(env, "R%d is %s invalid negative access: off=%d\n",
|
|
regno, tname, off);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (atype != BPF_READ) {
|
|
verbose(env, "only read from %s is supported\n", tname);
|
|
return -EACCES;
|
|
}
|
|
|
|
/* Simulate access to a PTR_TO_BTF_ID */
|
|
memset(&map_reg, 0, sizeof(map_reg));
|
|
mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
|
|
ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (value_regno >= 0)
|
|
mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Check that the stack access at the given offset is within bounds. The
|
|
* maximum valid offset is -1.
|
|
*
|
|
* The minimum valid offset is -MAX_BPF_STACK for writes, and
|
|
* -state->allocated_stack for reads.
|
|
*/
|
|
static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
|
|
s64 off,
|
|
struct bpf_func_state *state,
|
|
enum bpf_access_type t)
|
|
{
|
|
int min_valid_off;
|
|
|
|
if (t == BPF_WRITE || env->allow_uninit_stack)
|
|
min_valid_off = -MAX_BPF_STACK;
|
|
else
|
|
min_valid_off = -state->allocated_stack;
|
|
|
|
if (off < min_valid_off || off > -1)
|
|
return -EACCES;
|
|
return 0;
|
|
}
|
|
|
|
/* Check that the stack access at 'regno + off' falls within the maximum stack
|
|
* bounds.
|
|
*
|
|
* 'off' includes `regno->offset`, but not its dynamic part (if any).
|
|
*/
|
|
static int check_stack_access_within_bounds(
|
|
struct bpf_verifier_env *env,
|
|
int regno, int off, int access_size,
|
|
enum bpf_access_src src, enum bpf_access_type type)
|
|
{
|
|
struct bpf_reg_state *regs = cur_regs(env);
|
|
struct bpf_reg_state *reg = regs + regno;
|
|
struct bpf_func_state *state = func(env, reg);
|
|
s64 min_off, max_off;
|
|
int err;
|
|
char *err_extra;
|
|
|
|
if (src == ACCESS_HELPER)
|
|
/* We don't know if helpers are reading or writing (or both). */
|
|
err_extra = " indirect access to";
|
|
else if (type == BPF_READ)
|
|
err_extra = " read from";
|
|
else
|
|
err_extra = " write to";
|
|
|
|
if (tnum_is_const(reg->var_off)) {
|
|
min_off = (s64)reg->var_off.value + off;
|
|
max_off = min_off + access_size;
|
|
} else {
|
|
if (reg->smax_value >= BPF_MAX_VAR_OFF ||
|
|
reg->smin_value <= -BPF_MAX_VAR_OFF) {
|
|
verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
|
|
err_extra, regno);
|
|
return -EACCES;
|
|
}
|
|
min_off = reg->smin_value + off;
|
|
max_off = reg->smax_value + off + access_size;
|
|
}
|
|
|
|
err = check_stack_slot_within_bounds(env, min_off, state, type);
|
|
if (!err && max_off > 0)
|
|
err = -EINVAL; /* out of stack access into non-negative offsets */
|
|
|
|
if (err) {
|
|
if (tnum_is_const(reg->var_off)) {
|
|
verbose(env, "invalid%s stack R%d off=%d size=%d\n",
|
|
err_extra, regno, off, access_size);
|
|
} else {
|
|
char tn_buf[48];
|
|
|
|
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
|
|
verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
|
|
err_extra, regno, tn_buf, off, access_size);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/* Note that there is no stack access with offset zero, so the needed stack
|
|
* size is -min_off, not -min_off+1.
|
|
*/
|
|
return grow_stack_state(env, state, -min_off /* size */);
|
|
}
|
|
|
|
/* check whether memory at (regno + off) is accessible for t = (read | write)
|
|
* if t==write, value_regno is a register which value is stored into memory
|
|
* if t==read, value_regno is a register which will receive the value from memory
|
|
* if t==write && value_regno==-1, some unknown value is stored into memory
|
|
* if t==read && value_regno==-1, don't care what we read from memory
|
|
*/
|
|
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
|
|
int off, int bpf_size, enum bpf_access_type t,
|
|
int value_regno, bool strict_alignment_once, bool is_ldsx)
|
|
{
|
|
struct bpf_reg_state *regs = cur_regs(env);
|
|
struct bpf_reg_state *reg = regs + regno;
|
|
int size, err = 0;
|
|
|
|
size = bpf_size_to_bytes(bpf_size);
|
|
if (size < 0)
|
|
return size;
|
|
|
|
/* alignment checks will add in reg->off themselves */
|
|
err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
|
|
if (err)
|
|
return err;
|
|
|
|
/* for access checks, reg->off is just part of off */
|
|
off += reg->off;
|
|
|
|
if (reg->type == PTR_TO_MAP_KEY) {
|
|
if (t == BPF_WRITE) {
|
|
verbose(env, "write to change key R%d not allowed\n", regno);
|
|
return -EACCES;
|
|
}
|
|
|
|
err = check_mem_region_access(env, regno, off, size,
|
|
reg->map_ptr->key_size, false);
|
|
if (err)
|
|
return err;
|
|
if (value_regno >= 0)
|
|
mark_reg_unknown(env, regs, value_regno);
|
|
} else if (reg->type == PTR_TO_MAP_VALUE) {
|
|
struct btf_field *kptr_field = NULL;
|
|
|
|
if (t == BPF_WRITE && value_regno >= 0 &&
|
|
is_pointer_value(env, value_regno)) {
|
|
verbose(env, "R%d leaks addr into map\n", value_regno);
|
|
return -EACCES;
|
|
}
|
|
err = check_map_access_type(env, regno, off, size, t);
|
|
if (err)
|
|
return err;
|
|
err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
|
|
if (err)
|
|
return err;
|
|
if (tnum_is_const(reg->var_off))
|
|
kptr_field = btf_record_find(reg->map_ptr->record,
|
|
off + reg->var_off.value, BPF_KPTR);
|
|
if (kptr_field) {
|
|
err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
|
|
} else if (t == BPF_READ && value_regno >= 0) {
|
|
struct bpf_map *map = reg->map_ptr;
|
|
|
|
/* if map is read-only, track its contents as scalars */
|
|
if (tnum_is_const(reg->var_off) &&
|
|
bpf_map_is_rdonly(map) &&
|
|
map->ops->map_direct_value_addr) {
|
|
int map_off = off + reg->var_off.value;
|
|
u64 val = 0;
|
|
|
|
err = bpf_map_direct_read(map, map_off, size,
|
|
&val, is_ldsx);
|
|
if (err)
|
|
return err;
|
|
|
|
regs[value_regno].type = SCALAR_VALUE;
|
|
__mark_reg_known(®s[value_regno], val);
|
|
} else {
|
|
mark_reg_unknown(env, regs, value_regno);
|
|
}
|
|
}
|
|
} else if (base_type(reg->type) == PTR_TO_MEM) {
|
|
bool rdonly_mem = type_is_rdonly_mem(reg->type);
|
|
|
|
if (type_may_be_null(reg->type)) {
|
|
verbose(env, "R%d invalid mem access '%s'\n", regno,
|
|
reg_type_str(env, reg->type));
|
|
return -EACCES;
|
|
}
|
|
|
|
if (t == BPF_WRITE && rdonly_mem) {
|
|
verbose(env, "R%d cannot write into %s\n",
|
|
regno, reg_type_str(env, reg->type));
|
|
return -EACCES;
|
|
}
|
|
|
|
if (t == BPF_WRITE && value_regno >= 0 &&
|
|
is_pointer_value(env, value_regno)) {
|
|
verbose(env, "R%d leaks addr into mem\n", value_regno);
|
|
return -EACCES;
|
|
}
|
|
|
|
err = check_mem_region_access(env, regno, off, size,
|
|
reg->mem_size, false);
|
|
if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
|
|
mark_reg_unknown(env, regs, value_regno);
|
|
} else if (reg->type == PTR_TO_CTX) {
|
|
enum bpf_reg_type reg_type = SCALAR_VALUE;
|
|
struct btf *btf = NULL;
|
|
u32 btf_id = 0;
|
|
|
|
if (t == BPF_WRITE && value_regno >= 0 &&
|
|
is_pointer_value(env, value_regno)) {
|
|
verbose(env, "R%d leaks addr into ctx\n", value_regno);
|
|
return -EACCES;
|
|
}
|
|
|
|
err = check_ptr_off_reg(env, reg, regno);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf,
|
|
&btf_id);
|
|
if (err)
|
|
verbose_linfo(env, insn_idx, "; ");
|
|
if (!err && t == BPF_READ && value_regno >= 0) {
|
|
/* ctx access returns either a scalar, or a
|
|
* PTR_TO_PACKET[_META,_END]. In the latter
|
|
* case, we know the offset is zero.
|
|
*/
|
|
if (reg_type == SCALAR_VALUE) {
|
|
mark_reg_unknown(env, regs, value_regno);
|
|
} else {
|
|
mark_reg_known_zero(env, regs,
|
|
value_regno);
|
|
if (type_may_be_null(reg_type))
|
|
regs[value_regno].id = ++env->id_gen;
|
|
/* A load of ctx field could have different
|
|
* actual load size with the one encoded in the
|
|
* insn. When the dst is PTR, it is for sure not
|
|
* a sub-register.
|
|
*/
|
|
regs[value_regno].subreg_def = DEF_NOT_SUBREG;
|
|
if (base_type(reg_type) == PTR_TO_BTF_ID) {
|
|
regs[value_regno].btf = btf;
|
|
regs[value_regno].btf_id = btf_id;
|
|
}
|
|
}
|
|
regs[value_regno].type = reg_type;
|
|
}
|
|
|
|
} else if (reg->type == PTR_TO_STACK) {
|
|
/* Basic bounds checks. */
|
|
err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
|
|
if (err)
|
|
return err;
|
|
|
|
if (t == BPF_READ)
|
|
err = check_stack_read(env, regno, off, size,
|
|
value_regno);
|
|
else
|
|
err = check_stack_write(env, regno, off, size,
|
|
value_regno, insn_idx);
|
|
} else if (reg_is_pkt_pointer(reg)) {
|
|
if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
|
|
verbose(env, "cannot write into packet\n");
|
|
return -EACCES;
|
|
}
|
|
if (t == BPF_WRITE && value_regno >= 0 &&
|
|
is_pointer_value(env, value_regno)) {
|
|
verbose(env, "R%d leaks addr into packet\n",
|
|
value_regno);
|
|
return -EACCES;
|
|
}
|
|
err = check_packet_access(env, regno, off, size, false);
|
|
if (!err && t == BPF_READ && value_regno >= 0)
|
|
mark_reg_unknown(env, regs, value_regno);
|
|
} else if (reg->type == PTR_TO_FLOW_KEYS) {
|
|
if (t == BPF_WRITE && value_regno >= 0 &&
|
|
is_pointer_value(env, value_regno)) {
|
|
verbose(env, "R%d leaks addr into flow keys\n",
|
|
value_regno);
|
|
return -EACCES;
|
|
}
|
|
|
|
err = check_flow_keys_access(env, off, size);
|
|
if (!err && t == BPF_READ && value_regno >= 0)
|
|
mark_reg_unknown(env, regs, value_regno);
|
|
} else if (type_is_sk_pointer(reg->type)) {
|
|
if (t == BPF_WRITE) {
|
|
verbose(env, "R%d cannot write into %s\n",
|
|
regno, reg_type_str(env, reg->type));
|
|
return -EACCES;
|
|
}
|
|
err = check_sock_access(env, insn_idx, regno, off, size, t);
|
|
if (!err && value_regno >= 0)
|
|
mark_reg_unknown(env, regs, value_regno);
|
|
} else if (reg->type == PTR_TO_TP_BUFFER) {
|
|
err = check_tp_buffer_access(env, reg, regno, off, size);
|
|
if (!err && t == BPF_READ && value_regno >= 0)
|
|
mark_reg_unknown(env, regs, value_regno);
|
|
} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
|
|
!type_may_be_null(reg->type)) {
|
|
err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
|
|
value_regno);
|
|
} else if (reg->type == CONST_PTR_TO_MAP) {
|
|
err = check_ptr_to_map_access(env, regs, regno, off, size, t,
|
|
value_regno);
|
|
} else if (base_type(reg->type) == PTR_TO_BUF) {
|
|
bool rdonly_mem = type_is_rdonly_mem(reg->type);
|
|
u32 *max_access;
|
|
|
|
if (rdonly_mem) {
|
|
if (t == BPF_WRITE) {
|
|
verbose(env, "R%d cannot write into %s\n",
|
|
regno, reg_type_str(env, reg->type));
|
|
return -EACCES;
|
|
}
|
|
max_access = &env->prog->aux->max_rdonly_access;
|
|
} else {
|
|
max_access = &env->prog->aux->max_rdwr_access;
|
|
}
|
|
|
|
err = check_buffer_access(env, reg, regno, off, size, false,
|
|
max_access);
|
|
|
|
if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
|
|
mark_reg_unknown(env, regs, value_regno);
|
|
} else {
|
|
verbose(env, "R%d invalid mem access '%s'\n", regno,
|
|
reg_type_str(env, reg->type));
|
|
return -EACCES;
|
|
}
|
|
|
|
if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
|
|
regs[value_regno].type == SCALAR_VALUE) {
|
|
if (!is_ldsx)
|
|
/* b/h/w load zero-extends, mark upper bits as known 0 */
|
|
coerce_reg_to_size(®s[value_regno], size);
|
|
else
|
|
coerce_reg_to_size_sx(®s[value_regno], size);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
|
|
{
|
|
int load_reg;
|
|
int err;
|
|
|
|
switch (insn->imm) {
|
|
case BPF_ADD:
|
|
case BPF_ADD | BPF_FETCH:
|
|
case BPF_AND:
|
|
case BPF_AND | BPF_FETCH:
|
|
case BPF_OR:
|
|
case BPF_OR | BPF_FETCH:
|
|
case BPF_XOR:
|
|
case BPF_XOR | BPF_FETCH:
|
|
case BPF_XCHG:
|
|
case BPF_CMPXCHG:
|
|
break;
|
|
default:
|
|
verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
|
|
verbose(env, "invalid atomic operand size\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* check src1 operand */
|
|
err = check_reg_arg(env, insn->src_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
/* check src2 operand */
|
|
err = check_reg_arg(env, insn->dst_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
if (insn->imm == BPF_CMPXCHG) {
|
|
/* Check comparison of R0 with memory location */
|
|
const u32 aux_reg = BPF_REG_0;
|
|
|
|
err = check_reg_arg(env, aux_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
if (is_pointer_value(env, aux_reg)) {
|
|
verbose(env, "R%d leaks addr into mem\n", aux_reg);
|
|
return -EACCES;
|
|
}
|
|
}
|
|
|
|
if (is_pointer_value(env, insn->src_reg)) {
|
|
verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (is_ctx_reg(env, insn->dst_reg) ||
|
|
is_pkt_reg(env, insn->dst_reg) ||
|
|
is_flow_key_reg(env, insn->dst_reg) ||
|
|
is_sk_reg(env, insn->dst_reg)) {
|
|
verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
|
|
insn->dst_reg,
|
|
reg_type_str(env, reg_state(env, insn->dst_reg)->type));
|
|
return -EACCES;
|
|
}
|
|
|
|
if (insn->imm & BPF_FETCH) {
|
|
if (insn->imm == BPF_CMPXCHG)
|
|
load_reg = BPF_REG_0;
|
|
else
|
|
load_reg = insn->src_reg;
|
|
|
|
/* check and record load of old value */
|
|
err = check_reg_arg(env, load_reg, DST_OP);
|
|
if (err)
|
|
return err;
|
|
} else {
|
|
/* This instruction accesses a memory location but doesn't
|
|
* actually load it into a register.
|
|
*/
|
|
load_reg = -1;
|
|
}
|
|
|
|
/* Check whether we can read the memory, with second call for fetch
|
|
* case to simulate the register fill.
|
|
*/
|
|
err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
|
|
BPF_SIZE(insn->code), BPF_READ, -1, true, false);
|
|
if (!err && load_reg >= 0)
|
|
err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
|
|
BPF_SIZE(insn->code), BPF_READ, load_reg,
|
|
true, false);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Check whether we can write into the same memory. */
|
|
err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
|
|
BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
|
|
if (err)
|
|
return err;
|
|
return 0;
|
|
}
|
|
|
|
/* When register 'regno' is used to read the stack (either directly or through
|
|
* a helper function) make sure that it's within stack boundary and, depending
|
|
* on the access type and privileges, that all elements of the stack are
|
|
* initialized.
|
|
*
|
|
* 'off' includes 'regno->off', but not its dynamic part (if any).
|
|
*
|
|
* All registers that have been spilled on the stack in the slots within the
|
|
* read offsets are marked as read.
|
|
*/
|
|
static int check_stack_range_initialized(
|
|
struct bpf_verifier_env *env, int regno, int off,
|
|
int access_size, bool zero_size_allowed,
|
|
enum bpf_access_src type, struct bpf_call_arg_meta *meta)
|
|
{
|
|
struct bpf_reg_state *reg = reg_state(env, regno);
|
|
struct bpf_func_state *state = func(env, reg);
|
|
int err, min_off, max_off, i, j, slot, spi;
|
|
char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
|
|
enum bpf_access_type bounds_check_type;
|
|
/* Some accesses can write anything into the stack, others are
|
|
* read-only.
|
|
*/
|
|
bool clobber = false;
|
|
|
|
if (access_size == 0 && !zero_size_allowed) {
|
|
verbose(env, "invalid zero-sized read\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
if (type == ACCESS_HELPER) {
|
|
/* The bounds checks for writes are more permissive than for
|
|
* reads. However, if raw_mode is not set, we'll do extra
|
|
* checks below.
|
|
*/
|
|
bounds_check_type = BPF_WRITE;
|
|
clobber = true;
|
|
} else {
|
|
bounds_check_type = BPF_READ;
|
|
}
|
|
err = check_stack_access_within_bounds(env, regno, off, access_size,
|
|
type, bounds_check_type);
|
|
if (err)
|
|
return err;
|
|
|
|
|
|
if (tnum_is_const(reg->var_off)) {
|
|
min_off = max_off = reg->var_off.value + off;
|
|
} else {
|
|
/* Variable offset is prohibited for unprivileged mode for
|
|
* simplicity since it requires corresponding support in
|
|
* Spectre masking for stack ALU.
|
|
* See also retrieve_ptr_limit().
|
|
*/
|
|
if (!env->bypass_spec_v1) {
|
|
char tn_buf[48];
|
|
|
|
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
|
|
verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
|
|
regno, err_extra, tn_buf);
|
|
return -EACCES;
|
|
}
|
|
/* Only initialized buffer on stack is allowed to be accessed
|
|
* with variable offset. With uninitialized buffer it's hard to
|
|
* guarantee that whole memory is marked as initialized on
|
|
* helper return since specific bounds are unknown what may
|
|
* cause uninitialized stack leaking.
|
|
*/
|
|
if (meta && meta->raw_mode)
|
|
meta = NULL;
|
|
|
|
min_off = reg->smin_value + off;
|
|
max_off = reg->smax_value + off;
|
|
}
|
|
|
|
if (meta && meta->raw_mode) {
|
|
/* Ensure we won't be overwriting dynptrs when simulating byte
|
|
* by byte access in check_helper_call using meta.access_size.
|
|
* This would be a problem if we have a helper in the future
|
|
* which takes:
|
|
*
|
|
* helper(uninit_mem, len, dynptr)
|
|
*
|
|
* Now, uninint_mem may overlap with dynptr pointer. Hence, it
|
|
* may end up writing to dynptr itself when touching memory from
|
|
* arg 1. This can be relaxed on a case by case basis for known
|
|
* safe cases, but reject due to the possibilitiy of aliasing by
|
|
* default.
|
|
*/
|
|
for (i = min_off; i < max_off + access_size; i++) {
|
|
int stack_off = -i - 1;
|
|
|
|
spi = __get_spi(i);
|
|
/* raw_mode may write past allocated_stack */
|
|
if (state->allocated_stack <= stack_off)
|
|
continue;
|
|
if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
|
|
verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
|
|
return -EACCES;
|
|
}
|
|
}
|
|
meta->access_size = access_size;
|
|
meta->regno = regno;
|
|
return 0;
|
|
}
|
|
|
|
for (i = min_off; i < max_off + access_size; i++) {
|
|
u8 *stype;
|
|
|
|
slot = -i - 1;
|
|
spi = slot / BPF_REG_SIZE;
|
|
if (state->allocated_stack <= slot) {
|
|
verbose(env, "verifier bug: allocated_stack too small");
|
|
return -EFAULT;
|
|
}
|
|
|
|
stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
|
|
if (*stype == STACK_MISC)
|
|
goto mark;
|
|
if ((*stype == STACK_ZERO) ||
|
|
(*stype == STACK_INVALID && env->allow_uninit_stack)) {
|
|
if (clobber) {
|
|
/* helper can write anything into the stack */
|
|
*stype = STACK_MISC;
|
|
}
|
|
goto mark;
|
|
}
|
|
|
|
if (is_spilled_reg(&state->stack[spi]) &&
|
|
(state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
|
|
env->allow_ptr_leaks)) {
|
|
if (clobber) {
|
|
__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
|
|
for (j = 0; j < BPF_REG_SIZE; j++)
|
|
scrub_spilled_slot(&state->stack[spi].slot_type[j]);
|
|
}
|
|
goto mark;
|
|
}
|
|
|
|
if (tnum_is_const(reg->var_off)) {
|
|
verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
|
|
err_extra, regno, min_off, i - min_off, access_size);
|
|
} else {
|
|
char tn_buf[48];
|
|
|
|
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
|
|
verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
|
|
err_extra, regno, tn_buf, i - min_off, access_size);
|
|
}
|
|
return -EACCES;
|
|
mark:
|
|
/* reading any byte out of 8-byte 'spill_slot' will cause
|
|
* the whole slot to be marked as 'read'
|
|
*/
|
|
mark_reg_read(env, &state->stack[spi].spilled_ptr,
|
|
state->stack[spi].spilled_ptr.parent,
|
|
REG_LIVE_READ64);
|
|
/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
|
|
* be sure that whether stack slot is written to or not. Hence,
|
|
* we must still conservatively propagate reads upwards even if
|
|
* helper may write to the entire memory range.
|
|
*/
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
|
|
int access_size, bool zero_size_allowed,
|
|
struct bpf_call_arg_meta *meta)
|
|
{
|
|
struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
|
|
u32 *max_access;
|
|
|
|
switch (base_type(reg->type)) {
|
|
case PTR_TO_PACKET:
|
|
case PTR_TO_PACKET_META:
|
|
return check_packet_access(env, regno, reg->off, access_size,
|
|
zero_size_allowed);
|
|
case PTR_TO_MAP_KEY:
|
|
if (meta && meta->raw_mode) {
|
|
verbose(env, "R%d cannot write into %s\n", regno,
|
|
reg_type_str(env, reg->type));
|
|
return -EACCES;
|
|
}
|
|
return check_mem_region_access(env, regno, reg->off, access_size,
|
|
reg->map_ptr->key_size, false);
|
|
case PTR_TO_MAP_VALUE:
|
|
if (check_map_access_type(env, regno, reg->off, access_size,
|
|
meta && meta->raw_mode ? BPF_WRITE :
|
|
BPF_READ))
|
|
return -EACCES;
|
|
return check_map_access(env, regno, reg->off, access_size,
|
|
zero_size_allowed, ACCESS_HELPER);
|
|
case PTR_TO_MEM:
|
|
if (type_is_rdonly_mem(reg->type)) {
|
|
if (meta && meta->raw_mode) {
|
|
verbose(env, "R%d cannot write into %s\n", regno,
|
|
reg_type_str(env, reg->type));
|
|
return -EACCES;
|
|
}
|
|
}
|
|
return check_mem_region_access(env, regno, reg->off,
|
|
access_size, reg->mem_size,
|
|
zero_size_allowed);
|
|
case PTR_TO_BUF:
|
|
if (type_is_rdonly_mem(reg->type)) {
|
|
if (meta && meta->raw_mode) {
|
|
verbose(env, "R%d cannot write into %s\n", regno,
|
|
reg_type_str(env, reg->type));
|
|
return -EACCES;
|
|
}
|
|
|
|
max_access = &env->prog->aux->max_rdonly_access;
|
|
} else {
|
|
max_access = &env->prog->aux->max_rdwr_access;
|
|
}
|
|
return check_buffer_access(env, reg, regno, reg->off,
|
|
access_size, zero_size_allowed,
|
|
max_access);
|
|
case PTR_TO_STACK:
|
|
return check_stack_range_initialized(
|
|
env,
|
|
regno, reg->off, access_size,
|
|
zero_size_allowed, ACCESS_HELPER, meta);
|
|
case PTR_TO_BTF_ID:
|
|
return check_ptr_to_btf_access(env, regs, regno, reg->off,
|
|
access_size, BPF_READ, -1);
|
|
case PTR_TO_CTX:
|
|
/* in case the function doesn't know how to access the context,
|
|
* (because we are in a program of type SYSCALL for example), we
|
|
* can not statically check its size.
|
|
* Dynamically check it now.
|
|
*/
|
|
if (!env->ops->convert_ctx_access) {
|
|
enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
|
|
int offset = access_size - 1;
|
|
|
|
/* Allow zero-byte read from PTR_TO_CTX */
|
|
if (access_size == 0)
|
|
return zero_size_allowed ? 0 : -EACCES;
|
|
|
|
return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
|
|
atype, -1, false, false);
|
|
}
|
|
|
|
fallthrough;
|
|
default: /* scalar_value or invalid ptr */
|
|
/* Allow zero-byte read from NULL, regardless of pointer type */
|
|
if (zero_size_allowed && access_size == 0 &&
|
|
register_is_null(reg))
|
|
return 0;
|
|
|
|
verbose(env, "R%d type=%s ", regno,
|
|
reg_type_str(env, reg->type));
|
|
verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
|
|
return -EACCES;
|
|
}
|
|
}
|
|
|
|
static int check_mem_size_reg(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg, u32 regno,
|
|
bool zero_size_allowed,
|
|
struct bpf_call_arg_meta *meta)
|
|
{
|
|
int err;
|
|
|
|
/* This is used to refine r0 return value bounds for helpers
|
|
* that enforce this value as an upper bound on return values.
|
|
* See do_refine_retval_range() for helpers that can refine
|
|
* the return value. C type of helper is u32 so we pull register
|
|
* bound from umax_value however, if negative verifier errors
|
|
* out. Only upper bounds can be learned because retval is an
|
|
* int type and negative retvals are allowed.
|
|
*/
|
|
meta->msize_max_value = reg->umax_value;
|
|
|
|
/* The register is SCALAR_VALUE; the access check
|
|
* happens using its boundaries.
|
|
*/
|
|
if (!tnum_is_const(reg->var_off))
|
|
/* For unprivileged variable accesses, disable raw
|
|
* mode so that the program is required to
|
|
* initialize all the memory that the helper could
|
|
* just partially fill up.
|
|
*/
|
|
meta = NULL;
|
|
|
|
if (reg->smin_value < 0) {
|
|
verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
|
|
regno);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (reg->umin_value == 0) {
|
|
err = check_helper_mem_access(env, regno - 1, 0,
|
|
zero_size_allowed,
|
|
meta);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
|
|
verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
|
|
regno);
|
|
return -EACCES;
|
|
}
|
|
err = check_helper_mem_access(env, regno - 1,
|
|
reg->umax_value,
|
|
zero_size_allowed, meta);
|
|
if (!err)
|
|
err = mark_chain_precision(env, regno);
|
|
return err;
|
|
}
|
|
|
|
int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
|
|
u32 regno, u32 mem_size)
|
|
{
|
|
bool may_be_null = type_may_be_null(reg->type);
|
|
struct bpf_reg_state saved_reg;
|
|
struct bpf_call_arg_meta meta;
|
|
int err;
|
|
|
|
if (register_is_null(reg))
|
|
return 0;
|
|
|
|
memset(&meta, 0, sizeof(meta));
|
|
/* Assuming that the register contains a value check if the memory
|
|
* access is safe. Temporarily save and restore the register's state as
|
|
* the conversion shouldn't be visible to a caller.
|
|
*/
|
|
if (may_be_null) {
|
|
saved_reg = *reg;
|
|
mark_ptr_not_null_reg(reg);
|
|
}
|
|
|
|
err = check_helper_mem_access(env, regno, mem_size, true, &meta);
|
|
/* Check access for BPF_WRITE */
|
|
meta.raw_mode = true;
|
|
err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
|
|
|
|
if (may_be_null)
|
|
*reg = saved_reg;
|
|
|
|
return err;
|
|
}
|
|
|
|
static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
|
|
u32 regno)
|
|
{
|
|
struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
|
|
bool may_be_null = type_may_be_null(mem_reg->type);
|
|
struct bpf_reg_state saved_reg;
|
|
struct bpf_call_arg_meta meta;
|
|
int err;
|
|
|
|
WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
|
|
|
|
memset(&meta, 0, sizeof(meta));
|
|
|
|
if (may_be_null) {
|
|
saved_reg = *mem_reg;
|
|
mark_ptr_not_null_reg(mem_reg);
|
|
}
|
|
|
|
err = check_mem_size_reg(env, reg, regno, true, &meta);
|
|
/* Check access for BPF_WRITE */
|
|
meta.raw_mode = true;
|
|
err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
|
|
|
|
if (may_be_null)
|
|
*mem_reg = saved_reg;
|
|
return err;
|
|
}
|
|
|
|
/* Implementation details:
|
|
* bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
|
|
* bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
|
|
* Two bpf_map_lookups (even with the same key) will have different reg->id.
|
|
* Two separate bpf_obj_new will also have different reg->id.
|
|
* For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
|
|
* clears reg->id after value_or_null->value transition, since the verifier only
|
|
* cares about the range of access to valid map value pointer and doesn't care
|
|
* about actual address of the map element.
|
|
* For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
|
|
* reg->id > 0 after value_or_null->value transition. By doing so
|
|
* two bpf_map_lookups will be considered two different pointers that
|
|
* point to different bpf_spin_locks. Likewise for pointers to allocated objects
|
|
* returned from bpf_obj_new.
|
|
* The verifier allows taking only one bpf_spin_lock at a time to avoid
|
|
* dead-locks.
|
|
* Since only one bpf_spin_lock is allowed the checks are simpler than
|
|
* reg_is_refcounted() logic. The verifier needs to remember only
|
|
* one spin_lock instead of array of acquired_refs.
|
|
* cur_state->active_lock remembers which map value element or allocated
|
|
* object got locked and clears it after bpf_spin_unlock.
|
|
*/
|
|
static int process_spin_lock(struct bpf_verifier_env *env, int regno,
|
|
bool is_lock)
|
|
{
|
|
struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
|
|
struct bpf_verifier_state *cur = env->cur_state;
|
|
bool is_const = tnum_is_const(reg->var_off);
|
|
u64 val = reg->var_off.value;
|
|
struct bpf_map *map = NULL;
|
|
struct btf *btf = NULL;
|
|
struct btf_record *rec;
|
|
|
|
if (!is_const) {
|
|
verbose(env,
|
|
"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
|
|
regno);
|
|
return -EINVAL;
|
|
}
|
|
if (reg->type == PTR_TO_MAP_VALUE) {
|
|
map = reg->map_ptr;
|
|
if (!map->btf) {
|
|
verbose(env,
|
|
"map '%s' has to have BTF in order to use bpf_spin_lock\n",
|
|
map->name);
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
btf = reg->btf;
|
|
}
|
|
|
|
rec = reg_btf_record(reg);
|
|
if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
|
|
verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
|
|
map ? map->name : "kptr");
|
|
return -EINVAL;
|
|
}
|
|
if (rec->spin_lock_off != val + reg->off) {
|
|
verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
|
|
val + reg->off, rec->spin_lock_off);
|
|
return -EINVAL;
|
|
}
|
|
if (is_lock) {
|
|
if (cur->active_lock.ptr) {
|
|
verbose(env,
|
|
"Locking two bpf_spin_locks are not allowed\n");
|
|
return -EINVAL;
|
|
}
|
|
if (map)
|
|
cur->active_lock.ptr = map;
|
|
else
|
|
cur->active_lock.ptr = btf;
|
|
cur->active_lock.id = reg->id;
|
|
} else {
|
|
void *ptr;
|
|
|
|
if (map)
|
|
ptr = map;
|
|
else
|
|
ptr = btf;
|
|
|
|
if (!cur->active_lock.ptr) {
|
|
verbose(env, "bpf_spin_unlock without taking a lock\n");
|
|
return -EINVAL;
|
|
}
|
|
if (cur->active_lock.ptr != ptr ||
|
|
cur->active_lock.id != reg->id) {
|
|
verbose(env, "bpf_spin_unlock of different lock\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
invalidate_non_owning_refs(env);
|
|
|
|
cur->active_lock.ptr = NULL;
|
|
cur->active_lock.id = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int process_timer_func(struct bpf_verifier_env *env, int regno,
|
|
struct bpf_call_arg_meta *meta)
|
|
{
|
|
struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
|
|
bool is_const = tnum_is_const(reg->var_off);
|
|
struct bpf_map *map = reg->map_ptr;
|
|
u64 val = reg->var_off.value;
|
|
|
|
if (!is_const) {
|
|
verbose(env,
|
|
"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
|
|
regno);
|
|
return -EINVAL;
|
|
}
|
|
if (!map->btf) {
|
|
verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
|
|
map->name);
|
|
return -EINVAL;
|
|
}
|
|
if (!btf_record_has_field(map->record, BPF_TIMER)) {
|
|
verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
|
|
return -EINVAL;
|
|
}
|
|
if (map->record->timer_off != val + reg->off) {
|
|
verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
|
|
val + reg->off, map->record->timer_off);
|
|
return -EINVAL;
|
|
}
|
|
if (meta->map_ptr) {
|
|
verbose(env, "verifier bug. Two map pointers in a timer helper\n");
|
|
return -EFAULT;
|
|
}
|
|
meta->map_uid = reg->map_uid;
|
|
meta->map_ptr = map;
|
|
return 0;
|
|
}
|
|
|
|
static int process_kptr_func(struct bpf_verifier_env *env, int regno,
|
|
struct bpf_call_arg_meta *meta)
|
|
{
|
|
struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
|
|
struct bpf_map *map_ptr = reg->map_ptr;
|
|
struct btf_field *kptr_field;
|
|
u32 kptr_off;
|
|
|
|
if (!tnum_is_const(reg->var_off)) {
|
|
verbose(env,
|
|
"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
|
|
regno);
|
|
return -EINVAL;
|
|
}
|
|
if (!map_ptr->btf) {
|
|
verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
|
|
map_ptr->name);
|
|
return -EINVAL;
|
|
}
|
|
if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
|
|
verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
meta->map_ptr = map_ptr;
|
|
kptr_off = reg->off + reg->var_off.value;
|
|
kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
|
|
if (!kptr_field) {
|
|
verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
|
|
return -EACCES;
|
|
}
|
|
if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
|
|
verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
|
|
return -EACCES;
|
|
}
|
|
meta->kptr_field = kptr_field;
|
|
return 0;
|
|
}
|
|
|
|
/* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
|
|
* which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
|
|
*
|
|
* In both cases we deal with the first 8 bytes, but need to mark the next 8
|
|
* bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
|
|
* CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
|
|
*
|
|
* Mutability of bpf_dynptr is at two levels, one is at the level of struct
|
|
* bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
|
|
* bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
|
|
* mutate the view of the dynptr and also possibly destroy it. In the latter
|
|
* case, it cannot mutate the bpf_dynptr itself but it can still mutate the
|
|
* memory that dynptr points to.
|
|
*
|
|
* The verifier will keep track both levels of mutation (bpf_dynptr's in
|
|
* reg->type and the memory's in reg->dynptr.type), but there is no support for
|
|
* readonly dynptr view yet, hence only the first case is tracked and checked.
|
|
*
|
|
* This is consistent with how C applies the const modifier to a struct object,
|
|
* where the pointer itself inside bpf_dynptr becomes const but not what it
|
|
* points to.
|
|
*
|
|
* Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
|
|
* type, and declare it as 'const struct bpf_dynptr *' in their prototype.
|
|
*/
|
|
static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
|
|
enum bpf_arg_type arg_type, int clone_ref_obj_id)
|
|
{
|
|
struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
|
|
int err;
|
|
|
|
/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
|
|
* ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
|
|
*/
|
|
if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
|
|
verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* MEM_UNINIT - Points to memory that is an appropriate candidate for
|
|
* constructing a mutable bpf_dynptr object.
|
|
*
|
|
* Currently, this is only possible with PTR_TO_STACK
|
|
* pointing to a region of at least 16 bytes which doesn't
|
|
* contain an existing bpf_dynptr.
|
|
*
|
|
* MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
|
|
* mutated or destroyed. However, the memory it points to
|
|
* may be mutated.
|
|
*
|
|
* None - Points to a initialized dynptr that can be mutated and
|
|
* destroyed, including mutation of the memory it points
|
|
* to.
|
|
*/
|
|
if (arg_type & MEM_UNINIT) {
|
|
int i;
|
|
|
|
if (!is_dynptr_reg_valid_uninit(env, reg)) {
|
|
verbose(env, "Dynptr has to be an uninitialized dynptr\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* we write BPF_DW bits (8 bytes) at a time */
|
|
for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
|
|
err = check_mem_access(env, insn_idx, regno,
|
|
i, BPF_DW, BPF_WRITE, -1, false, false);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
|
|
} else /* MEM_RDONLY and None case from above */ {
|
|
/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
|
|
if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
|
|
verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!is_dynptr_reg_valid_init(env, reg)) {
|
|
verbose(env,
|
|
"Expected an initialized dynptr as arg #%d\n",
|
|
regno);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
|
|
if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
|
|
verbose(env,
|
|
"Expected a dynptr of type %s as arg #%d\n",
|
|
dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = mark_dynptr_read(env, reg);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
|
|
{
|
|
struct bpf_func_state *state = func(env, reg);
|
|
|
|
return state->stack[spi].spilled_ptr.ref_obj_id;
|
|
}
|
|
|
|
static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
|
|
}
|
|
|
|
static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
return meta->kfunc_flags & KF_ITER_NEW;
|
|
}
|
|
|
|
static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
return meta->kfunc_flags & KF_ITER_NEXT;
|
|
}
|
|
|
|
static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
return meta->kfunc_flags & KF_ITER_DESTROY;
|
|
}
|
|
|
|
static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
|
|
{
|
|
/* btf_check_iter_kfuncs() guarantees that first argument of any iter
|
|
* kfunc is iter state pointer
|
|
*/
|
|
return arg == 0 && is_iter_kfunc(meta);
|
|
}
|
|
|
|
static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
|
|
struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
|
|
const struct btf_type *t;
|
|
const struct btf_param *arg;
|
|
int spi, err, i, nr_slots;
|
|
u32 btf_id;
|
|
|
|
/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
|
|
arg = &btf_params(meta->func_proto)[0];
|
|
t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */
|
|
t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */
|
|
nr_slots = t->size / BPF_REG_SIZE;
|
|
|
|
if (is_iter_new_kfunc(meta)) {
|
|
/* bpf_iter_<type>_new() expects pointer to uninit iter state */
|
|
if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
|
|
verbose(env, "expected uninitialized iter_%s as arg #%d\n",
|
|
iter_type_str(meta->btf, btf_id), regno);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
|
|
err = check_mem_access(env, insn_idx, regno,
|
|
i, BPF_DW, BPF_WRITE, -1, false, false);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
|
|
if (err)
|
|
return err;
|
|
} else {
|
|
/* iter_next() or iter_destroy() expect initialized iter state*/
|
|
err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
|
|
switch (err) {
|
|
case 0:
|
|
break;
|
|
case -EINVAL:
|
|
verbose(env, "expected an initialized iter_%s as arg #%d\n",
|
|
iter_type_str(meta->btf, btf_id), regno);
|
|
return err;
|
|
case -EPROTO:
|
|
verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
|
|
return err;
|
|
default:
|
|
return err;
|
|
}
|
|
|
|
spi = iter_get_spi(env, reg, nr_slots);
|
|
if (spi < 0)
|
|
return spi;
|
|
|
|
err = mark_iter_read(env, reg, spi, nr_slots);
|
|
if (err)
|
|
return err;
|
|
|
|
/* remember meta->iter info for process_iter_next_call() */
|
|
meta->iter.spi = spi;
|
|
meta->iter.frameno = reg->frameno;
|
|
meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
|
|
|
|
if (is_iter_destroy_kfunc(meta)) {
|
|
err = unmark_stack_slots_iter(env, reg, nr_slots);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Look for a previous loop entry at insn_idx: nearest parent state
|
|
* stopped at insn_idx with callsites matching those in cur->frame.
|
|
*/
|
|
static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
|
|
struct bpf_verifier_state *cur,
|
|
int insn_idx)
|
|
{
|
|
struct bpf_verifier_state_list *sl;
|
|
struct bpf_verifier_state *st;
|
|
|
|
/* Explored states are pushed in stack order, most recent states come first */
|
|
sl = *explored_state(env, insn_idx);
|
|
for (; sl; sl = sl->next) {
|
|
/* If st->branches != 0 state is a part of current DFS verification path,
|
|
* hence cur & st for a loop.
|
|
*/
|
|
st = &sl->state;
|
|
if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
|
|
st->dfs_depth < cur->dfs_depth)
|
|
return st;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void reset_idmap_scratch(struct bpf_verifier_env *env);
|
|
static bool regs_exact(const struct bpf_reg_state *rold,
|
|
const struct bpf_reg_state *rcur,
|
|
struct bpf_idmap *idmap);
|
|
|
|
static void maybe_widen_reg(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
|
|
struct bpf_idmap *idmap)
|
|
{
|
|
if (rold->type != SCALAR_VALUE)
|
|
return;
|
|
if (rold->type != rcur->type)
|
|
return;
|
|
if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
|
|
return;
|
|
__mark_reg_unknown(env, rcur);
|
|
}
|
|
|
|
static int widen_imprecise_scalars(struct bpf_verifier_env *env,
|
|
struct bpf_verifier_state *old,
|
|
struct bpf_verifier_state *cur)
|
|
{
|
|
struct bpf_func_state *fold, *fcur;
|
|
int i, fr;
|
|
|
|
reset_idmap_scratch(env);
|
|
for (fr = old->curframe; fr >= 0; fr--) {
|
|
fold = old->frame[fr];
|
|
fcur = cur->frame[fr];
|
|
|
|
for (i = 0; i < MAX_BPF_REG; i++)
|
|
maybe_widen_reg(env,
|
|
&fold->regs[i],
|
|
&fcur->regs[i],
|
|
&env->idmap_scratch);
|
|
|
|
for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
|
|
if (!is_spilled_reg(&fold->stack[i]) ||
|
|
!is_spilled_reg(&fcur->stack[i]))
|
|
continue;
|
|
|
|
maybe_widen_reg(env,
|
|
&fold->stack[i].spilled_ptr,
|
|
&fcur->stack[i].spilled_ptr,
|
|
&env->idmap_scratch);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* process_iter_next_call() is called when verifier gets to iterator's next
|
|
* "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
|
|
* to it as just "iter_next()" in comments below.
|
|
*
|
|
* BPF verifier relies on a crucial contract for any iter_next()
|
|
* implementation: it should *eventually* return NULL, and once that happens
|
|
* it should keep returning NULL. That is, once iterator exhausts elements to
|
|
* iterate, it should never reset or spuriously return new elements.
|
|
*
|
|
* With the assumption of such contract, process_iter_next_call() simulates
|
|
* a fork in the verifier state to validate loop logic correctness and safety
|
|
* without having to simulate infinite amount of iterations.
|
|
*
|
|
* In current state, we first assume that iter_next() returned NULL and
|
|
* iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
|
|
* conditions we should not form an infinite loop and should eventually reach
|
|
* exit.
|
|
*
|
|
* Besides that, we also fork current state and enqueue it for later
|
|
* verification. In a forked state we keep iterator state as ACTIVE
|
|
* (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
|
|
* also bump iteration depth to prevent erroneous infinite loop detection
|
|
* later on (see iter_active_depths_differ() comment for details). In this
|
|
* state we assume that we'll eventually loop back to another iter_next()
|
|
* calls (it could be in exactly same location or in some other instruction,
|
|
* it doesn't matter, we don't make any unnecessary assumptions about this,
|
|
* everything revolves around iterator state in a stack slot, not which
|
|
* instruction is calling iter_next()). When that happens, we either will come
|
|
* to iter_next() with equivalent state and can conclude that next iteration
|
|
* will proceed in exactly the same way as we just verified, so it's safe to
|
|
* assume that loop converges. If not, we'll go on another iteration
|
|
* simulation with a different input state, until all possible starting states
|
|
* are validated or we reach maximum number of instructions limit.
|
|
*
|
|
* This way, we will either exhaustively discover all possible input states
|
|
* that iterator loop can start with and eventually will converge, or we'll
|
|
* effectively regress into bounded loop simulation logic and either reach
|
|
* maximum number of instructions if loop is not provably convergent, or there
|
|
* is some statically known limit on number of iterations (e.g., if there is
|
|
* an explicit `if n > 100 then break;` statement somewhere in the loop).
|
|
*
|
|
* Iteration convergence logic in is_state_visited() relies on exact
|
|
* states comparison, which ignores read and precision marks.
|
|
* This is necessary because read and precision marks are not finalized
|
|
* while in the loop. Exact comparison might preclude convergence for
|
|
* simple programs like below:
|
|
*
|
|
* i = 0;
|
|
* while(iter_next(&it))
|
|
* i++;
|
|
*
|
|
* At each iteration step i++ would produce a new distinct state and
|
|
* eventually instruction processing limit would be reached.
|
|
*
|
|
* To avoid such behavior speculatively forget (widen) range for
|
|
* imprecise scalar registers, if those registers were not precise at the
|
|
* end of the previous iteration and do not match exactly.
|
|
*
|
|
* This is a conservative heuristic that allows to verify wide range of programs,
|
|
* however it precludes verification of programs that conjure an
|
|
* imprecise value on the first loop iteration and use it as precise on a second.
|
|
* For example, the following safe program would fail to verify:
|
|
*
|
|
* struct bpf_num_iter it;
|
|
* int arr[10];
|
|
* int i = 0, a = 0;
|
|
* bpf_iter_num_new(&it, 0, 10);
|
|
* while (bpf_iter_num_next(&it)) {
|
|
* if (a == 0) {
|
|
* a = 1;
|
|
* i = 7; // Because i changed verifier would forget
|
|
* // it's range on second loop entry.
|
|
* } else {
|
|
* arr[i] = 42; // This would fail to verify.
|
|
* }
|
|
* }
|
|
* bpf_iter_num_destroy(&it);
|
|
*/
|
|
static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
|
|
struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
|
|
struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
|
|
struct bpf_reg_state *cur_iter, *queued_iter;
|
|
int iter_frameno = meta->iter.frameno;
|
|
int iter_spi = meta->iter.spi;
|
|
|
|
BTF_TYPE_EMIT(struct bpf_iter);
|
|
|
|
cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
|
|
|
|
if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
|
|
cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
|
|
verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
|
|
cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
|
|
/* Because iter_next() call is a checkpoint is_state_visitied()
|
|
* should guarantee parent state with same call sites and insn_idx.
|
|
*/
|
|
if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
|
|
!same_callsites(cur_st->parent, cur_st)) {
|
|
verbose(env, "bug: bad parent state for iter next call");
|
|
return -EFAULT;
|
|
}
|
|
/* Note cur_st->parent in the call below, it is necessary to skip
|
|
* checkpoint created for cur_st by is_state_visited()
|
|
* right at this instruction.
|
|
*/
|
|
prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
|
|
/* branch out active iter state */
|
|
queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
|
|
if (!queued_st)
|
|
return -ENOMEM;
|
|
|
|
queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
|
|
queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
|
|
queued_iter->iter.depth++;
|
|
if (prev_st)
|
|
widen_imprecise_scalars(env, prev_st, queued_st);
|
|
|
|
queued_fr = queued_st->frame[queued_st->curframe];
|
|
mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
|
|
}
|
|
|
|
/* switch to DRAINED state, but keep the depth unchanged */
|
|
/* mark current iter state as drained and assume returned NULL */
|
|
cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
|
|
__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool arg_type_is_mem_size(enum bpf_arg_type type)
|
|
{
|
|
return type == ARG_CONST_SIZE ||
|
|
type == ARG_CONST_SIZE_OR_ZERO;
|
|
}
|
|
|
|
static bool arg_type_is_release(enum bpf_arg_type type)
|
|
{
|
|
return type & OBJ_RELEASE;
|
|
}
|
|
|
|
static bool arg_type_is_dynptr(enum bpf_arg_type type)
|
|
{
|
|
return base_type(type) == ARG_PTR_TO_DYNPTR;
|
|
}
|
|
|
|
static int int_ptr_type_to_size(enum bpf_arg_type type)
|
|
{
|
|
if (type == ARG_PTR_TO_INT)
|
|
return sizeof(u32);
|
|
else if (type == ARG_PTR_TO_LONG)
|
|
return sizeof(u64);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int resolve_map_arg_type(struct bpf_verifier_env *env,
|
|
const struct bpf_call_arg_meta *meta,
|
|
enum bpf_arg_type *arg_type)
|
|
{
|
|
if (!meta->map_ptr) {
|
|
/* kernel subsystem misconfigured verifier */
|
|
verbose(env, "invalid map_ptr to access map->type\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
switch (meta->map_ptr->map_type) {
|
|
case BPF_MAP_TYPE_SOCKMAP:
|
|
case BPF_MAP_TYPE_SOCKHASH:
|
|
if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
|
|
*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
|
|
} else {
|
|
verbose(env, "invalid arg_type for sockmap/sockhash\n");
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
case BPF_MAP_TYPE_BLOOM_FILTER:
|
|
if (meta->func_id == BPF_FUNC_map_peek_elem)
|
|
*arg_type = ARG_PTR_TO_MAP_VALUE;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct bpf_reg_types {
|
|
const enum bpf_reg_type types[10];
|
|
u32 *btf_id;
|
|
};
|
|
|
|
static const struct bpf_reg_types sock_types = {
|
|
.types = {
|
|
PTR_TO_SOCK_COMMON,
|
|
PTR_TO_SOCKET,
|
|
PTR_TO_TCP_SOCK,
|
|
PTR_TO_XDP_SOCK,
|
|
},
|
|
};
|
|
|
|
#ifdef CONFIG_NET
|
|
static const struct bpf_reg_types btf_id_sock_common_types = {
|
|
.types = {
|
|
PTR_TO_SOCK_COMMON,
|
|
PTR_TO_SOCKET,
|
|
PTR_TO_TCP_SOCK,
|
|
PTR_TO_XDP_SOCK,
|
|
PTR_TO_BTF_ID,
|
|
PTR_TO_BTF_ID | PTR_TRUSTED,
|
|
},
|
|
.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
|
|
};
|
|
#endif
|
|
|
|
static const struct bpf_reg_types mem_types = {
|
|
.types = {
|
|
PTR_TO_STACK,
|
|
PTR_TO_PACKET,
|
|
PTR_TO_PACKET_META,
|
|
PTR_TO_MAP_KEY,
|
|
PTR_TO_MAP_VALUE,
|
|
PTR_TO_MEM,
|
|
PTR_TO_MEM | MEM_RINGBUF,
|
|
PTR_TO_BUF,
|
|
PTR_TO_BTF_ID | PTR_TRUSTED,
|
|
},
|
|
};
|
|
|
|
static const struct bpf_reg_types int_ptr_types = {
|
|
.types = {
|
|
PTR_TO_STACK,
|
|
PTR_TO_PACKET,
|
|
PTR_TO_PACKET_META,
|
|
PTR_TO_MAP_KEY,
|
|
PTR_TO_MAP_VALUE,
|
|
},
|
|
};
|
|
|
|
static const struct bpf_reg_types spin_lock_types = {
|
|
.types = {
|
|
PTR_TO_MAP_VALUE,
|
|
PTR_TO_BTF_ID | MEM_ALLOC,
|
|
}
|
|
};
|
|
|
|
static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
|
|
static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
|
|
static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
|
|
static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
|
|
static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
|
|
static const struct bpf_reg_types btf_ptr_types = {
|
|
.types = {
|
|
PTR_TO_BTF_ID,
|
|
PTR_TO_BTF_ID | PTR_TRUSTED,
|
|
PTR_TO_BTF_ID | MEM_RCU,
|
|
},
|
|
};
|
|
static const struct bpf_reg_types percpu_btf_ptr_types = {
|
|
.types = {
|
|
PTR_TO_BTF_ID | MEM_PERCPU,
|
|
PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
|
|
PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
|
|
}
|
|
};
|
|
static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
|
|
static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
|
|
static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
|
|
static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
|
|
static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
|
|
static const struct bpf_reg_types dynptr_types = {
|
|
.types = {
|
|
PTR_TO_STACK,
|
|
CONST_PTR_TO_DYNPTR,
|
|
}
|
|
};
|
|
|
|
static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
|
|
[ARG_PTR_TO_MAP_KEY] = &mem_types,
|
|
[ARG_PTR_TO_MAP_VALUE] = &mem_types,
|
|
[ARG_CONST_SIZE] = &scalar_types,
|
|
[ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
|
|
[ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
|
|
[ARG_CONST_MAP_PTR] = &const_map_ptr_types,
|
|
[ARG_PTR_TO_CTX] = &context_types,
|
|
[ARG_PTR_TO_SOCK_COMMON] = &sock_types,
|
|
#ifdef CONFIG_NET
|
|
[ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
|
|
#endif
|
|
[ARG_PTR_TO_SOCKET] = &fullsock_types,
|
|
[ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
|
|
[ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
|
|
[ARG_PTR_TO_MEM] = &mem_types,
|
|
[ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
|
|
[ARG_PTR_TO_INT] = &int_ptr_types,
|
|
[ARG_PTR_TO_LONG] = &int_ptr_types,
|
|
[ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
|
|
[ARG_PTR_TO_FUNC] = &func_ptr_types,
|
|
[ARG_PTR_TO_STACK] = &stack_ptr_types,
|
|
[ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
|
|
[ARG_PTR_TO_TIMER] = &timer_types,
|
|
[ARG_PTR_TO_KPTR] = &kptr_types,
|
|
[ARG_PTR_TO_DYNPTR] = &dynptr_types,
|
|
};
|
|
|
|
static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
|
|
enum bpf_arg_type arg_type,
|
|
const u32 *arg_btf_id,
|
|
struct bpf_call_arg_meta *meta)
|
|
{
|
|
struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
|
|
enum bpf_reg_type expected, type = reg->type;
|
|
const struct bpf_reg_types *compatible;
|
|
int i, j;
|
|
|
|
compatible = compatible_reg_types[base_type(arg_type)];
|
|
if (!compatible) {
|
|
verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
|
|
* but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
|
|
*
|
|
* Same for MAYBE_NULL:
|
|
*
|
|
* ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
|
|
* but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
|
|
*
|
|
* ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
|
|
*
|
|
* Therefore we fold these flags depending on the arg_type before comparison.
|
|
*/
|
|
if (arg_type & MEM_RDONLY)
|
|
type &= ~MEM_RDONLY;
|
|
if (arg_type & PTR_MAYBE_NULL)
|
|
type &= ~PTR_MAYBE_NULL;
|
|
if (base_type(arg_type) == ARG_PTR_TO_MEM)
|
|
type &= ~DYNPTR_TYPE_FLAG_MASK;
|
|
|
|
if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) {
|
|
type &= ~MEM_ALLOC;
|
|
type &= ~MEM_PERCPU;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
|
|
expected = compatible->types[i];
|
|
if (expected == NOT_INIT)
|
|
break;
|
|
|
|
if (type == expected)
|
|
goto found;
|
|
}
|
|
|
|
verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
|
|
for (j = 0; j + 1 < i; j++)
|
|
verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
|
|
verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
|
|
return -EACCES;
|
|
|
|
found:
|
|
if (base_type(reg->type) != PTR_TO_BTF_ID)
|
|
return 0;
|
|
|
|
if (compatible == &mem_types) {
|
|
if (!(arg_type & MEM_RDONLY)) {
|
|
verbose(env,
|
|
"%s() may write into memory pointed by R%d type=%s\n",
|
|
func_id_name(meta->func_id),
|
|
regno, reg_type_str(env, reg->type));
|
|
return -EACCES;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
switch ((int)reg->type) {
|
|
case PTR_TO_BTF_ID:
|
|
case PTR_TO_BTF_ID | PTR_TRUSTED:
|
|
case PTR_TO_BTF_ID | MEM_RCU:
|
|
case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
|
|
case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
|
|
{
|
|
/* For bpf_sk_release, it needs to match against first member
|
|
* 'struct sock_common', hence make an exception for it. This
|
|
* allows bpf_sk_release to work for multiple socket types.
|
|
*/
|
|
bool strict_type_match = arg_type_is_release(arg_type) &&
|
|
meta->func_id != BPF_FUNC_sk_release;
|
|
|
|
if (type_may_be_null(reg->type) &&
|
|
(!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
|
|
verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (!arg_btf_id) {
|
|
if (!compatible->btf_id) {
|
|
verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
|
|
return -EFAULT;
|
|
}
|
|
arg_btf_id = compatible->btf_id;
|
|
}
|
|
|
|
if (meta->func_id == BPF_FUNC_kptr_xchg) {
|
|
if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
|
|
return -EACCES;
|
|
} else {
|
|
if (arg_btf_id == BPF_PTR_POISON) {
|
|
verbose(env, "verifier internal error:");
|
|
verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
|
|
regno);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
|
|
btf_vmlinux, *arg_btf_id,
|
|
strict_type_match)) {
|
|
verbose(env, "R%d is of type %s but %s is expected\n",
|
|
regno, btf_type_name(reg->btf, reg->btf_id),
|
|
btf_type_name(btf_vmlinux, *arg_btf_id));
|
|
return -EACCES;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case PTR_TO_BTF_ID | MEM_ALLOC:
|
|
case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
|
|
if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
|
|
meta->func_id != BPF_FUNC_kptr_xchg) {
|
|
verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
|
|
return -EFAULT;
|
|
}
|
|
if (meta->func_id == BPF_FUNC_kptr_xchg) {
|
|
if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
|
|
return -EACCES;
|
|
}
|
|
break;
|
|
case PTR_TO_BTF_ID | MEM_PERCPU:
|
|
case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
|
|
case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
|
|
/* Handled by helper specific checks */
|
|
break;
|
|
default:
|
|
verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
|
|
return -EFAULT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct btf_field *
|
|
reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
|
|
{
|
|
struct btf_field *field;
|
|
struct btf_record *rec;
|
|
|
|
rec = reg_btf_record(reg);
|
|
if (!rec)
|
|
return NULL;
|
|
|
|
field = btf_record_find(rec, off, fields);
|
|
if (!field)
|
|
return NULL;
|
|
|
|
return field;
|
|
}
|
|
|
|
int check_func_arg_reg_off(struct bpf_verifier_env *env,
|
|
const struct bpf_reg_state *reg, int regno,
|
|
enum bpf_arg_type arg_type)
|
|
{
|
|
u32 type = reg->type;
|
|
|
|
/* When referenced register is passed to release function, its fixed
|
|
* offset must be 0.
|
|
*
|
|
* We will check arg_type_is_release reg has ref_obj_id when storing
|
|
* meta->release_regno.
|
|
*/
|
|
if (arg_type_is_release(arg_type)) {
|
|
/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
|
|
* may not directly point to the object being released, but to
|
|
* dynptr pointing to such object, which might be at some offset
|
|
* on the stack. In that case, we simply to fallback to the
|
|
* default handling.
|
|
*/
|
|
if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
|
|
return 0;
|
|
|
|
/* Doing check_ptr_off_reg check for the offset will catch this
|
|
* because fixed_off_ok is false, but checking here allows us
|
|
* to give the user a better error message.
|
|
*/
|
|
if (reg->off) {
|
|
verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
|
|
regno);
|
|
return -EINVAL;
|
|
}
|
|
return __check_ptr_off_reg(env, reg, regno, false);
|
|
}
|
|
|
|
switch (type) {
|
|
/* Pointer types where both fixed and variable offset is explicitly allowed: */
|
|
case PTR_TO_STACK:
|
|
case PTR_TO_PACKET:
|
|
case PTR_TO_PACKET_META:
|
|
case PTR_TO_MAP_KEY:
|
|
case PTR_TO_MAP_VALUE:
|
|
case PTR_TO_MEM:
|
|
case PTR_TO_MEM | MEM_RDONLY:
|
|
case PTR_TO_MEM | MEM_RINGBUF:
|
|
case PTR_TO_BUF:
|
|
case PTR_TO_BUF | MEM_RDONLY:
|
|
case SCALAR_VALUE:
|
|
return 0;
|
|
/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
|
|
* fixed offset.
|
|
*/
|
|
case PTR_TO_BTF_ID:
|
|
case PTR_TO_BTF_ID | MEM_ALLOC:
|
|
case PTR_TO_BTF_ID | PTR_TRUSTED:
|
|
case PTR_TO_BTF_ID | MEM_RCU:
|
|
case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
|
|
case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
|
|
/* When referenced PTR_TO_BTF_ID is passed to release function,
|
|
* its fixed offset must be 0. In the other cases, fixed offset
|
|
* can be non-zero. This was already checked above. So pass
|
|
* fixed_off_ok as true to allow fixed offset for all other
|
|
* cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
|
|
* still need to do checks instead of returning.
|
|
*/
|
|
return __check_ptr_off_reg(env, reg, regno, true);
|
|
default:
|
|
return __check_ptr_off_reg(env, reg, regno, false);
|
|
}
|
|
}
|
|
|
|
static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
|
|
const struct bpf_func_proto *fn,
|
|
struct bpf_reg_state *regs)
|
|
{
|
|
struct bpf_reg_state *state = NULL;
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
|
|
if (arg_type_is_dynptr(fn->arg_type[i])) {
|
|
if (state) {
|
|
verbose(env, "verifier internal error: multiple dynptr args\n");
|
|
return NULL;
|
|
}
|
|
state = ®s[BPF_REG_1 + i];
|
|
}
|
|
|
|
if (!state)
|
|
verbose(env, "verifier internal error: no dynptr arg found\n");
|
|
|
|
return state;
|
|
}
|
|
|
|
static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
|
|
{
|
|
struct bpf_func_state *state = func(env, reg);
|
|
int spi;
|
|
|
|
if (reg->type == CONST_PTR_TO_DYNPTR)
|
|
return reg->id;
|
|
spi = dynptr_get_spi(env, reg);
|
|
if (spi < 0)
|
|
return spi;
|
|
return state->stack[spi].spilled_ptr.id;
|
|
}
|
|
|
|
static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
|
|
{
|
|
struct bpf_func_state *state = func(env, reg);
|
|
int spi;
|
|
|
|
if (reg->type == CONST_PTR_TO_DYNPTR)
|
|
return reg->ref_obj_id;
|
|
spi = dynptr_get_spi(env, reg);
|
|
if (spi < 0)
|
|
return spi;
|
|
return state->stack[spi].spilled_ptr.ref_obj_id;
|
|
}
|
|
|
|
static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg)
|
|
{
|
|
struct bpf_func_state *state = func(env, reg);
|
|
int spi;
|
|
|
|
if (reg->type == CONST_PTR_TO_DYNPTR)
|
|
return reg->dynptr.type;
|
|
|
|
spi = __get_spi(reg->off);
|
|
if (spi < 0) {
|
|
verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
|
|
return BPF_DYNPTR_TYPE_INVALID;
|
|
}
|
|
|
|
return state->stack[spi].spilled_ptr.dynptr.type;
|
|
}
|
|
|
|
static int check_reg_const_str(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg, u32 regno)
|
|
{
|
|
struct bpf_map *map = reg->map_ptr;
|
|
int err;
|
|
int map_off;
|
|
u64 map_addr;
|
|
char *str_ptr;
|
|
|
|
if (reg->type != PTR_TO_MAP_VALUE)
|
|
return -EINVAL;
|
|
|
|
if (!bpf_map_is_rdonly(map)) {
|
|
verbose(env, "R%d does not point to a readonly map'\n", regno);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (!tnum_is_const(reg->var_off)) {
|
|
verbose(env, "R%d is not a constant address'\n", regno);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (!map->ops->map_direct_value_addr) {
|
|
verbose(env, "no direct value access support for this map type\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
err = check_map_access(env, regno, reg->off,
|
|
map->value_size - reg->off, false,
|
|
ACCESS_HELPER);
|
|
if (err)
|
|
return err;
|
|
|
|
map_off = reg->off + reg->var_off.value;
|
|
err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
|
|
if (err) {
|
|
verbose(env, "direct value access on string failed\n");
|
|
return err;
|
|
}
|
|
|
|
str_ptr = (char *)(long)(map_addr);
|
|
if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
|
|
verbose(env, "string is not zero-terminated\n");
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
|
|
struct bpf_call_arg_meta *meta,
|
|
const struct bpf_func_proto *fn,
|
|
int insn_idx)
|
|
{
|
|
u32 regno = BPF_REG_1 + arg;
|
|
struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
|
|
enum bpf_arg_type arg_type = fn->arg_type[arg];
|
|
enum bpf_reg_type type = reg->type;
|
|
u32 *arg_btf_id = NULL;
|
|
int err = 0;
|
|
|
|
if (arg_type == ARG_DONTCARE)
|
|
return 0;
|
|
|
|
err = check_reg_arg(env, regno, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
if (arg_type == ARG_ANYTHING) {
|
|
if (is_pointer_value(env, regno)) {
|
|
verbose(env, "R%d leaks addr into helper function\n",
|
|
regno);
|
|
return -EACCES;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (type_is_pkt_pointer(type) &&
|
|
!may_access_direct_pkt_data(env, meta, BPF_READ)) {
|
|
verbose(env, "helper access to the packet is not allowed\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
|
|
err = resolve_map_arg_type(env, meta, &arg_type);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (register_is_null(reg) && type_may_be_null(arg_type))
|
|
/* A NULL register has a SCALAR_VALUE type, so skip
|
|
* type checking.
|
|
*/
|
|
goto skip_type_check;
|
|
|
|
/* arg_btf_id and arg_size are in a union. */
|
|
if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
|
|
base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
|
|
arg_btf_id = fn->arg_btf_id[arg];
|
|
|
|
err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
|
|
if (err)
|
|
return err;
|
|
|
|
err = check_func_arg_reg_off(env, reg, regno, arg_type);
|
|
if (err)
|
|
return err;
|
|
|
|
skip_type_check:
|
|
if (arg_type_is_release(arg_type)) {
|
|
if (arg_type_is_dynptr(arg_type)) {
|
|
struct bpf_func_state *state = func(env, reg);
|
|
int spi;
|
|
|
|
/* Only dynptr created on stack can be released, thus
|
|
* the get_spi and stack state checks for spilled_ptr
|
|
* should only be done before process_dynptr_func for
|
|
* PTR_TO_STACK.
|
|
*/
|
|
if (reg->type == PTR_TO_STACK) {
|
|
spi = dynptr_get_spi(env, reg);
|
|
if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
|
|
verbose(env, "arg %d is an unacquired reference\n", regno);
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
verbose(env, "cannot release unowned const bpf_dynptr\n");
|
|
return -EINVAL;
|
|
}
|
|
} else if (!reg->ref_obj_id && !register_is_null(reg)) {
|
|
verbose(env, "R%d must be referenced when passed to release function\n",
|
|
regno);
|
|
return -EINVAL;
|
|
}
|
|
if (meta->release_regno) {
|
|
verbose(env, "verifier internal error: more than one release argument\n");
|
|
return -EFAULT;
|
|
}
|
|
meta->release_regno = regno;
|
|
}
|
|
|
|
if (reg->ref_obj_id) {
|
|
if (meta->ref_obj_id) {
|
|
verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
|
|
regno, reg->ref_obj_id,
|
|
meta->ref_obj_id);
|
|
return -EFAULT;
|
|
}
|
|
meta->ref_obj_id = reg->ref_obj_id;
|
|
}
|
|
|
|
switch (base_type(arg_type)) {
|
|
case ARG_CONST_MAP_PTR:
|
|
/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
|
|
if (meta->map_ptr) {
|
|
/* Use map_uid (which is unique id of inner map) to reject:
|
|
* inner_map1 = bpf_map_lookup_elem(outer_map, key1)
|
|
* inner_map2 = bpf_map_lookup_elem(outer_map, key2)
|
|
* if (inner_map1 && inner_map2) {
|
|
* timer = bpf_map_lookup_elem(inner_map1);
|
|
* if (timer)
|
|
* // mismatch would have been allowed
|
|
* bpf_timer_init(timer, inner_map2);
|
|
* }
|
|
*
|
|
* Comparing map_ptr is enough to distinguish normal and outer maps.
|
|
*/
|
|
if (meta->map_ptr != reg->map_ptr ||
|
|
meta->map_uid != reg->map_uid) {
|
|
verbose(env,
|
|
"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
|
|
meta->map_uid, reg->map_uid);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
meta->map_ptr = reg->map_ptr;
|
|
meta->map_uid = reg->map_uid;
|
|
break;
|
|
case ARG_PTR_TO_MAP_KEY:
|
|
/* bpf_map_xxx(..., map_ptr, ..., key) call:
|
|
* check that [key, key + map->key_size) are within
|
|
* stack limits and initialized
|
|
*/
|
|
if (!meta->map_ptr) {
|
|
/* in function declaration map_ptr must come before
|
|
* map_key, so that it's verified and known before
|
|
* we have to check map_key here. Otherwise it means
|
|
* that kernel subsystem misconfigured verifier
|
|
*/
|
|
verbose(env, "invalid map_ptr to access map->key\n");
|
|
return -EACCES;
|
|
}
|
|
err = check_helper_mem_access(env, regno,
|
|
meta->map_ptr->key_size, false,
|
|
NULL);
|
|
break;
|
|
case ARG_PTR_TO_MAP_VALUE:
|
|
if (type_may_be_null(arg_type) && register_is_null(reg))
|
|
return 0;
|
|
|
|
/* bpf_map_xxx(..., map_ptr, ..., value) call:
|
|
* check [value, value + map->value_size) validity
|
|
*/
|
|
if (!meta->map_ptr) {
|
|
/* kernel subsystem misconfigured verifier */
|
|
verbose(env, "invalid map_ptr to access map->value\n");
|
|
return -EACCES;
|
|
}
|
|
meta->raw_mode = arg_type & MEM_UNINIT;
|
|
err = check_helper_mem_access(env, regno,
|
|
meta->map_ptr->value_size, false,
|
|
meta);
|
|
break;
|
|
case ARG_PTR_TO_PERCPU_BTF_ID:
|
|
if (!reg->btf_id) {
|
|
verbose(env, "Helper has invalid btf_id in R%d\n", regno);
|
|
return -EACCES;
|
|
}
|
|
meta->ret_btf = reg->btf;
|
|
meta->ret_btf_id = reg->btf_id;
|
|
break;
|
|
case ARG_PTR_TO_SPIN_LOCK:
|
|
if (in_rbtree_lock_required_cb(env)) {
|
|
verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
|
|
return -EACCES;
|
|
}
|
|
if (meta->func_id == BPF_FUNC_spin_lock) {
|
|
err = process_spin_lock(env, regno, true);
|
|
if (err)
|
|
return err;
|
|
} else if (meta->func_id == BPF_FUNC_spin_unlock) {
|
|
err = process_spin_lock(env, regno, false);
|
|
if (err)
|
|
return err;
|
|
} else {
|
|
verbose(env, "verifier internal error\n");
|
|
return -EFAULT;
|
|
}
|
|
break;
|
|
case ARG_PTR_TO_TIMER:
|
|
err = process_timer_func(env, regno, meta);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
case ARG_PTR_TO_FUNC:
|
|
meta->subprogno = reg->subprogno;
|
|
break;
|
|
case ARG_PTR_TO_MEM:
|
|
/* The access to this pointer is only checked when we hit the
|
|
* next is_mem_size argument below.
|
|
*/
|
|
meta->raw_mode = arg_type & MEM_UNINIT;
|
|
if (arg_type & MEM_FIXED_SIZE) {
|
|
err = check_helper_mem_access(env, regno,
|
|
fn->arg_size[arg], false,
|
|
meta);
|
|
}
|
|
break;
|
|
case ARG_CONST_SIZE:
|
|
err = check_mem_size_reg(env, reg, regno, false, meta);
|
|
break;
|
|
case ARG_CONST_SIZE_OR_ZERO:
|
|
err = check_mem_size_reg(env, reg, regno, true, meta);
|
|
break;
|
|
case ARG_PTR_TO_DYNPTR:
|
|
err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
case ARG_CONST_ALLOC_SIZE_OR_ZERO:
|
|
if (!tnum_is_const(reg->var_off)) {
|
|
verbose(env, "R%d is not a known constant'\n",
|
|
regno);
|
|
return -EACCES;
|
|
}
|
|
meta->mem_size = reg->var_off.value;
|
|
err = mark_chain_precision(env, regno);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
case ARG_PTR_TO_INT:
|
|
case ARG_PTR_TO_LONG:
|
|
{
|
|
int size = int_ptr_type_to_size(arg_type);
|
|
|
|
err = check_helper_mem_access(env, regno, size, false, meta);
|
|
if (err)
|
|
return err;
|
|
err = check_ptr_alignment(env, reg, 0, size, true);
|
|
break;
|
|
}
|
|
case ARG_PTR_TO_CONST_STR:
|
|
{
|
|
err = check_reg_const_str(env, reg, regno);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
}
|
|
case ARG_PTR_TO_KPTR:
|
|
err = process_kptr_func(env, regno, meta);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
|
|
{
|
|
enum bpf_attach_type eatype = env->prog->expected_attach_type;
|
|
enum bpf_prog_type type = resolve_prog_type(env->prog);
|
|
|
|
if (func_id != BPF_FUNC_map_update_elem)
|
|
return false;
|
|
|
|
/* It's not possible to get access to a locked struct sock in these
|
|
* contexts, so updating is safe.
|
|
*/
|
|
switch (type) {
|
|
case BPF_PROG_TYPE_TRACING:
|
|
if (eatype == BPF_TRACE_ITER)
|
|
return true;
|
|
break;
|
|
case BPF_PROG_TYPE_SOCKET_FILTER:
|
|
case BPF_PROG_TYPE_SCHED_CLS:
|
|
case BPF_PROG_TYPE_SCHED_ACT:
|
|
case BPF_PROG_TYPE_XDP:
|
|
case BPF_PROG_TYPE_SK_REUSEPORT:
|
|
case BPF_PROG_TYPE_FLOW_DISSECTOR:
|
|
case BPF_PROG_TYPE_SK_LOOKUP:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
verbose(env, "cannot update sockmap in this context\n");
|
|
return false;
|
|
}
|
|
|
|
static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
|
|
{
|
|
return env->prog->jit_requested &&
|
|
bpf_jit_supports_subprog_tailcalls();
|
|
}
|
|
|
|
static int check_map_func_compatibility(struct bpf_verifier_env *env,
|
|
struct bpf_map *map, int func_id)
|
|
{
|
|
if (!map)
|
|
return 0;
|
|
|
|
/* We need a two way check, first is from map perspective ... */
|
|
switch (map->map_type) {
|
|
case BPF_MAP_TYPE_PROG_ARRAY:
|
|
if (func_id != BPF_FUNC_tail_call)
|
|
goto error;
|
|
break;
|
|
case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
|
|
if (func_id != BPF_FUNC_perf_event_read &&
|
|
func_id != BPF_FUNC_perf_event_output &&
|
|
func_id != BPF_FUNC_skb_output &&
|
|
func_id != BPF_FUNC_perf_event_read_value &&
|
|
func_id != BPF_FUNC_xdp_output)
|
|
goto error;
|
|
break;
|
|
case BPF_MAP_TYPE_RINGBUF:
|
|
if (func_id != BPF_FUNC_ringbuf_output &&
|
|
func_id != BPF_FUNC_ringbuf_reserve &&
|
|
func_id != BPF_FUNC_ringbuf_query &&
|
|
func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
|
|
func_id != BPF_FUNC_ringbuf_submit_dynptr &&
|
|
func_id != BPF_FUNC_ringbuf_discard_dynptr)
|
|
goto error;
|
|
break;
|
|
case BPF_MAP_TYPE_USER_RINGBUF:
|
|
if (func_id != BPF_FUNC_user_ringbuf_drain)
|
|
goto error;
|
|
break;
|
|
case BPF_MAP_TYPE_STACK_TRACE:
|
|
if (func_id != BPF_FUNC_get_stackid)
|
|
goto error;
|
|
break;
|
|
case BPF_MAP_TYPE_CGROUP_ARRAY:
|
|
if (func_id != BPF_FUNC_skb_under_cgroup &&
|
|
func_id != BPF_FUNC_current_task_under_cgroup)
|
|
goto error;
|
|
break;
|
|
case BPF_MAP_TYPE_CGROUP_STORAGE:
|
|
case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
|
|
if (func_id != BPF_FUNC_get_local_storage)
|
|
goto error;
|
|
break;
|
|
case BPF_MAP_TYPE_DEVMAP:
|
|
case BPF_MAP_TYPE_DEVMAP_HASH:
|
|
if (func_id != BPF_FUNC_redirect_map &&
|
|
func_id != BPF_FUNC_map_lookup_elem)
|
|
goto error;
|
|
break;
|
|
/* Restrict bpf side of cpumap and xskmap, open when use-cases
|
|
* appear.
|
|
*/
|
|
case BPF_MAP_TYPE_CPUMAP:
|
|
if (func_id != BPF_FUNC_redirect_map)
|
|
goto error;
|
|
break;
|
|
case BPF_MAP_TYPE_XSKMAP:
|
|
if (func_id != BPF_FUNC_redirect_map &&
|
|
func_id != BPF_FUNC_map_lookup_elem)
|
|
goto error;
|
|
break;
|
|
case BPF_MAP_TYPE_ARRAY_OF_MAPS:
|
|
case BPF_MAP_TYPE_HASH_OF_MAPS:
|
|
if (func_id != BPF_FUNC_map_lookup_elem)
|
|
goto error;
|
|
break;
|
|
case BPF_MAP_TYPE_SOCKMAP:
|
|
if (func_id != BPF_FUNC_sk_redirect_map &&
|
|
func_id != BPF_FUNC_sock_map_update &&
|
|
func_id != BPF_FUNC_map_delete_elem &&
|
|
func_id != BPF_FUNC_msg_redirect_map &&
|
|
func_id != BPF_FUNC_sk_select_reuseport &&
|
|
func_id != BPF_FUNC_map_lookup_elem &&
|
|
!may_update_sockmap(env, func_id))
|
|
goto error;
|
|
break;
|
|
case BPF_MAP_TYPE_SOCKHASH:
|
|
if (func_id != BPF_FUNC_sk_redirect_hash &&
|
|
func_id != BPF_FUNC_sock_hash_update &&
|
|
func_id != BPF_FUNC_map_delete_elem &&
|
|
func_id != BPF_FUNC_msg_redirect_hash &&
|
|
func_id != BPF_FUNC_sk_select_reuseport &&
|
|
func_id != BPF_FUNC_map_lookup_elem &&
|
|
!may_update_sockmap(env, func_id))
|
|
goto error;
|
|
break;
|
|
case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
|
|
if (func_id != BPF_FUNC_sk_select_reuseport)
|
|
goto error;
|
|
break;
|
|
case BPF_MAP_TYPE_QUEUE:
|
|
case BPF_MAP_TYPE_STACK:
|
|
if (func_id != BPF_FUNC_map_peek_elem &&
|
|
func_id != BPF_FUNC_map_pop_elem &&
|
|
func_id != BPF_FUNC_map_push_elem)
|
|
goto error;
|
|
break;
|
|
case BPF_MAP_TYPE_SK_STORAGE:
|
|
if (func_id != BPF_FUNC_sk_storage_get &&
|
|
func_id != BPF_FUNC_sk_storage_delete &&
|
|
func_id != BPF_FUNC_kptr_xchg)
|
|
goto error;
|
|
break;
|
|
case BPF_MAP_TYPE_INODE_STORAGE:
|
|
if (func_id != BPF_FUNC_inode_storage_get &&
|
|
func_id != BPF_FUNC_inode_storage_delete &&
|
|
func_id != BPF_FUNC_kptr_xchg)
|
|
goto error;
|
|
break;
|
|
case BPF_MAP_TYPE_TASK_STORAGE:
|
|
if (func_id != BPF_FUNC_task_storage_get &&
|
|
func_id != BPF_FUNC_task_storage_delete &&
|
|
func_id != BPF_FUNC_kptr_xchg)
|
|
goto error;
|
|
break;
|
|
case BPF_MAP_TYPE_CGRP_STORAGE:
|
|
if (func_id != BPF_FUNC_cgrp_storage_get &&
|
|
func_id != BPF_FUNC_cgrp_storage_delete &&
|
|
func_id != BPF_FUNC_kptr_xchg)
|
|
goto error;
|
|
break;
|
|
case BPF_MAP_TYPE_BLOOM_FILTER:
|
|
if (func_id != BPF_FUNC_map_peek_elem &&
|
|
func_id != BPF_FUNC_map_push_elem)
|
|
goto error;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* ... and second from the function itself. */
|
|
switch (func_id) {
|
|
case BPF_FUNC_tail_call:
|
|
if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
|
|
goto error;
|
|
if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
|
|
verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
case BPF_FUNC_perf_event_read:
|
|
case BPF_FUNC_perf_event_output:
|
|
case BPF_FUNC_perf_event_read_value:
|
|
case BPF_FUNC_skb_output:
|
|
case BPF_FUNC_xdp_output:
|
|
if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
|
|
goto error;
|
|
break;
|
|
case BPF_FUNC_ringbuf_output:
|
|
case BPF_FUNC_ringbuf_reserve:
|
|
case BPF_FUNC_ringbuf_query:
|
|
case BPF_FUNC_ringbuf_reserve_dynptr:
|
|
case BPF_FUNC_ringbuf_submit_dynptr:
|
|
case BPF_FUNC_ringbuf_discard_dynptr:
|
|
if (map->map_type != BPF_MAP_TYPE_RINGBUF)
|
|
goto error;
|
|
break;
|
|
case BPF_FUNC_user_ringbuf_drain:
|
|
if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
|
|
goto error;
|
|
break;
|
|
case BPF_FUNC_get_stackid:
|
|
if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
|
|
goto error;
|
|
break;
|
|
case BPF_FUNC_current_task_under_cgroup:
|
|
case BPF_FUNC_skb_under_cgroup:
|
|
if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
|
|
goto error;
|
|
break;
|
|
case BPF_FUNC_redirect_map:
|
|
if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
|
|
map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
|
|
map->map_type != BPF_MAP_TYPE_CPUMAP &&
|
|
map->map_type != BPF_MAP_TYPE_XSKMAP)
|
|
goto error;
|
|
break;
|
|
case BPF_FUNC_sk_redirect_map:
|
|
case BPF_FUNC_msg_redirect_map:
|
|
case BPF_FUNC_sock_map_update:
|
|
if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
|
|
goto error;
|
|
break;
|
|
case BPF_FUNC_sk_redirect_hash:
|
|
case BPF_FUNC_msg_redirect_hash:
|
|
case BPF_FUNC_sock_hash_update:
|
|
if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
|
|
goto error;
|
|
break;
|
|
case BPF_FUNC_get_local_storage:
|
|
if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
|
|
map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
|
|
goto error;
|
|
break;
|
|
case BPF_FUNC_sk_select_reuseport:
|
|
if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
|
|
map->map_type != BPF_MAP_TYPE_SOCKMAP &&
|
|
map->map_type != BPF_MAP_TYPE_SOCKHASH)
|
|
goto error;
|
|
break;
|
|
case BPF_FUNC_map_pop_elem:
|
|
if (map->map_type != BPF_MAP_TYPE_QUEUE &&
|
|
map->map_type != BPF_MAP_TYPE_STACK)
|
|
goto error;
|
|
break;
|
|
case BPF_FUNC_map_peek_elem:
|
|
case BPF_FUNC_map_push_elem:
|
|
if (map->map_type != BPF_MAP_TYPE_QUEUE &&
|
|
map->map_type != BPF_MAP_TYPE_STACK &&
|
|
map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
|
|
goto error;
|
|
break;
|
|
case BPF_FUNC_map_lookup_percpu_elem:
|
|
if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
|
|
map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
|
|
map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
|
|
goto error;
|
|
break;
|
|
case BPF_FUNC_sk_storage_get:
|
|
case BPF_FUNC_sk_storage_delete:
|
|
if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
|
|
goto error;
|
|
break;
|
|
case BPF_FUNC_inode_storage_get:
|
|
case BPF_FUNC_inode_storage_delete:
|
|
if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
|
|
goto error;
|
|
break;
|
|
case BPF_FUNC_task_storage_get:
|
|
case BPF_FUNC_task_storage_delete:
|
|
if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
|
|
goto error;
|
|
break;
|
|
case BPF_FUNC_cgrp_storage_get:
|
|
case BPF_FUNC_cgrp_storage_delete:
|
|
if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
|
|
goto error;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
verbose(env, "cannot pass map_type %d into func %s#%d\n",
|
|
map->map_type, func_id_name(func_id), func_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
|
|
{
|
|
int count = 0;
|
|
|
|
if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
|
|
count++;
|
|
if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
|
|
count++;
|
|
if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
|
|
count++;
|
|
if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
|
|
count++;
|
|
if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
|
|
count++;
|
|
|
|
/* We only support one arg being in raw mode at the moment,
|
|
* which is sufficient for the helper functions we have
|
|
* right now.
|
|
*/
|
|
return count <= 1;
|
|
}
|
|
|
|
static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
|
|
{
|
|
bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
|
|
bool has_size = fn->arg_size[arg] != 0;
|
|
bool is_next_size = false;
|
|
|
|
if (arg + 1 < ARRAY_SIZE(fn->arg_type))
|
|
is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
|
|
|
|
if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
|
|
return is_next_size;
|
|
|
|
return has_size == is_next_size || is_next_size == is_fixed;
|
|
}
|
|
|
|
static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
|
|
{
|
|
/* bpf_xxx(..., buf, len) call will access 'len'
|
|
* bytes from memory 'buf'. Both arg types need
|
|
* to be paired, so make sure there's no buggy
|
|
* helper function specification.
|
|
*/
|
|
if (arg_type_is_mem_size(fn->arg1_type) ||
|
|
check_args_pair_invalid(fn, 0) ||
|
|
check_args_pair_invalid(fn, 1) ||
|
|
check_args_pair_invalid(fn, 2) ||
|
|
check_args_pair_invalid(fn, 3) ||
|
|
check_args_pair_invalid(fn, 4))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool check_btf_id_ok(const struct bpf_func_proto *fn)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
|
|
if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
|
|
return !!fn->arg_btf_id[i];
|
|
if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
|
|
return fn->arg_btf_id[i] == BPF_PTR_POISON;
|
|
if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
|
|
/* arg_btf_id and arg_size are in a union. */
|
|
(base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
|
|
!(fn->arg_type[i] & MEM_FIXED_SIZE)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
|
|
{
|
|
return check_raw_mode_ok(fn) &&
|
|
check_arg_pair_ok(fn) &&
|
|
check_btf_id_ok(fn) ? 0 : -EINVAL;
|
|
}
|
|
|
|
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
|
|
* are now invalid, so turn them into unknown SCALAR_VALUE.
|
|
*
|
|
* This also applies to dynptr slices belonging to skb and xdp dynptrs,
|
|
* since these slices point to packet data.
|
|
*/
|
|
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_func_state *state;
|
|
struct bpf_reg_state *reg;
|
|
|
|
bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
|
|
if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
|
|
mark_reg_invalid(env, reg);
|
|
}));
|
|
}
|
|
|
|
enum {
|
|
AT_PKT_END = -1,
|
|
BEYOND_PKT_END = -2,
|
|
};
|
|
|
|
static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
|
|
{
|
|
struct bpf_func_state *state = vstate->frame[vstate->curframe];
|
|
struct bpf_reg_state *reg = &state->regs[regn];
|
|
|
|
if (reg->type != PTR_TO_PACKET)
|
|
/* PTR_TO_PACKET_META is not supported yet */
|
|
return;
|
|
|
|
/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
|
|
* How far beyond pkt_end it goes is unknown.
|
|
* if (!range_open) it's the case of pkt >= pkt_end
|
|
* if (range_open) it's the case of pkt > pkt_end
|
|
* hence this pointer is at least 1 byte bigger than pkt_end
|
|
*/
|
|
if (range_open)
|
|
reg->range = BEYOND_PKT_END;
|
|
else
|
|
reg->range = AT_PKT_END;
|
|
}
|
|
|
|
/* The pointer with the specified id has released its reference to kernel
|
|
* resources. Identify all copies of the same pointer and clear the reference.
|
|
*/
|
|
static int release_reference(struct bpf_verifier_env *env,
|
|
int ref_obj_id)
|
|
{
|
|
struct bpf_func_state *state;
|
|
struct bpf_reg_state *reg;
|
|
int err;
|
|
|
|
err = release_reference_state(cur_func(env), ref_obj_id);
|
|
if (err)
|
|
return err;
|
|
|
|
bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
|
|
if (reg->ref_obj_id == ref_obj_id)
|
|
mark_reg_invalid(env, reg);
|
|
}));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_func_state *unused;
|
|
struct bpf_reg_state *reg;
|
|
|
|
bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
|
|
if (type_is_non_owning_ref(reg->type))
|
|
mark_reg_invalid(env, reg);
|
|
}));
|
|
}
|
|
|
|
static void clear_caller_saved_regs(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *regs)
|
|
{
|
|
int i;
|
|
|
|
/* after the call registers r0 - r5 were scratched */
|
|
for (i = 0; i < CALLER_SAVED_REGS; i++) {
|
|
mark_reg_not_init(env, regs, caller_saved[i]);
|
|
__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
|
|
}
|
|
}
|
|
|
|
typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
|
|
struct bpf_func_state *caller,
|
|
struct bpf_func_state *callee,
|
|
int insn_idx);
|
|
|
|
static int set_callee_state(struct bpf_verifier_env *env,
|
|
struct bpf_func_state *caller,
|
|
struct bpf_func_state *callee, int insn_idx);
|
|
|
|
static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
|
|
set_callee_state_fn set_callee_state_cb,
|
|
struct bpf_verifier_state *state)
|
|
{
|
|
struct bpf_func_state *caller, *callee;
|
|
int err;
|
|
|
|
if (state->curframe + 1 >= MAX_CALL_FRAMES) {
|
|
verbose(env, "the call stack of %d frames is too deep\n",
|
|
state->curframe + 2);
|
|
return -E2BIG;
|
|
}
|
|
|
|
if (state->frame[state->curframe + 1]) {
|
|
verbose(env, "verifier bug. Frame %d already allocated\n",
|
|
state->curframe + 1);
|
|
return -EFAULT;
|
|
}
|
|
|
|
caller = state->frame[state->curframe];
|
|
callee = kzalloc(sizeof(*callee), GFP_KERNEL);
|
|
if (!callee)
|
|
return -ENOMEM;
|
|
state->frame[state->curframe + 1] = callee;
|
|
|
|
/* callee cannot access r0, r6 - r9 for reading and has to write
|
|
* into its own stack before reading from it.
|
|
* callee can read/write into caller's stack
|
|
*/
|
|
init_func_state(env, callee,
|
|
/* remember the callsite, it will be used by bpf_exit */
|
|
callsite,
|
|
state->curframe + 1 /* frameno within this callchain */,
|
|
subprog /* subprog number within this prog */);
|
|
/* Transfer references to the callee */
|
|
err = copy_reference_state(callee, caller);
|
|
err = err ?: set_callee_state_cb(env, caller, callee, callsite);
|
|
if (err)
|
|
goto err_out;
|
|
|
|
/* only increment it after check_reg_arg() finished */
|
|
state->curframe++;
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
free_func_state(callee);
|
|
state->frame[state->curframe + 1] = NULL;
|
|
return err;
|
|
}
|
|
|
|
static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
|
|
int insn_idx, int subprog,
|
|
set_callee_state_fn set_callee_state_cb)
|
|
{
|
|
struct bpf_verifier_state *state = env->cur_state, *callback_state;
|
|
struct bpf_func_state *caller, *callee;
|
|
int err;
|
|
|
|
caller = state->frame[state->curframe];
|
|
err = btf_check_subprog_call(env, subprog, caller->regs);
|
|
if (err == -EFAULT)
|
|
return err;
|
|
|
|
/* set_callee_state is used for direct subprog calls, but we are
|
|
* interested in validating only BPF helpers that can call subprogs as
|
|
* callbacks
|
|
*/
|
|
env->subprog_info[subprog].is_cb = true;
|
|
if (bpf_pseudo_kfunc_call(insn) &&
|
|
!is_sync_callback_calling_kfunc(insn->imm)) {
|
|
verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
|
|
func_id_name(insn->imm), insn->imm);
|
|
return -EFAULT;
|
|
} else if (!bpf_pseudo_kfunc_call(insn) &&
|
|
!is_callback_calling_function(insn->imm)) { /* helper */
|
|
verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
|
|
func_id_name(insn->imm), insn->imm);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (insn->code == (BPF_JMP | BPF_CALL) &&
|
|
insn->src_reg == 0 &&
|
|
insn->imm == BPF_FUNC_timer_set_callback) {
|
|
struct bpf_verifier_state *async_cb;
|
|
|
|
/* there is no real recursion here. timer callbacks are async */
|
|
env->subprog_info[subprog].is_async_cb = true;
|
|
async_cb = push_async_cb(env, env->subprog_info[subprog].start,
|
|
insn_idx, subprog);
|
|
if (!async_cb)
|
|
return -EFAULT;
|
|
callee = async_cb->frame[0];
|
|
callee->async_entry_cnt = caller->async_entry_cnt + 1;
|
|
|
|
/* Convert bpf_timer_set_callback() args into timer callback args */
|
|
err = set_callee_state_cb(env, caller, callee, insn_idx);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* for callback functions enqueue entry to callback and
|
|
* proceed with next instruction within current frame.
|
|
*/
|
|
callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
|
|
if (!callback_state)
|
|
return -ENOMEM;
|
|
|
|
err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
|
|
callback_state);
|
|
if (err)
|
|
return err;
|
|
|
|
callback_state->callback_unroll_depth++;
|
|
callback_state->frame[callback_state->curframe - 1]->callback_depth++;
|
|
caller->callback_depth = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
|
|
int *insn_idx)
|
|
{
|
|
struct bpf_verifier_state *state = env->cur_state;
|
|
struct bpf_func_state *caller;
|
|
int err, subprog, target_insn;
|
|
|
|
target_insn = *insn_idx + insn->imm + 1;
|
|
subprog = find_subprog(env, target_insn);
|
|
if (subprog < 0) {
|
|
verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
|
|
return -EFAULT;
|
|
}
|
|
|
|
caller = state->frame[state->curframe];
|
|
err = btf_check_subprog_call(env, subprog, caller->regs);
|
|
if (err == -EFAULT)
|
|
return err;
|
|
if (subprog_is_global(env, subprog)) {
|
|
const char *sub_name = subprog_name(env, subprog);
|
|
|
|
if (err) {
|
|
verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
|
|
subprog, sub_name);
|
|
return err;
|
|
}
|
|
|
|
verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
|
|
subprog, sub_name);
|
|
/* mark global subprog for verifying after main prog */
|
|
subprog_aux(env, subprog)->called = true;
|
|
clear_caller_saved_regs(env, caller->regs);
|
|
|
|
/* All global functions return a 64-bit SCALAR_VALUE */
|
|
mark_reg_unknown(env, caller->regs, BPF_REG_0);
|
|
caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
|
|
|
|
/* continue with next insn after call */
|
|
return 0;
|
|
}
|
|
|
|
/* for regular function entry setup new frame and continue
|
|
* from that frame.
|
|
*/
|
|
err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
|
|
if (err)
|
|
return err;
|
|
|
|
clear_caller_saved_regs(env, caller->regs);
|
|
|
|
/* and go analyze first insn of the callee */
|
|
*insn_idx = env->subprog_info[subprog].start - 1;
|
|
|
|
if (env->log.level & BPF_LOG_LEVEL) {
|
|
verbose(env, "caller:\n");
|
|
print_verifier_state(env, caller, true);
|
|
verbose(env, "callee:\n");
|
|
print_verifier_state(env, state->frame[state->curframe], true);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int map_set_for_each_callback_args(struct bpf_verifier_env *env,
|
|
struct bpf_func_state *caller,
|
|
struct bpf_func_state *callee)
|
|
{
|
|
/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
|
|
* void *callback_ctx, u64 flags);
|
|
* callback_fn(struct bpf_map *map, void *key, void *value,
|
|
* void *callback_ctx);
|
|
*/
|
|
callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
|
|
|
|
callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
|
|
__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
|
|
callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
|
|
|
|
callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
|
|
__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
|
|
callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
|
|
|
|
/* pointer to stack or null */
|
|
callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
|
|
|
|
/* unused */
|
|
__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
|
|
return 0;
|
|
}
|
|
|
|
static int set_callee_state(struct bpf_verifier_env *env,
|
|
struct bpf_func_state *caller,
|
|
struct bpf_func_state *callee, int insn_idx)
|
|
{
|
|
int i;
|
|
|
|
/* copy r1 - r5 args that callee can access. The copy includes parent
|
|
* pointers, which connects us up to the liveness chain
|
|
*/
|
|
for (i = BPF_REG_1; i <= BPF_REG_5; i++)
|
|
callee->regs[i] = caller->regs[i];
|
|
return 0;
|
|
}
|
|
|
|
static int set_map_elem_callback_state(struct bpf_verifier_env *env,
|
|
struct bpf_func_state *caller,
|
|
struct bpf_func_state *callee,
|
|
int insn_idx)
|
|
{
|
|
struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
|
|
struct bpf_map *map;
|
|
int err;
|
|
|
|
if (bpf_map_ptr_poisoned(insn_aux)) {
|
|
verbose(env, "tail_call abusing map_ptr\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
map = BPF_MAP_PTR(insn_aux->map_ptr_state);
|
|
if (!map->ops->map_set_for_each_callback_args ||
|
|
!map->ops->map_for_each_callback) {
|
|
verbose(env, "callback function not allowed for map\n");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
err = map->ops->map_set_for_each_callback_args(env, caller, callee);
|
|
if (err)
|
|
return err;
|
|
|
|
callee->in_callback_fn = true;
|
|
callee->callback_ret_range = retval_range(0, 1);
|
|
return 0;
|
|
}
|
|
|
|
static int set_loop_callback_state(struct bpf_verifier_env *env,
|
|
struct bpf_func_state *caller,
|
|
struct bpf_func_state *callee,
|
|
int insn_idx)
|
|
{
|
|
/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
|
|
* u64 flags);
|
|
* callback_fn(u32 index, void *callback_ctx);
|
|
*/
|
|
callee->regs[BPF_REG_1].type = SCALAR_VALUE;
|
|
callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
|
|
|
|
/* unused */
|
|
__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
|
|
__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
|
|
__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
|
|
|
|
callee->in_callback_fn = true;
|
|
callee->callback_ret_range = retval_range(0, 1);
|
|
return 0;
|
|
}
|
|
|
|
static int set_timer_callback_state(struct bpf_verifier_env *env,
|
|
struct bpf_func_state *caller,
|
|
struct bpf_func_state *callee,
|
|
int insn_idx)
|
|
{
|
|
struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
|
|
|
|
/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
|
|
* callback_fn(struct bpf_map *map, void *key, void *value);
|
|
*/
|
|
callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
|
|
__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
|
|
callee->regs[BPF_REG_1].map_ptr = map_ptr;
|
|
|
|
callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
|
|
__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
|
|
callee->regs[BPF_REG_2].map_ptr = map_ptr;
|
|
|
|
callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
|
|
__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
|
|
callee->regs[BPF_REG_3].map_ptr = map_ptr;
|
|
|
|
/* unused */
|
|
__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
|
|
__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
|
|
callee->in_async_callback_fn = true;
|
|
callee->callback_ret_range = retval_range(0, 1);
|
|
return 0;
|
|
}
|
|
|
|
static int set_find_vma_callback_state(struct bpf_verifier_env *env,
|
|
struct bpf_func_state *caller,
|
|
struct bpf_func_state *callee,
|
|
int insn_idx)
|
|
{
|
|
/* bpf_find_vma(struct task_struct *task, u64 addr,
|
|
* void *callback_fn, void *callback_ctx, u64 flags)
|
|
* (callback_fn)(struct task_struct *task,
|
|
* struct vm_area_struct *vma, void *callback_ctx);
|
|
*/
|
|
callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
|
|
|
|
callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
|
|
__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
|
|
callee->regs[BPF_REG_2].btf = btf_vmlinux;
|
|
callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
|
|
|
|
/* pointer to stack or null */
|
|
callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
|
|
|
|
/* unused */
|
|
__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
|
|
__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
|
|
callee->in_callback_fn = true;
|
|
callee->callback_ret_range = retval_range(0, 1);
|
|
return 0;
|
|
}
|
|
|
|
static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
|
|
struct bpf_func_state *caller,
|
|
struct bpf_func_state *callee,
|
|
int insn_idx)
|
|
{
|
|
/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
|
|
* callback_ctx, u64 flags);
|
|
* callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
|
|
*/
|
|
__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
|
|
mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
|
|
callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
|
|
|
|
/* unused */
|
|
__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
|
|
__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
|
|
__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
|
|
|
|
callee->in_callback_fn = true;
|
|
callee->callback_ret_range = retval_range(0, 1);
|
|
return 0;
|
|
}
|
|
|
|
static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
|
|
struct bpf_func_state *caller,
|
|
struct bpf_func_state *callee,
|
|
int insn_idx)
|
|
{
|
|
/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
|
|
* bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
|
|
*
|
|
* 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
|
|
* that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
|
|
* by this point, so look at 'root'
|
|
*/
|
|
struct btf_field *field;
|
|
|
|
field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
|
|
BPF_RB_ROOT);
|
|
if (!field || !field->graph_root.value_btf_id)
|
|
return -EFAULT;
|
|
|
|
mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
|
|
ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
|
|
mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
|
|
ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
|
|
|
|
__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
|
|
__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
|
|
__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
|
|
callee->in_callback_fn = true;
|
|
callee->callback_ret_range = retval_range(0, 1);
|
|
return 0;
|
|
}
|
|
|
|
static bool is_rbtree_lock_required_kfunc(u32 btf_id);
|
|
|
|
/* Are we currently verifying the callback for a rbtree helper that must
|
|
* be called with lock held? If so, no need to complain about unreleased
|
|
* lock
|
|
*/
|
|
static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_verifier_state *state = env->cur_state;
|
|
struct bpf_insn *insn = env->prog->insnsi;
|
|
struct bpf_func_state *callee;
|
|
int kfunc_btf_id;
|
|
|
|
if (!state->curframe)
|
|
return false;
|
|
|
|
callee = state->frame[state->curframe];
|
|
|
|
if (!callee->in_callback_fn)
|
|
return false;
|
|
|
|
kfunc_btf_id = insn[callee->callsite].imm;
|
|
return is_rbtree_lock_required_kfunc(kfunc_btf_id);
|
|
}
|
|
|
|
static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg)
|
|
{
|
|
return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
|
|
}
|
|
|
|
static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
|
|
{
|
|
struct bpf_verifier_state *state = env->cur_state, *prev_st;
|
|
struct bpf_func_state *caller, *callee;
|
|
struct bpf_reg_state *r0;
|
|
bool in_callback_fn;
|
|
int err;
|
|
|
|
callee = state->frame[state->curframe];
|
|
r0 = &callee->regs[BPF_REG_0];
|
|
if (r0->type == PTR_TO_STACK) {
|
|
/* technically it's ok to return caller's stack pointer
|
|
* (or caller's caller's pointer) back to the caller,
|
|
* since these pointers are valid. Only current stack
|
|
* pointer will be invalid as soon as function exits,
|
|
* but let's be conservative
|
|
*/
|
|
verbose(env, "cannot return stack pointer to the caller\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
caller = state->frame[state->curframe - 1];
|
|
if (callee->in_callback_fn) {
|
|
if (r0->type != SCALAR_VALUE) {
|
|
verbose(env, "R0 not a scalar value\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
/* we are going to rely on register's precise value */
|
|
err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
|
|
err = err ?: mark_chain_precision(env, BPF_REG_0);
|
|
if (err)
|
|
return err;
|
|
|
|
/* enforce R0 return value range */
|
|
if (!retval_range_within(callee->callback_ret_range, r0)) {
|
|
verbose_invalid_scalar(env, r0, callee->callback_ret_range,
|
|
"At callback return", "R0");
|
|
return -EINVAL;
|
|
}
|
|
if (!calls_callback(env, callee->callsite)) {
|
|
verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
|
|
*insn_idx, callee->callsite);
|
|
return -EFAULT;
|
|
}
|
|
} else {
|
|
/* return to the caller whatever r0 had in the callee */
|
|
caller->regs[BPF_REG_0] = *r0;
|
|
}
|
|
|
|
/* callback_fn frame should have released its own additions to parent's
|
|
* reference state at this point, or check_reference_leak would
|
|
* complain, hence it must be the same as the caller. There is no need
|
|
* to copy it back.
|
|
*/
|
|
if (!callee->in_callback_fn) {
|
|
/* Transfer references to the caller */
|
|
err = copy_reference_state(caller, callee);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
|
|
* there function call logic would reschedule callback visit. If iteration
|
|
* converges is_state_visited() would prune that visit eventually.
|
|
*/
|
|
in_callback_fn = callee->in_callback_fn;
|
|
if (in_callback_fn)
|
|
*insn_idx = callee->callsite;
|
|
else
|
|
*insn_idx = callee->callsite + 1;
|
|
|
|
if (env->log.level & BPF_LOG_LEVEL) {
|
|
verbose(env, "returning from callee:\n");
|
|
print_verifier_state(env, callee, true);
|
|
verbose(env, "to caller at %d:\n", *insn_idx);
|
|
print_verifier_state(env, caller, true);
|
|
}
|
|
/* clear everything in the callee. In case of exceptional exits using
|
|
* bpf_throw, this will be done by copy_verifier_state for extra frames. */
|
|
free_func_state(callee);
|
|
state->frame[state->curframe--] = NULL;
|
|
|
|
/* for callbacks widen imprecise scalars to make programs like below verify:
|
|
*
|
|
* struct ctx { int i; }
|
|
* void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
|
|
* ...
|
|
* struct ctx = { .i = 0; }
|
|
* bpf_loop(100, cb, &ctx, 0);
|
|
*
|
|
* This is similar to what is done in process_iter_next_call() for open
|
|
* coded iterators.
|
|
*/
|
|
prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
|
|
if (prev_st) {
|
|
err = widen_imprecise_scalars(env, prev_st, state);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int do_refine_retval_range(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *regs, int ret_type,
|
|
int func_id,
|
|
struct bpf_call_arg_meta *meta)
|
|
{
|
|
struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
|
|
|
|
if (ret_type != RET_INTEGER)
|
|
return 0;
|
|
|
|
switch (func_id) {
|
|
case BPF_FUNC_get_stack:
|
|
case BPF_FUNC_get_task_stack:
|
|
case BPF_FUNC_probe_read_str:
|
|
case BPF_FUNC_probe_read_kernel_str:
|
|
case BPF_FUNC_probe_read_user_str:
|
|
ret_reg->smax_value = meta->msize_max_value;
|
|
ret_reg->s32_max_value = meta->msize_max_value;
|
|
ret_reg->smin_value = -MAX_ERRNO;
|
|
ret_reg->s32_min_value = -MAX_ERRNO;
|
|
reg_bounds_sync(ret_reg);
|
|
break;
|
|
case BPF_FUNC_get_smp_processor_id:
|
|
ret_reg->umax_value = nr_cpu_ids - 1;
|
|
ret_reg->u32_max_value = nr_cpu_ids - 1;
|
|
ret_reg->smax_value = nr_cpu_ids - 1;
|
|
ret_reg->s32_max_value = nr_cpu_ids - 1;
|
|
ret_reg->umin_value = 0;
|
|
ret_reg->u32_min_value = 0;
|
|
ret_reg->smin_value = 0;
|
|
ret_reg->s32_min_value = 0;
|
|
reg_bounds_sync(ret_reg);
|
|
break;
|
|
}
|
|
|
|
return reg_bounds_sanity_check(env, ret_reg, "retval");
|
|
}
|
|
|
|
static int
|
|
record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
|
|
int func_id, int insn_idx)
|
|
{
|
|
struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
|
|
struct bpf_map *map = meta->map_ptr;
|
|
|
|
if (func_id != BPF_FUNC_tail_call &&
|
|
func_id != BPF_FUNC_map_lookup_elem &&
|
|
func_id != BPF_FUNC_map_update_elem &&
|
|
func_id != BPF_FUNC_map_delete_elem &&
|
|
func_id != BPF_FUNC_map_push_elem &&
|
|
func_id != BPF_FUNC_map_pop_elem &&
|
|
func_id != BPF_FUNC_map_peek_elem &&
|
|
func_id != BPF_FUNC_for_each_map_elem &&
|
|
func_id != BPF_FUNC_redirect_map &&
|
|
func_id != BPF_FUNC_map_lookup_percpu_elem)
|
|
return 0;
|
|
|
|
if (map == NULL) {
|
|
verbose(env, "kernel subsystem misconfigured verifier\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* In case of read-only, some additional restrictions
|
|
* need to be applied in order to prevent altering the
|
|
* state of the map from program side.
|
|
*/
|
|
if ((map->map_flags & BPF_F_RDONLY_PROG) &&
|
|
(func_id == BPF_FUNC_map_delete_elem ||
|
|
func_id == BPF_FUNC_map_update_elem ||
|
|
func_id == BPF_FUNC_map_push_elem ||
|
|
func_id == BPF_FUNC_map_pop_elem)) {
|
|
verbose(env, "write into map forbidden\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
if (!BPF_MAP_PTR(aux->map_ptr_state))
|
|
bpf_map_ptr_store(aux, meta->map_ptr,
|
|
!meta->map_ptr->bypass_spec_v1);
|
|
else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
|
|
bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
|
|
!meta->map_ptr->bypass_spec_v1);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
|
|
int func_id, int insn_idx)
|
|
{
|
|
struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
|
|
struct bpf_reg_state *regs = cur_regs(env), *reg;
|
|
struct bpf_map *map = meta->map_ptr;
|
|
u64 val, max;
|
|
int err;
|
|
|
|
if (func_id != BPF_FUNC_tail_call)
|
|
return 0;
|
|
if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
|
|
verbose(env, "kernel subsystem misconfigured verifier\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
reg = ®s[BPF_REG_3];
|
|
val = reg->var_off.value;
|
|
max = map->max_entries;
|
|
|
|
if (!(is_reg_const(reg, false) && val < max)) {
|
|
bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
|
|
return 0;
|
|
}
|
|
|
|
err = mark_chain_precision(env, BPF_REG_3);
|
|
if (err)
|
|
return err;
|
|
if (bpf_map_key_unseen(aux))
|
|
bpf_map_key_store(aux, val);
|
|
else if (!bpf_map_key_poisoned(aux) &&
|
|
bpf_map_key_immediate(aux) != val)
|
|
bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
|
|
return 0;
|
|
}
|
|
|
|
static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
|
|
{
|
|
struct bpf_func_state *state = cur_func(env);
|
|
bool refs_lingering = false;
|
|
int i;
|
|
|
|
if (!exception_exit && state->frameno && !state->in_callback_fn)
|
|
return 0;
|
|
|
|
for (i = 0; i < state->acquired_refs; i++) {
|
|
if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
|
|
continue;
|
|
verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
|
|
state->refs[i].id, state->refs[i].insn_idx);
|
|
refs_lingering = true;
|
|
}
|
|
return refs_lingering ? -EINVAL : 0;
|
|
}
|
|
|
|
static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *regs)
|
|
{
|
|
struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3];
|
|
struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5];
|
|
struct bpf_map *fmt_map = fmt_reg->map_ptr;
|
|
struct bpf_bprintf_data data = {};
|
|
int err, fmt_map_off, num_args;
|
|
u64 fmt_addr;
|
|
char *fmt;
|
|
|
|
/* data must be an array of u64 */
|
|
if (data_len_reg->var_off.value % 8)
|
|
return -EINVAL;
|
|
num_args = data_len_reg->var_off.value / 8;
|
|
|
|
/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
|
|
* and map_direct_value_addr is set.
|
|
*/
|
|
fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
|
|
err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
|
|
fmt_map_off);
|
|
if (err) {
|
|
verbose(env, "verifier bug\n");
|
|
return -EFAULT;
|
|
}
|
|
fmt = (char *)(long)fmt_addr + fmt_map_off;
|
|
|
|
/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
|
|
* can focus on validating the format specifiers.
|
|
*/
|
|
err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
|
|
if (err < 0)
|
|
verbose(env, "Invalid format string\n");
|
|
|
|
return err;
|
|
}
|
|
|
|
static int check_get_func_ip(struct bpf_verifier_env *env)
|
|
{
|
|
enum bpf_prog_type type = resolve_prog_type(env->prog);
|
|
int func_id = BPF_FUNC_get_func_ip;
|
|
|
|
if (type == BPF_PROG_TYPE_TRACING) {
|
|
if (!bpf_prog_has_trampoline(env->prog)) {
|
|
verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
|
|
func_id_name(func_id), func_id);
|
|
return -ENOTSUPP;
|
|
}
|
|
return 0;
|
|
} else if (type == BPF_PROG_TYPE_KPROBE) {
|
|
return 0;
|
|
}
|
|
|
|
verbose(env, "func %s#%d not supported for program type %d\n",
|
|
func_id_name(func_id), func_id, type);
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
|
|
{
|
|
return &env->insn_aux_data[env->insn_idx];
|
|
}
|
|
|
|
static bool loop_flag_is_zero(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_reg_state *regs = cur_regs(env);
|
|
struct bpf_reg_state *reg = ®s[BPF_REG_4];
|
|
bool reg_is_null = register_is_null(reg);
|
|
|
|
if (reg_is_null)
|
|
mark_chain_precision(env, BPF_REG_4);
|
|
|
|
return reg_is_null;
|
|
}
|
|
|
|
static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
|
|
{
|
|
struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
|
|
|
|
if (!state->initialized) {
|
|
state->initialized = 1;
|
|
state->fit_for_inline = loop_flag_is_zero(env);
|
|
state->callback_subprogno = subprogno;
|
|
return;
|
|
}
|
|
|
|
if (!state->fit_for_inline)
|
|
return;
|
|
|
|
state->fit_for_inline = (loop_flag_is_zero(env) &&
|
|
state->callback_subprogno == subprogno);
|
|
}
|
|
|
|
static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
|
|
int *insn_idx_p)
|
|
{
|
|
enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
|
|
bool returns_cpu_specific_alloc_ptr = false;
|
|
const struct bpf_func_proto *fn = NULL;
|
|
enum bpf_return_type ret_type;
|
|
enum bpf_type_flag ret_flag;
|
|
struct bpf_reg_state *regs;
|
|
struct bpf_call_arg_meta meta;
|
|
int insn_idx = *insn_idx_p;
|
|
bool changes_data;
|
|
int i, err, func_id;
|
|
|
|
/* find function prototype */
|
|
func_id = insn->imm;
|
|
if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
|
|
verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
|
|
func_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (env->ops->get_func_proto)
|
|
fn = env->ops->get_func_proto(func_id, env->prog);
|
|
if (!fn) {
|
|
verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
|
|
func_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* eBPF programs must be GPL compatible to use GPL-ed functions */
|
|
if (!env->prog->gpl_compatible && fn->gpl_only) {
|
|
verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (fn->allowed && !fn->allowed(env->prog)) {
|
|
verbose(env, "helper call is not allowed in probe\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env->prog->aux->sleepable && fn->might_sleep) {
|
|
verbose(env, "helper call might sleep in a non-sleepable prog\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* With LD_ABS/IND some JITs save/restore skb from r1. */
|
|
changes_data = bpf_helper_changes_pkt_data(fn->func);
|
|
if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
|
|
verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
|
|
func_id_name(func_id), func_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
memset(&meta, 0, sizeof(meta));
|
|
meta.pkt_access = fn->pkt_access;
|
|
|
|
err = check_func_proto(fn, func_id);
|
|
if (err) {
|
|
verbose(env, "kernel subsystem misconfigured func %s#%d\n",
|
|
func_id_name(func_id), func_id);
|
|
return err;
|
|
}
|
|
|
|
if (env->cur_state->active_rcu_lock) {
|
|
if (fn->might_sleep) {
|
|
verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
|
|
func_id_name(func_id), func_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (env->prog->aux->sleepable && is_storage_get_function(func_id))
|
|
env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
|
|
}
|
|
|
|
meta.func_id = func_id;
|
|
/* check args */
|
|
for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
|
|
err = check_func_arg(env, i, &meta, fn, insn_idx);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = record_func_map(env, &meta, func_id, insn_idx);
|
|
if (err)
|
|
return err;
|
|
|
|
err = record_func_key(env, &meta, func_id, insn_idx);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Mark slots with STACK_MISC in case of raw mode, stack offset
|
|
* is inferred from register state.
|
|
*/
|
|
for (i = 0; i < meta.access_size; i++) {
|
|
err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
|
|
BPF_WRITE, -1, false, false);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
regs = cur_regs(env);
|
|
|
|
if (meta.release_regno) {
|
|
err = -EINVAL;
|
|
/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
|
|
* be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
|
|
* is safe to do directly.
|
|
*/
|
|
if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
|
|
if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
|
|
verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
|
|
return -EFAULT;
|
|
}
|
|
err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]);
|
|
} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
|
|
u32 ref_obj_id = meta.ref_obj_id;
|
|
bool in_rcu = in_rcu_cs(env);
|
|
struct bpf_func_state *state;
|
|
struct bpf_reg_state *reg;
|
|
|
|
err = release_reference_state(cur_func(env), ref_obj_id);
|
|
if (!err) {
|
|
bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
|
|
if (reg->ref_obj_id == ref_obj_id) {
|
|
if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
|
|
reg->ref_obj_id = 0;
|
|
reg->type &= ~MEM_ALLOC;
|
|
reg->type |= MEM_RCU;
|
|
} else {
|
|
mark_reg_invalid(env, reg);
|
|
}
|
|
}
|
|
}));
|
|
}
|
|
} else if (meta.ref_obj_id) {
|
|
err = release_reference(env, meta.ref_obj_id);
|
|
} else if (register_is_null(®s[meta.release_regno])) {
|
|
/* meta.ref_obj_id can only be 0 if register that is meant to be
|
|
* released is NULL, which must be > R0.
|
|
*/
|
|
err = 0;
|
|
}
|
|
if (err) {
|
|
verbose(env, "func %s#%d reference has not been acquired before\n",
|
|
func_id_name(func_id), func_id);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
switch (func_id) {
|
|
case BPF_FUNC_tail_call:
|
|
err = check_reference_leak(env, false);
|
|
if (err) {
|
|
verbose(env, "tail_call would lead to reference leak\n");
|
|
return err;
|
|
}
|
|
break;
|
|
case BPF_FUNC_get_local_storage:
|
|
/* check that flags argument in get_local_storage(map, flags) is 0,
|
|
* this is required because get_local_storage() can't return an error.
|
|
*/
|
|
if (!register_is_null(®s[BPF_REG_2])) {
|
|
verbose(env, "get_local_storage() doesn't support non-zero flags\n");
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
case BPF_FUNC_for_each_map_elem:
|
|
err = push_callback_call(env, insn, insn_idx, meta.subprogno,
|
|
set_map_elem_callback_state);
|
|
break;
|
|
case BPF_FUNC_timer_set_callback:
|
|
err = push_callback_call(env, insn, insn_idx, meta.subprogno,
|
|
set_timer_callback_state);
|
|
break;
|
|
case BPF_FUNC_find_vma:
|
|
err = push_callback_call(env, insn, insn_idx, meta.subprogno,
|
|
set_find_vma_callback_state);
|
|
break;
|
|
case BPF_FUNC_snprintf:
|
|
err = check_bpf_snprintf_call(env, regs);
|
|
break;
|
|
case BPF_FUNC_loop:
|
|
update_loop_inline_state(env, meta.subprogno);
|
|
/* Verifier relies on R1 value to determine if bpf_loop() iteration
|
|
* is finished, thus mark it precise.
|
|
*/
|
|
err = mark_chain_precision(env, BPF_REG_1);
|
|
if (err)
|
|
return err;
|
|
if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
|
|
err = push_callback_call(env, insn, insn_idx, meta.subprogno,
|
|
set_loop_callback_state);
|
|
} else {
|
|
cur_func(env)->callback_depth = 0;
|
|
if (env->log.level & BPF_LOG_LEVEL2)
|
|
verbose(env, "frame%d bpf_loop iteration limit reached\n",
|
|
env->cur_state->curframe);
|
|
}
|
|
break;
|
|
case BPF_FUNC_dynptr_from_mem:
|
|
if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
|
|
verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
|
|
reg_type_str(env, regs[BPF_REG_1].type));
|
|
return -EACCES;
|
|
}
|
|
break;
|
|
case BPF_FUNC_set_retval:
|
|
if (prog_type == BPF_PROG_TYPE_LSM &&
|
|
env->prog->expected_attach_type == BPF_LSM_CGROUP) {
|
|
if (!env->prog->aux->attach_func_proto->type) {
|
|
/* Make sure programs that attach to void
|
|
* hooks don't try to modify return value.
|
|
*/
|
|
verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
break;
|
|
case BPF_FUNC_dynptr_data:
|
|
{
|
|
struct bpf_reg_state *reg;
|
|
int id, ref_obj_id;
|
|
|
|
reg = get_dynptr_arg_reg(env, fn, regs);
|
|
if (!reg)
|
|
return -EFAULT;
|
|
|
|
|
|
if (meta.dynptr_id) {
|
|
verbose(env, "verifier internal error: meta.dynptr_id already set\n");
|
|
return -EFAULT;
|
|
}
|
|
if (meta.ref_obj_id) {
|
|
verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
id = dynptr_id(env, reg);
|
|
if (id < 0) {
|
|
verbose(env, "verifier internal error: failed to obtain dynptr id\n");
|
|
return id;
|
|
}
|
|
|
|
ref_obj_id = dynptr_ref_obj_id(env, reg);
|
|
if (ref_obj_id < 0) {
|
|
verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
|
|
return ref_obj_id;
|
|
}
|
|
|
|
meta.dynptr_id = id;
|
|
meta.ref_obj_id = ref_obj_id;
|
|
|
|
break;
|
|
}
|
|
case BPF_FUNC_dynptr_write:
|
|
{
|
|
enum bpf_dynptr_type dynptr_type;
|
|
struct bpf_reg_state *reg;
|
|
|
|
reg = get_dynptr_arg_reg(env, fn, regs);
|
|
if (!reg)
|
|
return -EFAULT;
|
|
|
|
dynptr_type = dynptr_get_type(env, reg);
|
|
if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
|
|
return -EFAULT;
|
|
|
|
if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
|
|
/* this will trigger clear_all_pkt_pointers(), which will
|
|
* invalidate all dynptr slices associated with the skb
|
|
*/
|
|
changes_data = true;
|
|
|
|
break;
|
|
}
|
|
case BPF_FUNC_per_cpu_ptr:
|
|
case BPF_FUNC_this_cpu_ptr:
|
|
{
|
|
struct bpf_reg_state *reg = ®s[BPF_REG_1];
|
|
const struct btf_type *type;
|
|
|
|
if (reg->type & MEM_RCU) {
|
|
type = btf_type_by_id(reg->btf, reg->btf_id);
|
|
if (!type || !btf_type_is_struct(type)) {
|
|
verbose(env, "Helper has invalid btf/btf_id in R1\n");
|
|
return -EFAULT;
|
|
}
|
|
returns_cpu_specific_alloc_ptr = true;
|
|
env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
|
|
}
|
|
break;
|
|
}
|
|
case BPF_FUNC_user_ringbuf_drain:
|
|
err = push_callback_call(env, insn, insn_idx, meta.subprogno,
|
|
set_user_ringbuf_callback_state);
|
|
break;
|
|
}
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
/* reset caller saved regs */
|
|
for (i = 0; i < CALLER_SAVED_REGS; i++) {
|
|
mark_reg_not_init(env, regs, caller_saved[i]);
|
|
check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
|
|
}
|
|
|
|
/* helper call returns 64-bit value. */
|
|
regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
|
|
|
|
/* update return register (already marked as written above) */
|
|
ret_type = fn->ret_type;
|
|
ret_flag = type_flag(ret_type);
|
|
|
|
switch (base_type(ret_type)) {
|
|
case RET_INTEGER:
|
|
/* sets type to SCALAR_VALUE */
|
|
mark_reg_unknown(env, regs, BPF_REG_0);
|
|
break;
|
|
case RET_VOID:
|
|
regs[BPF_REG_0].type = NOT_INIT;
|
|
break;
|
|
case RET_PTR_TO_MAP_VALUE:
|
|
/* There is no offset yet applied, variable or fixed */
|
|
mark_reg_known_zero(env, regs, BPF_REG_0);
|
|
/* remember map_ptr, so that check_map_access()
|
|
* can check 'value_size' boundary of memory access
|
|
* to map element returned from bpf_map_lookup_elem()
|
|
*/
|
|
if (meta.map_ptr == NULL) {
|
|
verbose(env,
|
|
"kernel subsystem misconfigured verifier\n");
|
|
return -EINVAL;
|
|
}
|
|
regs[BPF_REG_0].map_ptr = meta.map_ptr;
|
|
regs[BPF_REG_0].map_uid = meta.map_uid;
|
|
regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
|
|
if (!type_may_be_null(ret_type) &&
|
|
btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
|
|
regs[BPF_REG_0].id = ++env->id_gen;
|
|
}
|
|
break;
|
|
case RET_PTR_TO_SOCKET:
|
|
mark_reg_known_zero(env, regs, BPF_REG_0);
|
|
regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
|
|
break;
|
|
case RET_PTR_TO_SOCK_COMMON:
|
|
mark_reg_known_zero(env, regs, BPF_REG_0);
|
|
regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
|
|
break;
|
|
case RET_PTR_TO_TCP_SOCK:
|
|
mark_reg_known_zero(env, regs, BPF_REG_0);
|
|
regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
|
|
break;
|
|
case RET_PTR_TO_MEM:
|
|
mark_reg_known_zero(env, regs, BPF_REG_0);
|
|
regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
|
|
regs[BPF_REG_0].mem_size = meta.mem_size;
|
|
break;
|
|
case RET_PTR_TO_MEM_OR_BTF_ID:
|
|
{
|
|
const struct btf_type *t;
|
|
|
|
mark_reg_known_zero(env, regs, BPF_REG_0);
|
|
t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
|
|
if (!btf_type_is_struct(t)) {
|
|
u32 tsize;
|
|
const struct btf_type *ret;
|
|
const char *tname;
|
|
|
|
/* resolve the type size of ksym. */
|
|
ret = btf_resolve_size(meta.ret_btf, t, &tsize);
|
|
if (IS_ERR(ret)) {
|
|
tname = btf_name_by_offset(meta.ret_btf, t->name_off);
|
|
verbose(env, "unable to resolve the size of type '%s': %ld\n",
|
|
tname, PTR_ERR(ret));
|
|
return -EINVAL;
|
|
}
|
|
regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
|
|
regs[BPF_REG_0].mem_size = tsize;
|
|
} else {
|
|
if (returns_cpu_specific_alloc_ptr) {
|
|
regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
|
|
} else {
|
|
/* MEM_RDONLY may be carried from ret_flag, but it
|
|
* doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
|
|
* it will confuse the check of PTR_TO_BTF_ID in
|
|
* check_mem_access().
|
|
*/
|
|
ret_flag &= ~MEM_RDONLY;
|
|
regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
|
|
}
|
|
|
|
regs[BPF_REG_0].btf = meta.ret_btf;
|
|
regs[BPF_REG_0].btf_id = meta.ret_btf_id;
|
|
}
|
|
break;
|
|
}
|
|
case RET_PTR_TO_BTF_ID:
|
|
{
|
|
struct btf *ret_btf;
|
|
int ret_btf_id;
|
|
|
|
mark_reg_known_zero(env, regs, BPF_REG_0);
|
|
regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
|
|
if (func_id == BPF_FUNC_kptr_xchg) {
|
|
ret_btf = meta.kptr_field->kptr.btf;
|
|
ret_btf_id = meta.kptr_field->kptr.btf_id;
|
|
if (!btf_is_kernel(ret_btf)) {
|
|
regs[BPF_REG_0].type |= MEM_ALLOC;
|
|
if (meta.kptr_field->type == BPF_KPTR_PERCPU)
|
|
regs[BPF_REG_0].type |= MEM_PERCPU;
|
|
}
|
|
} else {
|
|
if (fn->ret_btf_id == BPF_PTR_POISON) {
|
|
verbose(env, "verifier internal error:");
|
|
verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
|
|
func_id_name(func_id));
|
|
return -EINVAL;
|
|
}
|
|
ret_btf = btf_vmlinux;
|
|
ret_btf_id = *fn->ret_btf_id;
|
|
}
|
|
if (ret_btf_id == 0) {
|
|
verbose(env, "invalid return type %u of func %s#%d\n",
|
|
base_type(ret_type), func_id_name(func_id),
|
|
func_id);
|
|
return -EINVAL;
|
|
}
|
|
regs[BPF_REG_0].btf = ret_btf;
|
|
regs[BPF_REG_0].btf_id = ret_btf_id;
|
|
break;
|
|
}
|
|
default:
|
|
verbose(env, "unknown return type %u of func %s#%d\n",
|
|
base_type(ret_type), func_id_name(func_id), func_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (type_may_be_null(regs[BPF_REG_0].type))
|
|
regs[BPF_REG_0].id = ++env->id_gen;
|
|
|
|
if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
|
|
verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
|
|
func_id_name(func_id), func_id);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (is_dynptr_ref_function(func_id))
|
|
regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
|
|
|
|
if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
|
|
/* For release_reference() */
|
|
regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
|
|
} else if (is_acquire_function(func_id, meta.map_ptr)) {
|
|
int id = acquire_reference_state(env, insn_idx);
|
|
|
|
if (id < 0)
|
|
return id;
|
|
/* For mark_ptr_or_null_reg() */
|
|
regs[BPF_REG_0].id = id;
|
|
/* For release_reference() */
|
|
regs[BPF_REG_0].ref_obj_id = id;
|
|
}
|
|
|
|
err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
|
|
if (err)
|
|
return err;
|
|
|
|
err = check_map_func_compatibility(env, meta.map_ptr, func_id);
|
|
if (err)
|
|
return err;
|
|
|
|
if ((func_id == BPF_FUNC_get_stack ||
|
|
func_id == BPF_FUNC_get_task_stack) &&
|
|
!env->prog->has_callchain_buf) {
|
|
const char *err_str;
|
|
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
err = get_callchain_buffers(sysctl_perf_event_max_stack);
|
|
err_str = "cannot get callchain buffer for func %s#%d\n";
|
|
#else
|
|
err = -ENOTSUPP;
|
|
err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
|
|
#endif
|
|
if (err) {
|
|
verbose(env, err_str, func_id_name(func_id), func_id);
|
|
return err;
|
|
}
|
|
|
|
env->prog->has_callchain_buf = true;
|
|
}
|
|
|
|
if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
|
|
env->prog->call_get_stack = true;
|
|
|
|
if (func_id == BPF_FUNC_get_func_ip) {
|
|
if (check_get_func_ip(env))
|
|
return -ENOTSUPP;
|
|
env->prog->call_get_func_ip = true;
|
|
}
|
|
|
|
if (changes_data)
|
|
clear_all_pkt_pointers(env);
|
|
return 0;
|
|
}
|
|
|
|
/* mark_btf_func_reg_size() is used when the reg size is determined by
|
|
* the BTF func_proto's return value size and argument.
|
|
*/
|
|
static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
|
|
size_t reg_size)
|
|
{
|
|
struct bpf_reg_state *reg = &cur_regs(env)[regno];
|
|
|
|
if (regno == BPF_REG_0) {
|
|
/* Function return value */
|
|
reg->live |= REG_LIVE_WRITTEN;
|
|
reg->subreg_def = reg_size == sizeof(u64) ?
|
|
DEF_NOT_SUBREG : env->insn_idx + 1;
|
|
} else {
|
|
/* Function argument */
|
|
if (reg_size == sizeof(u64)) {
|
|
mark_insn_zext(env, reg);
|
|
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
|
|
} else {
|
|
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
return meta->kfunc_flags & KF_ACQUIRE;
|
|
}
|
|
|
|
static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
return meta->kfunc_flags & KF_RELEASE;
|
|
}
|
|
|
|
static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
|
|
}
|
|
|
|
static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
return meta->kfunc_flags & KF_SLEEPABLE;
|
|
}
|
|
|
|
static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
return meta->kfunc_flags & KF_DESTRUCTIVE;
|
|
}
|
|
|
|
static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
return meta->kfunc_flags & KF_RCU;
|
|
}
|
|
|
|
static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
return meta->kfunc_flags & KF_RCU_PROTECTED;
|
|
}
|
|
|
|
static bool __kfunc_param_match_suffix(const struct btf *btf,
|
|
const struct btf_param *arg,
|
|
const char *suffix)
|
|
{
|
|
int suffix_len = strlen(suffix), len;
|
|
const char *param_name;
|
|
|
|
/* In the future, this can be ported to use BTF tagging */
|
|
param_name = btf_name_by_offset(btf, arg->name_off);
|
|
if (str_is_empty(param_name))
|
|
return false;
|
|
len = strlen(param_name);
|
|
if (len < suffix_len)
|
|
return false;
|
|
param_name += len - suffix_len;
|
|
return !strncmp(param_name, suffix, suffix_len);
|
|
}
|
|
|
|
static bool is_kfunc_arg_mem_size(const struct btf *btf,
|
|
const struct btf_param *arg,
|
|
const struct bpf_reg_state *reg)
|
|
{
|
|
const struct btf_type *t;
|
|
|
|
t = btf_type_skip_modifiers(btf, arg->type, NULL);
|
|
if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
|
|
return false;
|
|
|
|
return __kfunc_param_match_suffix(btf, arg, "__sz");
|
|
}
|
|
|
|
static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
|
|
const struct btf_param *arg,
|
|
const struct bpf_reg_state *reg)
|
|
{
|
|
const struct btf_type *t;
|
|
|
|
t = btf_type_skip_modifiers(btf, arg->type, NULL);
|
|
if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
|
|
return false;
|
|
|
|
return __kfunc_param_match_suffix(btf, arg, "__szk");
|
|
}
|
|
|
|
static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
|
|
{
|
|
return __kfunc_param_match_suffix(btf, arg, "__opt");
|
|
}
|
|
|
|
static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
|
|
{
|
|
return __kfunc_param_match_suffix(btf, arg, "__k");
|
|
}
|
|
|
|
static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
|
|
{
|
|
return __kfunc_param_match_suffix(btf, arg, "__ign");
|
|
}
|
|
|
|
static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
|
|
{
|
|
return __kfunc_param_match_suffix(btf, arg, "__alloc");
|
|
}
|
|
|
|
static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
|
|
{
|
|
return __kfunc_param_match_suffix(btf, arg, "__uninit");
|
|
}
|
|
|
|
static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
|
|
{
|
|
return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
|
|
}
|
|
|
|
static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
|
|
{
|
|
return __kfunc_param_match_suffix(btf, arg, "__nullable");
|
|
}
|
|
|
|
static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
|
|
{
|
|
return __kfunc_param_match_suffix(btf, arg, "__str");
|
|
}
|
|
|
|
static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
|
|
const struct btf_param *arg,
|
|
const char *name)
|
|
{
|
|
int len, target_len = strlen(name);
|
|
const char *param_name;
|
|
|
|
param_name = btf_name_by_offset(btf, arg->name_off);
|
|
if (str_is_empty(param_name))
|
|
return false;
|
|
len = strlen(param_name);
|
|
if (len != target_len)
|
|
return false;
|
|
if (strcmp(param_name, name))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
enum {
|
|
KF_ARG_DYNPTR_ID,
|
|
KF_ARG_LIST_HEAD_ID,
|
|
KF_ARG_LIST_NODE_ID,
|
|
KF_ARG_RB_ROOT_ID,
|
|
KF_ARG_RB_NODE_ID,
|
|
};
|
|
|
|
BTF_ID_LIST(kf_arg_btf_ids)
|
|
BTF_ID(struct, bpf_dynptr_kern)
|
|
BTF_ID(struct, bpf_list_head)
|
|
BTF_ID(struct, bpf_list_node)
|
|
BTF_ID(struct, bpf_rb_root)
|
|
BTF_ID(struct, bpf_rb_node)
|
|
|
|
static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
|
|
const struct btf_param *arg, int type)
|
|
{
|
|
const struct btf_type *t;
|
|
u32 res_id;
|
|
|
|
t = btf_type_skip_modifiers(btf, arg->type, NULL);
|
|
if (!t)
|
|
return false;
|
|
if (!btf_type_is_ptr(t))
|
|
return false;
|
|
t = btf_type_skip_modifiers(btf, t->type, &res_id);
|
|
if (!t)
|
|
return false;
|
|
return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
|
|
}
|
|
|
|
static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
|
|
{
|
|
return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
|
|
}
|
|
|
|
static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
|
|
{
|
|
return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
|
|
}
|
|
|
|
static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
|
|
{
|
|
return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
|
|
}
|
|
|
|
static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
|
|
{
|
|
return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
|
|
}
|
|
|
|
static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
|
|
{
|
|
return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
|
|
}
|
|
|
|
static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
|
|
const struct btf_param *arg)
|
|
{
|
|
const struct btf_type *t;
|
|
|
|
t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
|
|
if (!t)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
|
|
static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
|
|
const struct btf *btf,
|
|
const struct btf_type *t, int rec)
|
|
{
|
|
const struct btf_type *member_type;
|
|
const struct btf_member *member;
|
|
u32 i;
|
|
|
|
if (!btf_type_is_struct(t))
|
|
return false;
|
|
|
|
for_each_member(i, t, member) {
|
|
const struct btf_array *array;
|
|
|
|
member_type = btf_type_skip_modifiers(btf, member->type, NULL);
|
|
if (btf_type_is_struct(member_type)) {
|
|
if (rec >= 3) {
|
|
verbose(env, "max struct nesting depth exceeded\n");
|
|
return false;
|
|
}
|
|
if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
|
|
return false;
|
|
continue;
|
|
}
|
|
if (btf_type_is_array(member_type)) {
|
|
array = btf_array(member_type);
|
|
if (!array->nelems)
|
|
return false;
|
|
member_type = btf_type_skip_modifiers(btf, array->type, NULL);
|
|
if (!btf_type_is_scalar(member_type))
|
|
return false;
|
|
continue;
|
|
}
|
|
if (!btf_type_is_scalar(member_type))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
enum kfunc_ptr_arg_type {
|
|
KF_ARG_PTR_TO_CTX,
|
|
KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */
|
|
KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
|
|
KF_ARG_PTR_TO_DYNPTR,
|
|
KF_ARG_PTR_TO_ITER,
|
|
KF_ARG_PTR_TO_LIST_HEAD,
|
|
KF_ARG_PTR_TO_LIST_NODE,
|
|
KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */
|
|
KF_ARG_PTR_TO_MEM,
|
|
KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */
|
|
KF_ARG_PTR_TO_CALLBACK,
|
|
KF_ARG_PTR_TO_RB_ROOT,
|
|
KF_ARG_PTR_TO_RB_NODE,
|
|
KF_ARG_PTR_TO_NULL,
|
|
KF_ARG_PTR_TO_CONST_STR,
|
|
};
|
|
|
|
enum special_kfunc_type {
|
|
KF_bpf_obj_new_impl,
|
|
KF_bpf_obj_drop_impl,
|
|
KF_bpf_refcount_acquire_impl,
|
|
KF_bpf_list_push_front_impl,
|
|
KF_bpf_list_push_back_impl,
|
|
KF_bpf_list_pop_front,
|
|
KF_bpf_list_pop_back,
|
|
KF_bpf_cast_to_kern_ctx,
|
|
KF_bpf_rdonly_cast,
|
|
KF_bpf_rcu_read_lock,
|
|
KF_bpf_rcu_read_unlock,
|
|
KF_bpf_rbtree_remove,
|
|
KF_bpf_rbtree_add_impl,
|
|
KF_bpf_rbtree_first,
|
|
KF_bpf_dynptr_from_skb,
|
|
KF_bpf_dynptr_from_xdp,
|
|
KF_bpf_dynptr_slice,
|
|
KF_bpf_dynptr_slice_rdwr,
|
|
KF_bpf_dynptr_clone,
|
|
KF_bpf_percpu_obj_new_impl,
|
|
KF_bpf_percpu_obj_drop_impl,
|
|
KF_bpf_throw,
|
|
KF_bpf_iter_css_task_new,
|
|
};
|
|
|
|
BTF_SET_START(special_kfunc_set)
|
|
BTF_ID(func, bpf_obj_new_impl)
|
|
BTF_ID(func, bpf_obj_drop_impl)
|
|
BTF_ID(func, bpf_refcount_acquire_impl)
|
|
BTF_ID(func, bpf_list_push_front_impl)
|
|
BTF_ID(func, bpf_list_push_back_impl)
|
|
BTF_ID(func, bpf_list_pop_front)
|
|
BTF_ID(func, bpf_list_pop_back)
|
|
BTF_ID(func, bpf_cast_to_kern_ctx)
|
|
BTF_ID(func, bpf_rdonly_cast)
|
|
BTF_ID(func, bpf_rbtree_remove)
|
|
BTF_ID(func, bpf_rbtree_add_impl)
|
|
BTF_ID(func, bpf_rbtree_first)
|
|
BTF_ID(func, bpf_dynptr_from_skb)
|
|
BTF_ID(func, bpf_dynptr_from_xdp)
|
|
BTF_ID(func, bpf_dynptr_slice)
|
|
BTF_ID(func, bpf_dynptr_slice_rdwr)
|
|
BTF_ID(func, bpf_dynptr_clone)
|
|
BTF_ID(func, bpf_percpu_obj_new_impl)
|
|
BTF_ID(func, bpf_percpu_obj_drop_impl)
|
|
BTF_ID(func, bpf_throw)
|
|
#ifdef CONFIG_CGROUPS
|
|
BTF_ID(func, bpf_iter_css_task_new)
|
|
#endif
|
|
BTF_SET_END(special_kfunc_set)
|
|
|
|
BTF_ID_LIST(special_kfunc_list)
|
|
BTF_ID(func, bpf_obj_new_impl)
|
|
BTF_ID(func, bpf_obj_drop_impl)
|
|
BTF_ID(func, bpf_refcount_acquire_impl)
|
|
BTF_ID(func, bpf_list_push_front_impl)
|
|
BTF_ID(func, bpf_list_push_back_impl)
|
|
BTF_ID(func, bpf_list_pop_front)
|
|
BTF_ID(func, bpf_list_pop_back)
|
|
BTF_ID(func, bpf_cast_to_kern_ctx)
|
|
BTF_ID(func, bpf_rdonly_cast)
|
|
BTF_ID(func, bpf_rcu_read_lock)
|
|
BTF_ID(func, bpf_rcu_read_unlock)
|
|
BTF_ID(func, bpf_rbtree_remove)
|
|
BTF_ID(func, bpf_rbtree_add_impl)
|
|
BTF_ID(func, bpf_rbtree_first)
|
|
BTF_ID(func, bpf_dynptr_from_skb)
|
|
BTF_ID(func, bpf_dynptr_from_xdp)
|
|
BTF_ID(func, bpf_dynptr_slice)
|
|
BTF_ID(func, bpf_dynptr_slice_rdwr)
|
|
BTF_ID(func, bpf_dynptr_clone)
|
|
BTF_ID(func, bpf_percpu_obj_new_impl)
|
|
BTF_ID(func, bpf_percpu_obj_drop_impl)
|
|
BTF_ID(func, bpf_throw)
|
|
#ifdef CONFIG_CGROUPS
|
|
BTF_ID(func, bpf_iter_css_task_new)
|
|
#else
|
|
BTF_ID_UNUSED
|
|
#endif
|
|
|
|
static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
|
|
meta->arg_owning_ref) {
|
|
return false;
|
|
}
|
|
|
|
return meta->kfunc_flags & KF_RET_NULL;
|
|
}
|
|
|
|
static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
|
|
}
|
|
|
|
static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
|
|
}
|
|
|
|
static enum kfunc_ptr_arg_type
|
|
get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
|
|
struct bpf_kfunc_call_arg_meta *meta,
|
|
const struct btf_type *t, const struct btf_type *ref_t,
|
|
const char *ref_tname, const struct btf_param *args,
|
|
int argno, int nargs)
|
|
{
|
|
u32 regno = argno + 1;
|
|
struct bpf_reg_state *regs = cur_regs(env);
|
|
struct bpf_reg_state *reg = ®s[regno];
|
|
bool arg_mem_size = false;
|
|
|
|
if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
|
|
return KF_ARG_PTR_TO_CTX;
|
|
|
|
/* In this function, we verify the kfunc's BTF as per the argument type,
|
|
* leaving the rest of the verification with respect to the register
|
|
* type to our caller. When a set of conditions hold in the BTF type of
|
|
* arguments, we resolve it to a known kfunc_ptr_arg_type.
|
|
*/
|
|
if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
|
|
return KF_ARG_PTR_TO_CTX;
|
|
|
|
if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
|
|
return KF_ARG_PTR_TO_ALLOC_BTF_ID;
|
|
|
|
if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
|
|
return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
|
|
|
|
if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
|
|
return KF_ARG_PTR_TO_DYNPTR;
|
|
|
|
if (is_kfunc_arg_iter(meta, argno))
|
|
return KF_ARG_PTR_TO_ITER;
|
|
|
|
if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
|
|
return KF_ARG_PTR_TO_LIST_HEAD;
|
|
|
|
if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
|
|
return KF_ARG_PTR_TO_LIST_NODE;
|
|
|
|
if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
|
|
return KF_ARG_PTR_TO_RB_ROOT;
|
|
|
|
if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
|
|
return KF_ARG_PTR_TO_RB_NODE;
|
|
|
|
if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
|
|
return KF_ARG_PTR_TO_CONST_STR;
|
|
|
|
if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
|
|
if (!btf_type_is_struct(ref_t)) {
|
|
verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
|
|
meta->func_name, argno, btf_type_str(ref_t), ref_tname);
|
|
return -EINVAL;
|
|
}
|
|
return KF_ARG_PTR_TO_BTF_ID;
|
|
}
|
|
|
|
if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
|
|
return KF_ARG_PTR_TO_CALLBACK;
|
|
|
|
if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
|
|
return KF_ARG_PTR_TO_NULL;
|
|
|
|
if (argno + 1 < nargs &&
|
|
(is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) ||
|
|
is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])))
|
|
arg_mem_size = true;
|
|
|
|
/* This is the catch all argument type of register types supported by
|
|
* check_helper_mem_access. However, we only allow when argument type is
|
|
* pointer to scalar, or struct composed (recursively) of scalars. When
|
|
* arg_mem_size is true, the pointer can be void *.
|
|
*/
|
|
if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
|
|
(arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
|
|
verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
|
|
argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
|
|
return -EINVAL;
|
|
}
|
|
return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
|
|
}
|
|
|
|
static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg,
|
|
const struct btf_type *ref_t,
|
|
const char *ref_tname, u32 ref_id,
|
|
struct bpf_kfunc_call_arg_meta *meta,
|
|
int argno)
|
|
{
|
|
const struct btf_type *reg_ref_t;
|
|
bool strict_type_match = false;
|
|
const struct btf *reg_btf;
|
|
const char *reg_ref_tname;
|
|
u32 reg_ref_id;
|
|
|
|
if (base_type(reg->type) == PTR_TO_BTF_ID) {
|
|
reg_btf = reg->btf;
|
|
reg_ref_id = reg->btf_id;
|
|
} else {
|
|
reg_btf = btf_vmlinux;
|
|
reg_ref_id = *reg2btf_ids[base_type(reg->type)];
|
|
}
|
|
|
|
/* Enforce strict type matching for calls to kfuncs that are acquiring
|
|
* or releasing a reference, or are no-cast aliases. We do _not_
|
|
* enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
|
|
* as we want to enable BPF programs to pass types that are bitwise
|
|
* equivalent without forcing them to explicitly cast with something
|
|
* like bpf_cast_to_kern_ctx().
|
|
*
|
|
* For example, say we had a type like the following:
|
|
*
|
|
* struct bpf_cpumask {
|
|
* cpumask_t cpumask;
|
|
* refcount_t usage;
|
|
* };
|
|
*
|
|
* Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
|
|
* to a struct cpumask, so it would be safe to pass a struct
|
|
* bpf_cpumask * to a kfunc expecting a struct cpumask *.
|
|
*
|
|
* The philosophy here is similar to how we allow scalars of different
|
|
* types to be passed to kfuncs as long as the size is the same. The
|
|
* only difference here is that we're simply allowing
|
|
* btf_struct_ids_match() to walk the struct at the 0th offset, and
|
|
* resolve types.
|
|
*/
|
|
if (is_kfunc_acquire(meta) ||
|
|
(is_kfunc_release(meta) && reg->ref_obj_id) ||
|
|
btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
|
|
strict_type_match = true;
|
|
|
|
WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
|
|
|
|
reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id);
|
|
reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
|
|
if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
|
|
verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
|
|
meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
|
|
btf_type_str(reg_ref_t), reg_ref_tname);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
|
|
{
|
|
struct bpf_verifier_state *state = env->cur_state;
|
|
struct btf_record *rec = reg_btf_record(reg);
|
|
|
|
if (!state->active_lock.ptr) {
|
|
verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (type_flag(reg->type) & NON_OWN_REF) {
|
|
verbose(env, "verifier internal error: NON_OWN_REF already set\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
reg->type |= NON_OWN_REF;
|
|
if (rec->refcount_off >= 0)
|
|
reg->type |= MEM_RCU;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
|
|
{
|
|
struct bpf_func_state *state, *unused;
|
|
struct bpf_reg_state *reg;
|
|
int i;
|
|
|
|
state = cur_func(env);
|
|
|
|
if (!ref_obj_id) {
|
|
verbose(env, "verifier internal error: ref_obj_id is zero for "
|
|
"owning -> non-owning conversion\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
for (i = 0; i < state->acquired_refs; i++) {
|
|
if (state->refs[i].id != ref_obj_id)
|
|
continue;
|
|
|
|
/* Clear ref_obj_id here so release_reference doesn't clobber
|
|
* the whole reg
|
|
*/
|
|
bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
|
|
if (reg->ref_obj_id == ref_obj_id) {
|
|
reg->ref_obj_id = 0;
|
|
ref_set_non_owning(env, reg);
|
|
}
|
|
}));
|
|
return 0;
|
|
}
|
|
|
|
verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Implementation details:
|
|
*
|
|
* Each register points to some region of memory, which we define as an
|
|
* allocation. Each allocation may embed a bpf_spin_lock which protects any
|
|
* special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
|
|
* allocation. The lock and the data it protects are colocated in the same
|
|
* memory region.
|
|
*
|
|
* Hence, everytime a register holds a pointer value pointing to such
|
|
* allocation, the verifier preserves a unique reg->id for it.
|
|
*
|
|
* The verifier remembers the lock 'ptr' and the lock 'id' whenever
|
|
* bpf_spin_lock is called.
|
|
*
|
|
* To enable this, lock state in the verifier captures two values:
|
|
* active_lock.ptr = Register's type specific pointer
|
|
* active_lock.id = A unique ID for each register pointer value
|
|
*
|
|
* Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
|
|
* supported register types.
|
|
*
|
|
* The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
|
|
* allocated objects is the reg->btf pointer.
|
|
*
|
|
* The active_lock.id is non-unique for maps supporting direct_value_addr, as we
|
|
* can establish the provenance of the map value statically for each distinct
|
|
* lookup into such maps. They always contain a single map value hence unique
|
|
* IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
|
|
*
|
|
* So, in case of global variables, they use array maps with max_entries = 1,
|
|
* hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
|
|
* into the same map value as max_entries is 1, as described above).
|
|
*
|
|
* In case of inner map lookups, the inner map pointer has same map_ptr as the
|
|
* outer map pointer (in verifier context), but each lookup into an inner map
|
|
* assigns a fresh reg->id to the lookup, so while lookups into distinct inner
|
|
* maps from the same outer map share the same map_ptr as active_lock.ptr, they
|
|
* will get different reg->id assigned to each lookup, hence different
|
|
* active_lock.id.
|
|
*
|
|
* In case of allocated objects, active_lock.ptr is the reg->btf, and the
|
|
* reg->id is a unique ID preserved after the NULL pointer check on the pointer
|
|
* returned from bpf_obj_new. Each allocation receives a new reg->id.
|
|
*/
|
|
static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
|
|
{
|
|
void *ptr;
|
|
u32 id;
|
|
|
|
switch ((int)reg->type) {
|
|
case PTR_TO_MAP_VALUE:
|
|
ptr = reg->map_ptr;
|
|
break;
|
|
case PTR_TO_BTF_ID | MEM_ALLOC:
|
|
ptr = reg->btf;
|
|
break;
|
|
default:
|
|
verbose(env, "verifier internal error: unknown reg type for lock check\n");
|
|
return -EFAULT;
|
|
}
|
|
id = reg->id;
|
|
|
|
if (!env->cur_state->active_lock.ptr)
|
|
return -EINVAL;
|
|
if (env->cur_state->active_lock.ptr != ptr ||
|
|
env->cur_state->active_lock.id != id) {
|
|
verbose(env, "held lock and object are not in the same allocation\n");
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bool is_bpf_list_api_kfunc(u32 btf_id)
|
|
{
|
|
return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
|
|
btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
|
|
btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
|
|
btf_id == special_kfunc_list[KF_bpf_list_pop_back];
|
|
}
|
|
|
|
static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
|
|
{
|
|
return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
|
|
btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
|
|
btf_id == special_kfunc_list[KF_bpf_rbtree_first];
|
|
}
|
|
|
|
static bool is_bpf_graph_api_kfunc(u32 btf_id)
|
|
{
|
|
return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
|
|
btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
|
|
}
|
|
|
|
static bool is_sync_callback_calling_kfunc(u32 btf_id)
|
|
{
|
|
return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
|
|
}
|
|
|
|
static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
|
|
{
|
|
return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
|
|
insn->imm == special_kfunc_list[KF_bpf_throw];
|
|
}
|
|
|
|
static bool is_rbtree_lock_required_kfunc(u32 btf_id)
|
|
{
|
|
return is_bpf_rbtree_api_kfunc(btf_id);
|
|
}
|
|
|
|
static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
|
|
enum btf_field_type head_field_type,
|
|
u32 kfunc_btf_id)
|
|
{
|
|
bool ret;
|
|
|
|
switch (head_field_type) {
|
|
case BPF_LIST_HEAD:
|
|
ret = is_bpf_list_api_kfunc(kfunc_btf_id);
|
|
break;
|
|
case BPF_RB_ROOT:
|
|
ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
|
|
break;
|
|
default:
|
|
verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
|
|
btf_field_type_name(head_field_type));
|
|
return false;
|
|
}
|
|
|
|
if (!ret)
|
|
verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
|
|
btf_field_type_name(head_field_type));
|
|
return ret;
|
|
}
|
|
|
|
static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
|
|
enum btf_field_type node_field_type,
|
|
u32 kfunc_btf_id)
|
|
{
|
|
bool ret;
|
|
|
|
switch (node_field_type) {
|
|
case BPF_LIST_NODE:
|
|
ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
|
|
kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
|
|
break;
|
|
case BPF_RB_NODE:
|
|
ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
|
|
kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
|
|
break;
|
|
default:
|
|
verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
|
|
btf_field_type_name(node_field_type));
|
|
return false;
|
|
}
|
|
|
|
if (!ret)
|
|
verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
|
|
btf_field_type_name(node_field_type));
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
__process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg, u32 regno,
|
|
struct bpf_kfunc_call_arg_meta *meta,
|
|
enum btf_field_type head_field_type,
|
|
struct btf_field **head_field)
|
|
{
|
|
const char *head_type_name;
|
|
struct btf_field *field;
|
|
struct btf_record *rec;
|
|
u32 head_off;
|
|
|
|
if (meta->btf != btf_vmlinux) {
|
|
verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
|
|
return -EFAULT;
|
|
|
|
head_type_name = btf_field_type_name(head_field_type);
|
|
if (!tnum_is_const(reg->var_off)) {
|
|
verbose(env,
|
|
"R%d doesn't have constant offset. %s has to be at the constant offset\n",
|
|
regno, head_type_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rec = reg_btf_record(reg);
|
|
head_off = reg->off + reg->var_off.value;
|
|
field = btf_record_find(rec, head_off, head_field_type);
|
|
if (!field) {
|
|
verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
|
|
if (check_reg_allocation_locked(env, reg)) {
|
|
verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
|
|
rec->spin_lock_off, head_type_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (*head_field) {
|
|
verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
|
|
return -EFAULT;
|
|
}
|
|
*head_field = field;
|
|
return 0;
|
|
}
|
|
|
|
static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg, u32 regno,
|
|
struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
|
|
&meta->arg_list_head.field);
|
|
}
|
|
|
|
static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg, u32 regno,
|
|
struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
|
|
&meta->arg_rbtree_root.field);
|
|
}
|
|
|
|
static int
|
|
__process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg, u32 regno,
|
|
struct bpf_kfunc_call_arg_meta *meta,
|
|
enum btf_field_type head_field_type,
|
|
enum btf_field_type node_field_type,
|
|
struct btf_field **node_field)
|
|
{
|
|
const char *node_type_name;
|
|
const struct btf_type *et, *t;
|
|
struct btf_field *field;
|
|
u32 node_off;
|
|
|
|
if (meta->btf != btf_vmlinux) {
|
|
verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
|
|
return -EFAULT;
|
|
|
|
node_type_name = btf_field_type_name(node_field_type);
|
|
if (!tnum_is_const(reg->var_off)) {
|
|
verbose(env,
|
|
"R%d doesn't have constant offset. %s has to be at the constant offset\n",
|
|
regno, node_type_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
node_off = reg->off + reg->var_off.value;
|
|
field = reg_find_field_offset(reg, node_off, node_field_type);
|
|
if (!field || field->offset != node_off) {
|
|
verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
|
|
return -EINVAL;
|
|
}
|
|
|
|
field = *node_field;
|
|
|
|
et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
|
|
t = btf_type_by_id(reg->btf, reg->btf_id);
|
|
if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
|
|
field->graph_root.value_btf_id, true)) {
|
|
verbose(env, "operation on %s expects arg#1 %s at offset=%d "
|
|
"in struct %s, but arg is at offset=%d in struct %s\n",
|
|
btf_field_type_name(head_field_type),
|
|
btf_field_type_name(node_field_type),
|
|
field->graph_root.node_offset,
|
|
btf_name_by_offset(field->graph_root.btf, et->name_off),
|
|
node_off, btf_name_by_offset(reg->btf, t->name_off));
|
|
return -EINVAL;
|
|
}
|
|
meta->arg_btf = reg->btf;
|
|
meta->arg_btf_id = reg->btf_id;
|
|
|
|
if (node_off != field->graph_root.node_offset) {
|
|
verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
|
|
node_off, btf_field_type_name(node_field_type),
|
|
field->graph_root.node_offset,
|
|
btf_name_by_offset(field->graph_root.btf, et->name_off));
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg, u32 regno,
|
|
struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
|
|
BPF_LIST_HEAD, BPF_LIST_NODE,
|
|
&meta->arg_list_head.field);
|
|
}
|
|
|
|
static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg, u32 regno,
|
|
struct bpf_kfunc_call_arg_meta *meta)
|
|
{
|
|
return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
|
|
BPF_RB_ROOT, BPF_RB_NODE,
|
|
&meta->arg_rbtree_root.field);
|
|
}
|
|
|
|
/*
|
|
* css_task iter allowlist is needed to avoid dead locking on css_set_lock.
|
|
* LSM hooks and iters (both sleepable and non-sleepable) are safe.
|
|
* Any sleepable progs are also safe since bpf_check_attach_target() enforce
|
|
* them can only be attached to some specific hook points.
|
|
*/
|
|
static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
|
|
{
|
|
enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
|
|
|
|
switch (prog_type) {
|
|
case BPF_PROG_TYPE_LSM:
|
|
return true;
|
|
case BPF_PROG_TYPE_TRACING:
|
|
if (env->prog->expected_attach_type == BPF_TRACE_ITER)
|
|
return true;
|
|
fallthrough;
|
|
default:
|
|
return env->prog->aux->sleepable;
|
|
}
|
|
}
|
|
|
|
static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
|
|
int insn_idx)
|
|
{
|
|
const char *func_name = meta->func_name, *ref_tname;
|
|
const struct btf *btf = meta->btf;
|
|
const struct btf_param *args;
|
|
struct btf_record *rec;
|
|
u32 i, nargs;
|
|
int ret;
|
|
|
|
args = (const struct btf_param *)(meta->func_proto + 1);
|
|
nargs = btf_type_vlen(meta->func_proto);
|
|
if (nargs > MAX_BPF_FUNC_REG_ARGS) {
|
|
verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
|
|
MAX_BPF_FUNC_REG_ARGS);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check that BTF function arguments match actual types that the
|
|
* verifier sees.
|
|
*/
|
|
for (i = 0; i < nargs; i++) {
|
|
struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1];
|
|
const struct btf_type *t, *ref_t, *resolve_ret;
|
|
enum bpf_arg_type arg_type = ARG_DONTCARE;
|
|
u32 regno = i + 1, ref_id, type_size;
|
|
bool is_ret_buf_sz = false;
|
|
int kf_arg_type;
|
|
|
|
t = btf_type_skip_modifiers(btf, args[i].type, NULL);
|
|
|
|
if (is_kfunc_arg_ignore(btf, &args[i]))
|
|
continue;
|
|
|
|
if (btf_type_is_scalar(t)) {
|
|
if (reg->type != SCALAR_VALUE) {
|
|
verbose(env, "R%d is not a scalar\n", regno);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (is_kfunc_arg_constant(meta->btf, &args[i])) {
|
|
if (meta->arg_constant.found) {
|
|
verbose(env, "verifier internal error: only one constant argument permitted\n");
|
|
return -EFAULT;
|
|
}
|
|
if (!tnum_is_const(reg->var_off)) {
|
|
verbose(env, "R%d must be a known constant\n", regno);
|
|
return -EINVAL;
|
|
}
|
|
ret = mark_chain_precision(env, regno);
|
|
if (ret < 0)
|
|
return ret;
|
|
meta->arg_constant.found = true;
|
|
meta->arg_constant.value = reg->var_off.value;
|
|
} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
|
|
meta->r0_rdonly = true;
|
|
is_ret_buf_sz = true;
|
|
} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
|
|
is_ret_buf_sz = true;
|
|
}
|
|
|
|
if (is_ret_buf_sz) {
|
|
if (meta->r0_size) {
|
|
verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!tnum_is_const(reg->var_off)) {
|
|
verbose(env, "R%d is not a const\n", regno);
|
|
return -EINVAL;
|
|
}
|
|
|
|
meta->r0_size = reg->var_off.value;
|
|
ret = mark_chain_precision(env, regno);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (!btf_type_is_ptr(t)) {
|
|
verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
|
|
(register_is_null(reg) || type_may_be_null(reg->type)) &&
|
|
!is_kfunc_arg_nullable(meta->btf, &args[i])) {
|
|
verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (reg->ref_obj_id) {
|
|
if (is_kfunc_release(meta) && meta->ref_obj_id) {
|
|
verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
|
|
regno, reg->ref_obj_id,
|
|
meta->ref_obj_id);
|
|
return -EFAULT;
|
|
}
|
|
meta->ref_obj_id = reg->ref_obj_id;
|
|
if (is_kfunc_release(meta))
|
|
meta->release_regno = regno;
|
|
}
|
|
|
|
ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
|
|
ref_tname = btf_name_by_offset(btf, ref_t->name_off);
|
|
|
|
kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
|
|
if (kf_arg_type < 0)
|
|
return kf_arg_type;
|
|
|
|
switch (kf_arg_type) {
|
|
case KF_ARG_PTR_TO_NULL:
|
|
continue;
|
|
case KF_ARG_PTR_TO_ALLOC_BTF_ID:
|
|
case KF_ARG_PTR_TO_BTF_ID:
|
|
if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
|
|
break;
|
|
|
|
if (!is_trusted_reg(reg)) {
|
|
if (!is_kfunc_rcu(meta)) {
|
|
verbose(env, "R%d must be referenced or trusted\n", regno);
|
|
return -EINVAL;
|
|
}
|
|
if (!is_rcu_reg(reg)) {
|
|
verbose(env, "R%d must be a rcu pointer\n", regno);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
fallthrough;
|
|
case KF_ARG_PTR_TO_CTX:
|
|
/* Trusted arguments have the same offset checks as release arguments */
|
|
arg_type |= OBJ_RELEASE;
|
|
break;
|
|
case KF_ARG_PTR_TO_DYNPTR:
|
|
case KF_ARG_PTR_TO_ITER:
|
|
case KF_ARG_PTR_TO_LIST_HEAD:
|
|
case KF_ARG_PTR_TO_LIST_NODE:
|
|
case KF_ARG_PTR_TO_RB_ROOT:
|
|
case KF_ARG_PTR_TO_RB_NODE:
|
|
case KF_ARG_PTR_TO_MEM:
|
|
case KF_ARG_PTR_TO_MEM_SIZE:
|
|
case KF_ARG_PTR_TO_CALLBACK:
|
|
case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
|
|
case KF_ARG_PTR_TO_CONST_STR:
|
|
/* Trusted by default */
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (is_kfunc_release(meta) && reg->ref_obj_id)
|
|
arg_type |= OBJ_RELEASE;
|
|
ret = check_func_arg_reg_off(env, reg, regno, arg_type);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
switch (kf_arg_type) {
|
|
case KF_ARG_PTR_TO_CTX:
|
|
if (reg->type != PTR_TO_CTX) {
|
|
verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
|
|
ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
|
|
if (ret < 0)
|
|
return -EINVAL;
|
|
meta->ret_btf_id = ret;
|
|
}
|
|
break;
|
|
case KF_ARG_PTR_TO_ALLOC_BTF_ID:
|
|
if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
|
|
if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
|
|
verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
|
|
return -EINVAL;
|
|
}
|
|
} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
|
|
if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
|
|
verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
verbose(env, "arg#%d expected pointer to allocated object\n", i);
|
|
return -EINVAL;
|
|
}
|
|
if (!reg->ref_obj_id) {
|
|
verbose(env, "allocated object must be referenced\n");
|
|
return -EINVAL;
|
|
}
|
|
if (meta->btf == btf_vmlinux) {
|
|
meta->arg_btf = reg->btf;
|
|
meta->arg_btf_id = reg->btf_id;
|
|
}
|
|
break;
|
|
case KF_ARG_PTR_TO_DYNPTR:
|
|
{
|
|
enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
|
|
int clone_ref_obj_id = 0;
|
|
|
|
if (reg->type != PTR_TO_STACK &&
|
|
reg->type != CONST_PTR_TO_DYNPTR) {
|
|
verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (reg->type == CONST_PTR_TO_DYNPTR)
|
|
dynptr_arg_type |= MEM_RDONLY;
|
|
|
|
if (is_kfunc_arg_uninit(btf, &args[i]))
|
|
dynptr_arg_type |= MEM_UNINIT;
|
|
|
|
if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
|
|
dynptr_arg_type |= DYNPTR_TYPE_SKB;
|
|
} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
|
|
dynptr_arg_type |= DYNPTR_TYPE_XDP;
|
|
} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
|
|
(dynptr_arg_type & MEM_UNINIT)) {
|
|
enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
|
|
|
|
if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
|
|
verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
|
|
clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
|
|
if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
|
|
verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
|
|
ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (!(dynptr_arg_type & MEM_UNINIT)) {
|
|
int id = dynptr_id(env, reg);
|
|
|
|
if (id < 0) {
|
|
verbose(env, "verifier internal error: failed to obtain dynptr id\n");
|
|
return id;
|
|
}
|
|
meta->initialized_dynptr.id = id;
|
|
meta->initialized_dynptr.type = dynptr_get_type(env, reg);
|
|
meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case KF_ARG_PTR_TO_ITER:
|
|
if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
|
|
if (!check_css_task_iter_allowlist(env)) {
|
|
verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
ret = process_iter_arg(env, regno, insn_idx, meta);
|
|
if (ret < 0)
|
|
return ret;
|
|
break;
|
|
case KF_ARG_PTR_TO_LIST_HEAD:
|
|
if (reg->type != PTR_TO_MAP_VALUE &&
|
|
reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
|
|
verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
|
|
return -EINVAL;
|
|
}
|
|
if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
|
|
verbose(env, "allocated object must be referenced\n");
|
|
return -EINVAL;
|
|
}
|
|
ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
|
|
if (ret < 0)
|
|
return ret;
|
|
break;
|
|
case KF_ARG_PTR_TO_RB_ROOT:
|
|
if (reg->type != PTR_TO_MAP_VALUE &&
|
|
reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
|
|
verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
|
|
return -EINVAL;
|
|
}
|
|
if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
|
|
verbose(env, "allocated object must be referenced\n");
|
|
return -EINVAL;
|
|
}
|
|
ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
|
|
if (ret < 0)
|
|
return ret;
|
|
break;
|
|
case KF_ARG_PTR_TO_LIST_NODE:
|
|
if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
|
|
verbose(env, "arg#%d expected pointer to allocated object\n", i);
|
|
return -EINVAL;
|
|
}
|
|
if (!reg->ref_obj_id) {
|
|
verbose(env, "allocated object must be referenced\n");
|
|
return -EINVAL;
|
|
}
|
|
ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
|
|
if (ret < 0)
|
|
return ret;
|
|
break;
|
|
case KF_ARG_PTR_TO_RB_NODE:
|
|
if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
|
|
if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
|
|
verbose(env, "rbtree_remove node input must be non-owning ref\n");
|
|
return -EINVAL;
|
|
}
|
|
if (in_rbtree_lock_required_cb(env)) {
|
|
verbose(env, "rbtree_remove not allowed in rbtree cb\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
|
|
verbose(env, "arg#%d expected pointer to allocated object\n", i);
|
|
return -EINVAL;
|
|
}
|
|
if (!reg->ref_obj_id) {
|
|
verbose(env, "allocated object must be referenced\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
|
|
if (ret < 0)
|
|
return ret;
|
|
break;
|
|
case KF_ARG_PTR_TO_BTF_ID:
|
|
/* Only base_type is checked, further checks are done here */
|
|
if ((base_type(reg->type) != PTR_TO_BTF_ID ||
|
|
(bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
|
|
!reg2btf_ids[base_type(reg->type)]) {
|
|
verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
|
|
verbose(env, "expected %s or socket\n",
|
|
reg_type_str(env, base_type(reg->type) |
|
|
(type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
|
|
return -EINVAL;
|
|
}
|
|
ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
|
|
if (ret < 0)
|
|
return ret;
|
|
break;
|
|
case KF_ARG_PTR_TO_MEM:
|
|
resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
|
|
if (IS_ERR(resolve_ret)) {
|
|
verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
|
|
i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
|
|
return -EINVAL;
|
|
}
|
|
ret = check_mem_reg(env, reg, regno, type_size);
|
|
if (ret < 0)
|
|
return ret;
|
|
break;
|
|
case KF_ARG_PTR_TO_MEM_SIZE:
|
|
{
|
|
struct bpf_reg_state *buff_reg = ®s[regno];
|
|
const struct btf_param *buff_arg = &args[i];
|
|
struct bpf_reg_state *size_reg = ®s[regno + 1];
|
|
const struct btf_param *size_arg = &args[i + 1];
|
|
|
|
if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
|
|
ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
|
|
if (ret < 0) {
|
|
verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
|
|
if (meta->arg_constant.found) {
|
|
verbose(env, "verifier internal error: only one constant argument permitted\n");
|
|
return -EFAULT;
|
|
}
|
|
if (!tnum_is_const(size_reg->var_off)) {
|
|
verbose(env, "R%d must be a known constant\n", regno + 1);
|
|
return -EINVAL;
|
|
}
|
|
meta->arg_constant.found = true;
|
|
meta->arg_constant.value = size_reg->var_off.value;
|
|
}
|
|
|
|
/* Skip next '__sz' or '__szk' argument */
|
|
i++;
|
|
break;
|
|
}
|
|
case KF_ARG_PTR_TO_CALLBACK:
|
|
if (reg->type != PTR_TO_FUNC) {
|
|
verbose(env, "arg%d expected pointer to func\n", i);
|
|
return -EINVAL;
|
|
}
|
|
meta->subprogno = reg->subprogno;
|
|
break;
|
|
case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
|
|
if (!type_is_ptr_alloc_obj(reg->type)) {
|
|
verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
|
|
return -EINVAL;
|
|
}
|
|
if (!type_is_non_owning_ref(reg->type))
|
|
meta->arg_owning_ref = true;
|
|
|
|
rec = reg_btf_record(reg);
|
|
if (!rec) {
|
|
verbose(env, "verifier internal error: Couldn't find btf_record\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (rec->refcount_off < 0) {
|
|
verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
|
|
return -EINVAL;
|
|
}
|
|
|
|
meta->arg_btf = reg->btf;
|
|
meta->arg_btf_id = reg->btf_id;
|
|
break;
|
|
case KF_ARG_PTR_TO_CONST_STR:
|
|
if (reg->type != PTR_TO_MAP_VALUE) {
|
|
verbose(env, "arg#%d doesn't point to a const string\n", i);
|
|
return -EINVAL;
|
|
}
|
|
ret = check_reg_const_str(env, reg, regno);
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (is_kfunc_release(meta) && !meta->release_regno) {
|
|
verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
|
|
func_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fetch_kfunc_meta(struct bpf_verifier_env *env,
|
|
struct bpf_insn *insn,
|
|
struct bpf_kfunc_call_arg_meta *meta,
|
|
const char **kfunc_name)
|
|
{
|
|
const struct btf_type *func, *func_proto;
|
|
u32 func_id, *kfunc_flags;
|
|
const char *func_name;
|
|
struct btf *desc_btf;
|
|
|
|
if (kfunc_name)
|
|
*kfunc_name = NULL;
|
|
|
|
if (!insn->imm)
|
|
return -EINVAL;
|
|
|
|
desc_btf = find_kfunc_desc_btf(env, insn->off);
|
|
if (IS_ERR(desc_btf))
|
|
return PTR_ERR(desc_btf);
|
|
|
|
func_id = insn->imm;
|
|
func = btf_type_by_id(desc_btf, func_id);
|
|
func_name = btf_name_by_offset(desc_btf, func->name_off);
|
|
if (kfunc_name)
|
|
*kfunc_name = func_name;
|
|
func_proto = btf_type_by_id(desc_btf, func->type);
|
|
|
|
kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
|
|
if (!kfunc_flags) {
|
|
return -EACCES;
|
|
}
|
|
|
|
memset(meta, 0, sizeof(*meta));
|
|
meta->btf = desc_btf;
|
|
meta->func_id = func_id;
|
|
meta->kfunc_flags = *kfunc_flags;
|
|
meta->func_proto = func_proto;
|
|
meta->func_name = func_name;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
|
|
|
|
static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
|
|
int *insn_idx_p)
|
|
{
|
|
const struct btf_type *t, *ptr_type;
|
|
u32 i, nargs, ptr_type_id, release_ref_obj_id;
|
|
struct bpf_reg_state *regs = cur_regs(env);
|
|
const char *func_name, *ptr_type_name;
|
|
bool sleepable, rcu_lock, rcu_unlock;
|
|
struct bpf_kfunc_call_arg_meta meta;
|
|
struct bpf_insn_aux_data *insn_aux;
|
|
int err, insn_idx = *insn_idx_p;
|
|
const struct btf_param *args;
|
|
const struct btf_type *ret_t;
|
|
struct btf *desc_btf;
|
|
|
|
/* skip for now, but return error when we find this in fixup_kfunc_call */
|
|
if (!insn->imm)
|
|
return 0;
|
|
|
|
err = fetch_kfunc_meta(env, insn, &meta, &func_name);
|
|
if (err == -EACCES && func_name)
|
|
verbose(env, "calling kernel function %s is not allowed\n", func_name);
|
|
if (err)
|
|
return err;
|
|
desc_btf = meta.btf;
|
|
insn_aux = &env->insn_aux_data[insn_idx];
|
|
|
|
insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
|
|
|
|
if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
|
|
verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
sleepable = is_kfunc_sleepable(&meta);
|
|
if (sleepable && !env->prog->aux->sleepable) {
|
|
verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
|
|
return -EACCES;
|
|
}
|
|
|
|
/* Check the arguments */
|
|
err = check_kfunc_args(env, &meta, insn_idx);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
|
|
err = push_callback_call(env, insn, insn_idx, meta.subprogno,
|
|
set_rbtree_add_callback_state);
|
|
if (err) {
|
|
verbose(env, "kfunc %s#%d failed callback verification\n",
|
|
func_name, meta.func_id);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
|
|
rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
|
|
|
|
if (env->cur_state->active_rcu_lock) {
|
|
struct bpf_func_state *state;
|
|
struct bpf_reg_state *reg;
|
|
u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
|
|
|
|
if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
|
|
verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
if (rcu_lock) {
|
|
verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
|
|
return -EINVAL;
|
|
} else if (rcu_unlock) {
|
|
bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
|
|
if (reg->type & MEM_RCU) {
|
|
reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
|
|
reg->type |= PTR_UNTRUSTED;
|
|
}
|
|
}));
|
|
env->cur_state->active_rcu_lock = false;
|
|
} else if (sleepable) {
|
|
verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
|
|
return -EACCES;
|
|
}
|
|
} else if (rcu_lock) {
|
|
env->cur_state->active_rcu_lock = true;
|
|
} else if (rcu_unlock) {
|
|
verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* In case of release function, we get register number of refcounted
|
|
* PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
|
|
*/
|
|
if (meta.release_regno) {
|
|
err = release_reference(env, regs[meta.release_regno].ref_obj_id);
|
|
if (err) {
|
|
verbose(env, "kfunc %s#%d reference has not been acquired before\n",
|
|
func_name, meta.func_id);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
|
|
meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
|
|
meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
|
|
release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
|
|
insn_aux->insert_off = regs[BPF_REG_2].off;
|
|
insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
|
|
err = ref_convert_owning_non_owning(env, release_ref_obj_id);
|
|
if (err) {
|
|
verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
|
|
func_name, meta.func_id);
|
|
return err;
|
|
}
|
|
|
|
err = release_reference(env, release_ref_obj_id);
|
|
if (err) {
|
|
verbose(env, "kfunc %s#%d reference has not been acquired before\n",
|
|
func_name, meta.func_id);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
|
|
if (!bpf_jit_supports_exceptions()) {
|
|
verbose(env, "JIT does not support calling kfunc %s#%d\n",
|
|
func_name, meta.func_id);
|
|
return -ENOTSUPP;
|
|
}
|
|
env->seen_exception = true;
|
|
|
|
/* In the case of the default callback, the cookie value passed
|
|
* to bpf_throw becomes the return value of the program.
|
|
*/
|
|
if (!env->exception_callback_subprog) {
|
|
err = check_return_code(env, BPF_REG_1, "R1");
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < CALLER_SAVED_REGS; i++)
|
|
mark_reg_not_init(env, regs, caller_saved[i]);
|
|
|
|
/* Check return type */
|
|
t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
|
|
|
|
if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
|
|
/* Only exception is bpf_obj_new_impl */
|
|
if (meta.btf != btf_vmlinux ||
|
|
(meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
|
|
meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
|
|
meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
|
|
verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (btf_type_is_scalar(t)) {
|
|
mark_reg_unknown(env, regs, BPF_REG_0);
|
|
mark_btf_func_reg_size(env, BPF_REG_0, t->size);
|
|
} else if (btf_type_is_ptr(t)) {
|
|
ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
|
|
|
|
if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
|
|
if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
|
|
meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
|
|
struct btf_struct_meta *struct_meta;
|
|
struct btf *ret_btf;
|
|
u32 ret_btf_id;
|
|
|
|
if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
|
|
return -ENOMEM;
|
|
|
|
if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
|
|
if (!bpf_global_percpu_ma_set) {
|
|
mutex_lock(&bpf_percpu_ma_lock);
|
|
if (!bpf_global_percpu_ma_set) {
|
|
err = bpf_mem_alloc_init(&bpf_global_percpu_ma, 0, true);
|
|
if (!err)
|
|
bpf_global_percpu_ma_set = true;
|
|
}
|
|
mutex_unlock(&bpf_percpu_ma_lock);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
|
|
verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret_btf = env->prog->aux->btf;
|
|
ret_btf_id = meta.arg_constant.value;
|
|
|
|
/* This may be NULL due to user not supplying a BTF */
|
|
if (!ret_btf) {
|
|
verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret_t = btf_type_by_id(ret_btf, ret_btf_id);
|
|
if (!ret_t || !__btf_type_is_struct(ret_t)) {
|
|
verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
|
|
if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
|
|
if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
|
|
verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (struct_meta) {
|
|
verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
mark_reg_known_zero(env, regs, BPF_REG_0);
|
|
regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
|
|
regs[BPF_REG_0].btf = ret_btf;
|
|
regs[BPF_REG_0].btf_id = ret_btf_id;
|
|
if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
|
|
regs[BPF_REG_0].type |= MEM_PERCPU;
|
|
|
|
insn_aux->obj_new_size = ret_t->size;
|
|
insn_aux->kptr_struct_meta = struct_meta;
|
|
} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
|
|
mark_reg_known_zero(env, regs, BPF_REG_0);
|
|
regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
|
|
regs[BPF_REG_0].btf = meta.arg_btf;
|
|
regs[BPF_REG_0].btf_id = meta.arg_btf_id;
|
|
|
|
insn_aux->kptr_struct_meta =
|
|
btf_find_struct_meta(meta.arg_btf,
|
|
meta.arg_btf_id);
|
|
} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
|
|
meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
|
|
struct btf_field *field = meta.arg_list_head.field;
|
|
|
|
mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
|
|
} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
|
|
meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
|
|
struct btf_field *field = meta.arg_rbtree_root.field;
|
|
|
|
mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
|
|
} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
|
|
mark_reg_known_zero(env, regs, BPF_REG_0);
|
|
regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
|
|
regs[BPF_REG_0].btf = desc_btf;
|
|
regs[BPF_REG_0].btf_id = meta.ret_btf_id;
|
|
} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
|
|
ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
|
|
if (!ret_t || !btf_type_is_struct(ret_t)) {
|
|
verbose(env,
|
|
"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
mark_reg_known_zero(env, regs, BPF_REG_0);
|
|
regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
|
|
regs[BPF_REG_0].btf = desc_btf;
|
|
regs[BPF_REG_0].btf_id = meta.arg_constant.value;
|
|
} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
|
|
meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
|
|
enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
|
|
|
|
mark_reg_known_zero(env, regs, BPF_REG_0);
|
|
|
|
if (!meta.arg_constant.found) {
|
|
verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
regs[BPF_REG_0].mem_size = meta.arg_constant.value;
|
|
|
|
/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
|
|
regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
|
|
|
|
if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
|
|
regs[BPF_REG_0].type |= MEM_RDONLY;
|
|
} else {
|
|
/* this will set env->seen_direct_write to true */
|
|
if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
|
|
verbose(env, "the prog does not allow writes to packet data\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (!meta.initialized_dynptr.id) {
|
|
verbose(env, "verifier internal error: no dynptr id\n");
|
|
return -EFAULT;
|
|
}
|
|
regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
|
|
|
|
/* we don't need to set BPF_REG_0's ref obj id
|
|
* because packet slices are not refcounted (see
|
|
* dynptr_type_refcounted)
|
|
*/
|
|
} else {
|
|
verbose(env, "kernel function %s unhandled dynamic return type\n",
|
|
meta.func_name);
|
|
return -EFAULT;
|
|
}
|
|
} else if (!__btf_type_is_struct(ptr_type)) {
|
|
if (!meta.r0_size) {
|
|
__u32 sz;
|
|
|
|
if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
|
|
meta.r0_size = sz;
|
|
meta.r0_rdonly = true;
|
|
}
|
|
}
|
|
if (!meta.r0_size) {
|
|
ptr_type_name = btf_name_by_offset(desc_btf,
|
|
ptr_type->name_off);
|
|
verbose(env,
|
|
"kernel function %s returns pointer type %s %s is not supported\n",
|
|
func_name,
|
|
btf_type_str(ptr_type),
|
|
ptr_type_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
mark_reg_known_zero(env, regs, BPF_REG_0);
|
|
regs[BPF_REG_0].type = PTR_TO_MEM;
|
|
regs[BPF_REG_0].mem_size = meta.r0_size;
|
|
|
|
if (meta.r0_rdonly)
|
|
regs[BPF_REG_0].type |= MEM_RDONLY;
|
|
|
|
/* Ensures we don't access the memory after a release_reference() */
|
|
if (meta.ref_obj_id)
|
|
regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
|
|
} else {
|
|
mark_reg_known_zero(env, regs, BPF_REG_0);
|
|
regs[BPF_REG_0].btf = desc_btf;
|
|
regs[BPF_REG_0].type = PTR_TO_BTF_ID;
|
|
regs[BPF_REG_0].btf_id = ptr_type_id;
|
|
}
|
|
|
|
if (is_kfunc_ret_null(&meta)) {
|
|
regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
|
|
/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
|
|
regs[BPF_REG_0].id = ++env->id_gen;
|
|
}
|
|
mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
|
|
if (is_kfunc_acquire(&meta)) {
|
|
int id = acquire_reference_state(env, insn_idx);
|
|
|
|
if (id < 0)
|
|
return id;
|
|
if (is_kfunc_ret_null(&meta))
|
|
regs[BPF_REG_0].id = id;
|
|
regs[BPF_REG_0].ref_obj_id = id;
|
|
} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
|
|
ref_set_non_owning(env, ®s[BPF_REG_0]);
|
|
}
|
|
|
|
if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id)
|
|
regs[BPF_REG_0].id = ++env->id_gen;
|
|
} else if (btf_type_is_void(t)) {
|
|
if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
|
|
if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
|
|
meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
|
|
insn_aux->kptr_struct_meta =
|
|
btf_find_struct_meta(meta.arg_btf,
|
|
meta.arg_btf_id);
|
|
}
|
|
}
|
|
}
|
|
|
|
nargs = btf_type_vlen(meta.func_proto);
|
|
args = (const struct btf_param *)(meta.func_proto + 1);
|
|
for (i = 0; i < nargs; i++) {
|
|
u32 regno = i + 1;
|
|
|
|
t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
|
|
if (btf_type_is_ptr(t))
|
|
mark_btf_func_reg_size(env, regno, sizeof(void *));
|
|
else
|
|
/* scalar. ensured by btf_check_kfunc_arg_match() */
|
|
mark_btf_func_reg_size(env, regno, t->size);
|
|
}
|
|
|
|
if (is_iter_next_kfunc(&meta)) {
|
|
err = process_iter_next_call(env, insn_idx, &meta);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool signed_add_overflows(s64 a, s64 b)
|
|
{
|
|
/* Do the add in u64, where overflow is well-defined */
|
|
s64 res = (s64)((u64)a + (u64)b);
|
|
|
|
if (b < 0)
|
|
return res > a;
|
|
return res < a;
|
|
}
|
|
|
|
static bool signed_add32_overflows(s32 a, s32 b)
|
|
{
|
|
/* Do the add in u32, where overflow is well-defined */
|
|
s32 res = (s32)((u32)a + (u32)b);
|
|
|
|
if (b < 0)
|
|
return res > a;
|
|
return res < a;
|
|
}
|
|
|
|
static bool signed_sub_overflows(s64 a, s64 b)
|
|
{
|
|
/* Do the sub in u64, where overflow is well-defined */
|
|
s64 res = (s64)((u64)a - (u64)b);
|
|
|
|
if (b < 0)
|
|
return res < a;
|
|
return res > a;
|
|
}
|
|
|
|
static bool signed_sub32_overflows(s32 a, s32 b)
|
|
{
|
|
/* Do the sub in u32, where overflow is well-defined */
|
|
s32 res = (s32)((u32)a - (u32)b);
|
|
|
|
if (b < 0)
|
|
return res < a;
|
|
return res > a;
|
|
}
|
|
|
|
static bool check_reg_sane_offset(struct bpf_verifier_env *env,
|
|
const struct bpf_reg_state *reg,
|
|
enum bpf_reg_type type)
|
|
{
|
|
bool known = tnum_is_const(reg->var_off);
|
|
s64 val = reg->var_off.value;
|
|
s64 smin = reg->smin_value;
|
|
|
|
if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
|
|
verbose(env, "math between %s pointer and %lld is not allowed\n",
|
|
reg_type_str(env, type), val);
|
|
return false;
|
|
}
|
|
|
|
if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
|
|
verbose(env, "%s pointer offset %d is not allowed\n",
|
|
reg_type_str(env, type), reg->off);
|
|
return false;
|
|
}
|
|
|
|
if (smin == S64_MIN) {
|
|
verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
|
|
reg_type_str(env, type));
|
|
return false;
|
|
}
|
|
|
|
if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
|
|
verbose(env, "value %lld makes %s pointer be out of bounds\n",
|
|
smin, reg_type_str(env, type));
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
enum {
|
|
REASON_BOUNDS = -1,
|
|
REASON_TYPE = -2,
|
|
REASON_PATHS = -3,
|
|
REASON_LIMIT = -4,
|
|
REASON_STACK = -5,
|
|
};
|
|
|
|
static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
|
|
u32 *alu_limit, bool mask_to_left)
|
|
{
|
|
u32 max = 0, ptr_limit = 0;
|
|
|
|
switch (ptr_reg->type) {
|
|
case PTR_TO_STACK:
|
|
/* Offset 0 is out-of-bounds, but acceptable start for the
|
|
* left direction, see BPF_REG_FP. Also, unknown scalar
|
|
* offset where we would need to deal with min/max bounds is
|
|
* currently prohibited for unprivileged.
|
|
*/
|
|
max = MAX_BPF_STACK + mask_to_left;
|
|
ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
|
|
break;
|
|
case PTR_TO_MAP_VALUE:
|
|
max = ptr_reg->map_ptr->value_size;
|
|
ptr_limit = (mask_to_left ?
|
|
ptr_reg->smin_value :
|
|
ptr_reg->umax_value) + ptr_reg->off;
|
|
break;
|
|
default:
|
|
return REASON_TYPE;
|
|
}
|
|
|
|
if (ptr_limit >= max)
|
|
return REASON_LIMIT;
|
|
*alu_limit = ptr_limit;
|
|
return 0;
|
|
}
|
|
|
|
static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
|
|
const struct bpf_insn *insn)
|
|
{
|
|
return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
|
|
}
|
|
|
|
static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
|
|
u32 alu_state, u32 alu_limit)
|
|
{
|
|
/* If we arrived here from different branches with different
|
|
* state or limits to sanitize, then this won't work.
|
|
*/
|
|
if (aux->alu_state &&
|
|
(aux->alu_state != alu_state ||
|
|
aux->alu_limit != alu_limit))
|
|
return REASON_PATHS;
|
|
|
|
/* Corresponding fixup done in do_misc_fixups(). */
|
|
aux->alu_state = alu_state;
|
|
aux->alu_limit = alu_limit;
|
|
return 0;
|
|
}
|
|
|
|
static int sanitize_val_alu(struct bpf_verifier_env *env,
|
|
struct bpf_insn *insn)
|
|
{
|
|
struct bpf_insn_aux_data *aux = cur_aux(env);
|
|
|
|
if (can_skip_alu_sanitation(env, insn))
|
|
return 0;
|
|
|
|
return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
|
|
}
|
|
|
|
static bool sanitize_needed(u8 opcode)
|
|
{
|
|
return opcode == BPF_ADD || opcode == BPF_SUB;
|
|
}
|
|
|
|
struct bpf_sanitize_info {
|
|
struct bpf_insn_aux_data aux;
|
|
bool mask_to_left;
|
|
};
|
|
|
|
static struct bpf_verifier_state *
|
|
sanitize_speculative_path(struct bpf_verifier_env *env,
|
|
const struct bpf_insn *insn,
|
|
u32 next_idx, u32 curr_idx)
|
|
{
|
|
struct bpf_verifier_state *branch;
|
|
struct bpf_reg_state *regs;
|
|
|
|
branch = push_stack(env, next_idx, curr_idx, true);
|
|
if (branch && insn) {
|
|
regs = branch->frame[branch->curframe]->regs;
|
|
if (BPF_SRC(insn->code) == BPF_K) {
|
|
mark_reg_unknown(env, regs, insn->dst_reg);
|
|
} else if (BPF_SRC(insn->code) == BPF_X) {
|
|
mark_reg_unknown(env, regs, insn->dst_reg);
|
|
mark_reg_unknown(env, regs, insn->src_reg);
|
|
}
|
|
}
|
|
return branch;
|
|
}
|
|
|
|
static int sanitize_ptr_alu(struct bpf_verifier_env *env,
|
|
struct bpf_insn *insn,
|
|
const struct bpf_reg_state *ptr_reg,
|
|
const struct bpf_reg_state *off_reg,
|
|
struct bpf_reg_state *dst_reg,
|
|
struct bpf_sanitize_info *info,
|
|
const bool commit_window)
|
|
{
|
|
struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
|
|
struct bpf_verifier_state *vstate = env->cur_state;
|
|
bool off_is_imm = tnum_is_const(off_reg->var_off);
|
|
bool off_is_neg = off_reg->smin_value < 0;
|
|
bool ptr_is_dst_reg = ptr_reg == dst_reg;
|
|
u8 opcode = BPF_OP(insn->code);
|
|
u32 alu_state, alu_limit;
|
|
struct bpf_reg_state tmp;
|
|
bool ret;
|
|
int err;
|
|
|
|
if (can_skip_alu_sanitation(env, insn))
|
|
return 0;
|
|
|
|
/* We already marked aux for masking from non-speculative
|
|
* paths, thus we got here in the first place. We only care
|
|
* to explore bad access from here.
|
|
*/
|
|
if (vstate->speculative)
|
|
goto do_sim;
|
|
|
|
if (!commit_window) {
|
|
if (!tnum_is_const(off_reg->var_off) &&
|
|
(off_reg->smin_value < 0) != (off_reg->smax_value < 0))
|
|
return REASON_BOUNDS;
|
|
|
|
info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
|
|
(opcode == BPF_SUB && !off_is_neg);
|
|
}
|
|
|
|
err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (commit_window) {
|
|
/* In commit phase we narrow the masking window based on
|
|
* the observed pointer move after the simulated operation.
|
|
*/
|
|
alu_state = info->aux.alu_state;
|
|
alu_limit = abs(info->aux.alu_limit - alu_limit);
|
|
} else {
|
|
alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
|
|
alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
|
|
alu_state |= ptr_is_dst_reg ?
|
|
BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
|
|
|
|
/* Limit pruning on unknown scalars to enable deep search for
|
|
* potential masking differences from other program paths.
|
|
*/
|
|
if (!off_is_imm)
|
|
env->explore_alu_limits = true;
|
|
}
|
|
|
|
err = update_alu_sanitation_state(aux, alu_state, alu_limit);
|
|
if (err < 0)
|
|
return err;
|
|
do_sim:
|
|
/* If we're in commit phase, we're done here given we already
|
|
* pushed the truncated dst_reg into the speculative verification
|
|
* stack.
|
|
*
|
|
* Also, when register is a known constant, we rewrite register-based
|
|
* operation to immediate-based, and thus do not need masking (and as
|
|
* a consequence, do not need to simulate the zero-truncation either).
|
|
*/
|
|
if (commit_window || off_is_imm)
|
|
return 0;
|
|
|
|
/* Simulate and find potential out-of-bounds access under
|
|
* speculative execution from truncation as a result of
|
|
* masking when off was not within expected range. If off
|
|
* sits in dst, then we temporarily need to move ptr there
|
|
* to simulate dst (== 0) +/-= ptr. Needed, for example,
|
|
* for cases where we use K-based arithmetic in one direction
|
|
* and truncated reg-based in the other in order to explore
|
|
* bad access.
|
|
*/
|
|
if (!ptr_is_dst_reg) {
|
|
tmp = *dst_reg;
|
|
copy_register_state(dst_reg, ptr_reg);
|
|
}
|
|
ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
|
|
env->insn_idx);
|
|
if (!ptr_is_dst_reg && ret)
|
|
*dst_reg = tmp;
|
|
return !ret ? REASON_STACK : 0;
|
|
}
|
|
|
|
static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_verifier_state *vstate = env->cur_state;
|
|
|
|
/* If we simulate paths under speculation, we don't update the
|
|
* insn as 'seen' such that when we verify unreachable paths in
|
|
* the non-speculative domain, sanitize_dead_code() can still
|
|
* rewrite/sanitize them.
|
|
*/
|
|
if (!vstate->speculative)
|
|
env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
|
|
}
|
|
|
|
static int sanitize_err(struct bpf_verifier_env *env,
|
|
const struct bpf_insn *insn, int reason,
|
|
const struct bpf_reg_state *off_reg,
|
|
const struct bpf_reg_state *dst_reg)
|
|
{
|
|
static const char *err = "pointer arithmetic with it prohibited for !root";
|
|
const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
|
|
u32 dst = insn->dst_reg, src = insn->src_reg;
|
|
|
|
switch (reason) {
|
|
case REASON_BOUNDS:
|
|
verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
|
|
off_reg == dst_reg ? dst : src, err);
|
|
break;
|
|
case REASON_TYPE:
|
|
verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
|
|
off_reg == dst_reg ? src : dst, err);
|
|
break;
|
|
case REASON_PATHS:
|
|
verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
|
|
dst, op, err);
|
|
break;
|
|
case REASON_LIMIT:
|
|
verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
|
|
dst, op, err);
|
|
break;
|
|
case REASON_STACK:
|
|
verbose(env, "R%d could not be pushed for speculative verification, %s\n",
|
|
dst, err);
|
|
break;
|
|
default:
|
|
verbose(env, "verifier internal error: unknown reason (%d)\n",
|
|
reason);
|
|
break;
|
|
}
|
|
|
|
return -EACCES;
|
|
}
|
|
|
|
/* check that stack access falls within stack limits and that 'reg' doesn't
|
|
* have a variable offset.
|
|
*
|
|
* Variable offset is prohibited for unprivileged mode for simplicity since it
|
|
* requires corresponding support in Spectre masking for stack ALU. See also
|
|
* retrieve_ptr_limit().
|
|
*
|
|
*
|
|
* 'off' includes 'reg->off'.
|
|
*/
|
|
static int check_stack_access_for_ptr_arithmetic(
|
|
struct bpf_verifier_env *env,
|
|
int regno,
|
|
const struct bpf_reg_state *reg,
|
|
int off)
|
|
{
|
|
if (!tnum_is_const(reg->var_off)) {
|
|
char tn_buf[48];
|
|
|
|
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
|
|
verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
|
|
regno, tn_buf, off);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (off >= 0 || off < -MAX_BPF_STACK) {
|
|
verbose(env, "R%d stack pointer arithmetic goes out of range, "
|
|
"prohibited for !root; off=%d\n", regno, off);
|
|
return -EACCES;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sanitize_check_bounds(struct bpf_verifier_env *env,
|
|
const struct bpf_insn *insn,
|
|
const struct bpf_reg_state *dst_reg)
|
|
{
|
|
u32 dst = insn->dst_reg;
|
|
|
|
/* For unprivileged we require that resulting offset must be in bounds
|
|
* in order to be able to sanitize access later on.
|
|
*/
|
|
if (env->bypass_spec_v1)
|
|
return 0;
|
|
|
|
switch (dst_reg->type) {
|
|
case PTR_TO_STACK:
|
|
if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
|
|
dst_reg->off + dst_reg->var_off.value))
|
|
return -EACCES;
|
|
break;
|
|
case PTR_TO_MAP_VALUE:
|
|
if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
|
|
verbose(env, "R%d pointer arithmetic of map value goes out of range, "
|
|
"prohibited for !root\n", dst);
|
|
return -EACCES;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
|
|
* Caller should also handle BPF_MOV case separately.
|
|
* If we return -EACCES, caller may want to try again treating pointer as a
|
|
* scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
|
|
*/
|
|
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
|
|
struct bpf_insn *insn,
|
|
const struct bpf_reg_state *ptr_reg,
|
|
const struct bpf_reg_state *off_reg)
|
|
{
|
|
struct bpf_verifier_state *vstate = env->cur_state;
|
|
struct bpf_func_state *state = vstate->frame[vstate->curframe];
|
|
struct bpf_reg_state *regs = state->regs, *dst_reg;
|
|
bool known = tnum_is_const(off_reg->var_off);
|
|
s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
|
|
smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
|
|
u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
|
|
umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
|
|
struct bpf_sanitize_info info = {};
|
|
u8 opcode = BPF_OP(insn->code);
|
|
u32 dst = insn->dst_reg;
|
|
int ret;
|
|
|
|
dst_reg = ®s[dst];
|
|
|
|
if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
|
|
smin_val > smax_val || umin_val > umax_val) {
|
|
/* Taint dst register if offset had invalid bounds derived from
|
|
* e.g. dead branches.
|
|
*/
|
|
__mark_reg_unknown(env, dst_reg);
|
|
return 0;
|
|
}
|
|
|
|
if (BPF_CLASS(insn->code) != BPF_ALU64) {
|
|
/* 32-bit ALU ops on pointers produce (meaningless) scalars */
|
|
if (opcode == BPF_SUB && env->allow_ptr_leaks) {
|
|
__mark_reg_unknown(env, dst_reg);
|
|
return 0;
|
|
}
|
|
|
|
verbose(env,
|
|
"R%d 32-bit pointer arithmetic prohibited\n",
|
|
dst);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (ptr_reg->type & PTR_MAYBE_NULL) {
|
|
verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
|
|
dst, reg_type_str(env, ptr_reg->type));
|
|
return -EACCES;
|
|
}
|
|
|
|
switch (base_type(ptr_reg->type)) {
|
|
case CONST_PTR_TO_MAP:
|
|
/* smin_val represents the known value */
|
|
if (known && smin_val == 0 && opcode == BPF_ADD)
|
|
break;
|
|
fallthrough;
|
|
case PTR_TO_PACKET_END:
|
|
case PTR_TO_SOCKET:
|
|
case PTR_TO_SOCK_COMMON:
|
|
case PTR_TO_TCP_SOCK:
|
|
case PTR_TO_XDP_SOCK:
|
|
verbose(env, "R%d pointer arithmetic on %s prohibited\n",
|
|
dst, reg_type_str(env, ptr_reg->type));
|
|
return -EACCES;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
|
|
* The id may be overwritten later if we create a new variable offset.
|
|
*/
|
|
dst_reg->type = ptr_reg->type;
|
|
dst_reg->id = ptr_reg->id;
|
|
|
|
if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
|
|
!check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
|
|
return -EINVAL;
|
|
|
|
/* pointer types do not carry 32-bit bounds at the moment. */
|
|
__mark_reg32_unbounded(dst_reg);
|
|
|
|
if (sanitize_needed(opcode)) {
|
|
ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
|
|
&info, false);
|
|
if (ret < 0)
|
|
return sanitize_err(env, insn, ret, off_reg, dst_reg);
|
|
}
|
|
|
|
switch (opcode) {
|
|
case BPF_ADD:
|
|
/* We can take a fixed offset as long as it doesn't overflow
|
|
* the s32 'off' field
|
|
*/
|
|
if (known && (ptr_reg->off + smin_val ==
|
|
(s64)(s32)(ptr_reg->off + smin_val))) {
|
|
/* pointer += K. Accumulate it into fixed offset */
|
|
dst_reg->smin_value = smin_ptr;
|
|
dst_reg->smax_value = smax_ptr;
|
|
dst_reg->umin_value = umin_ptr;
|
|
dst_reg->umax_value = umax_ptr;
|
|
dst_reg->var_off = ptr_reg->var_off;
|
|
dst_reg->off = ptr_reg->off + smin_val;
|
|
dst_reg->raw = ptr_reg->raw;
|
|
break;
|
|
}
|
|
/* A new variable offset is created. Note that off_reg->off
|
|
* == 0, since it's a scalar.
|
|
* dst_reg gets the pointer type and since some positive
|
|
* integer value was added to the pointer, give it a new 'id'
|
|
* if it's a PTR_TO_PACKET.
|
|
* this creates a new 'base' pointer, off_reg (variable) gets
|
|
* added into the variable offset, and we copy the fixed offset
|
|
* from ptr_reg.
|
|
*/
|
|
if (signed_add_overflows(smin_ptr, smin_val) ||
|
|
signed_add_overflows(smax_ptr, smax_val)) {
|
|
dst_reg->smin_value = S64_MIN;
|
|
dst_reg->smax_value = S64_MAX;
|
|
} else {
|
|
dst_reg->smin_value = smin_ptr + smin_val;
|
|
dst_reg->smax_value = smax_ptr + smax_val;
|
|
}
|
|
if (umin_ptr + umin_val < umin_ptr ||
|
|
umax_ptr + umax_val < umax_ptr) {
|
|
dst_reg->umin_value = 0;
|
|
dst_reg->umax_value = U64_MAX;
|
|
} else {
|
|
dst_reg->umin_value = umin_ptr + umin_val;
|
|
dst_reg->umax_value = umax_ptr + umax_val;
|
|
}
|
|
dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
|
|
dst_reg->off = ptr_reg->off;
|
|
dst_reg->raw = ptr_reg->raw;
|
|
if (reg_is_pkt_pointer(ptr_reg)) {
|
|
dst_reg->id = ++env->id_gen;
|
|
/* something was added to pkt_ptr, set range to zero */
|
|
memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
|
|
}
|
|
break;
|
|
case BPF_SUB:
|
|
if (dst_reg == off_reg) {
|
|
/* scalar -= pointer. Creates an unknown scalar */
|
|
verbose(env, "R%d tried to subtract pointer from scalar\n",
|
|
dst);
|
|
return -EACCES;
|
|
}
|
|
/* We don't allow subtraction from FP, because (according to
|
|
* test_verifier.c test "invalid fp arithmetic", JITs might not
|
|
* be able to deal with it.
|
|
*/
|
|
if (ptr_reg->type == PTR_TO_STACK) {
|
|
verbose(env, "R%d subtraction from stack pointer prohibited\n",
|
|
dst);
|
|
return -EACCES;
|
|
}
|
|
if (known && (ptr_reg->off - smin_val ==
|
|
(s64)(s32)(ptr_reg->off - smin_val))) {
|
|
/* pointer -= K. Subtract it from fixed offset */
|
|
dst_reg->smin_value = smin_ptr;
|
|
dst_reg->smax_value = smax_ptr;
|
|
dst_reg->umin_value = umin_ptr;
|
|
dst_reg->umax_value = umax_ptr;
|
|
dst_reg->var_off = ptr_reg->var_off;
|
|
dst_reg->id = ptr_reg->id;
|
|
dst_reg->off = ptr_reg->off - smin_val;
|
|
dst_reg->raw = ptr_reg->raw;
|
|
break;
|
|
}
|
|
/* A new variable offset is created. If the subtrahend is known
|
|
* nonnegative, then any reg->range we had before is still good.
|
|
*/
|
|
if (signed_sub_overflows(smin_ptr, smax_val) ||
|
|
signed_sub_overflows(smax_ptr, smin_val)) {
|
|
/* Overflow possible, we know nothing */
|
|
dst_reg->smin_value = S64_MIN;
|
|
dst_reg->smax_value = S64_MAX;
|
|
} else {
|
|
dst_reg->smin_value = smin_ptr - smax_val;
|
|
dst_reg->smax_value = smax_ptr - smin_val;
|
|
}
|
|
if (umin_ptr < umax_val) {
|
|
/* Overflow possible, we know nothing */
|
|
dst_reg->umin_value = 0;
|
|
dst_reg->umax_value = U64_MAX;
|
|
} else {
|
|
/* Cannot overflow (as long as bounds are consistent) */
|
|
dst_reg->umin_value = umin_ptr - umax_val;
|
|
dst_reg->umax_value = umax_ptr - umin_val;
|
|
}
|
|
dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
|
|
dst_reg->off = ptr_reg->off;
|
|
dst_reg->raw = ptr_reg->raw;
|
|
if (reg_is_pkt_pointer(ptr_reg)) {
|
|
dst_reg->id = ++env->id_gen;
|
|
/* something was added to pkt_ptr, set range to zero */
|
|
if (smin_val < 0)
|
|
memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
|
|
}
|
|
break;
|
|
case BPF_AND:
|
|
case BPF_OR:
|
|
case BPF_XOR:
|
|
/* bitwise ops on pointers are troublesome, prohibit. */
|
|
verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
|
|
dst, bpf_alu_string[opcode >> 4]);
|
|
return -EACCES;
|
|
default:
|
|
/* other operators (e.g. MUL,LSH) produce non-pointer results */
|
|
verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
|
|
dst, bpf_alu_string[opcode >> 4]);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
|
|
return -EINVAL;
|
|
reg_bounds_sync(dst_reg);
|
|
if (sanitize_check_bounds(env, insn, dst_reg) < 0)
|
|
return -EACCES;
|
|
if (sanitize_needed(opcode)) {
|
|
ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
|
|
&info, true);
|
|
if (ret < 0)
|
|
return sanitize_err(env, insn, ret, off_reg, dst_reg);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg)
|
|
{
|
|
s32 smin_val = src_reg->s32_min_value;
|
|
s32 smax_val = src_reg->s32_max_value;
|
|
u32 umin_val = src_reg->u32_min_value;
|
|
u32 umax_val = src_reg->u32_max_value;
|
|
|
|
if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
|
|
signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
|
|
dst_reg->s32_min_value = S32_MIN;
|
|
dst_reg->s32_max_value = S32_MAX;
|
|
} else {
|
|
dst_reg->s32_min_value += smin_val;
|
|
dst_reg->s32_max_value += smax_val;
|
|
}
|
|
if (dst_reg->u32_min_value + umin_val < umin_val ||
|
|
dst_reg->u32_max_value + umax_val < umax_val) {
|
|
dst_reg->u32_min_value = 0;
|
|
dst_reg->u32_max_value = U32_MAX;
|
|
} else {
|
|
dst_reg->u32_min_value += umin_val;
|
|
dst_reg->u32_max_value += umax_val;
|
|
}
|
|
}
|
|
|
|
static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg)
|
|
{
|
|
s64 smin_val = src_reg->smin_value;
|
|
s64 smax_val = src_reg->smax_value;
|
|
u64 umin_val = src_reg->umin_value;
|
|
u64 umax_val = src_reg->umax_value;
|
|
|
|
if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
|
|
signed_add_overflows(dst_reg->smax_value, smax_val)) {
|
|
dst_reg->smin_value = S64_MIN;
|
|
dst_reg->smax_value = S64_MAX;
|
|
} else {
|
|
dst_reg->smin_value += smin_val;
|
|
dst_reg->smax_value += smax_val;
|
|
}
|
|
if (dst_reg->umin_value + umin_val < umin_val ||
|
|
dst_reg->umax_value + umax_val < umax_val) {
|
|
dst_reg->umin_value = 0;
|
|
dst_reg->umax_value = U64_MAX;
|
|
} else {
|
|
dst_reg->umin_value += umin_val;
|
|
dst_reg->umax_value += umax_val;
|
|
}
|
|
}
|
|
|
|
static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg)
|
|
{
|
|
s32 smin_val = src_reg->s32_min_value;
|
|
s32 smax_val = src_reg->s32_max_value;
|
|
u32 umin_val = src_reg->u32_min_value;
|
|
u32 umax_val = src_reg->u32_max_value;
|
|
|
|
if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
|
|
signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
|
|
/* Overflow possible, we know nothing */
|
|
dst_reg->s32_min_value = S32_MIN;
|
|
dst_reg->s32_max_value = S32_MAX;
|
|
} else {
|
|
dst_reg->s32_min_value -= smax_val;
|
|
dst_reg->s32_max_value -= smin_val;
|
|
}
|
|
if (dst_reg->u32_min_value < umax_val) {
|
|
/* Overflow possible, we know nothing */
|
|
dst_reg->u32_min_value = 0;
|
|
dst_reg->u32_max_value = U32_MAX;
|
|
} else {
|
|
/* Cannot overflow (as long as bounds are consistent) */
|
|
dst_reg->u32_min_value -= umax_val;
|
|
dst_reg->u32_max_value -= umin_val;
|
|
}
|
|
}
|
|
|
|
static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg)
|
|
{
|
|
s64 smin_val = src_reg->smin_value;
|
|
s64 smax_val = src_reg->smax_value;
|
|
u64 umin_val = src_reg->umin_value;
|
|
u64 umax_val = src_reg->umax_value;
|
|
|
|
if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
|
|
signed_sub_overflows(dst_reg->smax_value, smin_val)) {
|
|
/* Overflow possible, we know nothing */
|
|
dst_reg->smin_value = S64_MIN;
|
|
dst_reg->smax_value = S64_MAX;
|
|
} else {
|
|
dst_reg->smin_value -= smax_val;
|
|
dst_reg->smax_value -= smin_val;
|
|
}
|
|
if (dst_reg->umin_value < umax_val) {
|
|
/* Overflow possible, we know nothing */
|
|
dst_reg->umin_value = 0;
|
|
dst_reg->umax_value = U64_MAX;
|
|
} else {
|
|
/* Cannot overflow (as long as bounds are consistent) */
|
|
dst_reg->umin_value -= umax_val;
|
|
dst_reg->umax_value -= umin_val;
|
|
}
|
|
}
|
|
|
|
static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg)
|
|
{
|
|
s32 smin_val = src_reg->s32_min_value;
|
|
u32 umin_val = src_reg->u32_min_value;
|
|
u32 umax_val = src_reg->u32_max_value;
|
|
|
|
if (smin_val < 0 || dst_reg->s32_min_value < 0) {
|
|
/* Ain't nobody got time to multiply that sign */
|
|
__mark_reg32_unbounded(dst_reg);
|
|
return;
|
|
}
|
|
/* Both values are positive, so we can work with unsigned and
|
|
* copy the result to signed (unless it exceeds S32_MAX).
|
|
*/
|
|
if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
|
|
/* Potential overflow, we know nothing */
|
|
__mark_reg32_unbounded(dst_reg);
|
|
return;
|
|
}
|
|
dst_reg->u32_min_value *= umin_val;
|
|
dst_reg->u32_max_value *= umax_val;
|
|
if (dst_reg->u32_max_value > S32_MAX) {
|
|
/* Overflow possible, we know nothing */
|
|
dst_reg->s32_min_value = S32_MIN;
|
|
dst_reg->s32_max_value = S32_MAX;
|
|
} else {
|
|
dst_reg->s32_min_value = dst_reg->u32_min_value;
|
|
dst_reg->s32_max_value = dst_reg->u32_max_value;
|
|
}
|
|
}
|
|
|
|
static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg)
|
|
{
|
|
s64 smin_val = src_reg->smin_value;
|
|
u64 umin_val = src_reg->umin_value;
|
|
u64 umax_val = src_reg->umax_value;
|
|
|
|
if (smin_val < 0 || dst_reg->smin_value < 0) {
|
|
/* Ain't nobody got time to multiply that sign */
|
|
__mark_reg64_unbounded(dst_reg);
|
|
return;
|
|
}
|
|
/* Both values are positive, so we can work with unsigned and
|
|
* copy the result to signed (unless it exceeds S64_MAX).
|
|
*/
|
|
if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
|
|
/* Potential overflow, we know nothing */
|
|
__mark_reg64_unbounded(dst_reg);
|
|
return;
|
|
}
|
|
dst_reg->umin_value *= umin_val;
|
|
dst_reg->umax_value *= umax_val;
|
|
if (dst_reg->umax_value > S64_MAX) {
|
|
/* Overflow possible, we know nothing */
|
|
dst_reg->smin_value = S64_MIN;
|
|
dst_reg->smax_value = S64_MAX;
|
|
} else {
|
|
dst_reg->smin_value = dst_reg->umin_value;
|
|
dst_reg->smax_value = dst_reg->umax_value;
|
|
}
|
|
}
|
|
|
|
static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg)
|
|
{
|
|
bool src_known = tnum_subreg_is_const(src_reg->var_off);
|
|
bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
|
|
struct tnum var32_off = tnum_subreg(dst_reg->var_off);
|
|
s32 smin_val = src_reg->s32_min_value;
|
|
u32 umax_val = src_reg->u32_max_value;
|
|
|
|
if (src_known && dst_known) {
|
|
__mark_reg32_known(dst_reg, var32_off.value);
|
|
return;
|
|
}
|
|
|
|
/* We get our minimum from the var_off, since that's inherently
|
|
* bitwise. Our maximum is the minimum of the operands' maxima.
|
|
*/
|
|
dst_reg->u32_min_value = var32_off.value;
|
|
dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
|
|
if (dst_reg->s32_min_value < 0 || smin_val < 0) {
|
|
/* Lose signed bounds when ANDing negative numbers,
|
|
* ain't nobody got time for that.
|
|
*/
|
|
dst_reg->s32_min_value = S32_MIN;
|
|
dst_reg->s32_max_value = S32_MAX;
|
|
} else {
|
|
/* ANDing two positives gives a positive, so safe to
|
|
* cast result into s64.
|
|
*/
|
|
dst_reg->s32_min_value = dst_reg->u32_min_value;
|
|
dst_reg->s32_max_value = dst_reg->u32_max_value;
|
|
}
|
|
}
|
|
|
|
static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg)
|
|
{
|
|
bool src_known = tnum_is_const(src_reg->var_off);
|
|
bool dst_known = tnum_is_const(dst_reg->var_off);
|
|
s64 smin_val = src_reg->smin_value;
|
|
u64 umax_val = src_reg->umax_value;
|
|
|
|
if (src_known && dst_known) {
|
|
__mark_reg_known(dst_reg, dst_reg->var_off.value);
|
|
return;
|
|
}
|
|
|
|
/* We get our minimum from the var_off, since that's inherently
|
|
* bitwise. Our maximum is the minimum of the operands' maxima.
|
|
*/
|
|
dst_reg->umin_value = dst_reg->var_off.value;
|
|
dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
|
|
if (dst_reg->smin_value < 0 || smin_val < 0) {
|
|
/* Lose signed bounds when ANDing negative numbers,
|
|
* ain't nobody got time for that.
|
|
*/
|
|
dst_reg->smin_value = S64_MIN;
|
|
dst_reg->smax_value = S64_MAX;
|
|
} else {
|
|
/* ANDing two positives gives a positive, so safe to
|
|
* cast result into s64.
|
|
*/
|
|
dst_reg->smin_value = dst_reg->umin_value;
|
|
dst_reg->smax_value = dst_reg->umax_value;
|
|
}
|
|
/* We may learn something more from the var_off */
|
|
__update_reg_bounds(dst_reg);
|
|
}
|
|
|
|
static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg)
|
|
{
|
|
bool src_known = tnum_subreg_is_const(src_reg->var_off);
|
|
bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
|
|
struct tnum var32_off = tnum_subreg(dst_reg->var_off);
|
|
s32 smin_val = src_reg->s32_min_value;
|
|
u32 umin_val = src_reg->u32_min_value;
|
|
|
|
if (src_known && dst_known) {
|
|
__mark_reg32_known(dst_reg, var32_off.value);
|
|
return;
|
|
}
|
|
|
|
/* We get our maximum from the var_off, and our minimum is the
|
|
* maximum of the operands' minima
|
|
*/
|
|
dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
|
|
dst_reg->u32_max_value = var32_off.value | var32_off.mask;
|
|
if (dst_reg->s32_min_value < 0 || smin_val < 0) {
|
|
/* Lose signed bounds when ORing negative numbers,
|
|
* ain't nobody got time for that.
|
|
*/
|
|
dst_reg->s32_min_value = S32_MIN;
|
|
dst_reg->s32_max_value = S32_MAX;
|
|
} else {
|
|
/* ORing two positives gives a positive, so safe to
|
|
* cast result into s64.
|
|
*/
|
|
dst_reg->s32_min_value = dst_reg->u32_min_value;
|
|
dst_reg->s32_max_value = dst_reg->u32_max_value;
|
|
}
|
|
}
|
|
|
|
static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg)
|
|
{
|
|
bool src_known = tnum_is_const(src_reg->var_off);
|
|
bool dst_known = tnum_is_const(dst_reg->var_off);
|
|
s64 smin_val = src_reg->smin_value;
|
|
u64 umin_val = src_reg->umin_value;
|
|
|
|
if (src_known && dst_known) {
|
|
__mark_reg_known(dst_reg, dst_reg->var_off.value);
|
|
return;
|
|
}
|
|
|
|
/* We get our maximum from the var_off, and our minimum is the
|
|
* maximum of the operands' minima
|
|
*/
|
|
dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
|
|
dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
|
|
if (dst_reg->smin_value < 0 || smin_val < 0) {
|
|
/* Lose signed bounds when ORing negative numbers,
|
|
* ain't nobody got time for that.
|
|
*/
|
|
dst_reg->smin_value = S64_MIN;
|
|
dst_reg->smax_value = S64_MAX;
|
|
} else {
|
|
/* ORing two positives gives a positive, so safe to
|
|
* cast result into s64.
|
|
*/
|
|
dst_reg->smin_value = dst_reg->umin_value;
|
|
dst_reg->smax_value = dst_reg->umax_value;
|
|
}
|
|
/* We may learn something more from the var_off */
|
|
__update_reg_bounds(dst_reg);
|
|
}
|
|
|
|
static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg)
|
|
{
|
|
bool src_known = tnum_subreg_is_const(src_reg->var_off);
|
|
bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
|
|
struct tnum var32_off = tnum_subreg(dst_reg->var_off);
|
|
s32 smin_val = src_reg->s32_min_value;
|
|
|
|
if (src_known && dst_known) {
|
|
__mark_reg32_known(dst_reg, var32_off.value);
|
|
return;
|
|
}
|
|
|
|
/* We get both minimum and maximum from the var32_off. */
|
|
dst_reg->u32_min_value = var32_off.value;
|
|
dst_reg->u32_max_value = var32_off.value | var32_off.mask;
|
|
|
|
if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
|
|
/* XORing two positive sign numbers gives a positive,
|
|
* so safe to cast u32 result into s32.
|
|
*/
|
|
dst_reg->s32_min_value = dst_reg->u32_min_value;
|
|
dst_reg->s32_max_value = dst_reg->u32_max_value;
|
|
} else {
|
|
dst_reg->s32_min_value = S32_MIN;
|
|
dst_reg->s32_max_value = S32_MAX;
|
|
}
|
|
}
|
|
|
|
static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg)
|
|
{
|
|
bool src_known = tnum_is_const(src_reg->var_off);
|
|
bool dst_known = tnum_is_const(dst_reg->var_off);
|
|
s64 smin_val = src_reg->smin_value;
|
|
|
|
if (src_known && dst_known) {
|
|
/* dst_reg->var_off.value has been updated earlier */
|
|
__mark_reg_known(dst_reg, dst_reg->var_off.value);
|
|
return;
|
|
}
|
|
|
|
/* We get both minimum and maximum from the var_off. */
|
|
dst_reg->umin_value = dst_reg->var_off.value;
|
|
dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
|
|
|
|
if (dst_reg->smin_value >= 0 && smin_val >= 0) {
|
|
/* XORing two positive sign numbers gives a positive,
|
|
* so safe to cast u64 result into s64.
|
|
*/
|
|
dst_reg->smin_value = dst_reg->umin_value;
|
|
dst_reg->smax_value = dst_reg->umax_value;
|
|
} else {
|
|
dst_reg->smin_value = S64_MIN;
|
|
dst_reg->smax_value = S64_MAX;
|
|
}
|
|
|
|
__update_reg_bounds(dst_reg);
|
|
}
|
|
|
|
static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
|
|
u64 umin_val, u64 umax_val)
|
|
{
|
|
/* We lose all sign bit information (except what we can pick
|
|
* up from var_off)
|
|
*/
|
|
dst_reg->s32_min_value = S32_MIN;
|
|
dst_reg->s32_max_value = S32_MAX;
|
|
/* If we might shift our top bit out, then we know nothing */
|
|
if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
|
|
dst_reg->u32_min_value = 0;
|
|
dst_reg->u32_max_value = U32_MAX;
|
|
} else {
|
|
dst_reg->u32_min_value <<= umin_val;
|
|
dst_reg->u32_max_value <<= umax_val;
|
|
}
|
|
}
|
|
|
|
static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg)
|
|
{
|
|
u32 umax_val = src_reg->u32_max_value;
|
|
u32 umin_val = src_reg->u32_min_value;
|
|
/* u32 alu operation will zext upper bits */
|
|
struct tnum subreg = tnum_subreg(dst_reg->var_off);
|
|
|
|
__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
|
|
dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
|
|
/* Not required but being careful mark reg64 bounds as unknown so
|
|
* that we are forced to pick them up from tnum and zext later and
|
|
* if some path skips this step we are still safe.
|
|
*/
|
|
__mark_reg64_unbounded(dst_reg);
|
|
__update_reg32_bounds(dst_reg);
|
|
}
|
|
|
|
static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
|
|
u64 umin_val, u64 umax_val)
|
|
{
|
|
/* Special case <<32 because it is a common compiler pattern to sign
|
|
* extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
|
|
* positive we know this shift will also be positive so we can track
|
|
* bounds correctly. Otherwise we lose all sign bit information except
|
|
* what we can pick up from var_off. Perhaps we can generalize this
|
|
* later to shifts of any length.
|
|
*/
|
|
if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
|
|
dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
|
|
else
|
|
dst_reg->smax_value = S64_MAX;
|
|
|
|
if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
|
|
dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
|
|
else
|
|
dst_reg->smin_value = S64_MIN;
|
|
|
|
/* If we might shift our top bit out, then we know nothing */
|
|
if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
|
|
dst_reg->umin_value = 0;
|
|
dst_reg->umax_value = U64_MAX;
|
|
} else {
|
|
dst_reg->umin_value <<= umin_val;
|
|
dst_reg->umax_value <<= umax_val;
|
|
}
|
|
}
|
|
|
|
static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg)
|
|
{
|
|
u64 umax_val = src_reg->umax_value;
|
|
u64 umin_val = src_reg->umin_value;
|
|
|
|
/* scalar64 calc uses 32bit unshifted bounds so must be called first */
|
|
__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
|
|
__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
|
|
|
|
dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
|
|
/* We may learn something more from the var_off */
|
|
__update_reg_bounds(dst_reg);
|
|
}
|
|
|
|
static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg)
|
|
{
|
|
struct tnum subreg = tnum_subreg(dst_reg->var_off);
|
|
u32 umax_val = src_reg->u32_max_value;
|
|
u32 umin_val = src_reg->u32_min_value;
|
|
|
|
/* BPF_RSH is an unsigned shift. If the value in dst_reg might
|
|
* be negative, then either:
|
|
* 1) src_reg might be zero, so the sign bit of the result is
|
|
* unknown, so we lose our signed bounds
|
|
* 2) it's known negative, thus the unsigned bounds capture the
|
|
* signed bounds
|
|
* 3) the signed bounds cross zero, so they tell us nothing
|
|
* about the result
|
|
* If the value in dst_reg is known nonnegative, then again the
|
|
* unsigned bounds capture the signed bounds.
|
|
* Thus, in all cases it suffices to blow away our signed bounds
|
|
* and rely on inferring new ones from the unsigned bounds and
|
|
* var_off of the result.
|
|
*/
|
|
dst_reg->s32_min_value = S32_MIN;
|
|
dst_reg->s32_max_value = S32_MAX;
|
|
|
|
dst_reg->var_off = tnum_rshift(subreg, umin_val);
|
|
dst_reg->u32_min_value >>= umax_val;
|
|
dst_reg->u32_max_value >>= umin_val;
|
|
|
|
__mark_reg64_unbounded(dst_reg);
|
|
__update_reg32_bounds(dst_reg);
|
|
}
|
|
|
|
static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg)
|
|
{
|
|
u64 umax_val = src_reg->umax_value;
|
|
u64 umin_val = src_reg->umin_value;
|
|
|
|
/* BPF_RSH is an unsigned shift. If the value in dst_reg might
|
|
* be negative, then either:
|
|
* 1) src_reg might be zero, so the sign bit of the result is
|
|
* unknown, so we lose our signed bounds
|
|
* 2) it's known negative, thus the unsigned bounds capture the
|
|
* signed bounds
|
|
* 3) the signed bounds cross zero, so they tell us nothing
|
|
* about the result
|
|
* If the value in dst_reg is known nonnegative, then again the
|
|
* unsigned bounds capture the signed bounds.
|
|
* Thus, in all cases it suffices to blow away our signed bounds
|
|
* and rely on inferring new ones from the unsigned bounds and
|
|
* var_off of the result.
|
|
*/
|
|
dst_reg->smin_value = S64_MIN;
|
|
dst_reg->smax_value = S64_MAX;
|
|
dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
|
|
dst_reg->umin_value >>= umax_val;
|
|
dst_reg->umax_value >>= umin_val;
|
|
|
|
/* Its not easy to operate on alu32 bounds here because it depends
|
|
* on bits being shifted in. Take easy way out and mark unbounded
|
|
* so we can recalculate later from tnum.
|
|
*/
|
|
__mark_reg32_unbounded(dst_reg);
|
|
__update_reg_bounds(dst_reg);
|
|
}
|
|
|
|
static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg)
|
|
{
|
|
u64 umin_val = src_reg->u32_min_value;
|
|
|
|
/* Upon reaching here, src_known is true and
|
|
* umax_val is equal to umin_val.
|
|
*/
|
|
dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
|
|
dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
|
|
|
|
dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
|
|
|
|
/* blow away the dst_reg umin_value/umax_value and rely on
|
|
* dst_reg var_off to refine the result.
|
|
*/
|
|
dst_reg->u32_min_value = 0;
|
|
dst_reg->u32_max_value = U32_MAX;
|
|
|
|
__mark_reg64_unbounded(dst_reg);
|
|
__update_reg32_bounds(dst_reg);
|
|
}
|
|
|
|
static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg)
|
|
{
|
|
u64 umin_val = src_reg->umin_value;
|
|
|
|
/* Upon reaching here, src_known is true and umax_val is equal
|
|
* to umin_val.
|
|
*/
|
|
dst_reg->smin_value >>= umin_val;
|
|
dst_reg->smax_value >>= umin_val;
|
|
|
|
dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
|
|
|
|
/* blow away the dst_reg umin_value/umax_value and rely on
|
|
* dst_reg var_off to refine the result.
|
|
*/
|
|
dst_reg->umin_value = 0;
|
|
dst_reg->umax_value = U64_MAX;
|
|
|
|
/* Its not easy to operate on alu32 bounds here because it depends
|
|
* on bits being shifted in from upper 32-bits. Take easy way out
|
|
* and mark unbounded so we can recalculate later from tnum.
|
|
*/
|
|
__mark_reg32_unbounded(dst_reg);
|
|
__update_reg_bounds(dst_reg);
|
|
}
|
|
|
|
/* WARNING: This function does calculations on 64-bit values, but the actual
|
|
* execution may occur on 32-bit values. Therefore, things like bitshifts
|
|
* need extra checks in the 32-bit case.
|
|
*/
|
|
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
|
|
struct bpf_insn *insn,
|
|
struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state src_reg)
|
|
{
|
|
struct bpf_reg_state *regs = cur_regs(env);
|
|
u8 opcode = BPF_OP(insn->code);
|
|
bool src_known;
|
|
s64 smin_val, smax_val;
|
|
u64 umin_val, umax_val;
|
|
s32 s32_min_val, s32_max_val;
|
|
u32 u32_min_val, u32_max_val;
|
|
u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
|
|
bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
|
|
int ret;
|
|
|
|
smin_val = src_reg.smin_value;
|
|
smax_val = src_reg.smax_value;
|
|
umin_val = src_reg.umin_value;
|
|
umax_val = src_reg.umax_value;
|
|
|
|
s32_min_val = src_reg.s32_min_value;
|
|
s32_max_val = src_reg.s32_max_value;
|
|
u32_min_val = src_reg.u32_min_value;
|
|
u32_max_val = src_reg.u32_max_value;
|
|
|
|
if (alu32) {
|
|
src_known = tnum_subreg_is_const(src_reg.var_off);
|
|
if ((src_known &&
|
|
(s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
|
|
s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
|
|
/* Taint dst register if offset had invalid bounds
|
|
* derived from e.g. dead branches.
|
|
*/
|
|
__mark_reg_unknown(env, dst_reg);
|
|
return 0;
|
|
}
|
|
} else {
|
|
src_known = tnum_is_const(src_reg.var_off);
|
|
if ((src_known &&
|
|
(smin_val != smax_val || umin_val != umax_val)) ||
|
|
smin_val > smax_val || umin_val > umax_val) {
|
|
/* Taint dst register if offset had invalid bounds
|
|
* derived from e.g. dead branches.
|
|
*/
|
|
__mark_reg_unknown(env, dst_reg);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (!src_known &&
|
|
opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
|
|
__mark_reg_unknown(env, dst_reg);
|
|
return 0;
|
|
}
|
|
|
|
if (sanitize_needed(opcode)) {
|
|
ret = sanitize_val_alu(env, insn);
|
|
if (ret < 0)
|
|
return sanitize_err(env, insn, ret, NULL, NULL);
|
|
}
|
|
|
|
/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
|
|
* There are two classes of instructions: The first class we track both
|
|
* alu32 and alu64 sign/unsigned bounds independently this provides the
|
|
* greatest amount of precision when alu operations are mixed with jmp32
|
|
* operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
|
|
* and BPF_OR. This is possible because these ops have fairly easy to
|
|
* understand and calculate behavior in both 32-bit and 64-bit alu ops.
|
|
* See alu32 verifier tests for examples. The second class of
|
|
* operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
|
|
* with regards to tracking sign/unsigned bounds because the bits may
|
|
* cross subreg boundaries in the alu64 case. When this happens we mark
|
|
* the reg unbounded in the subreg bound space and use the resulting
|
|
* tnum to calculate an approximation of the sign/unsigned bounds.
|
|
*/
|
|
switch (opcode) {
|
|
case BPF_ADD:
|
|
scalar32_min_max_add(dst_reg, &src_reg);
|
|
scalar_min_max_add(dst_reg, &src_reg);
|
|
dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
|
|
break;
|
|
case BPF_SUB:
|
|
scalar32_min_max_sub(dst_reg, &src_reg);
|
|
scalar_min_max_sub(dst_reg, &src_reg);
|
|
dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
|
|
break;
|
|
case BPF_MUL:
|
|
dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
|
|
scalar32_min_max_mul(dst_reg, &src_reg);
|
|
scalar_min_max_mul(dst_reg, &src_reg);
|
|
break;
|
|
case BPF_AND:
|
|
dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
|
|
scalar32_min_max_and(dst_reg, &src_reg);
|
|
scalar_min_max_and(dst_reg, &src_reg);
|
|
break;
|
|
case BPF_OR:
|
|
dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
|
|
scalar32_min_max_or(dst_reg, &src_reg);
|
|
scalar_min_max_or(dst_reg, &src_reg);
|
|
break;
|
|
case BPF_XOR:
|
|
dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
|
|
scalar32_min_max_xor(dst_reg, &src_reg);
|
|
scalar_min_max_xor(dst_reg, &src_reg);
|
|
break;
|
|
case BPF_LSH:
|
|
if (umax_val >= insn_bitness) {
|
|
/* Shifts greater than 31 or 63 are undefined.
|
|
* This includes shifts by a negative number.
|
|
*/
|
|
mark_reg_unknown(env, regs, insn->dst_reg);
|
|
break;
|
|
}
|
|
if (alu32)
|
|
scalar32_min_max_lsh(dst_reg, &src_reg);
|
|
else
|
|
scalar_min_max_lsh(dst_reg, &src_reg);
|
|
break;
|
|
case BPF_RSH:
|
|
if (umax_val >= insn_bitness) {
|
|
/* Shifts greater than 31 or 63 are undefined.
|
|
* This includes shifts by a negative number.
|
|
*/
|
|
mark_reg_unknown(env, regs, insn->dst_reg);
|
|
break;
|
|
}
|
|
if (alu32)
|
|
scalar32_min_max_rsh(dst_reg, &src_reg);
|
|
else
|
|
scalar_min_max_rsh(dst_reg, &src_reg);
|
|
break;
|
|
case BPF_ARSH:
|
|
if (umax_val >= insn_bitness) {
|
|
/* Shifts greater than 31 or 63 are undefined.
|
|
* This includes shifts by a negative number.
|
|
*/
|
|
mark_reg_unknown(env, regs, insn->dst_reg);
|
|
break;
|
|
}
|
|
if (alu32)
|
|
scalar32_min_max_arsh(dst_reg, &src_reg);
|
|
else
|
|
scalar_min_max_arsh(dst_reg, &src_reg);
|
|
break;
|
|
default:
|
|
mark_reg_unknown(env, regs, insn->dst_reg);
|
|
break;
|
|
}
|
|
|
|
/* ALU32 ops are zero extended into 64bit register */
|
|
if (alu32)
|
|
zext_32_to_64(dst_reg);
|
|
reg_bounds_sync(dst_reg);
|
|
return 0;
|
|
}
|
|
|
|
/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
|
|
* and var_off.
|
|
*/
|
|
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
|
|
struct bpf_insn *insn)
|
|
{
|
|
struct bpf_verifier_state *vstate = env->cur_state;
|
|
struct bpf_func_state *state = vstate->frame[vstate->curframe];
|
|
struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
|
|
struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
|
|
u8 opcode = BPF_OP(insn->code);
|
|
int err;
|
|
|
|
dst_reg = ®s[insn->dst_reg];
|
|
src_reg = NULL;
|
|
if (dst_reg->type != SCALAR_VALUE)
|
|
ptr_reg = dst_reg;
|
|
else
|
|
/* Make sure ID is cleared otherwise dst_reg min/max could be
|
|
* incorrectly propagated into other registers by find_equal_scalars()
|
|
*/
|
|
dst_reg->id = 0;
|
|
if (BPF_SRC(insn->code) == BPF_X) {
|
|
src_reg = ®s[insn->src_reg];
|
|
if (src_reg->type != SCALAR_VALUE) {
|
|
if (dst_reg->type != SCALAR_VALUE) {
|
|
/* Combining two pointers by any ALU op yields
|
|
* an arbitrary scalar. Disallow all math except
|
|
* pointer subtraction
|
|
*/
|
|
if (opcode == BPF_SUB && env->allow_ptr_leaks) {
|
|
mark_reg_unknown(env, regs, insn->dst_reg);
|
|
return 0;
|
|
}
|
|
verbose(env, "R%d pointer %s pointer prohibited\n",
|
|
insn->dst_reg,
|
|
bpf_alu_string[opcode >> 4]);
|
|
return -EACCES;
|
|
} else {
|
|
/* scalar += pointer
|
|
* This is legal, but we have to reverse our
|
|
* src/dest handling in computing the range
|
|
*/
|
|
err = mark_chain_precision(env, insn->dst_reg);
|
|
if (err)
|
|
return err;
|
|
return adjust_ptr_min_max_vals(env, insn,
|
|
src_reg, dst_reg);
|
|
}
|
|
} else if (ptr_reg) {
|
|
/* pointer += scalar */
|
|
err = mark_chain_precision(env, insn->src_reg);
|
|
if (err)
|
|
return err;
|
|
return adjust_ptr_min_max_vals(env, insn,
|
|
dst_reg, src_reg);
|
|
} else if (dst_reg->precise) {
|
|
/* if dst_reg is precise, src_reg should be precise as well */
|
|
err = mark_chain_precision(env, insn->src_reg);
|
|
if (err)
|
|
return err;
|
|
}
|
|
} else {
|
|
/* Pretend the src is a reg with a known value, since we only
|
|
* need to be able to read from this state.
|
|
*/
|
|
off_reg.type = SCALAR_VALUE;
|
|
__mark_reg_known(&off_reg, insn->imm);
|
|
src_reg = &off_reg;
|
|
if (ptr_reg) /* pointer += K */
|
|
return adjust_ptr_min_max_vals(env, insn,
|
|
ptr_reg, src_reg);
|
|
}
|
|
|
|
/* Got here implies adding two SCALAR_VALUEs */
|
|
if (WARN_ON_ONCE(ptr_reg)) {
|
|
print_verifier_state(env, state, true);
|
|
verbose(env, "verifier internal error: unexpected ptr_reg\n");
|
|
return -EINVAL;
|
|
}
|
|
if (WARN_ON(!src_reg)) {
|
|
print_verifier_state(env, state, true);
|
|
verbose(env, "verifier internal error: no src_reg\n");
|
|
return -EINVAL;
|
|
}
|
|
return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
|
|
}
|
|
|
|
/* check validity of 32-bit and 64-bit arithmetic operations */
|
|
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
|
|
{
|
|
struct bpf_reg_state *regs = cur_regs(env);
|
|
u8 opcode = BPF_OP(insn->code);
|
|
int err;
|
|
|
|
if (opcode == BPF_END || opcode == BPF_NEG) {
|
|
if (opcode == BPF_NEG) {
|
|
if (BPF_SRC(insn->code) != BPF_K ||
|
|
insn->src_reg != BPF_REG_0 ||
|
|
insn->off != 0 || insn->imm != 0) {
|
|
verbose(env, "BPF_NEG uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
|
|
(insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
|
|
(BPF_CLASS(insn->code) == BPF_ALU64 &&
|
|
BPF_SRC(insn->code) != BPF_TO_LE)) {
|
|
verbose(env, "BPF_END uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* check src operand */
|
|
err = check_reg_arg(env, insn->dst_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
if (is_pointer_value(env, insn->dst_reg)) {
|
|
verbose(env, "R%d pointer arithmetic prohibited\n",
|
|
insn->dst_reg);
|
|
return -EACCES;
|
|
}
|
|
|
|
/* check dest operand */
|
|
err = check_reg_arg(env, insn->dst_reg, DST_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
} else if (opcode == BPF_MOV) {
|
|
|
|
if (BPF_SRC(insn->code) == BPF_X) {
|
|
if (insn->imm != 0) {
|
|
verbose(env, "BPF_MOV uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (BPF_CLASS(insn->code) == BPF_ALU) {
|
|
if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
|
|
verbose(env, "BPF_MOV uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
|
|
insn->off != 32) {
|
|
verbose(env, "BPF_MOV uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* check src operand */
|
|
err = check_reg_arg(env, insn->src_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
} else {
|
|
if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
|
|
verbose(env, "BPF_MOV uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* check dest operand, mark as required later */
|
|
err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
|
|
if (err)
|
|
return err;
|
|
|
|
if (BPF_SRC(insn->code) == BPF_X) {
|
|
struct bpf_reg_state *src_reg = regs + insn->src_reg;
|
|
struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
|
|
bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
|
|
!tnum_is_const(src_reg->var_off);
|
|
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64) {
|
|
if (insn->off == 0) {
|
|
/* case: R1 = R2
|
|
* copy register state to dest reg
|
|
*/
|
|
if (need_id)
|
|
/* Assign src and dst registers the same ID
|
|
* that will be used by find_equal_scalars()
|
|
* to propagate min/max range.
|
|
*/
|
|
src_reg->id = ++env->id_gen;
|
|
copy_register_state(dst_reg, src_reg);
|
|
dst_reg->live |= REG_LIVE_WRITTEN;
|
|
dst_reg->subreg_def = DEF_NOT_SUBREG;
|
|
} else {
|
|
/* case: R1 = (s8, s16 s32)R2 */
|
|
if (is_pointer_value(env, insn->src_reg)) {
|
|
verbose(env,
|
|
"R%d sign-extension part of pointer\n",
|
|
insn->src_reg);
|
|
return -EACCES;
|
|
} else if (src_reg->type == SCALAR_VALUE) {
|
|
bool no_sext;
|
|
|
|
no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
|
|
if (no_sext && need_id)
|
|
src_reg->id = ++env->id_gen;
|
|
copy_register_state(dst_reg, src_reg);
|
|
if (!no_sext)
|
|
dst_reg->id = 0;
|
|
coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
|
|
dst_reg->live |= REG_LIVE_WRITTEN;
|
|
dst_reg->subreg_def = DEF_NOT_SUBREG;
|
|
} else {
|
|
mark_reg_unknown(env, regs, insn->dst_reg);
|
|
}
|
|
}
|
|
} else {
|
|
/* R1 = (u32) R2 */
|
|
if (is_pointer_value(env, insn->src_reg)) {
|
|
verbose(env,
|
|
"R%d partial copy of pointer\n",
|
|
insn->src_reg);
|
|
return -EACCES;
|
|
} else if (src_reg->type == SCALAR_VALUE) {
|
|
if (insn->off == 0) {
|
|
bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
|
|
|
|
if (is_src_reg_u32 && need_id)
|
|
src_reg->id = ++env->id_gen;
|
|
copy_register_state(dst_reg, src_reg);
|
|
/* Make sure ID is cleared if src_reg is not in u32
|
|
* range otherwise dst_reg min/max could be incorrectly
|
|
* propagated into src_reg by find_equal_scalars()
|
|
*/
|
|
if (!is_src_reg_u32)
|
|
dst_reg->id = 0;
|
|
dst_reg->live |= REG_LIVE_WRITTEN;
|
|
dst_reg->subreg_def = env->insn_idx + 1;
|
|
} else {
|
|
/* case: W1 = (s8, s16)W2 */
|
|
bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
|
|
|
|
if (no_sext && need_id)
|
|
src_reg->id = ++env->id_gen;
|
|
copy_register_state(dst_reg, src_reg);
|
|
if (!no_sext)
|
|
dst_reg->id = 0;
|
|
dst_reg->live |= REG_LIVE_WRITTEN;
|
|
dst_reg->subreg_def = env->insn_idx + 1;
|
|
coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
|
|
}
|
|
} else {
|
|
mark_reg_unknown(env, regs,
|
|
insn->dst_reg);
|
|
}
|
|
zext_32_to_64(dst_reg);
|
|
reg_bounds_sync(dst_reg);
|
|
}
|
|
} else {
|
|
/* case: R = imm
|
|
* remember the value we stored into this reg
|
|
*/
|
|
/* clear any state __mark_reg_known doesn't set */
|
|
mark_reg_unknown(env, regs, insn->dst_reg);
|
|
regs[insn->dst_reg].type = SCALAR_VALUE;
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64) {
|
|
__mark_reg_known(regs + insn->dst_reg,
|
|
insn->imm);
|
|
} else {
|
|
__mark_reg_known(regs + insn->dst_reg,
|
|
(u32)insn->imm);
|
|
}
|
|
}
|
|
|
|
} else if (opcode > BPF_END) {
|
|
verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
|
|
return -EINVAL;
|
|
|
|
} else { /* all other ALU ops: and, sub, xor, add, ... */
|
|
|
|
if (BPF_SRC(insn->code) == BPF_X) {
|
|
if (insn->imm != 0 || insn->off > 1 ||
|
|
(insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
|
|
verbose(env, "BPF_ALU uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
/* check src1 operand */
|
|
err = check_reg_arg(env, insn->src_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
} else {
|
|
if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
|
|
(insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
|
|
verbose(env, "BPF_ALU uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* check src2 operand */
|
|
err = check_reg_arg(env, insn->dst_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
|
|
BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
|
|
verbose(env, "div by zero\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((opcode == BPF_LSH || opcode == BPF_RSH ||
|
|
opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
|
|
int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
|
|
|
|
if (insn->imm < 0 || insn->imm >= size) {
|
|
verbose(env, "invalid shift %d\n", insn->imm);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* check dest operand */
|
|
err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
|
|
err = err ?: adjust_reg_min_max_vals(env, insn);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu");
|
|
}
|
|
|
|
static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
|
|
struct bpf_reg_state *dst_reg,
|
|
enum bpf_reg_type type,
|
|
bool range_right_open)
|
|
{
|
|
struct bpf_func_state *state;
|
|
struct bpf_reg_state *reg;
|
|
int new_range;
|
|
|
|
if (dst_reg->off < 0 ||
|
|
(dst_reg->off == 0 && range_right_open))
|
|
/* This doesn't give us any range */
|
|
return;
|
|
|
|
if (dst_reg->umax_value > MAX_PACKET_OFF ||
|
|
dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
|
|
/* Risk of overflow. For instance, ptr + (1<<63) may be less
|
|
* than pkt_end, but that's because it's also less than pkt.
|
|
*/
|
|
return;
|
|
|
|
new_range = dst_reg->off;
|
|
if (range_right_open)
|
|
new_range++;
|
|
|
|
/* Examples for register markings:
|
|
*
|
|
* pkt_data in dst register:
|
|
*
|
|
* r2 = r3;
|
|
* r2 += 8;
|
|
* if (r2 > pkt_end) goto <handle exception>
|
|
* <access okay>
|
|
*
|
|
* r2 = r3;
|
|
* r2 += 8;
|
|
* if (r2 < pkt_end) goto <access okay>
|
|
* <handle exception>
|
|
*
|
|
* Where:
|
|
* r2 == dst_reg, pkt_end == src_reg
|
|
* r2=pkt(id=n,off=8,r=0)
|
|
* r3=pkt(id=n,off=0,r=0)
|
|
*
|
|
* pkt_data in src register:
|
|
*
|
|
* r2 = r3;
|
|
* r2 += 8;
|
|
* if (pkt_end >= r2) goto <access okay>
|
|
* <handle exception>
|
|
*
|
|
* r2 = r3;
|
|
* r2 += 8;
|
|
* if (pkt_end <= r2) goto <handle exception>
|
|
* <access okay>
|
|
*
|
|
* Where:
|
|
* pkt_end == dst_reg, r2 == src_reg
|
|
* r2=pkt(id=n,off=8,r=0)
|
|
* r3=pkt(id=n,off=0,r=0)
|
|
*
|
|
* Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
|
|
* or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
|
|
* and [r3, r3 + 8-1) respectively is safe to access depending on
|
|
* the check.
|
|
*/
|
|
|
|
/* If our ids match, then we must have the same max_value. And we
|
|
* don't care about the other reg's fixed offset, since if it's too big
|
|
* the range won't allow anything.
|
|
* dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
|
|
*/
|
|
bpf_for_each_reg_in_vstate(vstate, state, reg, ({
|
|
if (reg->type == type && reg->id == dst_reg->id)
|
|
/* keep the maximum range already checked */
|
|
reg->range = max(reg->range, new_range);
|
|
}));
|
|
}
|
|
|
|
/*
|
|
* <reg1> <op> <reg2>, currently assuming reg2 is a constant
|
|
*/
|
|
static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
|
|
u8 opcode, bool is_jmp32)
|
|
{
|
|
struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
|
|
struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
|
|
u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
|
|
u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
|
|
s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
|
|
s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
|
|
u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
|
|
u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
|
|
s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
|
|
s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
|
|
|
|
switch (opcode) {
|
|
case BPF_JEQ:
|
|
/* constants, umin/umax and smin/smax checks would be
|
|
* redundant in this case because they all should match
|
|
*/
|
|
if (tnum_is_const(t1) && tnum_is_const(t2))
|
|
return t1.value == t2.value;
|
|
/* non-overlapping ranges */
|
|
if (umin1 > umax2 || umax1 < umin2)
|
|
return 0;
|
|
if (smin1 > smax2 || smax1 < smin2)
|
|
return 0;
|
|
if (!is_jmp32) {
|
|
/* if 64-bit ranges are inconclusive, see if we can
|
|
* utilize 32-bit subrange knowledge to eliminate
|
|
* branches that can't be taken a priori
|
|
*/
|
|
if (reg1->u32_min_value > reg2->u32_max_value ||
|
|
reg1->u32_max_value < reg2->u32_min_value)
|
|
return 0;
|
|
if (reg1->s32_min_value > reg2->s32_max_value ||
|
|
reg1->s32_max_value < reg2->s32_min_value)
|
|
return 0;
|
|
}
|
|
break;
|
|
case BPF_JNE:
|
|
/* constants, umin/umax and smin/smax checks would be
|
|
* redundant in this case because they all should match
|
|
*/
|
|
if (tnum_is_const(t1) && tnum_is_const(t2))
|
|
return t1.value != t2.value;
|
|
/* non-overlapping ranges */
|
|
if (umin1 > umax2 || umax1 < umin2)
|
|
return 1;
|
|
if (smin1 > smax2 || smax1 < smin2)
|
|
return 1;
|
|
if (!is_jmp32) {
|
|
/* if 64-bit ranges are inconclusive, see if we can
|
|
* utilize 32-bit subrange knowledge to eliminate
|
|
* branches that can't be taken a priori
|
|
*/
|
|
if (reg1->u32_min_value > reg2->u32_max_value ||
|
|
reg1->u32_max_value < reg2->u32_min_value)
|
|
return 1;
|
|
if (reg1->s32_min_value > reg2->s32_max_value ||
|
|
reg1->s32_max_value < reg2->s32_min_value)
|
|
return 1;
|
|
}
|
|
break;
|
|
case BPF_JSET:
|
|
if (!is_reg_const(reg2, is_jmp32)) {
|
|
swap(reg1, reg2);
|
|
swap(t1, t2);
|
|
}
|
|
if (!is_reg_const(reg2, is_jmp32))
|
|
return -1;
|
|
if ((~t1.mask & t1.value) & t2.value)
|
|
return 1;
|
|
if (!((t1.mask | t1.value) & t2.value))
|
|
return 0;
|
|
break;
|
|
case BPF_JGT:
|
|
if (umin1 > umax2)
|
|
return 1;
|
|
else if (umax1 <= umin2)
|
|
return 0;
|
|
break;
|
|
case BPF_JSGT:
|
|
if (smin1 > smax2)
|
|
return 1;
|
|
else if (smax1 <= smin2)
|
|
return 0;
|
|
break;
|
|
case BPF_JLT:
|
|
if (umax1 < umin2)
|
|
return 1;
|
|
else if (umin1 >= umax2)
|
|
return 0;
|
|
break;
|
|
case BPF_JSLT:
|
|
if (smax1 < smin2)
|
|
return 1;
|
|
else if (smin1 >= smax2)
|
|
return 0;
|
|
break;
|
|
case BPF_JGE:
|
|
if (umin1 >= umax2)
|
|
return 1;
|
|
else if (umax1 < umin2)
|
|
return 0;
|
|
break;
|
|
case BPF_JSGE:
|
|
if (smin1 >= smax2)
|
|
return 1;
|
|
else if (smax1 < smin2)
|
|
return 0;
|
|
break;
|
|
case BPF_JLE:
|
|
if (umax1 <= umin2)
|
|
return 1;
|
|
else if (umin1 > umax2)
|
|
return 0;
|
|
break;
|
|
case BPF_JSLE:
|
|
if (smax1 <= smin2)
|
|
return 1;
|
|
else if (smin1 > smax2)
|
|
return 0;
|
|
break;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int flip_opcode(u32 opcode)
|
|
{
|
|
/* How can we transform "a <op> b" into "b <op> a"? */
|
|
static const u8 opcode_flip[16] = {
|
|
/* these stay the same */
|
|
[BPF_JEQ >> 4] = BPF_JEQ,
|
|
[BPF_JNE >> 4] = BPF_JNE,
|
|
[BPF_JSET >> 4] = BPF_JSET,
|
|
/* these swap "lesser" and "greater" (L and G in the opcodes) */
|
|
[BPF_JGE >> 4] = BPF_JLE,
|
|
[BPF_JGT >> 4] = BPF_JLT,
|
|
[BPF_JLE >> 4] = BPF_JGE,
|
|
[BPF_JLT >> 4] = BPF_JGT,
|
|
[BPF_JSGE >> 4] = BPF_JSLE,
|
|
[BPF_JSGT >> 4] = BPF_JSLT,
|
|
[BPF_JSLE >> 4] = BPF_JSGE,
|
|
[BPF_JSLT >> 4] = BPF_JSGT
|
|
};
|
|
return opcode_flip[opcode >> 4];
|
|
}
|
|
|
|
static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg,
|
|
u8 opcode)
|
|
{
|
|
struct bpf_reg_state *pkt;
|
|
|
|
if (src_reg->type == PTR_TO_PACKET_END) {
|
|
pkt = dst_reg;
|
|
} else if (dst_reg->type == PTR_TO_PACKET_END) {
|
|
pkt = src_reg;
|
|
opcode = flip_opcode(opcode);
|
|
} else {
|
|
return -1;
|
|
}
|
|
|
|
if (pkt->range >= 0)
|
|
return -1;
|
|
|
|
switch (opcode) {
|
|
case BPF_JLE:
|
|
/* pkt <= pkt_end */
|
|
fallthrough;
|
|
case BPF_JGT:
|
|
/* pkt > pkt_end */
|
|
if (pkt->range == BEYOND_PKT_END)
|
|
/* pkt has at last one extra byte beyond pkt_end */
|
|
return opcode == BPF_JGT;
|
|
break;
|
|
case BPF_JLT:
|
|
/* pkt < pkt_end */
|
|
fallthrough;
|
|
case BPF_JGE:
|
|
/* pkt >= pkt_end */
|
|
if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
|
|
return opcode == BPF_JGE;
|
|
break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
|
|
* and return:
|
|
* 1 - branch will be taken and "goto target" will be executed
|
|
* 0 - branch will not be taken and fall-through to next insn
|
|
* -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
|
|
* range [0,10]
|
|
*/
|
|
static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
|
|
u8 opcode, bool is_jmp32)
|
|
{
|
|
if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
|
|
return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
|
|
|
|
if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
|
|
u64 val;
|
|
|
|
/* arrange that reg2 is a scalar, and reg1 is a pointer */
|
|
if (!is_reg_const(reg2, is_jmp32)) {
|
|
opcode = flip_opcode(opcode);
|
|
swap(reg1, reg2);
|
|
}
|
|
/* and ensure that reg2 is a constant */
|
|
if (!is_reg_const(reg2, is_jmp32))
|
|
return -1;
|
|
|
|
if (!reg_not_null(reg1))
|
|
return -1;
|
|
|
|
/* If pointer is valid tests against zero will fail so we can
|
|
* use this to direct branch taken.
|
|
*/
|
|
val = reg_const_value(reg2, is_jmp32);
|
|
if (val != 0)
|
|
return -1;
|
|
|
|
switch (opcode) {
|
|
case BPF_JEQ:
|
|
return 0;
|
|
case BPF_JNE:
|
|
return 1;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* now deal with two scalars, but not necessarily constants */
|
|
return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
|
|
}
|
|
|
|
/* Opcode that corresponds to a *false* branch condition.
|
|
* E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
|
|
*/
|
|
static u8 rev_opcode(u8 opcode)
|
|
{
|
|
switch (opcode) {
|
|
case BPF_JEQ: return BPF_JNE;
|
|
case BPF_JNE: return BPF_JEQ;
|
|
/* JSET doesn't have it's reverse opcode in BPF, so add
|
|
* BPF_X flag to denote the reverse of that operation
|
|
*/
|
|
case BPF_JSET: return BPF_JSET | BPF_X;
|
|
case BPF_JSET | BPF_X: return BPF_JSET;
|
|
case BPF_JGE: return BPF_JLT;
|
|
case BPF_JGT: return BPF_JLE;
|
|
case BPF_JLE: return BPF_JGT;
|
|
case BPF_JLT: return BPF_JGE;
|
|
case BPF_JSGE: return BPF_JSLT;
|
|
case BPF_JSGT: return BPF_JSLE;
|
|
case BPF_JSLE: return BPF_JSGT;
|
|
case BPF_JSLT: return BPF_JSGE;
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
/* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
|
|
static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
|
|
u8 opcode, bool is_jmp32)
|
|
{
|
|
struct tnum t;
|
|
u64 val;
|
|
|
|
again:
|
|
switch (opcode) {
|
|
case BPF_JEQ:
|
|
if (is_jmp32) {
|
|
reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
|
|
reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
|
|
reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
|
|
reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
|
|
reg2->u32_min_value = reg1->u32_min_value;
|
|
reg2->u32_max_value = reg1->u32_max_value;
|
|
reg2->s32_min_value = reg1->s32_min_value;
|
|
reg2->s32_max_value = reg1->s32_max_value;
|
|
|
|
t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
|
|
reg1->var_off = tnum_with_subreg(reg1->var_off, t);
|
|
reg2->var_off = tnum_with_subreg(reg2->var_off, t);
|
|
} else {
|
|
reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
|
|
reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
|
|
reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
|
|
reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
|
|
reg2->umin_value = reg1->umin_value;
|
|
reg2->umax_value = reg1->umax_value;
|
|
reg2->smin_value = reg1->smin_value;
|
|
reg2->smax_value = reg1->smax_value;
|
|
|
|
reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
|
|
reg2->var_off = reg1->var_off;
|
|
}
|
|
break;
|
|
case BPF_JNE:
|
|
/* we don't derive any new information for inequality yet */
|
|
break;
|
|
case BPF_JSET:
|
|
if (!is_reg_const(reg2, is_jmp32))
|
|
swap(reg1, reg2);
|
|
if (!is_reg_const(reg2, is_jmp32))
|
|
break;
|
|
val = reg_const_value(reg2, is_jmp32);
|
|
/* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
|
|
* requires single bit to learn something useful. E.g., if we
|
|
* know that `r1 & 0x3` is true, then which bits (0, 1, or both)
|
|
* are actually set? We can learn something definite only if
|
|
* it's a single-bit value to begin with.
|
|
*
|
|
* BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
|
|
* this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
|
|
* bit 1 is set, which we can readily use in adjustments.
|
|
*/
|
|
if (!is_power_of_2(val))
|
|
break;
|
|
if (is_jmp32) {
|
|
t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
|
|
reg1->var_off = tnum_with_subreg(reg1->var_off, t);
|
|
} else {
|
|
reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
|
|
}
|
|
break;
|
|
case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
|
|
if (!is_reg_const(reg2, is_jmp32))
|
|
swap(reg1, reg2);
|
|
if (!is_reg_const(reg2, is_jmp32))
|
|
break;
|
|
val = reg_const_value(reg2, is_jmp32);
|
|
if (is_jmp32) {
|
|
t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
|
|
reg1->var_off = tnum_with_subreg(reg1->var_off, t);
|
|
} else {
|
|
reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
|
|
}
|
|
break;
|
|
case BPF_JLE:
|
|
if (is_jmp32) {
|
|
reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
|
|
reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
|
|
} else {
|
|
reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
|
|
reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
|
|
}
|
|
break;
|
|
case BPF_JLT:
|
|
if (is_jmp32) {
|
|
reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
|
|
reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
|
|
} else {
|
|
reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
|
|
reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
|
|
}
|
|
break;
|
|
case BPF_JSLE:
|
|
if (is_jmp32) {
|
|
reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
|
|
reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
|
|
} else {
|
|
reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
|
|
reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
|
|
}
|
|
break;
|
|
case BPF_JSLT:
|
|
if (is_jmp32) {
|
|
reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
|
|
reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
|
|
} else {
|
|
reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
|
|
reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
|
|
}
|
|
break;
|
|
case BPF_JGE:
|
|
case BPF_JGT:
|
|
case BPF_JSGE:
|
|
case BPF_JSGT:
|
|
/* just reuse LE/LT logic above */
|
|
opcode = flip_opcode(opcode);
|
|
swap(reg1, reg2);
|
|
goto again;
|
|
default:
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Adjusts the register min/max values in the case that the dst_reg and
|
|
* src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
|
|
* check, in which case we havea fake SCALAR_VALUE representing insn->imm).
|
|
* Technically we can do similar adjustments for pointers to the same object,
|
|
* but we don't support that right now.
|
|
*/
|
|
static int reg_set_min_max(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *true_reg1,
|
|
struct bpf_reg_state *true_reg2,
|
|
struct bpf_reg_state *false_reg1,
|
|
struct bpf_reg_state *false_reg2,
|
|
u8 opcode, bool is_jmp32)
|
|
{
|
|
int err;
|
|
|
|
/* If either register is a pointer, we can't learn anything about its
|
|
* variable offset from the compare (unless they were a pointer into
|
|
* the same object, but we don't bother with that).
|
|
*/
|
|
if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
|
|
return 0;
|
|
|
|
/* fallthrough (FALSE) branch */
|
|
regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
|
|
reg_bounds_sync(false_reg1);
|
|
reg_bounds_sync(false_reg2);
|
|
|
|
/* jump (TRUE) branch */
|
|
regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
|
|
reg_bounds_sync(true_reg1);
|
|
reg_bounds_sync(true_reg2);
|
|
|
|
err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
|
|
err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
|
|
err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
|
|
err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
|
|
return err;
|
|
}
|
|
|
|
static void mark_ptr_or_null_reg(struct bpf_func_state *state,
|
|
struct bpf_reg_state *reg, u32 id,
|
|
bool is_null)
|
|
{
|
|
if (type_may_be_null(reg->type) && reg->id == id &&
|
|
(is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
|
|
/* Old offset (both fixed and variable parts) should have been
|
|
* known-zero, because we don't allow pointer arithmetic on
|
|
* pointers that might be NULL. If we see this happening, don't
|
|
* convert the register.
|
|
*
|
|
* But in some cases, some helpers that return local kptrs
|
|
* advance offset for the returned pointer. In those cases, it
|
|
* is fine to expect to see reg->off.
|
|
*/
|
|
if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
|
|
return;
|
|
if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
|
|
WARN_ON_ONCE(reg->off))
|
|
return;
|
|
|
|
if (is_null) {
|
|
reg->type = SCALAR_VALUE;
|
|
/* We don't need id and ref_obj_id from this point
|
|
* onwards anymore, thus we should better reset it,
|
|
* so that state pruning has chances to take effect.
|
|
*/
|
|
reg->id = 0;
|
|
reg->ref_obj_id = 0;
|
|
|
|
return;
|
|
}
|
|
|
|
mark_ptr_not_null_reg(reg);
|
|
|
|
if (!reg_may_point_to_spin_lock(reg)) {
|
|
/* For not-NULL ptr, reg->ref_obj_id will be reset
|
|
* in release_reference().
|
|
*
|
|
* reg->id is still used by spin_lock ptr. Other
|
|
* than spin_lock ptr type, reg->id can be reset.
|
|
*/
|
|
reg->id = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The logic is similar to find_good_pkt_pointers(), both could eventually
|
|
* be folded together at some point.
|
|
*/
|
|
static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
|
|
bool is_null)
|
|
{
|
|
struct bpf_func_state *state = vstate->frame[vstate->curframe];
|
|
struct bpf_reg_state *regs = state->regs, *reg;
|
|
u32 ref_obj_id = regs[regno].ref_obj_id;
|
|
u32 id = regs[regno].id;
|
|
|
|
if (ref_obj_id && ref_obj_id == id && is_null)
|
|
/* regs[regno] is in the " == NULL" branch.
|
|
* No one could have freed the reference state before
|
|
* doing the NULL check.
|
|
*/
|
|
WARN_ON_ONCE(release_reference_state(state, id));
|
|
|
|
bpf_for_each_reg_in_vstate(vstate, state, reg, ({
|
|
mark_ptr_or_null_reg(state, reg, id, is_null);
|
|
}));
|
|
}
|
|
|
|
static bool try_match_pkt_pointers(const struct bpf_insn *insn,
|
|
struct bpf_reg_state *dst_reg,
|
|
struct bpf_reg_state *src_reg,
|
|
struct bpf_verifier_state *this_branch,
|
|
struct bpf_verifier_state *other_branch)
|
|
{
|
|
if (BPF_SRC(insn->code) != BPF_X)
|
|
return false;
|
|
|
|
/* Pointers are always 64-bit. */
|
|
if (BPF_CLASS(insn->code) == BPF_JMP32)
|
|
return false;
|
|
|
|
switch (BPF_OP(insn->code)) {
|
|
case BPF_JGT:
|
|
if ((dst_reg->type == PTR_TO_PACKET &&
|
|
src_reg->type == PTR_TO_PACKET_END) ||
|
|
(dst_reg->type == PTR_TO_PACKET_META &&
|
|
reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
|
|
/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
|
|
find_good_pkt_pointers(this_branch, dst_reg,
|
|
dst_reg->type, false);
|
|
mark_pkt_end(other_branch, insn->dst_reg, true);
|
|
} else if ((dst_reg->type == PTR_TO_PACKET_END &&
|
|
src_reg->type == PTR_TO_PACKET) ||
|
|
(reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
|
|
src_reg->type == PTR_TO_PACKET_META)) {
|
|
/* pkt_end > pkt_data', pkt_data > pkt_meta' */
|
|
find_good_pkt_pointers(other_branch, src_reg,
|
|
src_reg->type, true);
|
|
mark_pkt_end(this_branch, insn->src_reg, false);
|
|
} else {
|
|
return false;
|
|
}
|
|
break;
|
|
case BPF_JLT:
|
|
if ((dst_reg->type == PTR_TO_PACKET &&
|
|
src_reg->type == PTR_TO_PACKET_END) ||
|
|
(dst_reg->type == PTR_TO_PACKET_META &&
|
|
reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
|
|
/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
|
|
find_good_pkt_pointers(other_branch, dst_reg,
|
|
dst_reg->type, true);
|
|
mark_pkt_end(this_branch, insn->dst_reg, false);
|
|
} else if ((dst_reg->type == PTR_TO_PACKET_END &&
|
|
src_reg->type == PTR_TO_PACKET) ||
|
|
(reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
|
|
src_reg->type == PTR_TO_PACKET_META)) {
|
|
/* pkt_end < pkt_data', pkt_data > pkt_meta' */
|
|
find_good_pkt_pointers(this_branch, src_reg,
|
|
src_reg->type, false);
|
|
mark_pkt_end(other_branch, insn->src_reg, true);
|
|
} else {
|
|
return false;
|
|
}
|
|
break;
|
|
case BPF_JGE:
|
|
if ((dst_reg->type == PTR_TO_PACKET &&
|
|
src_reg->type == PTR_TO_PACKET_END) ||
|
|
(dst_reg->type == PTR_TO_PACKET_META &&
|
|
reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
|
|
/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
|
|
find_good_pkt_pointers(this_branch, dst_reg,
|
|
dst_reg->type, true);
|
|
mark_pkt_end(other_branch, insn->dst_reg, false);
|
|
} else if ((dst_reg->type == PTR_TO_PACKET_END &&
|
|
src_reg->type == PTR_TO_PACKET) ||
|
|
(reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
|
|
src_reg->type == PTR_TO_PACKET_META)) {
|
|
/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
|
|
find_good_pkt_pointers(other_branch, src_reg,
|
|
src_reg->type, false);
|
|
mark_pkt_end(this_branch, insn->src_reg, true);
|
|
} else {
|
|
return false;
|
|
}
|
|
break;
|
|
case BPF_JLE:
|
|
if ((dst_reg->type == PTR_TO_PACKET &&
|
|
src_reg->type == PTR_TO_PACKET_END) ||
|
|
(dst_reg->type == PTR_TO_PACKET_META &&
|
|
reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
|
|
/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
|
|
find_good_pkt_pointers(other_branch, dst_reg,
|
|
dst_reg->type, false);
|
|
mark_pkt_end(this_branch, insn->dst_reg, true);
|
|
} else if ((dst_reg->type == PTR_TO_PACKET_END &&
|
|
src_reg->type == PTR_TO_PACKET) ||
|
|
(reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
|
|
src_reg->type == PTR_TO_PACKET_META)) {
|
|
/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
|
|
find_good_pkt_pointers(this_branch, src_reg,
|
|
src_reg->type, true);
|
|
mark_pkt_end(other_branch, insn->src_reg, false);
|
|
} else {
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void find_equal_scalars(struct bpf_verifier_state *vstate,
|
|
struct bpf_reg_state *known_reg)
|
|
{
|
|
struct bpf_func_state *state;
|
|
struct bpf_reg_state *reg;
|
|
|
|
bpf_for_each_reg_in_vstate(vstate, state, reg, ({
|
|
if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
|
|
copy_register_state(reg, known_reg);
|
|
}));
|
|
}
|
|
|
|
static int check_cond_jmp_op(struct bpf_verifier_env *env,
|
|
struct bpf_insn *insn, int *insn_idx)
|
|
{
|
|
struct bpf_verifier_state *this_branch = env->cur_state;
|
|
struct bpf_verifier_state *other_branch;
|
|
struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
|
|
struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
|
|
struct bpf_reg_state *eq_branch_regs;
|
|
struct bpf_reg_state fake_reg = {};
|
|
u8 opcode = BPF_OP(insn->code);
|
|
bool is_jmp32;
|
|
int pred = -1;
|
|
int err;
|
|
|
|
/* Only conditional jumps are expected to reach here. */
|
|
if (opcode == BPF_JA || opcode > BPF_JSLE) {
|
|
verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* check src2 operand */
|
|
err = check_reg_arg(env, insn->dst_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
dst_reg = ®s[insn->dst_reg];
|
|
if (BPF_SRC(insn->code) == BPF_X) {
|
|
if (insn->imm != 0) {
|
|
verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* check src1 operand */
|
|
err = check_reg_arg(env, insn->src_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
src_reg = ®s[insn->src_reg];
|
|
if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
|
|
is_pointer_value(env, insn->src_reg)) {
|
|
verbose(env, "R%d pointer comparison prohibited\n",
|
|
insn->src_reg);
|
|
return -EACCES;
|
|
}
|
|
} else {
|
|
if (insn->src_reg != BPF_REG_0) {
|
|
verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
src_reg = &fake_reg;
|
|
src_reg->type = SCALAR_VALUE;
|
|
__mark_reg_known(src_reg, insn->imm);
|
|
}
|
|
|
|
is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
|
|
pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
|
|
if (pred >= 0) {
|
|
/* If we get here with a dst_reg pointer type it is because
|
|
* above is_branch_taken() special cased the 0 comparison.
|
|
*/
|
|
if (!__is_pointer_value(false, dst_reg))
|
|
err = mark_chain_precision(env, insn->dst_reg);
|
|
if (BPF_SRC(insn->code) == BPF_X && !err &&
|
|
!__is_pointer_value(false, src_reg))
|
|
err = mark_chain_precision(env, insn->src_reg);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (pred == 1) {
|
|
/* Only follow the goto, ignore fall-through. If needed, push
|
|
* the fall-through branch for simulation under speculative
|
|
* execution.
|
|
*/
|
|
if (!env->bypass_spec_v1 &&
|
|
!sanitize_speculative_path(env, insn, *insn_idx + 1,
|
|
*insn_idx))
|
|
return -EFAULT;
|
|
if (env->log.level & BPF_LOG_LEVEL)
|
|
print_insn_state(env, this_branch->frame[this_branch->curframe]);
|
|
*insn_idx += insn->off;
|
|
return 0;
|
|
} else if (pred == 0) {
|
|
/* Only follow the fall-through branch, since that's where the
|
|
* program will go. If needed, push the goto branch for
|
|
* simulation under speculative execution.
|
|
*/
|
|
if (!env->bypass_spec_v1 &&
|
|
!sanitize_speculative_path(env, insn,
|
|
*insn_idx + insn->off + 1,
|
|
*insn_idx))
|
|
return -EFAULT;
|
|
if (env->log.level & BPF_LOG_LEVEL)
|
|
print_insn_state(env, this_branch->frame[this_branch->curframe]);
|
|
return 0;
|
|
}
|
|
|
|
other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
|
|
false);
|
|
if (!other_branch)
|
|
return -EFAULT;
|
|
other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
|
|
|
|
if (BPF_SRC(insn->code) == BPF_X) {
|
|
err = reg_set_min_max(env,
|
|
&other_branch_regs[insn->dst_reg],
|
|
&other_branch_regs[insn->src_reg],
|
|
dst_reg, src_reg, opcode, is_jmp32);
|
|
} else /* BPF_SRC(insn->code) == BPF_K */ {
|
|
err = reg_set_min_max(env,
|
|
&other_branch_regs[insn->dst_reg],
|
|
src_reg /* fake one */,
|
|
dst_reg, src_reg /* same fake one */,
|
|
opcode, is_jmp32);
|
|
}
|
|
if (err)
|
|
return err;
|
|
|
|
if (BPF_SRC(insn->code) == BPF_X &&
|
|
src_reg->type == SCALAR_VALUE && src_reg->id &&
|
|
!WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
|
|
find_equal_scalars(this_branch, src_reg);
|
|
find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
|
|
}
|
|
if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
|
|
!WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
|
|
find_equal_scalars(this_branch, dst_reg);
|
|
find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
|
|
}
|
|
|
|
/* if one pointer register is compared to another pointer
|
|
* register check if PTR_MAYBE_NULL could be lifted.
|
|
* E.g. register A - maybe null
|
|
* register B - not null
|
|
* for JNE A, B, ... - A is not null in the false branch;
|
|
* for JEQ A, B, ... - A is not null in the true branch.
|
|
*
|
|
* Since PTR_TO_BTF_ID points to a kernel struct that does
|
|
* not need to be null checked by the BPF program, i.e.,
|
|
* could be null even without PTR_MAYBE_NULL marking, so
|
|
* only propagate nullness when neither reg is that type.
|
|
*/
|
|
if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
|
|
__is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
|
|
type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
|
|
base_type(src_reg->type) != PTR_TO_BTF_ID &&
|
|
base_type(dst_reg->type) != PTR_TO_BTF_ID) {
|
|
eq_branch_regs = NULL;
|
|
switch (opcode) {
|
|
case BPF_JEQ:
|
|
eq_branch_regs = other_branch_regs;
|
|
break;
|
|
case BPF_JNE:
|
|
eq_branch_regs = regs;
|
|
break;
|
|
default:
|
|
/* do nothing */
|
|
break;
|
|
}
|
|
if (eq_branch_regs) {
|
|
if (type_may_be_null(src_reg->type))
|
|
mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
|
|
else
|
|
mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
|
|
}
|
|
}
|
|
|
|
/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
|
|
* NOTE: these optimizations below are related with pointer comparison
|
|
* which will never be JMP32.
|
|
*/
|
|
if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
|
|
insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
|
|
type_may_be_null(dst_reg->type)) {
|
|
/* Mark all identical registers in each branch as either
|
|
* safe or unknown depending R == 0 or R != 0 conditional.
|
|
*/
|
|
mark_ptr_or_null_regs(this_branch, insn->dst_reg,
|
|
opcode == BPF_JNE);
|
|
mark_ptr_or_null_regs(other_branch, insn->dst_reg,
|
|
opcode == BPF_JEQ);
|
|
} else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
|
|
this_branch, other_branch) &&
|
|
is_pointer_value(env, insn->dst_reg)) {
|
|
verbose(env, "R%d pointer comparison prohibited\n",
|
|
insn->dst_reg);
|
|
return -EACCES;
|
|
}
|
|
if (env->log.level & BPF_LOG_LEVEL)
|
|
print_insn_state(env, this_branch->frame[this_branch->curframe]);
|
|
return 0;
|
|
}
|
|
|
|
/* verify BPF_LD_IMM64 instruction */
|
|
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
|
|
{
|
|
struct bpf_insn_aux_data *aux = cur_aux(env);
|
|
struct bpf_reg_state *regs = cur_regs(env);
|
|
struct bpf_reg_state *dst_reg;
|
|
struct bpf_map *map;
|
|
int err;
|
|
|
|
if (BPF_SIZE(insn->code) != BPF_DW) {
|
|
verbose(env, "invalid BPF_LD_IMM insn\n");
|
|
return -EINVAL;
|
|
}
|
|
if (insn->off != 0) {
|
|
verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = check_reg_arg(env, insn->dst_reg, DST_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
dst_reg = ®s[insn->dst_reg];
|
|
if (insn->src_reg == 0) {
|
|
u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
|
|
|
|
dst_reg->type = SCALAR_VALUE;
|
|
__mark_reg_known(®s[insn->dst_reg], imm);
|
|
return 0;
|
|
}
|
|
|
|
/* All special src_reg cases are listed below. From this point onwards
|
|
* we either succeed and assign a corresponding dst_reg->type after
|
|
* zeroing the offset, or fail and reject the program.
|
|
*/
|
|
mark_reg_known_zero(env, regs, insn->dst_reg);
|
|
|
|
if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
|
|
dst_reg->type = aux->btf_var.reg_type;
|
|
switch (base_type(dst_reg->type)) {
|
|
case PTR_TO_MEM:
|
|
dst_reg->mem_size = aux->btf_var.mem_size;
|
|
break;
|
|
case PTR_TO_BTF_ID:
|
|
dst_reg->btf = aux->btf_var.btf;
|
|
dst_reg->btf_id = aux->btf_var.btf_id;
|
|
break;
|
|
default:
|
|
verbose(env, "bpf verifier is misconfigured\n");
|
|
return -EFAULT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (insn->src_reg == BPF_PSEUDO_FUNC) {
|
|
struct bpf_prog_aux *aux = env->prog->aux;
|
|
u32 subprogno = find_subprog(env,
|
|
env->insn_idx + insn->imm + 1);
|
|
|
|
if (!aux->func_info) {
|
|
verbose(env, "missing btf func_info\n");
|
|
return -EINVAL;
|
|
}
|
|
if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
|
|
verbose(env, "callback function not static\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dst_reg->type = PTR_TO_FUNC;
|
|
dst_reg->subprogno = subprogno;
|
|
return 0;
|
|
}
|
|
|
|
map = env->used_maps[aux->map_index];
|
|
dst_reg->map_ptr = map;
|
|
|
|
if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
|
|
insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
|
|
dst_reg->type = PTR_TO_MAP_VALUE;
|
|
dst_reg->off = aux->map_off;
|
|
WARN_ON_ONCE(map->max_entries != 1);
|
|
/* We want reg->id to be same (0) as map_value is not distinct */
|
|
} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
|
|
insn->src_reg == BPF_PSEUDO_MAP_IDX) {
|
|
dst_reg->type = CONST_PTR_TO_MAP;
|
|
} else {
|
|
verbose(env, "bpf verifier is misconfigured\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool may_access_skb(enum bpf_prog_type type)
|
|
{
|
|
switch (type) {
|
|
case BPF_PROG_TYPE_SOCKET_FILTER:
|
|
case BPF_PROG_TYPE_SCHED_CLS:
|
|
case BPF_PROG_TYPE_SCHED_ACT:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* verify safety of LD_ABS|LD_IND instructions:
|
|
* - they can only appear in the programs where ctx == skb
|
|
* - since they are wrappers of function calls, they scratch R1-R5 registers,
|
|
* preserve R6-R9, and store return value into R0
|
|
*
|
|
* Implicit input:
|
|
* ctx == skb == R6 == CTX
|
|
*
|
|
* Explicit input:
|
|
* SRC == any register
|
|
* IMM == 32-bit immediate
|
|
*
|
|
* Output:
|
|
* R0 - 8/16/32-bit skb data converted to cpu endianness
|
|
*/
|
|
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
|
|
{
|
|
struct bpf_reg_state *regs = cur_regs(env);
|
|
static const int ctx_reg = BPF_REG_6;
|
|
u8 mode = BPF_MODE(insn->code);
|
|
int i, err;
|
|
|
|
if (!may_access_skb(resolve_prog_type(env->prog))) {
|
|
verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env->ops->gen_ld_abs) {
|
|
verbose(env, "bpf verifier is misconfigured\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
|
|
BPF_SIZE(insn->code) == BPF_DW ||
|
|
(mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
|
|
verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* check whether implicit source operand (register R6) is readable */
|
|
err = check_reg_arg(env, ctx_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
|
|
* gen_ld_abs() may terminate the program at runtime, leading to
|
|
* reference leak.
|
|
*/
|
|
err = check_reference_leak(env, false);
|
|
if (err) {
|
|
verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
|
|
return err;
|
|
}
|
|
|
|
if (env->cur_state->active_lock.ptr) {
|
|
verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (env->cur_state->active_rcu_lock) {
|
|
verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (regs[ctx_reg].type != PTR_TO_CTX) {
|
|
verbose(env,
|
|
"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (mode == BPF_IND) {
|
|
/* check explicit source operand */
|
|
err = check_reg_arg(env, insn->src_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/* reset caller saved regs to unreadable */
|
|
for (i = 0; i < CALLER_SAVED_REGS; i++) {
|
|
mark_reg_not_init(env, regs, caller_saved[i]);
|
|
check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
|
|
}
|
|
|
|
/* mark destination R0 register as readable, since it contains
|
|
* the value fetched from the packet.
|
|
* Already marked as written above.
|
|
*/
|
|
mark_reg_unknown(env, regs, BPF_REG_0);
|
|
/* ld_abs load up to 32-bit skb data. */
|
|
regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
|
|
return 0;
|
|
}
|
|
|
|
static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
|
|
{
|
|
const char *exit_ctx = "At program exit";
|
|
struct tnum enforce_attach_type_range = tnum_unknown;
|
|
const struct bpf_prog *prog = env->prog;
|
|
struct bpf_reg_state *reg;
|
|
struct bpf_retval_range range = retval_range(0, 1);
|
|
enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
|
|
int err;
|
|
struct bpf_func_state *frame = env->cur_state->frame[0];
|
|
const bool is_subprog = frame->subprogno;
|
|
|
|
/* LSM and struct_ops func-ptr's return type could be "void" */
|
|
if (!is_subprog || frame->in_exception_callback_fn) {
|
|
switch (prog_type) {
|
|
case BPF_PROG_TYPE_LSM:
|
|
if (prog->expected_attach_type == BPF_LSM_CGROUP)
|
|
/* See below, can be 0 or 0-1 depending on hook. */
|
|
break;
|
|
fallthrough;
|
|
case BPF_PROG_TYPE_STRUCT_OPS:
|
|
if (!prog->aux->attach_func_proto->type)
|
|
return 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* eBPF calling convention is such that R0 is used
|
|
* to return the value from eBPF program.
|
|
* Make sure that it's readable at this time
|
|
* of bpf_exit, which means that program wrote
|
|
* something into it earlier
|
|
*/
|
|
err = check_reg_arg(env, regno, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
if (is_pointer_value(env, regno)) {
|
|
verbose(env, "R%d leaks addr as return value\n", regno);
|
|
return -EACCES;
|
|
}
|
|
|
|
reg = cur_regs(env) + regno;
|
|
|
|
if (frame->in_async_callback_fn) {
|
|
/* enforce return zero from async callbacks like timer */
|
|
exit_ctx = "At async callback return";
|
|
range = retval_range(0, 0);
|
|
goto enforce_retval;
|
|
}
|
|
|
|
if (is_subprog && !frame->in_exception_callback_fn) {
|
|
if (reg->type != SCALAR_VALUE) {
|
|
verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
|
|
regno, reg_type_str(env, reg->type));
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
switch (prog_type) {
|
|
case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
|
|
if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
|
|
env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
|
|
env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
|
|
env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
|
|
env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
|
|
env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
|
|
env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
|
|
env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
|
|
env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
|
|
range = retval_range(1, 1);
|
|
if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
|
|
env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
|
|
range = retval_range(0, 3);
|
|
break;
|
|
case BPF_PROG_TYPE_CGROUP_SKB:
|
|
if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
|
|
range = retval_range(0, 3);
|
|
enforce_attach_type_range = tnum_range(2, 3);
|
|
}
|
|
break;
|
|
case BPF_PROG_TYPE_CGROUP_SOCK:
|
|
case BPF_PROG_TYPE_SOCK_OPS:
|
|
case BPF_PROG_TYPE_CGROUP_DEVICE:
|
|
case BPF_PROG_TYPE_CGROUP_SYSCTL:
|
|
case BPF_PROG_TYPE_CGROUP_SOCKOPT:
|
|
break;
|
|
case BPF_PROG_TYPE_RAW_TRACEPOINT:
|
|
if (!env->prog->aux->attach_btf_id)
|
|
return 0;
|
|
range = retval_range(0, 0);
|
|
break;
|
|
case BPF_PROG_TYPE_TRACING:
|
|
switch (env->prog->expected_attach_type) {
|
|
case BPF_TRACE_FENTRY:
|
|
case BPF_TRACE_FEXIT:
|
|
range = retval_range(0, 0);
|
|
break;
|
|
case BPF_TRACE_RAW_TP:
|
|
case BPF_MODIFY_RETURN:
|
|
return 0;
|
|
case BPF_TRACE_ITER:
|
|
break;
|
|
default:
|
|
return -ENOTSUPP;
|
|
}
|
|
break;
|
|
case BPF_PROG_TYPE_SK_LOOKUP:
|
|
range = retval_range(SK_DROP, SK_PASS);
|
|
break;
|
|
|
|
case BPF_PROG_TYPE_LSM:
|
|
if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
|
|
/* Regular BPF_PROG_TYPE_LSM programs can return
|
|
* any value.
|
|
*/
|
|
return 0;
|
|
}
|
|
if (!env->prog->aux->attach_func_proto->type) {
|
|
/* Make sure programs that attach to void
|
|
* hooks don't try to modify return value.
|
|
*/
|
|
range = retval_range(1, 1);
|
|
}
|
|
break;
|
|
|
|
case BPF_PROG_TYPE_NETFILTER:
|
|
range = retval_range(NF_DROP, NF_ACCEPT);
|
|
break;
|
|
case BPF_PROG_TYPE_EXT:
|
|
/* freplace program can return anything as its return value
|
|
* depends on the to-be-replaced kernel func or bpf program.
|
|
*/
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
enforce_retval:
|
|
if (reg->type != SCALAR_VALUE) {
|
|
verbose(env, "%s the register R%d is not a known value (%s)\n",
|
|
exit_ctx, regno, reg_type_str(env, reg->type));
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = mark_chain_precision(env, regno);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!retval_range_within(range, reg)) {
|
|
verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
|
|
if (!is_subprog &&
|
|
prog->expected_attach_type == BPF_LSM_CGROUP &&
|
|
prog_type == BPF_PROG_TYPE_LSM &&
|
|
!prog->aux->attach_func_proto->type)
|
|
verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!tnum_is_unknown(enforce_attach_type_range) &&
|
|
tnum_in(enforce_attach_type_range, reg->var_off))
|
|
env->prog->enforce_expected_attach_type = 1;
|
|
return 0;
|
|
}
|
|
|
|
/* non-recursive DFS pseudo code
|
|
* 1 procedure DFS-iterative(G,v):
|
|
* 2 label v as discovered
|
|
* 3 let S be a stack
|
|
* 4 S.push(v)
|
|
* 5 while S is not empty
|
|
* 6 t <- S.peek()
|
|
* 7 if t is what we're looking for:
|
|
* 8 return t
|
|
* 9 for all edges e in G.adjacentEdges(t) do
|
|
* 10 if edge e is already labelled
|
|
* 11 continue with the next edge
|
|
* 12 w <- G.adjacentVertex(t,e)
|
|
* 13 if vertex w is not discovered and not explored
|
|
* 14 label e as tree-edge
|
|
* 15 label w as discovered
|
|
* 16 S.push(w)
|
|
* 17 continue at 5
|
|
* 18 else if vertex w is discovered
|
|
* 19 label e as back-edge
|
|
* 20 else
|
|
* 21 // vertex w is explored
|
|
* 22 label e as forward- or cross-edge
|
|
* 23 label t as explored
|
|
* 24 S.pop()
|
|
*
|
|
* convention:
|
|
* 0x10 - discovered
|
|
* 0x11 - discovered and fall-through edge labelled
|
|
* 0x12 - discovered and fall-through and branch edges labelled
|
|
* 0x20 - explored
|
|
*/
|
|
|
|
enum {
|
|
DISCOVERED = 0x10,
|
|
EXPLORED = 0x20,
|
|
FALLTHROUGH = 1,
|
|
BRANCH = 2,
|
|
};
|
|
|
|
static void mark_prune_point(struct bpf_verifier_env *env, int idx)
|
|
{
|
|
env->insn_aux_data[idx].prune_point = true;
|
|
}
|
|
|
|
static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
|
|
{
|
|
return env->insn_aux_data[insn_idx].prune_point;
|
|
}
|
|
|
|
static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
|
|
{
|
|
env->insn_aux_data[idx].force_checkpoint = true;
|
|
}
|
|
|
|
static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
|
|
{
|
|
return env->insn_aux_data[insn_idx].force_checkpoint;
|
|
}
|
|
|
|
static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
|
|
{
|
|
env->insn_aux_data[idx].calls_callback = true;
|
|
}
|
|
|
|
static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
|
|
{
|
|
return env->insn_aux_data[insn_idx].calls_callback;
|
|
}
|
|
|
|
enum {
|
|
DONE_EXPLORING = 0,
|
|
KEEP_EXPLORING = 1,
|
|
};
|
|
|
|
/* t, w, e - match pseudo-code above:
|
|
* t - index of current instruction
|
|
* w - next instruction
|
|
* e - edge
|
|
*/
|
|
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
|
|
{
|
|
int *insn_stack = env->cfg.insn_stack;
|
|
int *insn_state = env->cfg.insn_state;
|
|
|
|
if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
|
|
return DONE_EXPLORING;
|
|
|
|
if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
|
|
return DONE_EXPLORING;
|
|
|
|
if (w < 0 || w >= env->prog->len) {
|
|
verbose_linfo(env, t, "%d: ", t);
|
|
verbose(env, "jump out of range from insn %d to %d\n", t, w);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (e == BRANCH) {
|
|
/* mark branch target for state pruning */
|
|
mark_prune_point(env, w);
|
|
mark_jmp_point(env, w);
|
|
}
|
|
|
|
if (insn_state[w] == 0) {
|
|
/* tree-edge */
|
|
insn_state[t] = DISCOVERED | e;
|
|
insn_state[w] = DISCOVERED;
|
|
if (env->cfg.cur_stack >= env->prog->len)
|
|
return -E2BIG;
|
|
insn_stack[env->cfg.cur_stack++] = w;
|
|
return KEEP_EXPLORING;
|
|
} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
|
|
if (env->bpf_capable)
|
|
return DONE_EXPLORING;
|
|
verbose_linfo(env, t, "%d: ", t);
|
|
verbose_linfo(env, w, "%d: ", w);
|
|
verbose(env, "back-edge from insn %d to %d\n", t, w);
|
|
return -EINVAL;
|
|
} else if (insn_state[w] == EXPLORED) {
|
|
/* forward- or cross-edge */
|
|
insn_state[t] = DISCOVERED | e;
|
|
} else {
|
|
verbose(env, "insn state internal bug\n");
|
|
return -EFAULT;
|
|
}
|
|
return DONE_EXPLORING;
|
|
}
|
|
|
|
static int visit_func_call_insn(int t, struct bpf_insn *insns,
|
|
struct bpf_verifier_env *env,
|
|
bool visit_callee)
|
|
{
|
|
int ret, insn_sz;
|
|
|
|
insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
|
|
ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mark_prune_point(env, t + insn_sz);
|
|
/* when we exit from subprog, we need to record non-linear history */
|
|
mark_jmp_point(env, t + insn_sz);
|
|
|
|
if (visit_callee) {
|
|
mark_prune_point(env, t);
|
|
ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Visits the instruction at index t and returns one of the following:
|
|
* < 0 - an error occurred
|
|
* DONE_EXPLORING - the instruction was fully explored
|
|
* KEEP_EXPLORING - there is still work to be done before it is fully explored
|
|
*/
|
|
static int visit_insn(int t, struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
|
|
int ret, off, insn_sz;
|
|
|
|
if (bpf_pseudo_func(insn))
|
|
return visit_func_call_insn(t, insns, env, true);
|
|
|
|
/* All non-branch instructions have a single fall-through edge. */
|
|
if (BPF_CLASS(insn->code) != BPF_JMP &&
|
|
BPF_CLASS(insn->code) != BPF_JMP32) {
|
|
insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
|
|
return push_insn(t, t + insn_sz, FALLTHROUGH, env);
|
|
}
|
|
|
|
switch (BPF_OP(insn->code)) {
|
|
case BPF_EXIT:
|
|
return DONE_EXPLORING;
|
|
|
|
case BPF_CALL:
|
|
if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
|
|
/* Mark this call insn as a prune point to trigger
|
|
* is_state_visited() check before call itself is
|
|
* processed by __check_func_call(). Otherwise new
|
|
* async state will be pushed for further exploration.
|
|
*/
|
|
mark_prune_point(env, t);
|
|
/* For functions that invoke callbacks it is not known how many times
|
|
* callback would be called. Verifier models callback calling functions
|
|
* by repeatedly visiting callback bodies and returning to origin call
|
|
* instruction.
|
|
* In order to stop such iteration verifier needs to identify when a
|
|
* state identical some state from a previous iteration is reached.
|
|
* Check below forces creation of checkpoint before callback calling
|
|
* instruction to allow search for such identical states.
|
|
*/
|
|
if (is_sync_callback_calling_insn(insn)) {
|
|
mark_calls_callback(env, t);
|
|
mark_force_checkpoint(env, t);
|
|
mark_prune_point(env, t);
|
|
mark_jmp_point(env, t);
|
|
}
|
|
if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
|
|
struct bpf_kfunc_call_arg_meta meta;
|
|
|
|
ret = fetch_kfunc_meta(env, insn, &meta, NULL);
|
|
if (ret == 0 && is_iter_next_kfunc(&meta)) {
|
|
mark_prune_point(env, t);
|
|
/* Checking and saving state checkpoints at iter_next() call
|
|
* is crucial for fast convergence of open-coded iterator loop
|
|
* logic, so we need to force it. If we don't do that,
|
|
* is_state_visited() might skip saving a checkpoint, causing
|
|
* unnecessarily long sequence of not checkpointed
|
|
* instructions and jumps, leading to exhaustion of jump
|
|
* history buffer, and potentially other undesired outcomes.
|
|
* It is expected that with correct open-coded iterators
|
|
* convergence will happen quickly, so we don't run a risk of
|
|
* exhausting memory.
|
|
*/
|
|
mark_force_checkpoint(env, t);
|
|
}
|
|
}
|
|
return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
|
|
|
|
case BPF_JA:
|
|
if (BPF_SRC(insn->code) != BPF_K)
|
|
return -EINVAL;
|
|
|
|
if (BPF_CLASS(insn->code) == BPF_JMP)
|
|
off = insn->off;
|
|
else
|
|
off = insn->imm;
|
|
|
|
/* unconditional jump with single edge */
|
|
ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mark_prune_point(env, t + off + 1);
|
|
mark_jmp_point(env, t + off + 1);
|
|
|
|
return ret;
|
|
|
|
default:
|
|
/* conditional jump with two edges */
|
|
mark_prune_point(env, t);
|
|
|
|
ret = push_insn(t, t + 1, FALLTHROUGH, env);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return push_insn(t, t + insn->off + 1, BRANCH, env);
|
|
}
|
|
}
|
|
|
|
/* non-recursive depth-first-search to detect loops in BPF program
|
|
* loop == back-edge in directed graph
|
|
*/
|
|
static int check_cfg(struct bpf_verifier_env *env)
|
|
{
|
|
int insn_cnt = env->prog->len;
|
|
int *insn_stack, *insn_state;
|
|
int ex_insn_beg, i, ret = 0;
|
|
bool ex_done = false;
|
|
|
|
insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
|
|
if (!insn_state)
|
|
return -ENOMEM;
|
|
|
|
insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
|
|
if (!insn_stack) {
|
|
kvfree(insn_state);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
|
|
insn_stack[0] = 0; /* 0 is the first instruction */
|
|
env->cfg.cur_stack = 1;
|
|
|
|
walk_cfg:
|
|
while (env->cfg.cur_stack > 0) {
|
|
int t = insn_stack[env->cfg.cur_stack - 1];
|
|
|
|
ret = visit_insn(t, env);
|
|
switch (ret) {
|
|
case DONE_EXPLORING:
|
|
insn_state[t] = EXPLORED;
|
|
env->cfg.cur_stack--;
|
|
break;
|
|
case KEEP_EXPLORING:
|
|
break;
|
|
default:
|
|
if (ret > 0) {
|
|
verbose(env, "visit_insn internal bug\n");
|
|
ret = -EFAULT;
|
|
}
|
|
goto err_free;
|
|
}
|
|
}
|
|
|
|
if (env->cfg.cur_stack < 0) {
|
|
verbose(env, "pop stack internal bug\n");
|
|
ret = -EFAULT;
|
|
goto err_free;
|
|
}
|
|
|
|
if (env->exception_callback_subprog && !ex_done) {
|
|
ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
|
|
|
|
insn_state[ex_insn_beg] = DISCOVERED;
|
|
insn_stack[0] = ex_insn_beg;
|
|
env->cfg.cur_stack = 1;
|
|
ex_done = true;
|
|
goto walk_cfg;
|
|
}
|
|
|
|
for (i = 0; i < insn_cnt; i++) {
|
|
struct bpf_insn *insn = &env->prog->insnsi[i];
|
|
|
|
if (insn_state[i] != EXPLORED) {
|
|
verbose(env, "unreachable insn %d\n", i);
|
|
ret = -EINVAL;
|
|
goto err_free;
|
|
}
|
|
if (bpf_is_ldimm64(insn)) {
|
|
if (insn_state[i + 1] != 0) {
|
|
verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
|
|
ret = -EINVAL;
|
|
goto err_free;
|
|
}
|
|
i++; /* skip second half of ldimm64 */
|
|
}
|
|
}
|
|
ret = 0; /* cfg looks good */
|
|
|
|
err_free:
|
|
kvfree(insn_state);
|
|
kvfree(insn_stack);
|
|
env->cfg.insn_state = env->cfg.insn_stack = NULL;
|
|
return ret;
|
|
}
|
|
|
|
static int check_abnormal_return(struct bpf_verifier_env *env)
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; i < env->subprog_cnt; i++) {
|
|
if (env->subprog_info[i].has_ld_abs) {
|
|
verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
|
|
return -EINVAL;
|
|
}
|
|
if (env->subprog_info[i].has_tail_call) {
|
|
verbose(env, "tail_call is not allowed in subprogs without BTF\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* The minimum supported BTF func info size */
|
|
#define MIN_BPF_FUNCINFO_SIZE 8
|
|
#define MAX_FUNCINFO_REC_SIZE 252
|
|
|
|
static int check_btf_func_early(struct bpf_verifier_env *env,
|
|
const union bpf_attr *attr,
|
|
bpfptr_t uattr)
|
|
{
|
|
u32 krec_size = sizeof(struct bpf_func_info);
|
|
const struct btf_type *type, *func_proto;
|
|
u32 i, nfuncs, urec_size, min_size;
|
|
struct bpf_func_info *krecord;
|
|
struct bpf_prog *prog;
|
|
const struct btf *btf;
|
|
u32 prev_offset = 0;
|
|
bpfptr_t urecord;
|
|
int ret = -ENOMEM;
|
|
|
|
nfuncs = attr->func_info_cnt;
|
|
if (!nfuncs) {
|
|
if (check_abnormal_return(env))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
urec_size = attr->func_info_rec_size;
|
|
if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
|
|
urec_size > MAX_FUNCINFO_REC_SIZE ||
|
|
urec_size % sizeof(u32)) {
|
|
verbose(env, "invalid func info rec size %u\n", urec_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
prog = env->prog;
|
|
btf = prog->aux->btf;
|
|
|
|
urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
|
|
min_size = min_t(u32, krec_size, urec_size);
|
|
|
|
krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
|
|
if (!krecord)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < nfuncs; i++) {
|
|
ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
|
|
if (ret) {
|
|
if (ret == -E2BIG) {
|
|
verbose(env, "nonzero tailing record in func info");
|
|
/* set the size kernel expects so loader can zero
|
|
* out the rest of the record.
|
|
*/
|
|
if (copy_to_bpfptr_offset(uattr,
|
|
offsetof(union bpf_attr, func_info_rec_size),
|
|
&min_size, sizeof(min_size)))
|
|
ret = -EFAULT;
|
|
}
|
|
goto err_free;
|
|
}
|
|
|
|
if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
|
|
ret = -EFAULT;
|
|
goto err_free;
|
|
}
|
|
|
|
/* check insn_off */
|
|
ret = -EINVAL;
|
|
if (i == 0) {
|
|
if (krecord[i].insn_off) {
|
|
verbose(env,
|
|
"nonzero insn_off %u for the first func info record",
|
|
krecord[i].insn_off);
|
|
goto err_free;
|
|
}
|
|
} else if (krecord[i].insn_off <= prev_offset) {
|
|
verbose(env,
|
|
"same or smaller insn offset (%u) than previous func info record (%u)",
|
|
krecord[i].insn_off, prev_offset);
|
|
goto err_free;
|
|
}
|
|
|
|
/* check type_id */
|
|
type = btf_type_by_id(btf, krecord[i].type_id);
|
|
if (!type || !btf_type_is_func(type)) {
|
|
verbose(env, "invalid type id %d in func info",
|
|
krecord[i].type_id);
|
|
goto err_free;
|
|
}
|
|
|
|
func_proto = btf_type_by_id(btf, type->type);
|
|
if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
|
|
/* btf_func_check() already verified it during BTF load */
|
|
goto err_free;
|
|
|
|
prev_offset = krecord[i].insn_off;
|
|
bpfptr_add(&urecord, urec_size);
|
|
}
|
|
|
|
prog->aux->func_info = krecord;
|
|
prog->aux->func_info_cnt = nfuncs;
|
|
return 0;
|
|
|
|
err_free:
|
|
kvfree(krecord);
|
|
return ret;
|
|
}
|
|
|
|
static int check_btf_func(struct bpf_verifier_env *env,
|
|
const union bpf_attr *attr,
|
|
bpfptr_t uattr)
|
|
{
|
|
const struct btf_type *type, *func_proto, *ret_type;
|
|
u32 i, nfuncs, urec_size;
|
|
struct bpf_func_info *krecord;
|
|
struct bpf_func_info_aux *info_aux = NULL;
|
|
struct bpf_prog *prog;
|
|
const struct btf *btf;
|
|
bpfptr_t urecord;
|
|
bool scalar_return;
|
|
int ret = -ENOMEM;
|
|
|
|
nfuncs = attr->func_info_cnt;
|
|
if (!nfuncs) {
|
|
if (check_abnormal_return(env))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
if (nfuncs != env->subprog_cnt) {
|
|
verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
urec_size = attr->func_info_rec_size;
|
|
|
|
prog = env->prog;
|
|
btf = prog->aux->btf;
|
|
|
|
urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
|
|
|
|
krecord = prog->aux->func_info;
|
|
info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!info_aux)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < nfuncs; i++) {
|
|
/* check insn_off */
|
|
ret = -EINVAL;
|
|
|
|
if (env->subprog_info[i].start != krecord[i].insn_off) {
|
|
verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
|
|
goto err_free;
|
|
}
|
|
|
|
/* Already checked type_id */
|
|
type = btf_type_by_id(btf, krecord[i].type_id);
|
|
info_aux[i].linkage = BTF_INFO_VLEN(type->info);
|
|
/* Already checked func_proto */
|
|
func_proto = btf_type_by_id(btf, type->type);
|
|
|
|
ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
|
|
scalar_return =
|
|
btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
|
|
if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
|
|
verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
|
|
goto err_free;
|
|
}
|
|
if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
|
|
verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
|
|
goto err_free;
|
|
}
|
|
|
|
bpfptr_add(&urecord, urec_size);
|
|
}
|
|
|
|
prog->aux->func_info_aux = info_aux;
|
|
return 0;
|
|
|
|
err_free:
|
|
kfree(info_aux);
|
|
return ret;
|
|
}
|
|
|
|
static void adjust_btf_func(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_prog_aux *aux = env->prog->aux;
|
|
int i;
|
|
|
|
if (!aux->func_info)
|
|
return;
|
|
|
|
/* func_info is not available for hidden subprogs */
|
|
for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
|
|
aux->func_info[i].insn_off = env->subprog_info[i].start;
|
|
}
|
|
|
|
#define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
|
|
#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
|
|
|
|
static int check_btf_line(struct bpf_verifier_env *env,
|
|
const union bpf_attr *attr,
|
|
bpfptr_t uattr)
|
|
{
|
|
u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
|
|
struct bpf_subprog_info *sub;
|
|
struct bpf_line_info *linfo;
|
|
struct bpf_prog *prog;
|
|
const struct btf *btf;
|
|
bpfptr_t ulinfo;
|
|
int err;
|
|
|
|
nr_linfo = attr->line_info_cnt;
|
|
if (!nr_linfo)
|
|
return 0;
|
|
if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
|
|
return -EINVAL;
|
|
|
|
rec_size = attr->line_info_rec_size;
|
|
if (rec_size < MIN_BPF_LINEINFO_SIZE ||
|
|
rec_size > MAX_LINEINFO_REC_SIZE ||
|
|
rec_size & (sizeof(u32) - 1))
|
|
return -EINVAL;
|
|
|
|
/* Need to zero it in case the userspace may
|
|
* pass in a smaller bpf_line_info object.
|
|
*/
|
|
linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!linfo)
|
|
return -ENOMEM;
|
|
|
|
prog = env->prog;
|
|
btf = prog->aux->btf;
|
|
|
|
s = 0;
|
|
sub = env->subprog_info;
|
|
ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
|
|
expected_size = sizeof(struct bpf_line_info);
|
|
ncopy = min_t(u32, expected_size, rec_size);
|
|
for (i = 0; i < nr_linfo; i++) {
|
|
err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
|
|
if (err) {
|
|
if (err == -E2BIG) {
|
|
verbose(env, "nonzero tailing record in line_info");
|
|
if (copy_to_bpfptr_offset(uattr,
|
|
offsetof(union bpf_attr, line_info_rec_size),
|
|
&expected_size, sizeof(expected_size)))
|
|
err = -EFAULT;
|
|
}
|
|
goto err_free;
|
|
}
|
|
|
|
if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
|
|
err = -EFAULT;
|
|
goto err_free;
|
|
}
|
|
|
|
/*
|
|
* Check insn_off to ensure
|
|
* 1) strictly increasing AND
|
|
* 2) bounded by prog->len
|
|
*
|
|
* The linfo[0].insn_off == 0 check logically falls into
|
|
* the later "missing bpf_line_info for func..." case
|
|
* because the first linfo[0].insn_off must be the
|
|
* first sub also and the first sub must have
|
|
* subprog_info[0].start == 0.
|
|
*/
|
|
if ((i && linfo[i].insn_off <= prev_offset) ||
|
|
linfo[i].insn_off >= prog->len) {
|
|
verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
|
|
i, linfo[i].insn_off, prev_offset,
|
|
prog->len);
|
|
err = -EINVAL;
|
|
goto err_free;
|
|
}
|
|
|
|
if (!prog->insnsi[linfo[i].insn_off].code) {
|
|
verbose(env,
|
|
"Invalid insn code at line_info[%u].insn_off\n",
|
|
i);
|
|
err = -EINVAL;
|
|
goto err_free;
|
|
}
|
|
|
|
if (!btf_name_by_offset(btf, linfo[i].line_off) ||
|
|
!btf_name_by_offset(btf, linfo[i].file_name_off)) {
|
|
verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
|
|
err = -EINVAL;
|
|
goto err_free;
|
|
}
|
|
|
|
if (s != env->subprog_cnt) {
|
|
if (linfo[i].insn_off == sub[s].start) {
|
|
sub[s].linfo_idx = i;
|
|
s++;
|
|
} else if (sub[s].start < linfo[i].insn_off) {
|
|
verbose(env, "missing bpf_line_info for func#%u\n", s);
|
|
err = -EINVAL;
|
|
goto err_free;
|
|
}
|
|
}
|
|
|
|
prev_offset = linfo[i].insn_off;
|
|
bpfptr_add(&ulinfo, rec_size);
|
|
}
|
|
|
|
if (s != env->subprog_cnt) {
|
|
verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
|
|
env->subprog_cnt - s, s);
|
|
err = -EINVAL;
|
|
goto err_free;
|
|
}
|
|
|
|
prog->aux->linfo = linfo;
|
|
prog->aux->nr_linfo = nr_linfo;
|
|
|
|
return 0;
|
|
|
|
err_free:
|
|
kvfree(linfo);
|
|
return err;
|
|
}
|
|
|
|
#define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
|
|
#define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
|
|
|
|
static int check_core_relo(struct bpf_verifier_env *env,
|
|
const union bpf_attr *attr,
|
|
bpfptr_t uattr)
|
|
{
|
|
u32 i, nr_core_relo, ncopy, expected_size, rec_size;
|
|
struct bpf_core_relo core_relo = {};
|
|
struct bpf_prog *prog = env->prog;
|
|
const struct btf *btf = prog->aux->btf;
|
|
struct bpf_core_ctx ctx = {
|
|
.log = &env->log,
|
|
.btf = btf,
|
|
};
|
|
bpfptr_t u_core_relo;
|
|
int err;
|
|
|
|
nr_core_relo = attr->core_relo_cnt;
|
|
if (!nr_core_relo)
|
|
return 0;
|
|
if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
|
|
return -EINVAL;
|
|
|
|
rec_size = attr->core_relo_rec_size;
|
|
if (rec_size < MIN_CORE_RELO_SIZE ||
|
|
rec_size > MAX_CORE_RELO_SIZE ||
|
|
rec_size % sizeof(u32))
|
|
return -EINVAL;
|
|
|
|
u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
|
|
expected_size = sizeof(struct bpf_core_relo);
|
|
ncopy = min_t(u32, expected_size, rec_size);
|
|
|
|
/* Unlike func_info and line_info, copy and apply each CO-RE
|
|
* relocation record one at a time.
|
|
*/
|
|
for (i = 0; i < nr_core_relo; i++) {
|
|
/* future proofing when sizeof(bpf_core_relo) changes */
|
|
err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
|
|
if (err) {
|
|
if (err == -E2BIG) {
|
|
verbose(env, "nonzero tailing record in core_relo");
|
|
if (copy_to_bpfptr_offset(uattr,
|
|
offsetof(union bpf_attr, core_relo_rec_size),
|
|
&expected_size, sizeof(expected_size)))
|
|
err = -EFAULT;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
|
|
err = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
|
|
verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
|
|
i, core_relo.insn_off, prog->len);
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
err = bpf_core_apply(&ctx, &core_relo, i,
|
|
&prog->insnsi[core_relo.insn_off / 8]);
|
|
if (err)
|
|
break;
|
|
bpfptr_add(&u_core_relo, rec_size);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int check_btf_info_early(struct bpf_verifier_env *env,
|
|
const union bpf_attr *attr,
|
|
bpfptr_t uattr)
|
|
{
|
|
struct btf *btf;
|
|
int err;
|
|
|
|
if (!attr->func_info_cnt && !attr->line_info_cnt) {
|
|
if (check_abnormal_return(env))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
btf = btf_get_by_fd(attr->prog_btf_fd);
|
|
if (IS_ERR(btf))
|
|
return PTR_ERR(btf);
|
|
if (btf_is_kernel(btf)) {
|
|
btf_put(btf);
|
|
return -EACCES;
|
|
}
|
|
env->prog->aux->btf = btf;
|
|
|
|
err = check_btf_func_early(env, attr, uattr);
|
|
if (err)
|
|
return err;
|
|
return 0;
|
|
}
|
|
|
|
static int check_btf_info(struct bpf_verifier_env *env,
|
|
const union bpf_attr *attr,
|
|
bpfptr_t uattr)
|
|
{
|
|
int err;
|
|
|
|
if (!attr->func_info_cnt && !attr->line_info_cnt) {
|
|
if (check_abnormal_return(env))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
err = check_btf_func(env, attr, uattr);
|
|
if (err)
|
|
return err;
|
|
|
|
err = check_btf_line(env, attr, uattr);
|
|
if (err)
|
|
return err;
|
|
|
|
err = check_core_relo(env, attr, uattr);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* check %cur's range satisfies %old's */
|
|
static bool range_within(struct bpf_reg_state *old,
|
|
struct bpf_reg_state *cur)
|
|
{
|
|
return old->umin_value <= cur->umin_value &&
|
|
old->umax_value >= cur->umax_value &&
|
|
old->smin_value <= cur->smin_value &&
|
|
old->smax_value >= cur->smax_value &&
|
|
old->u32_min_value <= cur->u32_min_value &&
|
|
old->u32_max_value >= cur->u32_max_value &&
|
|
old->s32_min_value <= cur->s32_min_value &&
|
|
old->s32_max_value >= cur->s32_max_value;
|
|
}
|
|
|
|
/* If in the old state two registers had the same id, then they need to have
|
|
* the same id in the new state as well. But that id could be different from
|
|
* the old state, so we need to track the mapping from old to new ids.
|
|
* Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
|
|
* regs with old id 5 must also have new id 9 for the new state to be safe. But
|
|
* regs with a different old id could still have new id 9, we don't care about
|
|
* that.
|
|
* So we look through our idmap to see if this old id has been seen before. If
|
|
* so, we require the new id to match; otherwise, we add the id pair to the map.
|
|
*/
|
|
static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
|
|
{
|
|
struct bpf_id_pair *map = idmap->map;
|
|
unsigned int i;
|
|
|
|
/* either both IDs should be set or both should be zero */
|
|
if (!!old_id != !!cur_id)
|
|
return false;
|
|
|
|
if (old_id == 0) /* cur_id == 0 as well */
|
|
return true;
|
|
|
|
for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
|
|
if (!map[i].old) {
|
|
/* Reached an empty slot; haven't seen this id before */
|
|
map[i].old = old_id;
|
|
map[i].cur = cur_id;
|
|
return true;
|
|
}
|
|
if (map[i].old == old_id)
|
|
return map[i].cur == cur_id;
|
|
if (map[i].cur == cur_id)
|
|
return false;
|
|
}
|
|
/* We ran out of idmap slots, which should be impossible */
|
|
WARN_ON_ONCE(1);
|
|
return false;
|
|
}
|
|
|
|
/* Similar to check_ids(), but allocate a unique temporary ID
|
|
* for 'old_id' or 'cur_id' of zero.
|
|
* This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
|
|
*/
|
|
static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
|
|
{
|
|
old_id = old_id ? old_id : ++idmap->tmp_id_gen;
|
|
cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
|
|
|
|
return check_ids(old_id, cur_id, idmap);
|
|
}
|
|
|
|
static void clean_func_state(struct bpf_verifier_env *env,
|
|
struct bpf_func_state *st)
|
|
{
|
|
enum bpf_reg_liveness live;
|
|
int i, j;
|
|
|
|
for (i = 0; i < BPF_REG_FP; i++) {
|
|
live = st->regs[i].live;
|
|
/* liveness must not touch this register anymore */
|
|
st->regs[i].live |= REG_LIVE_DONE;
|
|
if (!(live & REG_LIVE_READ))
|
|
/* since the register is unused, clear its state
|
|
* to make further comparison simpler
|
|
*/
|
|
__mark_reg_not_init(env, &st->regs[i]);
|
|
}
|
|
|
|
for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
|
|
live = st->stack[i].spilled_ptr.live;
|
|
/* liveness must not touch this stack slot anymore */
|
|
st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
|
|
if (!(live & REG_LIVE_READ)) {
|
|
__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
|
|
for (j = 0; j < BPF_REG_SIZE; j++)
|
|
st->stack[i].slot_type[j] = STACK_INVALID;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void clean_verifier_state(struct bpf_verifier_env *env,
|
|
struct bpf_verifier_state *st)
|
|
{
|
|
int i;
|
|
|
|
if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
|
|
/* all regs in this state in all frames were already marked */
|
|
return;
|
|
|
|
for (i = 0; i <= st->curframe; i++)
|
|
clean_func_state(env, st->frame[i]);
|
|
}
|
|
|
|
/* the parentage chains form a tree.
|
|
* the verifier states are added to state lists at given insn and
|
|
* pushed into state stack for future exploration.
|
|
* when the verifier reaches bpf_exit insn some of the verifer states
|
|
* stored in the state lists have their final liveness state already,
|
|
* but a lot of states will get revised from liveness point of view when
|
|
* the verifier explores other branches.
|
|
* Example:
|
|
* 1: r0 = 1
|
|
* 2: if r1 == 100 goto pc+1
|
|
* 3: r0 = 2
|
|
* 4: exit
|
|
* when the verifier reaches exit insn the register r0 in the state list of
|
|
* insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
|
|
* of insn 2 and goes exploring further. At the insn 4 it will walk the
|
|
* parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
|
|
*
|
|
* Since the verifier pushes the branch states as it sees them while exploring
|
|
* the program the condition of walking the branch instruction for the second
|
|
* time means that all states below this branch were already explored and
|
|
* their final liveness marks are already propagated.
|
|
* Hence when the verifier completes the search of state list in is_state_visited()
|
|
* we can call this clean_live_states() function to mark all liveness states
|
|
* as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
|
|
* will not be used.
|
|
* This function also clears the registers and stack for states that !READ
|
|
* to simplify state merging.
|
|
*
|
|
* Important note here that walking the same branch instruction in the callee
|
|
* doesn't meant that the states are DONE. The verifier has to compare
|
|
* the callsites
|
|
*/
|
|
static void clean_live_states(struct bpf_verifier_env *env, int insn,
|
|
struct bpf_verifier_state *cur)
|
|
{
|
|
struct bpf_verifier_state_list *sl;
|
|
|
|
sl = *explored_state(env, insn);
|
|
while (sl) {
|
|
if (sl->state.branches)
|
|
goto next;
|
|
if (sl->state.insn_idx != insn ||
|
|
!same_callsites(&sl->state, cur))
|
|
goto next;
|
|
clean_verifier_state(env, &sl->state);
|
|
next:
|
|
sl = sl->next;
|
|
}
|
|
}
|
|
|
|
static bool regs_exact(const struct bpf_reg_state *rold,
|
|
const struct bpf_reg_state *rcur,
|
|
struct bpf_idmap *idmap)
|
|
{
|
|
return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
|
|
check_ids(rold->id, rcur->id, idmap) &&
|
|
check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
|
|
}
|
|
|
|
/* Returns true if (rold safe implies rcur safe) */
|
|
static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
|
|
struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact)
|
|
{
|
|
if (exact)
|
|
return regs_exact(rold, rcur, idmap);
|
|
|
|
if (!(rold->live & REG_LIVE_READ))
|
|
/* explored state didn't use this */
|
|
return true;
|
|
if (rold->type == NOT_INIT)
|
|
/* explored state can't have used this */
|
|
return true;
|
|
if (rcur->type == NOT_INIT)
|
|
return false;
|
|
|
|
/* Enforce that register types have to match exactly, including their
|
|
* modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
|
|
* rule.
|
|
*
|
|
* One can make a point that using a pointer register as unbounded
|
|
* SCALAR would be technically acceptable, but this could lead to
|
|
* pointer leaks because scalars are allowed to leak while pointers
|
|
* are not. We could make this safe in special cases if root is
|
|
* calling us, but it's probably not worth the hassle.
|
|
*
|
|
* Also, register types that are *not* MAYBE_NULL could technically be
|
|
* safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
|
|
* is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
|
|
* to the same map).
|
|
* However, if the old MAYBE_NULL register then got NULL checked,
|
|
* doing so could have affected others with the same id, and we can't
|
|
* check for that because we lost the id when we converted to
|
|
* a non-MAYBE_NULL variant.
|
|
* So, as a general rule we don't allow mixing MAYBE_NULL and
|
|
* non-MAYBE_NULL registers as well.
|
|
*/
|
|
if (rold->type != rcur->type)
|
|
return false;
|
|
|
|
switch (base_type(rold->type)) {
|
|
case SCALAR_VALUE:
|
|
if (env->explore_alu_limits) {
|
|
/* explore_alu_limits disables tnum_in() and range_within()
|
|
* logic and requires everything to be strict
|
|
*/
|
|
return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
|
|
check_scalar_ids(rold->id, rcur->id, idmap);
|
|
}
|
|
if (!rold->precise)
|
|
return true;
|
|
/* Why check_ids() for scalar registers?
|
|
*
|
|
* Consider the following BPF code:
|
|
* 1: r6 = ... unbound scalar, ID=a ...
|
|
* 2: r7 = ... unbound scalar, ID=b ...
|
|
* 3: if (r6 > r7) goto +1
|
|
* 4: r6 = r7
|
|
* 5: if (r6 > X) goto ...
|
|
* 6: ... memory operation using r7 ...
|
|
*
|
|
* First verification path is [1-6]:
|
|
* - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
|
|
* - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
|
|
* r7 <= X, because r6 and r7 share same id.
|
|
* Next verification path is [1-4, 6].
|
|
*
|
|
* Instruction (6) would be reached in two states:
|
|
* I. r6{.id=b}, r7{.id=b} via path 1-6;
|
|
* II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
|
|
*
|
|
* Use check_ids() to distinguish these states.
|
|
* ---
|
|
* Also verify that new value satisfies old value range knowledge.
|
|
*/
|
|
return range_within(rold, rcur) &&
|
|
tnum_in(rold->var_off, rcur->var_off) &&
|
|
check_scalar_ids(rold->id, rcur->id, idmap);
|
|
case PTR_TO_MAP_KEY:
|
|
case PTR_TO_MAP_VALUE:
|
|
case PTR_TO_MEM:
|
|
case PTR_TO_BUF:
|
|
case PTR_TO_TP_BUFFER:
|
|
/* If the new min/max/var_off satisfy the old ones and
|
|
* everything else matches, we are OK.
|
|
*/
|
|
return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
|
|
range_within(rold, rcur) &&
|
|
tnum_in(rold->var_off, rcur->var_off) &&
|
|
check_ids(rold->id, rcur->id, idmap) &&
|
|
check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
|
|
case PTR_TO_PACKET_META:
|
|
case PTR_TO_PACKET:
|
|
/* We must have at least as much range as the old ptr
|
|
* did, so that any accesses which were safe before are
|
|
* still safe. This is true even if old range < old off,
|
|
* since someone could have accessed through (ptr - k), or
|
|
* even done ptr -= k in a register, to get a safe access.
|
|
*/
|
|
if (rold->range > rcur->range)
|
|
return false;
|
|
/* If the offsets don't match, we can't trust our alignment;
|
|
* nor can we be sure that we won't fall out of range.
|
|
*/
|
|
if (rold->off != rcur->off)
|
|
return false;
|
|
/* id relations must be preserved */
|
|
if (!check_ids(rold->id, rcur->id, idmap))
|
|
return false;
|
|
/* new val must satisfy old val knowledge */
|
|
return range_within(rold, rcur) &&
|
|
tnum_in(rold->var_off, rcur->var_off);
|
|
case PTR_TO_STACK:
|
|
/* two stack pointers are equal only if they're pointing to
|
|
* the same stack frame, since fp-8 in foo != fp-8 in bar
|
|
*/
|
|
return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
|
|
default:
|
|
return regs_exact(rold, rcur, idmap);
|
|
}
|
|
}
|
|
|
|
static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
|
|
struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact)
|
|
{
|
|
int i, spi;
|
|
|
|
/* walk slots of the explored stack and ignore any additional
|
|
* slots in the current stack, since explored(safe) state
|
|
* didn't use them
|
|
*/
|
|
for (i = 0; i < old->allocated_stack; i++) {
|
|
struct bpf_reg_state *old_reg, *cur_reg;
|
|
|
|
spi = i / BPF_REG_SIZE;
|
|
|
|
if (exact &&
|
|
old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
|
|
cur->stack[spi].slot_type[i % BPF_REG_SIZE])
|
|
return false;
|
|
|
|
if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) {
|
|
i += BPF_REG_SIZE - 1;
|
|
/* explored state didn't use this */
|
|
continue;
|
|
}
|
|
|
|
if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
|
|
continue;
|
|
|
|
if (env->allow_uninit_stack &&
|
|
old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
|
|
continue;
|
|
|
|
/* explored stack has more populated slots than current stack
|
|
* and these slots were used
|
|
*/
|
|
if (i >= cur->allocated_stack)
|
|
return false;
|
|
|
|
/* if old state was safe with misc data in the stack
|
|
* it will be safe with zero-initialized stack.
|
|
* The opposite is not true
|
|
*/
|
|
if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
|
|
cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
|
|
continue;
|
|
if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
|
|
cur->stack[spi].slot_type[i % BPF_REG_SIZE])
|
|
/* Ex: old explored (safe) state has STACK_SPILL in
|
|
* this stack slot, but current has STACK_MISC ->
|
|
* this verifier states are not equivalent,
|
|
* return false to continue verification of this path
|
|
*/
|
|
return false;
|
|
if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
|
|
continue;
|
|
/* Both old and cur are having same slot_type */
|
|
switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
|
|
case STACK_SPILL:
|
|
/* when explored and current stack slot are both storing
|
|
* spilled registers, check that stored pointers types
|
|
* are the same as well.
|
|
* Ex: explored safe path could have stored
|
|
* (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
|
|
* but current path has stored:
|
|
* (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
|
|
* such verifier states are not equivalent.
|
|
* return false to continue verification of this path
|
|
*/
|
|
if (!regsafe(env, &old->stack[spi].spilled_ptr,
|
|
&cur->stack[spi].spilled_ptr, idmap, exact))
|
|
return false;
|
|
break;
|
|
case STACK_DYNPTR:
|
|
old_reg = &old->stack[spi].spilled_ptr;
|
|
cur_reg = &cur->stack[spi].spilled_ptr;
|
|
if (old_reg->dynptr.type != cur_reg->dynptr.type ||
|
|
old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
|
|
!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
|
|
return false;
|
|
break;
|
|
case STACK_ITER:
|
|
old_reg = &old->stack[spi].spilled_ptr;
|
|
cur_reg = &cur->stack[spi].spilled_ptr;
|
|
/* iter.depth is not compared between states as it
|
|
* doesn't matter for correctness and would otherwise
|
|
* prevent convergence; we maintain it only to prevent
|
|
* infinite loop check triggering, see
|
|
* iter_active_depths_differ()
|
|
*/
|
|
if (old_reg->iter.btf != cur_reg->iter.btf ||
|
|
old_reg->iter.btf_id != cur_reg->iter.btf_id ||
|
|
old_reg->iter.state != cur_reg->iter.state ||
|
|
/* ignore {old_reg,cur_reg}->iter.depth, see above */
|
|
!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
|
|
return false;
|
|
break;
|
|
case STACK_MISC:
|
|
case STACK_ZERO:
|
|
case STACK_INVALID:
|
|
continue;
|
|
/* Ensure that new unhandled slot types return false by default */
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
|
|
struct bpf_idmap *idmap)
|
|
{
|
|
int i;
|
|
|
|
if (old->acquired_refs != cur->acquired_refs)
|
|
return false;
|
|
|
|
for (i = 0; i < old->acquired_refs; i++) {
|
|
if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* compare two verifier states
|
|
*
|
|
* all states stored in state_list are known to be valid, since
|
|
* verifier reached 'bpf_exit' instruction through them
|
|
*
|
|
* this function is called when verifier exploring different branches of
|
|
* execution popped from the state stack. If it sees an old state that has
|
|
* more strict register state and more strict stack state then this execution
|
|
* branch doesn't need to be explored further, since verifier already
|
|
* concluded that more strict state leads to valid finish.
|
|
*
|
|
* Therefore two states are equivalent if register state is more conservative
|
|
* and explored stack state is more conservative than the current one.
|
|
* Example:
|
|
* explored current
|
|
* (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
|
|
* (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
|
|
*
|
|
* In other words if current stack state (one being explored) has more
|
|
* valid slots than old one that already passed validation, it means
|
|
* the verifier can stop exploring and conclude that current state is valid too
|
|
*
|
|
* Similarly with registers. If explored state has register type as invalid
|
|
* whereas register type in current state is meaningful, it means that
|
|
* the current state will reach 'bpf_exit' instruction safely
|
|
*/
|
|
static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
|
|
struct bpf_func_state *cur, bool exact)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_BPF_REG; i++)
|
|
if (!regsafe(env, &old->regs[i], &cur->regs[i],
|
|
&env->idmap_scratch, exact))
|
|
return false;
|
|
|
|
if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
|
|
return false;
|
|
|
|
if (!refsafe(old, cur, &env->idmap_scratch))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void reset_idmap_scratch(struct bpf_verifier_env *env)
|
|
{
|
|
env->idmap_scratch.tmp_id_gen = env->id_gen;
|
|
memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
|
|
}
|
|
|
|
static bool states_equal(struct bpf_verifier_env *env,
|
|
struct bpf_verifier_state *old,
|
|
struct bpf_verifier_state *cur,
|
|
bool exact)
|
|
{
|
|
int i;
|
|
|
|
if (old->curframe != cur->curframe)
|
|
return false;
|
|
|
|
reset_idmap_scratch(env);
|
|
|
|
/* Verification state from speculative execution simulation
|
|
* must never prune a non-speculative execution one.
|
|
*/
|
|
if (old->speculative && !cur->speculative)
|
|
return false;
|
|
|
|
if (old->active_lock.ptr != cur->active_lock.ptr)
|
|
return false;
|
|
|
|
/* Old and cur active_lock's have to be either both present
|
|
* or both absent.
|
|
*/
|
|
if (!!old->active_lock.id != !!cur->active_lock.id)
|
|
return false;
|
|
|
|
if (old->active_lock.id &&
|
|
!check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
|
|
return false;
|
|
|
|
if (old->active_rcu_lock != cur->active_rcu_lock)
|
|
return false;
|
|
|
|
/* for states to be equal callsites have to be the same
|
|
* and all frame states need to be equivalent
|
|
*/
|
|
for (i = 0; i <= old->curframe; i++) {
|
|
if (old->frame[i]->callsite != cur->frame[i]->callsite)
|
|
return false;
|
|
if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Return 0 if no propagation happened. Return negative error code if error
|
|
* happened. Otherwise, return the propagated bit.
|
|
*/
|
|
static int propagate_liveness_reg(struct bpf_verifier_env *env,
|
|
struct bpf_reg_state *reg,
|
|
struct bpf_reg_state *parent_reg)
|
|
{
|
|
u8 parent_flag = parent_reg->live & REG_LIVE_READ;
|
|
u8 flag = reg->live & REG_LIVE_READ;
|
|
int err;
|
|
|
|
/* When comes here, read flags of PARENT_REG or REG could be any of
|
|
* REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
|
|
* of propagation if PARENT_REG has strongest REG_LIVE_READ64.
|
|
*/
|
|
if (parent_flag == REG_LIVE_READ64 ||
|
|
/* Or if there is no read flag from REG. */
|
|
!flag ||
|
|
/* Or if the read flag from REG is the same as PARENT_REG. */
|
|
parent_flag == flag)
|
|
return 0;
|
|
|
|
err = mark_reg_read(env, reg, parent_reg, flag);
|
|
if (err)
|
|
return err;
|
|
|
|
return flag;
|
|
}
|
|
|
|
/* A write screens off any subsequent reads; but write marks come from the
|
|
* straight-line code between a state and its parent. When we arrive at an
|
|
* equivalent state (jump target or such) we didn't arrive by the straight-line
|
|
* code, so read marks in the state must propagate to the parent regardless
|
|
* of the state's write marks. That's what 'parent == state->parent' comparison
|
|
* in mark_reg_read() is for.
|
|
*/
|
|
static int propagate_liveness(struct bpf_verifier_env *env,
|
|
const struct bpf_verifier_state *vstate,
|
|
struct bpf_verifier_state *vparent)
|
|
{
|
|
struct bpf_reg_state *state_reg, *parent_reg;
|
|
struct bpf_func_state *state, *parent;
|
|
int i, frame, err = 0;
|
|
|
|
if (vparent->curframe != vstate->curframe) {
|
|
WARN(1, "propagate_live: parent frame %d current frame %d\n",
|
|
vparent->curframe, vstate->curframe);
|
|
return -EFAULT;
|
|
}
|
|
/* Propagate read liveness of registers... */
|
|
BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
|
|
for (frame = 0; frame <= vstate->curframe; frame++) {
|
|
parent = vparent->frame[frame];
|
|
state = vstate->frame[frame];
|
|
parent_reg = parent->regs;
|
|
state_reg = state->regs;
|
|
/* We don't need to worry about FP liveness, it's read-only */
|
|
for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
|
|
err = propagate_liveness_reg(env, &state_reg[i],
|
|
&parent_reg[i]);
|
|
if (err < 0)
|
|
return err;
|
|
if (err == REG_LIVE_READ64)
|
|
mark_insn_zext(env, &parent_reg[i]);
|
|
}
|
|
|
|
/* Propagate stack slots. */
|
|
for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
|
|
i < parent->allocated_stack / BPF_REG_SIZE; i++) {
|
|
parent_reg = &parent->stack[i].spilled_ptr;
|
|
state_reg = &state->stack[i].spilled_ptr;
|
|
err = propagate_liveness_reg(env, state_reg,
|
|
parent_reg);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* find precise scalars in the previous equivalent state and
|
|
* propagate them into the current state
|
|
*/
|
|
static int propagate_precision(struct bpf_verifier_env *env,
|
|
const struct bpf_verifier_state *old)
|
|
{
|
|
struct bpf_reg_state *state_reg;
|
|
struct bpf_func_state *state;
|
|
int i, err = 0, fr;
|
|
bool first;
|
|
|
|
for (fr = old->curframe; fr >= 0; fr--) {
|
|
state = old->frame[fr];
|
|
state_reg = state->regs;
|
|
first = true;
|
|
for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
|
|
if (state_reg->type != SCALAR_VALUE ||
|
|
!state_reg->precise ||
|
|
!(state_reg->live & REG_LIVE_READ))
|
|
continue;
|
|
if (env->log.level & BPF_LOG_LEVEL2) {
|
|
if (first)
|
|
verbose(env, "frame %d: propagating r%d", fr, i);
|
|
else
|
|
verbose(env, ",r%d", i);
|
|
}
|
|
bt_set_frame_reg(&env->bt, fr, i);
|
|
first = false;
|
|
}
|
|
|
|
for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
|
|
if (!is_spilled_reg(&state->stack[i]))
|
|
continue;
|
|
state_reg = &state->stack[i].spilled_ptr;
|
|
if (state_reg->type != SCALAR_VALUE ||
|
|
!state_reg->precise ||
|
|
!(state_reg->live & REG_LIVE_READ))
|
|
continue;
|
|
if (env->log.level & BPF_LOG_LEVEL2) {
|
|
if (first)
|
|
verbose(env, "frame %d: propagating fp%d",
|
|
fr, (-i - 1) * BPF_REG_SIZE);
|
|
else
|
|
verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
|
|
}
|
|
bt_set_frame_slot(&env->bt, fr, i);
|
|
first = false;
|
|
}
|
|
if (!first)
|
|
verbose(env, "\n");
|
|
}
|
|
|
|
err = mark_chain_precision_batch(env);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool states_maybe_looping(struct bpf_verifier_state *old,
|
|
struct bpf_verifier_state *cur)
|
|
{
|
|
struct bpf_func_state *fold, *fcur;
|
|
int i, fr = cur->curframe;
|
|
|
|
if (old->curframe != fr)
|
|
return false;
|
|
|
|
fold = old->frame[fr];
|
|
fcur = cur->frame[fr];
|
|
for (i = 0; i < MAX_BPF_REG; i++)
|
|
if (memcmp(&fold->regs[i], &fcur->regs[i],
|
|
offsetof(struct bpf_reg_state, parent)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
|
|
{
|
|
return env->insn_aux_data[insn_idx].is_iter_next;
|
|
}
|
|
|
|
/* is_state_visited() handles iter_next() (see process_iter_next_call() for
|
|
* terminology) calls specially: as opposed to bounded BPF loops, it *expects*
|
|
* states to match, which otherwise would look like an infinite loop. So while
|
|
* iter_next() calls are taken care of, we still need to be careful and
|
|
* prevent erroneous and too eager declaration of "ininite loop", when
|
|
* iterators are involved.
|
|
*
|
|
* Here's a situation in pseudo-BPF assembly form:
|
|
*
|
|
* 0: again: ; set up iter_next() call args
|
|
* 1: r1 = &it ; <CHECKPOINT HERE>
|
|
* 2: call bpf_iter_num_next ; this is iter_next() call
|
|
* 3: if r0 == 0 goto done
|
|
* 4: ... something useful here ...
|
|
* 5: goto again ; another iteration
|
|
* 6: done:
|
|
* 7: r1 = &it
|
|
* 8: call bpf_iter_num_destroy ; clean up iter state
|
|
* 9: exit
|
|
*
|
|
* This is a typical loop. Let's assume that we have a prune point at 1:,
|
|
* before we get to `call bpf_iter_num_next` (e.g., because of that `goto
|
|
* again`, assuming other heuristics don't get in a way).
|
|
*
|
|
* When we first time come to 1:, let's say we have some state X. We proceed
|
|
* to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
|
|
* Now we come back to validate that forked ACTIVE state. We proceed through
|
|
* 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
|
|
* are converging. But the problem is that we don't know that yet, as this
|
|
* convergence has to happen at iter_next() call site only. So if nothing is
|
|
* done, at 1: verifier will use bounded loop logic and declare infinite
|
|
* looping (and would be *technically* correct, if not for iterator's
|
|
* "eventual sticky NULL" contract, see process_iter_next_call()). But we
|
|
* don't want that. So what we do in process_iter_next_call() when we go on
|
|
* another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
|
|
* a different iteration. So when we suspect an infinite loop, we additionally
|
|
* check if any of the *ACTIVE* iterator states depths differ. If yes, we
|
|
* pretend we are not looping and wait for next iter_next() call.
|
|
*
|
|
* This only applies to ACTIVE state. In DRAINED state we don't expect to
|
|
* loop, because that would actually mean infinite loop, as DRAINED state is
|
|
* "sticky", and so we'll keep returning into the same instruction with the
|
|
* same state (at least in one of possible code paths).
|
|
*
|
|
* This approach allows to keep infinite loop heuristic even in the face of
|
|
* active iterator. E.g., C snippet below is and will be detected as
|
|
* inifintely looping:
|
|
*
|
|
* struct bpf_iter_num it;
|
|
* int *p, x;
|
|
*
|
|
* bpf_iter_num_new(&it, 0, 10);
|
|
* while ((p = bpf_iter_num_next(&t))) {
|
|
* x = p;
|
|
* while (x--) {} // <<-- infinite loop here
|
|
* }
|
|
*
|
|
*/
|
|
static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
|
|
{
|
|
struct bpf_reg_state *slot, *cur_slot;
|
|
struct bpf_func_state *state;
|
|
int i, fr;
|
|
|
|
for (fr = old->curframe; fr >= 0; fr--) {
|
|
state = old->frame[fr];
|
|
for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
|
|
if (state->stack[i].slot_type[0] != STACK_ITER)
|
|
continue;
|
|
|
|
slot = &state->stack[i].spilled_ptr;
|
|
if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
|
|
continue;
|
|
|
|
cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
|
|
if (cur_slot->iter.depth != slot->iter.depth)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
|
|
{
|
|
struct bpf_verifier_state_list *new_sl;
|
|
struct bpf_verifier_state_list *sl, **pprev;
|
|
struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
|
|
int i, j, n, err, states_cnt = 0;
|
|
bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
|
|
bool add_new_state = force_new_state;
|
|
bool force_exact;
|
|
|
|
/* bpf progs typically have pruning point every 4 instructions
|
|
* http://vger.kernel.org/bpfconf2019.html#session-1
|
|
* Do not add new state for future pruning if the verifier hasn't seen
|
|
* at least 2 jumps and at least 8 instructions.
|
|
* This heuristics helps decrease 'total_states' and 'peak_states' metric.
|
|
* In tests that amounts to up to 50% reduction into total verifier
|
|
* memory consumption and 20% verifier time speedup.
|
|
*/
|
|
if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
|
|
env->insn_processed - env->prev_insn_processed >= 8)
|
|
add_new_state = true;
|
|
|
|
pprev = explored_state(env, insn_idx);
|
|
sl = *pprev;
|
|
|
|
clean_live_states(env, insn_idx, cur);
|
|
|
|
while (sl) {
|
|
states_cnt++;
|
|
if (sl->state.insn_idx != insn_idx)
|
|
goto next;
|
|
|
|
if (sl->state.branches) {
|
|
struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
|
|
|
|
if (frame->in_async_callback_fn &&
|
|
frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
|
|
/* Different async_entry_cnt means that the verifier is
|
|
* processing another entry into async callback.
|
|
* Seeing the same state is not an indication of infinite
|
|
* loop or infinite recursion.
|
|
* But finding the same state doesn't mean that it's safe
|
|
* to stop processing the current state. The previous state
|
|
* hasn't yet reached bpf_exit, since state.branches > 0.
|
|
* Checking in_async_callback_fn alone is not enough either.
|
|
* Since the verifier still needs to catch infinite loops
|
|
* inside async callbacks.
|
|
*/
|
|
goto skip_inf_loop_check;
|
|
}
|
|
/* BPF open-coded iterators loop detection is special.
|
|
* states_maybe_looping() logic is too simplistic in detecting
|
|
* states that *might* be equivalent, because it doesn't know
|
|
* about ID remapping, so don't even perform it.
|
|
* See process_iter_next_call() and iter_active_depths_differ()
|
|
* for overview of the logic. When current and one of parent
|
|
* states are detected as equivalent, it's a good thing: we prove
|
|
* convergence and can stop simulating further iterations.
|
|
* It's safe to assume that iterator loop will finish, taking into
|
|
* account iter_next() contract of eventually returning
|
|
* sticky NULL result.
|
|
*
|
|
* Note, that states have to be compared exactly in this case because
|
|
* read and precision marks might not be finalized inside the loop.
|
|
* E.g. as in the program below:
|
|
*
|
|
* 1. r7 = -16
|
|
* 2. r6 = bpf_get_prandom_u32()
|
|
* 3. while (bpf_iter_num_next(&fp[-8])) {
|
|
* 4. if (r6 != 42) {
|
|
* 5. r7 = -32
|
|
* 6. r6 = bpf_get_prandom_u32()
|
|
* 7. continue
|
|
* 8. }
|
|
* 9. r0 = r10
|
|
* 10. r0 += r7
|
|
* 11. r8 = *(u64 *)(r0 + 0)
|
|
* 12. r6 = bpf_get_prandom_u32()
|
|
* 13. }
|
|
*
|
|
* Here verifier would first visit path 1-3, create a checkpoint at 3
|
|
* with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
|
|
* not have read or precision mark for r7 yet, thus inexact states
|
|
* comparison would discard current state with r7=-32
|
|
* => unsafe memory access at 11 would not be caught.
|
|
*/
|
|
if (is_iter_next_insn(env, insn_idx)) {
|
|
if (states_equal(env, &sl->state, cur, true)) {
|
|
struct bpf_func_state *cur_frame;
|
|
struct bpf_reg_state *iter_state, *iter_reg;
|
|
int spi;
|
|
|
|
cur_frame = cur->frame[cur->curframe];
|
|
/* btf_check_iter_kfuncs() enforces that
|
|
* iter state pointer is always the first arg
|
|
*/
|
|
iter_reg = &cur_frame->regs[BPF_REG_1];
|
|
/* current state is valid due to states_equal(),
|
|
* so we can assume valid iter and reg state,
|
|
* no need for extra (re-)validations
|
|
*/
|
|
spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
|
|
iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
|
|
if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
|
|
update_loop_entry(cur, &sl->state);
|
|
goto hit;
|
|
}
|
|
}
|
|
goto skip_inf_loop_check;
|
|
}
|
|
if (calls_callback(env, insn_idx)) {
|
|
if (states_equal(env, &sl->state, cur, true))
|
|
goto hit;
|
|
goto skip_inf_loop_check;
|
|
}
|
|
/* attempt to detect infinite loop to avoid unnecessary doomed work */
|
|
if (states_maybe_looping(&sl->state, cur) &&
|
|
states_equal(env, &sl->state, cur, false) &&
|
|
!iter_active_depths_differ(&sl->state, cur) &&
|
|
sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
|
|
verbose_linfo(env, insn_idx, "; ");
|
|
verbose(env, "infinite loop detected at insn %d\n", insn_idx);
|
|
verbose(env, "cur state:");
|
|
print_verifier_state(env, cur->frame[cur->curframe], true);
|
|
verbose(env, "old state:");
|
|
print_verifier_state(env, sl->state.frame[cur->curframe], true);
|
|
return -EINVAL;
|
|
}
|
|
/* if the verifier is processing a loop, avoid adding new state
|
|
* too often, since different loop iterations have distinct
|
|
* states and may not help future pruning.
|
|
* This threshold shouldn't be too low to make sure that
|
|
* a loop with large bound will be rejected quickly.
|
|
* The most abusive loop will be:
|
|
* r1 += 1
|
|
* if r1 < 1000000 goto pc-2
|
|
* 1M insn_procssed limit / 100 == 10k peak states.
|
|
* This threshold shouldn't be too high either, since states
|
|
* at the end of the loop are likely to be useful in pruning.
|
|
*/
|
|
skip_inf_loop_check:
|
|
if (!force_new_state &&
|
|
env->jmps_processed - env->prev_jmps_processed < 20 &&
|
|
env->insn_processed - env->prev_insn_processed < 100)
|
|
add_new_state = false;
|
|
goto miss;
|
|
}
|
|
/* If sl->state is a part of a loop and this loop's entry is a part of
|
|
* current verification path then states have to be compared exactly.
|
|
* 'force_exact' is needed to catch the following case:
|
|
*
|
|
* initial Here state 'succ' was processed first,
|
|
* | it was eventually tracked to produce a
|
|
* V state identical to 'hdr'.
|
|
* .---------> hdr All branches from 'succ' had been explored
|
|
* | | and thus 'succ' has its .branches == 0.
|
|
* | V
|
|
* | .------... Suppose states 'cur' and 'succ' correspond
|
|
* | | | to the same instruction + callsites.
|
|
* | V V In such case it is necessary to check
|
|
* | ... ... if 'succ' and 'cur' are states_equal().
|
|
* | | | If 'succ' and 'cur' are a part of the
|
|
* | V V same loop exact flag has to be set.
|
|
* | succ <- cur To check if that is the case, verify
|
|
* | | if loop entry of 'succ' is in current
|
|
* | V DFS path.
|
|
* | ...
|
|
* | |
|
|
* '----'
|
|
*
|
|
* Additional details are in the comment before get_loop_entry().
|
|
*/
|
|
loop_entry = get_loop_entry(&sl->state);
|
|
force_exact = loop_entry && loop_entry->branches > 0;
|
|
if (states_equal(env, &sl->state, cur, force_exact)) {
|
|
if (force_exact)
|
|
update_loop_entry(cur, loop_entry);
|
|
hit:
|
|
sl->hit_cnt++;
|
|
/* reached equivalent register/stack state,
|
|
* prune the search.
|
|
* Registers read by the continuation are read by us.
|
|
* If we have any write marks in env->cur_state, they
|
|
* will prevent corresponding reads in the continuation
|
|
* from reaching our parent (an explored_state). Our
|
|
* own state will get the read marks recorded, but
|
|
* they'll be immediately forgotten as we're pruning
|
|
* this state and will pop a new one.
|
|
*/
|
|
err = propagate_liveness(env, &sl->state, cur);
|
|
|
|
/* if previous state reached the exit with precision and
|
|
* current state is equivalent to it (except precsion marks)
|
|
* the precision needs to be propagated back in
|
|
* the current state.
|
|
*/
|
|
if (is_jmp_point(env, env->insn_idx))
|
|
err = err ? : push_jmp_history(env, cur, 0);
|
|
err = err ? : propagate_precision(env, &sl->state);
|
|
if (err)
|
|
return err;
|
|
return 1;
|
|
}
|
|
miss:
|
|
/* when new state is not going to be added do not increase miss count.
|
|
* Otherwise several loop iterations will remove the state
|
|
* recorded earlier. The goal of these heuristics is to have
|
|
* states from some iterations of the loop (some in the beginning
|
|
* and some at the end) to help pruning.
|
|
*/
|
|
if (add_new_state)
|
|
sl->miss_cnt++;
|
|
/* heuristic to determine whether this state is beneficial
|
|
* to keep checking from state equivalence point of view.
|
|
* Higher numbers increase max_states_per_insn and verification time,
|
|
* but do not meaningfully decrease insn_processed.
|
|
* 'n' controls how many times state could miss before eviction.
|
|
* Use bigger 'n' for checkpoints because evicting checkpoint states
|
|
* too early would hinder iterator convergence.
|
|
*/
|
|
n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
|
|
if (sl->miss_cnt > sl->hit_cnt * n + n) {
|
|
/* the state is unlikely to be useful. Remove it to
|
|
* speed up verification
|
|
*/
|
|
*pprev = sl->next;
|
|
if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
|
|
!sl->state.used_as_loop_entry) {
|
|
u32 br = sl->state.branches;
|
|
|
|
WARN_ONCE(br,
|
|
"BUG live_done but branches_to_explore %d\n",
|
|
br);
|
|
free_verifier_state(&sl->state, false);
|
|
kfree(sl);
|
|
env->peak_states--;
|
|
} else {
|
|
/* cannot free this state, since parentage chain may
|
|
* walk it later. Add it for free_list instead to
|
|
* be freed at the end of verification
|
|
*/
|
|
sl->next = env->free_list;
|
|
env->free_list = sl;
|
|
}
|
|
sl = *pprev;
|
|
continue;
|
|
}
|
|
next:
|
|
pprev = &sl->next;
|
|
sl = *pprev;
|
|
}
|
|
|
|
if (env->max_states_per_insn < states_cnt)
|
|
env->max_states_per_insn = states_cnt;
|
|
|
|
if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
|
|
return 0;
|
|
|
|
if (!add_new_state)
|
|
return 0;
|
|
|
|
/* There were no equivalent states, remember the current one.
|
|
* Technically the current state is not proven to be safe yet,
|
|
* but it will either reach outer most bpf_exit (which means it's safe)
|
|
* or it will be rejected. When there are no loops the verifier won't be
|
|
* seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
|
|
* again on the way to bpf_exit.
|
|
* When looping the sl->state.branches will be > 0 and this state
|
|
* will not be considered for equivalence until branches == 0.
|
|
*/
|
|
new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
|
|
if (!new_sl)
|
|
return -ENOMEM;
|
|
env->total_states++;
|
|
env->peak_states++;
|
|
env->prev_jmps_processed = env->jmps_processed;
|
|
env->prev_insn_processed = env->insn_processed;
|
|
|
|
/* forget precise markings we inherited, see __mark_chain_precision */
|
|
if (env->bpf_capable)
|
|
mark_all_scalars_imprecise(env, cur);
|
|
|
|
/* add new state to the head of linked list */
|
|
new = &new_sl->state;
|
|
err = copy_verifier_state(new, cur);
|
|
if (err) {
|
|
free_verifier_state(new, false);
|
|
kfree(new_sl);
|
|
return err;
|
|
}
|
|
new->insn_idx = insn_idx;
|
|
WARN_ONCE(new->branches != 1,
|
|
"BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
|
|
|
|
cur->parent = new;
|
|
cur->first_insn_idx = insn_idx;
|
|
cur->dfs_depth = new->dfs_depth + 1;
|
|
clear_jmp_history(cur);
|
|
new_sl->next = *explored_state(env, insn_idx);
|
|
*explored_state(env, insn_idx) = new_sl;
|
|
/* connect new state to parentage chain. Current frame needs all
|
|
* registers connected. Only r6 - r9 of the callers are alive (pushed
|
|
* to the stack implicitly by JITs) so in callers' frames connect just
|
|
* r6 - r9 as an optimization. Callers will have r1 - r5 connected to
|
|
* the state of the call instruction (with WRITTEN set), and r0 comes
|
|
* from callee with its full parentage chain, anyway.
|
|
*/
|
|
/* clear write marks in current state: the writes we did are not writes
|
|
* our child did, so they don't screen off its reads from us.
|
|
* (There are no read marks in current state, because reads always mark
|
|
* their parent and current state never has children yet. Only
|
|
* explored_states can get read marks.)
|
|
*/
|
|
for (j = 0; j <= cur->curframe; j++) {
|
|
for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
|
|
cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
|
|
for (i = 0; i < BPF_REG_FP; i++)
|
|
cur->frame[j]->regs[i].live = REG_LIVE_NONE;
|
|
}
|
|
|
|
/* all stack frames are accessible from callee, clear them all */
|
|
for (j = 0; j <= cur->curframe; j++) {
|
|
struct bpf_func_state *frame = cur->frame[j];
|
|
struct bpf_func_state *newframe = new->frame[j];
|
|
|
|
for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
|
|
frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
|
|
frame->stack[i].spilled_ptr.parent =
|
|
&newframe->stack[i].spilled_ptr;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Return true if it's OK to have the same insn return a different type. */
|
|
static bool reg_type_mismatch_ok(enum bpf_reg_type type)
|
|
{
|
|
switch (base_type(type)) {
|
|
case PTR_TO_CTX:
|
|
case PTR_TO_SOCKET:
|
|
case PTR_TO_SOCK_COMMON:
|
|
case PTR_TO_TCP_SOCK:
|
|
case PTR_TO_XDP_SOCK:
|
|
case PTR_TO_BTF_ID:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* If an instruction was previously used with particular pointer types, then we
|
|
* need to be careful to avoid cases such as the below, where it may be ok
|
|
* for one branch accessing the pointer, but not ok for the other branch:
|
|
*
|
|
* R1 = sock_ptr
|
|
* goto X;
|
|
* ...
|
|
* R1 = some_other_valid_ptr;
|
|
* goto X;
|
|
* ...
|
|
* R2 = *(u32 *)(R1 + 0);
|
|
*/
|
|
static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
|
|
{
|
|
return src != prev && (!reg_type_mismatch_ok(src) ||
|
|
!reg_type_mismatch_ok(prev));
|
|
}
|
|
|
|
static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
|
|
bool allow_trust_missmatch)
|
|
{
|
|
enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
|
|
|
|
if (*prev_type == NOT_INIT) {
|
|
/* Saw a valid insn
|
|
* dst_reg = *(u32 *)(src_reg + off)
|
|
* save type to validate intersecting paths
|
|
*/
|
|
*prev_type = type;
|
|
} else if (reg_type_mismatch(type, *prev_type)) {
|
|
/* Abuser program is trying to use the same insn
|
|
* dst_reg = *(u32*) (src_reg + off)
|
|
* with different pointer types:
|
|
* src_reg == ctx in one branch and
|
|
* src_reg == stack|map in some other branch.
|
|
* Reject it.
|
|
*/
|
|
if (allow_trust_missmatch &&
|
|
base_type(type) == PTR_TO_BTF_ID &&
|
|
base_type(*prev_type) == PTR_TO_BTF_ID) {
|
|
/*
|
|
* Have to support a use case when one path through
|
|
* the program yields TRUSTED pointer while another
|
|
* is UNTRUSTED. Fallback to UNTRUSTED to generate
|
|
* BPF_PROBE_MEM/BPF_PROBE_MEMSX.
|
|
*/
|
|
*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
|
|
} else {
|
|
verbose(env, "same insn cannot be used with different pointers\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int do_check(struct bpf_verifier_env *env)
|
|
{
|
|
bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
|
|
struct bpf_verifier_state *state = env->cur_state;
|
|
struct bpf_insn *insns = env->prog->insnsi;
|
|
struct bpf_reg_state *regs;
|
|
int insn_cnt = env->prog->len;
|
|
bool do_print_state = false;
|
|
int prev_insn_idx = -1;
|
|
|
|
for (;;) {
|
|
bool exception_exit = false;
|
|
struct bpf_insn *insn;
|
|
u8 class;
|
|
int err;
|
|
|
|
/* reset current history entry on each new instruction */
|
|
env->cur_hist_ent = NULL;
|
|
|
|
env->prev_insn_idx = prev_insn_idx;
|
|
if (env->insn_idx >= insn_cnt) {
|
|
verbose(env, "invalid insn idx %d insn_cnt %d\n",
|
|
env->insn_idx, insn_cnt);
|
|
return -EFAULT;
|
|
}
|
|
|
|
insn = &insns[env->insn_idx];
|
|
class = BPF_CLASS(insn->code);
|
|
|
|
if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
|
|
verbose(env,
|
|
"BPF program is too large. Processed %d insn\n",
|
|
env->insn_processed);
|
|
return -E2BIG;
|
|
}
|
|
|
|
state->last_insn_idx = env->prev_insn_idx;
|
|
|
|
if (is_prune_point(env, env->insn_idx)) {
|
|
err = is_state_visited(env, env->insn_idx);
|
|
if (err < 0)
|
|
return err;
|
|
if (err == 1) {
|
|
/* found equivalent state, can prune the search */
|
|
if (env->log.level & BPF_LOG_LEVEL) {
|
|
if (do_print_state)
|
|
verbose(env, "\nfrom %d to %d%s: safe\n",
|
|
env->prev_insn_idx, env->insn_idx,
|
|
env->cur_state->speculative ?
|
|
" (speculative execution)" : "");
|
|
else
|
|
verbose(env, "%d: safe\n", env->insn_idx);
|
|
}
|
|
goto process_bpf_exit;
|
|
}
|
|
}
|
|
|
|
if (is_jmp_point(env, env->insn_idx)) {
|
|
err = push_jmp_history(env, state, 0);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (signal_pending(current))
|
|
return -EAGAIN;
|
|
|
|
if (need_resched())
|
|
cond_resched();
|
|
|
|
if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
|
|
verbose(env, "\nfrom %d to %d%s:",
|
|
env->prev_insn_idx, env->insn_idx,
|
|
env->cur_state->speculative ?
|
|
" (speculative execution)" : "");
|
|
print_verifier_state(env, state->frame[state->curframe], true);
|
|
do_print_state = false;
|
|
}
|
|
|
|
if (env->log.level & BPF_LOG_LEVEL) {
|
|
const struct bpf_insn_cbs cbs = {
|
|
.cb_call = disasm_kfunc_name,
|
|
.cb_print = verbose,
|
|
.private_data = env,
|
|
};
|
|
|
|
if (verifier_state_scratched(env))
|
|
print_insn_state(env, state->frame[state->curframe]);
|
|
|
|
verbose_linfo(env, env->insn_idx, "; ");
|
|
env->prev_log_pos = env->log.end_pos;
|
|
verbose(env, "%d: ", env->insn_idx);
|
|
print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
|
|
env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
|
|
env->prev_log_pos = env->log.end_pos;
|
|
}
|
|
|
|
if (bpf_prog_is_offloaded(env->prog->aux)) {
|
|
err = bpf_prog_offload_verify_insn(env, env->insn_idx,
|
|
env->prev_insn_idx);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
regs = cur_regs(env);
|
|
sanitize_mark_insn_seen(env);
|
|
prev_insn_idx = env->insn_idx;
|
|
|
|
if (class == BPF_ALU || class == BPF_ALU64) {
|
|
err = check_alu_op(env, insn);
|
|
if (err)
|
|
return err;
|
|
|
|
} else if (class == BPF_LDX) {
|
|
enum bpf_reg_type src_reg_type;
|
|
|
|
/* check for reserved fields is already done */
|
|
|
|
/* check src operand */
|
|
err = check_reg_arg(env, insn->src_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
|
|
if (err)
|
|
return err;
|
|
|
|
src_reg_type = regs[insn->src_reg].type;
|
|
|
|
/* check that memory (src_reg + off) is readable,
|
|
* the state of dst_reg will be updated by this func
|
|
*/
|
|
err = check_mem_access(env, env->insn_idx, insn->src_reg,
|
|
insn->off, BPF_SIZE(insn->code),
|
|
BPF_READ, insn->dst_reg, false,
|
|
BPF_MODE(insn->code) == BPF_MEMSX);
|
|
err = err ?: save_aux_ptr_type(env, src_reg_type, true);
|
|
err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], "ldx");
|
|
if (err)
|
|
return err;
|
|
} else if (class == BPF_STX) {
|
|
enum bpf_reg_type dst_reg_type;
|
|
|
|
if (BPF_MODE(insn->code) == BPF_ATOMIC) {
|
|
err = check_atomic(env, env->insn_idx, insn);
|
|
if (err)
|
|
return err;
|
|
env->insn_idx++;
|
|
continue;
|
|
}
|
|
|
|
if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
|
|
verbose(env, "BPF_STX uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* check src1 operand */
|
|
err = check_reg_arg(env, insn->src_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
/* check src2 operand */
|
|
err = check_reg_arg(env, insn->dst_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
dst_reg_type = regs[insn->dst_reg].type;
|
|
|
|
/* check that memory (dst_reg + off) is writeable */
|
|
err = check_mem_access(env, env->insn_idx, insn->dst_reg,
|
|
insn->off, BPF_SIZE(insn->code),
|
|
BPF_WRITE, insn->src_reg, false, false);
|
|
if (err)
|
|
return err;
|
|
|
|
err = save_aux_ptr_type(env, dst_reg_type, false);
|
|
if (err)
|
|
return err;
|
|
} else if (class == BPF_ST) {
|
|
enum bpf_reg_type dst_reg_type;
|
|
|
|
if (BPF_MODE(insn->code) != BPF_MEM ||
|
|
insn->src_reg != BPF_REG_0) {
|
|
verbose(env, "BPF_ST uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
/* check src operand */
|
|
err = check_reg_arg(env, insn->dst_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
dst_reg_type = regs[insn->dst_reg].type;
|
|
|
|
/* check that memory (dst_reg + off) is writeable */
|
|
err = check_mem_access(env, env->insn_idx, insn->dst_reg,
|
|
insn->off, BPF_SIZE(insn->code),
|
|
BPF_WRITE, -1, false, false);
|
|
if (err)
|
|
return err;
|
|
|
|
err = save_aux_ptr_type(env, dst_reg_type, false);
|
|
if (err)
|
|
return err;
|
|
} else if (class == BPF_JMP || class == BPF_JMP32) {
|
|
u8 opcode = BPF_OP(insn->code);
|
|
|
|
env->jmps_processed++;
|
|
if (opcode == BPF_CALL) {
|
|
if (BPF_SRC(insn->code) != BPF_K ||
|
|
(insn->src_reg != BPF_PSEUDO_KFUNC_CALL
|
|
&& insn->off != 0) ||
|
|
(insn->src_reg != BPF_REG_0 &&
|
|
insn->src_reg != BPF_PSEUDO_CALL &&
|
|
insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
|
|
insn->dst_reg != BPF_REG_0 ||
|
|
class == BPF_JMP32) {
|
|
verbose(env, "BPF_CALL uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (env->cur_state->active_lock.ptr) {
|
|
if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
|
|
(insn->src_reg == BPF_PSEUDO_CALL) ||
|
|
(insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
|
|
(insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
|
|
verbose(env, "function calls are not allowed while holding a lock\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
if (insn->src_reg == BPF_PSEUDO_CALL) {
|
|
err = check_func_call(env, insn, &env->insn_idx);
|
|
} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
|
|
err = check_kfunc_call(env, insn, &env->insn_idx);
|
|
if (!err && is_bpf_throw_kfunc(insn)) {
|
|
exception_exit = true;
|
|
goto process_bpf_exit_full;
|
|
}
|
|
} else {
|
|
err = check_helper_call(env, insn, &env->insn_idx);
|
|
}
|
|
if (err)
|
|
return err;
|
|
|
|
mark_reg_scratched(env, BPF_REG_0);
|
|
} else if (opcode == BPF_JA) {
|
|
if (BPF_SRC(insn->code) != BPF_K ||
|
|
insn->src_reg != BPF_REG_0 ||
|
|
insn->dst_reg != BPF_REG_0 ||
|
|
(class == BPF_JMP && insn->imm != 0) ||
|
|
(class == BPF_JMP32 && insn->off != 0)) {
|
|
verbose(env, "BPF_JA uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (class == BPF_JMP)
|
|
env->insn_idx += insn->off + 1;
|
|
else
|
|
env->insn_idx += insn->imm + 1;
|
|
continue;
|
|
|
|
} else if (opcode == BPF_EXIT) {
|
|
if (BPF_SRC(insn->code) != BPF_K ||
|
|
insn->imm != 0 ||
|
|
insn->src_reg != BPF_REG_0 ||
|
|
insn->dst_reg != BPF_REG_0 ||
|
|
class == BPF_JMP32) {
|
|
verbose(env, "BPF_EXIT uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
process_bpf_exit_full:
|
|
if (env->cur_state->active_lock.ptr &&
|
|
!in_rbtree_lock_required_cb(env)) {
|
|
verbose(env, "bpf_spin_unlock is missing\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (env->cur_state->active_rcu_lock &&
|
|
!in_rbtree_lock_required_cb(env)) {
|
|
verbose(env, "bpf_rcu_read_unlock is missing\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* We must do check_reference_leak here before
|
|
* prepare_func_exit to handle the case when
|
|
* state->curframe > 0, it may be a callback
|
|
* function, for which reference_state must
|
|
* match caller reference state when it exits.
|
|
*/
|
|
err = check_reference_leak(env, exception_exit);
|
|
if (err)
|
|
return err;
|
|
|
|
/* The side effect of the prepare_func_exit
|
|
* which is being skipped is that it frees
|
|
* bpf_func_state. Typically, process_bpf_exit
|
|
* will only be hit with outermost exit.
|
|
* copy_verifier_state in pop_stack will handle
|
|
* freeing of any extra bpf_func_state left over
|
|
* from not processing all nested function
|
|
* exits. We also skip return code checks as
|
|
* they are not needed for exceptional exits.
|
|
*/
|
|
if (exception_exit)
|
|
goto process_bpf_exit;
|
|
|
|
if (state->curframe) {
|
|
/* exit from nested function */
|
|
err = prepare_func_exit(env, &env->insn_idx);
|
|
if (err)
|
|
return err;
|
|
do_print_state = true;
|
|
continue;
|
|
}
|
|
|
|
err = check_return_code(env, BPF_REG_0, "R0");
|
|
if (err)
|
|
return err;
|
|
process_bpf_exit:
|
|
mark_verifier_state_scratched(env);
|
|
update_branch_counts(env, env->cur_state);
|
|
err = pop_stack(env, &prev_insn_idx,
|
|
&env->insn_idx, pop_log);
|
|
if (err < 0) {
|
|
if (err != -ENOENT)
|
|
return err;
|
|
break;
|
|
} else {
|
|
do_print_state = true;
|
|
continue;
|
|
}
|
|
} else {
|
|
err = check_cond_jmp_op(env, insn, &env->insn_idx);
|
|
if (err)
|
|
return err;
|
|
}
|
|
} else if (class == BPF_LD) {
|
|
u8 mode = BPF_MODE(insn->code);
|
|
|
|
if (mode == BPF_ABS || mode == BPF_IND) {
|
|
err = check_ld_abs(env, insn);
|
|
if (err)
|
|
return err;
|
|
|
|
} else if (mode == BPF_IMM) {
|
|
err = check_ld_imm(env, insn);
|
|
if (err)
|
|
return err;
|
|
|
|
env->insn_idx++;
|
|
sanitize_mark_insn_seen(env);
|
|
} else {
|
|
verbose(env, "invalid BPF_LD mode\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
verbose(env, "unknown insn class %d\n", class);
|
|
return -EINVAL;
|
|
}
|
|
|
|
env->insn_idx++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int find_btf_percpu_datasec(struct btf *btf)
|
|
{
|
|
const struct btf_type *t;
|
|
const char *tname;
|
|
int i, n;
|
|
|
|
/*
|
|
* Both vmlinux and module each have their own ".data..percpu"
|
|
* DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
|
|
* types to look at only module's own BTF types.
|
|
*/
|
|
n = btf_nr_types(btf);
|
|
if (btf_is_module(btf))
|
|
i = btf_nr_types(btf_vmlinux);
|
|
else
|
|
i = 1;
|
|
|
|
for(; i < n; i++) {
|
|
t = btf_type_by_id(btf, i);
|
|
if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
|
|
continue;
|
|
|
|
tname = btf_name_by_offset(btf, t->name_off);
|
|
if (!strcmp(tname, ".data..percpu"))
|
|
return i;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* replace pseudo btf_id with kernel symbol address */
|
|
static int check_pseudo_btf_id(struct bpf_verifier_env *env,
|
|
struct bpf_insn *insn,
|
|
struct bpf_insn_aux_data *aux)
|
|
{
|
|
const struct btf_var_secinfo *vsi;
|
|
const struct btf_type *datasec;
|
|
struct btf_mod_pair *btf_mod;
|
|
const struct btf_type *t;
|
|
const char *sym_name;
|
|
bool percpu = false;
|
|
u32 type, id = insn->imm;
|
|
struct btf *btf;
|
|
s32 datasec_id;
|
|
u64 addr;
|
|
int i, btf_fd, err;
|
|
|
|
btf_fd = insn[1].imm;
|
|
if (btf_fd) {
|
|
btf = btf_get_by_fd(btf_fd);
|
|
if (IS_ERR(btf)) {
|
|
verbose(env, "invalid module BTF object FD specified.\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (!btf_vmlinux) {
|
|
verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
|
|
return -EINVAL;
|
|
}
|
|
btf = btf_vmlinux;
|
|
btf_get(btf);
|
|
}
|
|
|
|
t = btf_type_by_id(btf, id);
|
|
if (!t) {
|
|
verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
|
|
err = -ENOENT;
|
|
goto err_put;
|
|
}
|
|
|
|
if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
|
|
verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
|
|
err = -EINVAL;
|
|
goto err_put;
|
|
}
|
|
|
|
sym_name = btf_name_by_offset(btf, t->name_off);
|
|
addr = kallsyms_lookup_name(sym_name);
|
|
if (!addr) {
|
|
verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
|
|
sym_name);
|
|
err = -ENOENT;
|
|
goto err_put;
|
|
}
|
|
insn[0].imm = (u32)addr;
|
|
insn[1].imm = addr >> 32;
|
|
|
|
if (btf_type_is_func(t)) {
|
|
aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
|
|
aux->btf_var.mem_size = 0;
|
|
goto check_btf;
|
|
}
|
|
|
|
datasec_id = find_btf_percpu_datasec(btf);
|
|
if (datasec_id > 0) {
|
|
datasec = btf_type_by_id(btf, datasec_id);
|
|
for_each_vsi(i, datasec, vsi) {
|
|
if (vsi->type == id) {
|
|
percpu = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
type = t->type;
|
|
t = btf_type_skip_modifiers(btf, type, NULL);
|
|
if (percpu) {
|
|
aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
|
|
aux->btf_var.btf = btf;
|
|
aux->btf_var.btf_id = type;
|
|
} else if (!btf_type_is_struct(t)) {
|
|
const struct btf_type *ret;
|
|
const char *tname;
|
|
u32 tsize;
|
|
|
|
/* resolve the type size of ksym. */
|
|
ret = btf_resolve_size(btf, t, &tsize);
|
|
if (IS_ERR(ret)) {
|
|
tname = btf_name_by_offset(btf, t->name_off);
|
|
verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
|
|
tname, PTR_ERR(ret));
|
|
err = -EINVAL;
|
|
goto err_put;
|
|
}
|
|
aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
|
|
aux->btf_var.mem_size = tsize;
|
|
} else {
|
|
aux->btf_var.reg_type = PTR_TO_BTF_ID;
|
|
aux->btf_var.btf = btf;
|
|
aux->btf_var.btf_id = type;
|
|
}
|
|
check_btf:
|
|
/* check whether we recorded this BTF (and maybe module) already */
|
|
for (i = 0; i < env->used_btf_cnt; i++) {
|
|
if (env->used_btfs[i].btf == btf) {
|
|
btf_put(btf);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (env->used_btf_cnt >= MAX_USED_BTFS) {
|
|
err = -E2BIG;
|
|
goto err_put;
|
|
}
|
|
|
|
btf_mod = &env->used_btfs[env->used_btf_cnt];
|
|
btf_mod->btf = btf;
|
|
btf_mod->module = NULL;
|
|
|
|
/* if we reference variables from kernel module, bump its refcount */
|
|
if (btf_is_module(btf)) {
|
|
btf_mod->module = btf_try_get_module(btf);
|
|
if (!btf_mod->module) {
|
|
err = -ENXIO;
|
|
goto err_put;
|
|
}
|
|
}
|
|
|
|
env->used_btf_cnt++;
|
|
|
|
return 0;
|
|
err_put:
|
|
btf_put(btf);
|
|
return err;
|
|
}
|
|
|
|
static bool is_tracing_prog_type(enum bpf_prog_type type)
|
|
{
|
|
switch (type) {
|
|
case BPF_PROG_TYPE_KPROBE:
|
|
case BPF_PROG_TYPE_TRACEPOINT:
|
|
case BPF_PROG_TYPE_PERF_EVENT:
|
|
case BPF_PROG_TYPE_RAW_TRACEPOINT:
|
|
case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
|
|
struct bpf_map *map,
|
|
struct bpf_prog *prog)
|
|
|
|
{
|
|
enum bpf_prog_type prog_type = resolve_prog_type(prog);
|
|
|
|
if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
|
|
btf_record_has_field(map->record, BPF_RB_ROOT)) {
|
|
if (is_tracing_prog_type(prog_type)) {
|
|
verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
|
|
if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
|
|
verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (is_tracing_prog_type(prog_type)) {
|
|
verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (btf_record_has_field(map->record, BPF_TIMER)) {
|
|
if (is_tracing_prog_type(prog_type)) {
|
|
verbose(env, "tracing progs cannot use bpf_timer yet\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
|
|
!bpf_offload_prog_map_match(prog, map)) {
|
|
verbose(env, "offload device mismatch between prog and map\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
|
|
verbose(env, "bpf_struct_ops map cannot be used in prog\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (prog->aux->sleepable)
|
|
switch (map->map_type) {
|
|
case BPF_MAP_TYPE_HASH:
|
|
case BPF_MAP_TYPE_LRU_HASH:
|
|
case BPF_MAP_TYPE_ARRAY:
|
|
case BPF_MAP_TYPE_PERCPU_HASH:
|
|
case BPF_MAP_TYPE_PERCPU_ARRAY:
|
|
case BPF_MAP_TYPE_LRU_PERCPU_HASH:
|
|
case BPF_MAP_TYPE_ARRAY_OF_MAPS:
|
|
case BPF_MAP_TYPE_HASH_OF_MAPS:
|
|
case BPF_MAP_TYPE_RINGBUF:
|
|
case BPF_MAP_TYPE_USER_RINGBUF:
|
|
case BPF_MAP_TYPE_INODE_STORAGE:
|
|
case BPF_MAP_TYPE_SK_STORAGE:
|
|
case BPF_MAP_TYPE_TASK_STORAGE:
|
|
case BPF_MAP_TYPE_CGRP_STORAGE:
|
|
break;
|
|
default:
|
|
verbose(env,
|
|
"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
|
|
{
|
|
return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
|
|
map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
|
|
}
|
|
|
|
/* find and rewrite pseudo imm in ld_imm64 instructions:
|
|
*
|
|
* 1. if it accesses map FD, replace it with actual map pointer.
|
|
* 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
|
|
*
|
|
* NOTE: btf_vmlinux is required for converting pseudo btf_id.
|
|
*/
|
|
static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_insn *insn = env->prog->insnsi;
|
|
int insn_cnt = env->prog->len;
|
|
int i, j, err;
|
|
|
|
err = bpf_prog_calc_tag(env->prog);
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 0; i < insn_cnt; i++, insn++) {
|
|
if (BPF_CLASS(insn->code) == BPF_LDX &&
|
|
((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
|
|
insn->imm != 0)) {
|
|
verbose(env, "BPF_LDX uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
|
|
struct bpf_insn_aux_data *aux;
|
|
struct bpf_map *map;
|
|
struct fd f;
|
|
u64 addr;
|
|
u32 fd;
|
|
|
|
if (i == insn_cnt - 1 || insn[1].code != 0 ||
|
|
insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
|
|
insn[1].off != 0) {
|
|
verbose(env, "invalid bpf_ld_imm64 insn\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (insn[0].src_reg == 0)
|
|
/* valid generic load 64-bit imm */
|
|
goto next_insn;
|
|
|
|
if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
|
|
aux = &env->insn_aux_data[i];
|
|
err = check_pseudo_btf_id(env, insn, aux);
|
|
if (err)
|
|
return err;
|
|
goto next_insn;
|
|
}
|
|
|
|
if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
|
|
aux = &env->insn_aux_data[i];
|
|
aux->ptr_type = PTR_TO_FUNC;
|
|
goto next_insn;
|
|
}
|
|
|
|
/* In final convert_pseudo_ld_imm64() step, this is
|
|
* converted into regular 64-bit imm load insn.
|
|
*/
|
|
switch (insn[0].src_reg) {
|
|
case BPF_PSEUDO_MAP_VALUE:
|
|
case BPF_PSEUDO_MAP_IDX_VALUE:
|
|
break;
|
|
case BPF_PSEUDO_MAP_FD:
|
|
case BPF_PSEUDO_MAP_IDX:
|
|
if (insn[1].imm == 0)
|
|
break;
|
|
fallthrough;
|
|
default:
|
|
verbose(env, "unrecognized bpf_ld_imm64 insn\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (insn[0].src_reg) {
|
|
case BPF_PSEUDO_MAP_IDX_VALUE:
|
|
case BPF_PSEUDO_MAP_IDX:
|
|
if (bpfptr_is_null(env->fd_array)) {
|
|
verbose(env, "fd_idx without fd_array is invalid\n");
|
|
return -EPROTO;
|
|
}
|
|
if (copy_from_bpfptr_offset(&fd, env->fd_array,
|
|
insn[0].imm * sizeof(fd),
|
|
sizeof(fd)))
|
|
return -EFAULT;
|
|
break;
|
|
default:
|
|
fd = insn[0].imm;
|
|
break;
|
|
}
|
|
|
|
f = fdget(fd);
|
|
map = __bpf_map_get(f);
|
|
if (IS_ERR(map)) {
|
|
verbose(env, "fd %d is not pointing to valid bpf_map\n",
|
|
insn[0].imm);
|
|
return PTR_ERR(map);
|
|
}
|
|
|
|
err = check_map_prog_compatibility(env, map, env->prog);
|
|
if (err) {
|
|
fdput(f);
|
|
return err;
|
|
}
|
|
|
|
aux = &env->insn_aux_data[i];
|
|
if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
|
|
insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
|
|
addr = (unsigned long)map;
|
|
} else {
|
|
u32 off = insn[1].imm;
|
|
|
|
if (off >= BPF_MAX_VAR_OFF) {
|
|
verbose(env, "direct value offset of %u is not allowed\n", off);
|
|
fdput(f);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!map->ops->map_direct_value_addr) {
|
|
verbose(env, "no direct value access support for this map type\n");
|
|
fdput(f);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = map->ops->map_direct_value_addr(map, &addr, off);
|
|
if (err) {
|
|
verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
|
|
map->value_size, off);
|
|
fdput(f);
|
|
return err;
|
|
}
|
|
|
|
aux->map_off = off;
|
|
addr += off;
|
|
}
|
|
|
|
insn[0].imm = (u32)addr;
|
|
insn[1].imm = addr >> 32;
|
|
|
|
/* check whether we recorded this map already */
|
|
for (j = 0; j < env->used_map_cnt; j++) {
|
|
if (env->used_maps[j] == map) {
|
|
aux->map_index = j;
|
|
fdput(f);
|
|
goto next_insn;
|
|
}
|
|
}
|
|
|
|
if (env->used_map_cnt >= MAX_USED_MAPS) {
|
|
fdput(f);
|
|
return -E2BIG;
|
|
}
|
|
|
|
if (env->prog->aux->sleepable)
|
|
atomic64_inc(&map->sleepable_refcnt);
|
|
/* hold the map. If the program is rejected by verifier,
|
|
* the map will be released by release_maps() or it
|
|
* will be used by the valid program until it's unloaded
|
|
* and all maps are released in bpf_free_used_maps()
|
|
*/
|
|
bpf_map_inc(map);
|
|
|
|
aux->map_index = env->used_map_cnt;
|
|
env->used_maps[env->used_map_cnt++] = map;
|
|
|
|
if (bpf_map_is_cgroup_storage(map) &&
|
|
bpf_cgroup_storage_assign(env->prog->aux, map)) {
|
|
verbose(env, "only one cgroup storage of each type is allowed\n");
|
|
fdput(f);
|
|
return -EBUSY;
|
|
}
|
|
|
|
fdput(f);
|
|
next_insn:
|
|
insn++;
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
/* Basic sanity check before we invest more work here. */
|
|
if (!bpf_opcode_in_insntable(insn->code)) {
|
|
verbose(env, "unknown opcode %02x\n", insn->code);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* now all pseudo BPF_LD_IMM64 instructions load valid
|
|
* 'struct bpf_map *' into a register instead of user map_fd.
|
|
* These pointers will be used later by verifier to validate map access.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/* drop refcnt of maps used by the rejected program */
|
|
static void release_maps(struct bpf_verifier_env *env)
|
|
{
|
|
__bpf_free_used_maps(env->prog->aux, env->used_maps,
|
|
env->used_map_cnt);
|
|
}
|
|
|
|
/* drop refcnt of maps used by the rejected program */
|
|
static void release_btfs(struct bpf_verifier_env *env)
|
|
{
|
|
__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
|
|
env->used_btf_cnt);
|
|
}
|
|
|
|
/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
|
|
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_insn *insn = env->prog->insnsi;
|
|
int insn_cnt = env->prog->len;
|
|
int i;
|
|
|
|
for (i = 0; i < insn_cnt; i++, insn++) {
|
|
if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
|
|
continue;
|
|
if (insn->src_reg == BPF_PSEUDO_FUNC)
|
|
continue;
|
|
insn->src_reg = 0;
|
|
}
|
|
}
|
|
|
|
/* single env->prog->insni[off] instruction was replaced with the range
|
|
* insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
|
|
* [0, off) and [off, end) to new locations, so the patched range stays zero
|
|
*/
|
|
static void adjust_insn_aux_data(struct bpf_verifier_env *env,
|
|
struct bpf_insn_aux_data *new_data,
|
|
struct bpf_prog *new_prog, u32 off, u32 cnt)
|
|
{
|
|
struct bpf_insn_aux_data *old_data = env->insn_aux_data;
|
|
struct bpf_insn *insn = new_prog->insnsi;
|
|
u32 old_seen = old_data[off].seen;
|
|
u32 prog_len;
|
|
int i;
|
|
|
|
/* aux info at OFF always needs adjustment, no matter fast path
|
|
* (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
|
|
* original insn at old prog.
|
|
*/
|
|
old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
|
|
|
|
if (cnt == 1)
|
|
return;
|
|
prog_len = new_prog->len;
|
|
|
|
memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
|
|
memcpy(new_data + off + cnt - 1, old_data + off,
|
|
sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
|
|
for (i = off; i < off + cnt - 1; i++) {
|
|
/* Expand insni[off]'s seen count to the patched range. */
|
|
new_data[i].seen = old_seen;
|
|
new_data[i].zext_dst = insn_has_def32(env, insn + i);
|
|
}
|
|
env->insn_aux_data = new_data;
|
|
vfree(old_data);
|
|
}
|
|
|
|
static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
|
|
{
|
|
int i;
|
|
|
|
if (len == 1)
|
|
return;
|
|
/* NOTE: fake 'exit' subprog should be updated as well. */
|
|
for (i = 0; i <= env->subprog_cnt; i++) {
|
|
if (env->subprog_info[i].start <= off)
|
|
continue;
|
|
env->subprog_info[i].start += len - 1;
|
|
}
|
|
}
|
|
|
|
static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
|
|
{
|
|
struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
|
|
int i, sz = prog->aux->size_poke_tab;
|
|
struct bpf_jit_poke_descriptor *desc;
|
|
|
|
for (i = 0; i < sz; i++) {
|
|
desc = &tab[i];
|
|
if (desc->insn_idx <= off)
|
|
continue;
|
|
desc->insn_idx += len - 1;
|
|
}
|
|
}
|
|
|
|
static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
|
|
const struct bpf_insn *patch, u32 len)
|
|
{
|
|
struct bpf_prog *new_prog;
|
|
struct bpf_insn_aux_data *new_data = NULL;
|
|
|
|
if (len > 1) {
|
|
new_data = vzalloc(array_size(env->prog->len + len - 1,
|
|
sizeof(struct bpf_insn_aux_data)));
|
|
if (!new_data)
|
|
return NULL;
|
|
}
|
|
|
|
new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
|
|
if (IS_ERR(new_prog)) {
|
|
if (PTR_ERR(new_prog) == -ERANGE)
|
|
verbose(env,
|
|
"insn %d cannot be patched due to 16-bit range\n",
|
|
env->insn_aux_data[off].orig_idx);
|
|
vfree(new_data);
|
|
return NULL;
|
|
}
|
|
adjust_insn_aux_data(env, new_data, new_prog, off, len);
|
|
adjust_subprog_starts(env, off, len);
|
|
adjust_poke_descs(new_prog, off, len);
|
|
return new_prog;
|
|
}
|
|
|
|
static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
|
|
u32 off, u32 cnt)
|
|
{
|
|
int i, j;
|
|
|
|
/* find first prog starting at or after off (first to remove) */
|
|
for (i = 0; i < env->subprog_cnt; i++)
|
|
if (env->subprog_info[i].start >= off)
|
|
break;
|
|
/* find first prog starting at or after off + cnt (first to stay) */
|
|
for (j = i; j < env->subprog_cnt; j++)
|
|
if (env->subprog_info[j].start >= off + cnt)
|
|
break;
|
|
/* if j doesn't start exactly at off + cnt, we are just removing
|
|
* the front of previous prog
|
|
*/
|
|
if (env->subprog_info[j].start != off + cnt)
|
|
j--;
|
|
|
|
if (j > i) {
|
|
struct bpf_prog_aux *aux = env->prog->aux;
|
|
int move;
|
|
|
|
/* move fake 'exit' subprog as well */
|
|
move = env->subprog_cnt + 1 - j;
|
|
|
|
memmove(env->subprog_info + i,
|
|
env->subprog_info + j,
|
|
sizeof(*env->subprog_info) * move);
|
|
env->subprog_cnt -= j - i;
|
|
|
|
/* remove func_info */
|
|
if (aux->func_info) {
|
|
move = aux->func_info_cnt - j;
|
|
|
|
memmove(aux->func_info + i,
|
|
aux->func_info + j,
|
|
sizeof(*aux->func_info) * move);
|
|
aux->func_info_cnt -= j - i;
|
|
/* func_info->insn_off is set after all code rewrites,
|
|
* in adjust_btf_func() - no need to adjust
|
|
*/
|
|
}
|
|
} else {
|
|
/* convert i from "first prog to remove" to "first to adjust" */
|
|
if (env->subprog_info[i].start == off)
|
|
i++;
|
|
}
|
|
|
|
/* update fake 'exit' subprog as well */
|
|
for (; i <= env->subprog_cnt; i++)
|
|
env->subprog_info[i].start -= cnt;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
|
|
u32 cnt)
|
|
{
|
|
struct bpf_prog *prog = env->prog;
|
|
u32 i, l_off, l_cnt, nr_linfo;
|
|
struct bpf_line_info *linfo;
|
|
|
|
nr_linfo = prog->aux->nr_linfo;
|
|
if (!nr_linfo)
|
|
return 0;
|
|
|
|
linfo = prog->aux->linfo;
|
|
|
|
/* find first line info to remove, count lines to be removed */
|
|
for (i = 0; i < nr_linfo; i++)
|
|
if (linfo[i].insn_off >= off)
|
|
break;
|
|
|
|
l_off = i;
|
|
l_cnt = 0;
|
|
for (; i < nr_linfo; i++)
|
|
if (linfo[i].insn_off < off + cnt)
|
|
l_cnt++;
|
|
else
|
|
break;
|
|
|
|
/* First live insn doesn't match first live linfo, it needs to "inherit"
|
|
* last removed linfo. prog is already modified, so prog->len == off
|
|
* means no live instructions after (tail of the program was removed).
|
|
*/
|
|
if (prog->len != off && l_cnt &&
|
|
(i == nr_linfo || linfo[i].insn_off != off + cnt)) {
|
|
l_cnt--;
|
|
linfo[--i].insn_off = off + cnt;
|
|
}
|
|
|
|
/* remove the line info which refer to the removed instructions */
|
|
if (l_cnt) {
|
|
memmove(linfo + l_off, linfo + i,
|
|
sizeof(*linfo) * (nr_linfo - i));
|
|
|
|
prog->aux->nr_linfo -= l_cnt;
|
|
nr_linfo = prog->aux->nr_linfo;
|
|
}
|
|
|
|
/* pull all linfo[i].insn_off >= off + cnt in by cnt */
|
|
for (i = l_off; i < nr_linfo; i++)
|
|
linfo[i].insn_off -= cnt;
|
|
|
|
/* fix up all subprogs (incl. 'exit') which start >= off */
|
|
for (i = 0; i <= env->subprog_cnt; i++)
|
|
if (env->subprog_info[i].linfo_idx > l_off) {
|
|
/* program may have started in the removed region but
|
|
* may not be fully removed
|
|
*/
|
|
if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
|
|
env->subprog_info[i].linfo_idx -= l_cnt;
|
|
else
|
|
env->subprog_info[i].linfo_idx = l_off;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
|
|
{
|
|
struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
|
|
unsigned int orig_prog_len = env->prog->len;
|
|
int err;
|
|
|
|
if (bpf_prog_is_offloaded(env->prog->aux))
|
|
bpf_prog_offload_remove_insns(env, off, cnt);
|
|
|
|
err = bpf_remove_insns(env->prog, off, cnt);
|
|
if (err)
|
|
return err;
|
|
|
|
err = adjust_subprog_starts_after_remove(env, off, cnt);
|
|
if (err)
|
|
return err;
|
|
|
|
err = bpf_adj_linfo_after_remove(env, off, cnt);
|
|
if (err)
|
|
return err;
|
|
|
|
memmove(aux_data + off, aux_data + off + cnt,
|
|
sizeof(*aux_data) * (orig_prog_len - off - cnt));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The verifier does more data flow analysis than llvm and will not
|
|
* explore branches that are dead at run time. Malicious programs can
|
|
* have dead code too. Therefore replace all dead at-run-time code
|
|
* with 'ja -1'.
|
|
*
|
|
* Just nops are not optimal, e.g. if they would sit at the end of the
|
|
* program and through another bug we would manage to jump there, then
|
|
* we'd execute beyond program memory otherwise. Returning exception
|
|
* code also wouldn't work since we can have subprogs where the dead
|
|
* code could be located.
|
|
*/
|
|
static void sanitize_dead_code(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
|
|
struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
|
|
struct bpf_insn *insn = env->prog->insnsi;
|
|
const int insn_cnt = env->prog->len;
|
|
int i;
|
|
|
|
for (i = 0; i < insn_cnt; i++) {
|
|
if (aux_data[i].seen)
|
|
continue;
|
|
memcpy(insn + i, &trap, sizeof(trap));
|
|
aux_data[i].zext_dst = false;
|
|
}
|
|
}
|
|
|
|
static bool insn_is_cond_jump(u8 code)
|
|
{
|
|
u8 op;
|
|
|
|
op = BPF_OP(code);
|
|
if (BPF_CLASS(code) == BPF_JMP32)
|
|
return op != BPF_JA;
|
|
|
|
if (BPF_CLASS(code) != BPF_JMP)
|
|
return false;
|
|
|
|
return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
|
|
}
|
|
|
|
static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
|
|
struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
|
|
struct bpf_insn *insn = env->prog->insnsi;
|
|
const int insn_cnt = env->prog->len;
|
|
int i;
|
|
|
|
for (i = 0; i < insn_cnt; i++, insn++) {
|
|
if (!insn_is_cond_jump(insn->code))
|
|
continue;
|
|
|
|
if (!aux_data[i + 1].seen)
|
|
ja.off = insn->off;
|
|
else if (!aux_data[i + 1 + insn->off].seen)
|
|
ja.off = 0;
|
|
else
|
|
continue;
|
|
|
|
if (bpf_prog_is_offloaded(env->prog->aux))
|
|
bpf_prog_offload_replace_insn(env, i, &ja);
|
|
|
|
memcpy(insn, &ja, sizeof(ja));
|
|
}
|
|
}
|
|
|
|
static int opt_remove_dead_code(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
|
|
int insn_cnt = env->prog->len;
|
|
int i, err;
|
|
|
|
for (i = 0; i < insn_cnt; i++) {
|
|
int j;
|
|
|
|
j = 0;
|
|
while (i + j < insn_cnt && !aux_data[i + j].seen)
|
|
j++;
|
|
if (!j)
|
|
continue;
|
|
|
|
err = verifier_remove_insns(env, i, j);
|
|
if (err)
|
|
return err;
|
|
insn_cnt = env->prog->len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int opt_remove_nops(struct bpf_verifier_env *env)
|
|
{
|
|
const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
|
|
struct bpf_insn *insn = env->prog->insnsi;
|
|
int insn_cnt = env->prog->len;
|
|
int i, err;
|
|
|
|
for (i = 0; i < insn_cnt; i++) {
|
|
if (memcmp(&insn[i], &ja, sizeof(ja)))
|
|
continue;
|
|
|
|
err = verifier_remove_insns(env, i, 1);
|
|
if (err)
|
|
return err;
|
|
insn_cnt--;
|
|
i--;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
|
|
const union bpf_attr *attr)
|
|
{
|
|
struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
|
|
struct bpf_insn_aux_data *aux = env->insn_aux_data;
|
|
int i, patch_len, delta = 0, len = env->prog->len;
|
|
struct bpf_insn *insns = env->prog->insnsi;
|
|
struct bpf_prog *new_prog;
|
|
bool rnd_hi32;
|
|
|
|
rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
|
|
zext_patch[1] = BPF_ZEXT_REG(0);
|
|
rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
|
|
rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
|
|
rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
|
|
for (i = 0; i < len; i++) {
|
|
int adj_idx = i + delta;
|
|
struct bpf_insn insn;
|
|
int load_reg;
|
|
|
|
insn = insns[adj_idx];
|
|
load_reg = insn_def_regno(&insn);
|
|
if (!aux[adj_idx].zext_dst) {
|
|
u8 code, class;
|
|
u32 imm_rnd;
|
|
|
|
if (!rnd_hi32)
|
|
continue;
|
|
|
|
code = insn.code;
|
|
class = BPF_CLASS(code);
|
|
if (load_reg == -1)
|
|
continue;
|
|
|
|
/* NOTE: arg "reg" (the fourth one) is only used for
|
|
* BPF_STX + SRC_OP, so it is safe to pass NULL
|
|
* here.
|
|
*/
|
|
if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
|
|
if (class == BPF_LD &&
|
|
BPF_MODE(code) == BPF_IMM)
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
/* ctx load could be transformed into wider load. */
|
|
if (class == BPF_LDX &&
|
|
aux[adj_idx].ptr_type == PTR_TO_CTX)
|
|
continue;
|
|
|
|
imm_rnd = get_random_u32();
|
|
rnd_hi32_patch[0] = insn;
|
|
rnd_hi32_patch[1].imm = imm_rnd;
|
|
rnd_hi32_patch[3].dst_reg = load_reg;
|
|
patch = rnd_hi32_patch;
|
|
patch_len = 4;
|
|
goto apply_patch_buffer;
|
|
}
|
|
|
|
/* Add in an zero-extend instruction if a) the JIT has requested
|
|
* it or b) it's a CMPXCHG.
|
|
*
|
|
* The latter is because: BPF_CMPXCHG always loads a value into
|
|
* R0, therefore always zero-extends. However some archs'
|
|
* equivalent instruction only does this load when the
|
|
* comparison is successful. This detail of CMPXCHG is
|
|
* orthogonal to the general zero-extension behaviour of the
|
|
* CPU, so it's treated independently of bpf_jit_needs_zext.
|
|
*/
|
|
if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
|
|
continue;
|
|
|
|
/* Zero-extension is done by the caller. */
|
|
if (bpf_pseudo_kfunc_call(&insn))
|
|
continue;
|
|
|
|
if (WARN_ON(load_reg == -1)) {
|
|
verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
zext_patch[0] = insn;
|
|
zext_patch[1].dst_reg = load_reg;
|
|
zext_patch[1].src_reg = load_reg;
|
|
patch = zext_patch;
|
|
patch_len = 2;
|
|
apply_patch_buffer:
|
|
new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
env->prog = new_prog;
|
|
insns = new_prog->insnsi;
|
|
aux = env->insn_aux_data;
|
|
delta += patch_len - 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* convert load instructions that access fields of a context type into a
|
|
* sequence of instructions that access fields of the underlying structure:
|
|
* struct __sk_buff -> struct sk_buff
|
|
* struct bpf_sock_ops -> struct sock
|
|
*/
|
|
static int convert_ctx_accesses(struct bpf_verifier_env *env)
|
|
{
|
|
const struct bpf_verifier_ops *ops = env->ops;
|
|
int i, cnt, size, ctx_field_size, delta = 0;
|
|
const int insn_cnt = env->prog->len;
|
|
struct bpf_insn insn_buf[16], *insn;
|
|
u32 target_size, size_default, off;
|
|
struct bpf_prog *new_prog;
|
|
enum bpf_access_type type;
|
|
bool is_narrower_load;
|
|
|
|
if (ops->gen_prologue || env->seen_direct_write) {
|
|
if (!ops->gen_prologue) {
|
|
verbose(env, "bpf verifier is misconfigured\n");
|
|
return -EINVAL;
|
|
}
|
|
cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
|
|
env->prog);
|
|
if (cnt >= ARRAY_SIZE(insn_buf)) {
|
|
verbose(env, "bpf verifier is misconfigured\n");
|
|
return -EINVAL;
|
|
} else if (cnt) {
|
|
new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
|
|
env->prog = new_prog;
|
|
delta += cnt - 1;
|
|
}
|
|
}
|
|
|
|
if (bpf_prog_is_offloaded(env->prog->aux))
|
|
return 0;
|
|
|
|
insn = env->prog->insnsi + delta;
|
|
|
|
for (i = 0; i < insn_cnt; i++, insn++) {
|
|
bpf_convert_ctx_access_t convert_ctx_access;
|
|
u8 mode;
|
|
|
|
if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
|
|
insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
|
|
insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
|
|
insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
|
|
insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
|
|
insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
|
|
insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
|
|
type = BPF_READ;
|
|
} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
|
|
insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
|
|
insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
|
|
insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
|
|
insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
|
|
insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
|
|
insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
|
|
insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
|
|
type = BPF_WRITE;
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
if (type == BPF_WRITE &&
|
|
env->insn_aux_data[i + delta].sanitize_stack_spill) {
|
|
struct bpf_insn patch[] = {
|
|
*insn,
|
|
BPF_ST_NOSPEC(),
|
|
};
|
|
|
|
cnt = ARRAY_SIZE(patch);
|
|
new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
|
|
delta += cnt - 1;
|
|
env->prog = new_prog;
|
|
insn = new_prog->insnsi + i + delta;
|
|
continue;
|
|
}
|
|
|
|
switch ((int)env->insn_aux_data[i + delta].ptr_type) {
|
|
case PTR_TO_CTX:
|
|
if (!ops->convert_ctx_access)
|
|
continue;
|
|
convert_ctx_access = ops->convert_ctx_access;
|
|
break;
|
|
case PTR_TO_SOCKET:
|
|
case PTR_TO_SOCK_COMMON:
|
|
convert_ctx_access = bpf_sock_convert_ctx_access;
|
|
break;
|
|
case PTR_TO_TCP_SOCK:
|
|
convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
|
|
break;
|
|
case PTR_TO_XDP_SOCK:
|
|
convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
|
|
break;
|
|
case PTR_TO_BTF_ID:
|
|
case PTR_TO_BTF_ID | PTR_UNTRUSTED:
|
|
/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
|
|
* PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
|
|
* be said once it is marked PTR_UNTRUSTED, hence we must handle
|
|
* any faults for loads into such types. BPF_WRITE is disallowed
|
|
* for this case.
|
|
*/
|
|
case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
|
|
if (type == BPF_READ) {
|
|
if (BPF_MODE(insn->code) == BPF_MEM)
|
|
insn->code = BPF_LDX | BPF_PROBE_MEM |
|
|
BPF_SIZE((insn)->code);
|
|
else
|
|
insn->code = BPF_LDX | BPF_PROBE_MEMSX |
|
|
BPF_SIZE((insn)->code);
|
|
env->prog->aux->num_exentries++;
|
|
}
|
|
continue;
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
|
|
size = BPF_LDST_BYTES(insn);
|
|
mode = BPF_MODE(insn->code);
|
|
|
|
/* If the read access is a narrower load of the field,
|
|
* convert to a 4/8-byte load, to minimum program type specific
|
|
* convert_ctx_access changes. If conversion is successful,
|
|
* we will apply proper mask to the result.
|
|
*/
|
|
is_narrower_load = size < ctx_field_size;
|
|
size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
|
|
off = insn->off;
|
|
if (is_narrower_load) {
|
|
u8 size_code;
|
|
|
|
if (type == BPF_WRITE) {
|
|
verbose(env, "bpf verifier narrow ctx access misconfigured\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
size_code = BPF_H;
|
|
if (ctx_field_size == 4)
|
|
size_code = BPF_W;
|
|
else if (ctx_field_size == 8)
|
|
size_code = BPF_DW;
|
|
|
|
insn->off = off & ~(size_default - 1);
|
|
insn->code = BPF_LDX | BPF_MEM | size_code;
|
|
}
|
|
|
|
target_size = 0;
|
|
cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
|
|
&target_size);
|
|
if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
|
|
(ctx_field_size && !target_size)) {
|
|
verbose(env, "bpf verifier is misconfigured\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (is_narrower_load && size < target_size) {
|
|
u8 shift = bpf_ctx_narrow_access_offset(
|
|
off, size, size_default) * 8;
|
|
if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
|
|
verbose(env, "bpf verifier narrow ctx load misconfigured\n");
|
|
return -EINVAL;
|
|
}
|
|
if (ctx_field_size <= 4) {
|
|
if (shift)
|
|
insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
|
|
insn->dst_reg,
|
|
shift);
|
|
insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
|
|
(1 << size * 8) - 1);
|
|
} else {
|
|
if (shift)
|
|
insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
|
|
insn->dst_reg,
|
|
shift);
|
|
insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
|
|
(1ULL << size * 8) - 1);
|
|
}
|
|
}
|
|
if (mode == BPF_MEMSX)
|
|
insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
|
|
insn->dst_reg, insn->dst_reg,
|
|
size * 8, 0);
|
|
|
|
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
|
|
delta += cnt - 1;
|
|
|
|
/* keep walking new program and skip insns we just inserted */
|
|
env->prog = new_prog;
|
|
insn = new_prog->insnsi + i + delta;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int jit_subprogs(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_prog *prog = env->prog, **func, *tmp;
|
|
int i, j, subprog_start, subprog_end = 0, len, subprog;
|
|
struct bpf_map *map_ptr;
|
|
struct bpf_insn *insn;
|
|
void *old_bpf_func;
|
|
int err, num_exentries;
|
|
|
|
if (env->subprog_cnt <= 1)
|
|
return 0;
|
|
|
|
for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
|
|
if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
|
|
continue;
|
|
|
|
/* Upon error here we cannot fall back to interpreter but
|
|
* need a hard reject of the program. Thus -EFAULT is
|
|
* propagated in any case.
|
|
*/
|
|
subprog = find_subprog(env, i + insn->imm + 1);
|
|
if (subprog < 0) {
|
|
WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
|
|
i + insn->imm + 1);
|
|
return -EFAULT;
|
|
}
|
|
/* temporarily remember subprog id inside insn instead of
|
|
* aux_data, since next loop will split up all insns into funcs
|
|
*/
|
|
insn->off = subprog;
|
|
/* remember original imm in case JIT fails and fallback
|
|
* to interpreter will be needed
|
|
*/
|
|
env->insn_aux_data[i].call_imm = insn->imm;
|
|
/* point imm to __bpf_call_base+1 from JITs point of view */
|
|
insn->imm = 1;
|
|
if (bpf_pseudo_func(insn))
|
|
/* jit (e.g. x86_64) may emit fewer instructions
|
|
* if it learns a u32 imm is the same as a u64 imm.
|
|
* Force a non zero here.
|
|
*/
|
|
insn[1].imm = 1;
|
|
}
|
|
|
|
err = bpf_prog_alloc_jited_linfo(prog);
|
|
if (err)
|
|
goto out_undo_insn;
|
|
|
|
err = -ENOMEM;
|
|
func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
|
|
if (!func)
|
|
goto out_undo_insn;
|
|
|
|
for (i = 0; i < env->subprog_cnt; i++) {
|
|
subprog_start = subprog_end;
|
|
subprog_end = env->subprog_info[i + 1].start;
|
|
|
|
len = subprog_end - subprog_start;
|
|
/* bpf_prog_run() doesn't call subprogs directly,
|
|
* hence main prog stats include the runtime of subprogs.
|
|
* subprogs don't have IDs and not reachable via prog_get_next_id
|
|
* func[i]->stats will never be accessed and stays NULL
|
|
*/
|
|
func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
|
|
if (!func[i])
|
|
goto out_free;
|
|
memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
|
|
len * sizeof(struct bpf_insn));
|
|
func[i]->type = prog->type;
|
|
func[i]->len = len;
|
|
if (bpf_prog_calc_tag(func[i]))
|
|
goto out_free;
|
|
func[i]->is_func = 1;
|
|
func[i]->aux->func_idx = i;
|
|
/* Below members will be freed only at prog->aux */
|
|
func[i]->aux->btf = prog->aux->btf;
|
|
func[i]->aux->func_info = prog->aux->func_info;
|
|
func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
|
|
func[i]->aux->poke_tab = prog->aux->poke_tab;
|
|
func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
|
|
|
|
for (j = 0; j < prog->aux->size_poke_tab; j++) {
|
|
struct bpf_jit_poke_descriptor *poke;
|
|
|
|
poke = &prog->aux->poke_tab[j];
|
|
if (poke->insn_idx < subprog_end &&
|
|
poke->insn_idx >= subprog_start)
|
|
poke->aux = func[i]->aux;
|
|
}
|
|
|
|
func[i]->aux->name[0] = 'F';
|
|
func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
|
|
func[i]->jit_requested = 1;
|
|
func[i]->blinding_requested = prog->blinding_requested;
|
|
func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
|
|
func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
|
|
func[i]->aux->linfo = prog->aux->linfo;
|
|
func[i]->aux->nr_linfo = prog->aux->nr_linfo;
|
|
func[i]->aux->jited_linfo = prog->aux->jited_linfo;
|
|
func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
|
|
num_exentries = 0;
|
|
insn = func[i]->insnsi;
|
|
for (j = 0; j < func[i]->len; j++, insn++) {
|
|
if (BPF_CLASS(insn->code) == BPF_LDX &&
|
|
(BPF_MODE(insn->code) == BPF_PROBE_MEM ||
|
|
BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
|
|
num_exentries++;
|
|
}
|
|
func[i]->aux->num_exentries = num_exentries;
|
|
func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
|
|
func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
|
|
if (!i)
|
|
func[i]->aux->exception_boundary = env->seen_exception;
|
|
func[i] = bpf_int_jit_compile(func[i]);
|
|
if (!func[i]->jited) {
|
|
err = -ENOTSUPP;
|
|
goto out_free;
|
|
}
|
|
cond_resched();
|
|
}
|
|
|
|
/* at this point all bpf functions were successfully JITed
|
|
* now populate all bpf_calls with correct addresses and
|
|
* run last pass of JIT
|
|
*/
|
|
for (i = 0; i < env->subprog_cnt; i++) {
|
|
insn = func[i]->insnsi;
|
|
for (j = 0; j < func[i]->len; j++, insn++) {
|
|
if (bpf_pseudo_func(insn)) {
|
|
subprog = insn->off;
|
|
insn[0].imm = (u32)(long)func[subprog]->bpf_func;
|
|
insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
|
|
continue;
|
|
}
|
|
if (!bpf_pseudo_call(insn))
|
|
continue;
|
|
subprog = insn->off;
|
|
insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
|
|
}
|
|
|
|
/* we use the aux data to keep a list of the start addresses
|
|
* of the JITed images for each function in the program
|
|
*
|
|
* for some architectures, such as powerpc64, the imm field
|
|
* might not be large enough to hold the offset of the start
|
|
* address of the callee's JITed image from __bpf_call_base
|
|
*
|
|
* in such cases, we can lookup the start address of a callee
|
|
* by using its subprog id, available from the off field of
|
|
* the call instruction, as an index for this list
|
|
*/
|
|
func[i]->aux->func = func;
|
|
func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
|
|
func[i]->aux->real_func_cnt = env->subprog_cnt;
|
|
}
|
|
for (i = 0; i < env->subprog_cnt; i++) {
|
|
old_bpf_func = func[i]->bpf_func;
|
|
tmp = bpf_int_jit_compile(func[i]);
|
|
if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
|
|
verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
|
|
err = -ENOTSUPP;
|
|
goto out_free;
|
|
}
|
|
cond_resched();
|
|
}
|
|
|
|
/* finally lock prog and jit images for all functions and
|
|
* populate kallsysm. Begin at the first subprogram, since
|
|
* bpf_prog_load will add the kallsyms for the main program.
|
|
*/
|
|
for (i = 1; i < env->subprog_cnt; i++) {
|
|
bpf_prog_lock_ro(func[i]);
|
|
bpf_prog_kallsyms_add(func[i]);
|
|
}
|
|
|
|
/* Last step: make now unused interpreter insns from main
|
|
* prog consistent for later dump requests, so they can
|
|
* later look the same as if they were interpreted only.
|
|
*/
|
|
for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
|
|
if (bpf_pseudo_func(insn)) {
|
|
insn[0].imm = env->insn_aux_data[i].call_imm;
|
|
insn[1].imm = insn->off;
|
|
insn->off = 0;
|
|
continue;
|
|
}
|
|
if (!bpf_pseudo_call(insn))
|
|
continue;
|
|
insn->off = env->insn_aux_data[i].call_imm;
|
|
subprog = find_subprog(env, i + insn->off + 1);
|
|
insn->imm = subprog;
|
|
}
|
|
|
|
prog->jited = 1;
|
|
prog->bpf_func = func[0]->bpf_func;
|
|
prog->jited_len = func[0]->jited_len;
|
|
prog->aux->extable = func[0]->aux->extable;
|
|
prog->aux->num_exentries = func[0]->aux->num_exentries;
|
|
prog->aux->func = func;
|
|
prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
|
|
prog->aux->real_func_cnt = env->subprog_cnt;
|
|
prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
|
|
prog->aux->exception_boundary = func[0]->aux->exception_boundary;
|
|
bpf_prog_jit_attempt_done(prog);
|
|
return 0;
|
|
out_free:
|
|
/* We failed JIT'ing, so at this point we need to unregister poke
|
|
* descriptors from subprogs, so that kernel is not attempting to
|
|
* patch it anymore as we're freeing the subprog JIT memory.
|
|
*/
|
|
for (i = 0; i < prog->aux->size_poke_tab; i++) {
|
|
map_ptr = prog->aux->poke_tab[i].tail_call.map;
|
|
map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
|
|
}
|
|
/* At this point we're guaranteed that poke descriptors are not
|
|
* live anymore. We can just unlink its descriptor table as it's
|
|
* released with the main prog.
|
|
*/
|
|
for (i = 0; i < env->subprog_cnt; i++) {
|
|
if (!func[i])
|
|
continue;
|
|
func[i]->aux->poke_tab = NULL;
|
|
bpf_jit_free(func[i]);
|
|
}
|
|
kfree(func);
|
|
out_undo_insn:
|
|
/* cleanup main prog to be interpreted */
|
|
prog->jit_requested = 0;
|
|
prog->blinding_requested = 0;
|
|
for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
|
|
if (!bpf_pseudo_call(insn))
|
|
continue;
|
|
insn->off = 0;
|
|
insn->imm = env->insn_aux_data[i].call_imm;
|
|
}
|
|
bpf_prog_jit_attempt_done(prog);
|
|
return err;
|
|
}
|
|
|
|
static int fixup_call_args(struct bpf_verifier_env *env)
|
|
{
|
|
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
|
|
struct bpf_prog *prog = env->prog;
|
|
struct bpf_insn *insn = prog->insnsi;
|
|
bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
|
|
int i, depth;
|
|
#endif
|
|
int err = 0;
|
|
|
|
if (env->prog->jit_requested &&
|
|
!bpf_prog_is_offloaded(env->prog->aux)) {
|
|
err = jit_subprogs(env);
|
|
if (err == 0)
|
|
return 0;
|
|
if (err == -EFAULT)
|
|
return err;
|
|
}
|
|
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
|
|
if (has_kfunc_call) {
|
|
verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
|
|
return -EINVAL;
|
|
}
|
|
if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
|
|
/* When JIT fails the progs with bpf2bpf calls and tail_calls
|
|
* have to be rejected, since interpreter doesn't support them yet.
|
|
*/
|
|
verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
|
|
return -EINVAL;
|
|
}
|
|
for (i = 0; i < prog->len; i++, insn++) {
|
|
if (bpf_pseudo_func(insn)) {
|
|
/* When JIT fails the progs with callback calls
|
|
* have to be rejected, since interpreter doesn't support them yet.
|
|
*/
|
|
verbose(env, "callbacks are not allowed in non-JITed programs\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!bpf_pseudo_call(insn))
|
|
continue;
|
|
depth = get_callee_stack_depth(env, insn, i);
|
|
if (depth < 0)
|
|
return depth;
|
|
bpf_patch_call_args(insn, depth);
|
|
}
|
|
err = 0;
|
|
#endif
|
|
return err;
|
|
}
|
|
|
|
/* replace a generic kfunc with a specialized version if necessary */
|
|
static void specialize_kfunc(struct bpf_verifier_env *env,
|
|
u32 func_id, u16 offset, unsigned long *addr)
|
|
{
|
|
struct bpf_prog *prog = env->prog;
|
|
bool seen_direct_write;
|
|
void *xdp_kfunc;
|
|
bool is_rdonly;
|
|
|
|
if (bpf_dev_bound_kfunc_id(func_id)) {
|
|
xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
|
|
if (xdp_kfunc) {
|
|
*addr = (unsigned long)xdp_kfunc;
|
|
return;
|
|
}
|
|
/* fallback to default kfunc when not supported by netdev */
|
|
}
|
|
|
|
if (offset)
|
|
return;
|
|
|
|
if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
|
|
seen_direct_write = env->seen_direct_write;
|
|
is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
|
|
|
|
if (is_rdonly)
|
|
*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
|
|
|
|
/* restore env->seen_direct_write to its original value, since
|
|
* may_access_direct_pkt_data mutates it
|
|
*/
|
|
env->seen_direct_write = seen_direct_write;
|
|
}
|
|
}
|
|
|
|
static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
|
|
u16 struct_meta_reg,
|
|
u16 node_offset_reg,
|
|
struct bpf_insn *insn,
|
|
struct bpf_insn *insn_buf,
|
|
int *cnt)
|
|
{
|
|
struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
|
|
struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
|
|
|
|
insn_buf[0] = addr[0];
|
|
insn_buf[1] = addr[1];
|
|
insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
|
|
insn_buf[3] = *insn;
|
|
*cnt = 4;
|
|
}
|
|
|
|
static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
|
|
struct bpf_insn *insn_buf, int insn_idx, int *cnt)
|
|
{
|
|
const struct bpf_kfunc_desc *desc;
|
|
|
|
if (!insn->imm) {
|
|
verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
*cnt = 0;
|
|
|
|
/* insn->imm has the btf func_id. Replace it with an offset relative to
|
|
* __bpf_call_base, unless the JIT needs to call functions that are
|
|
* further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
|
|
*/
|
|
desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
|
|
if (!desc) {
|
|
verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
|
|
insn->imm);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (!bpf_jit_supports_far_kfunc_call())
|
|
insn->imm = BPF_CALL_IMM(desc->addr);
|
|
if (insn->off)
|
|
return 0;
|
|
if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
|
|
desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
|
|
struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
|
|
struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
|
|
u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
|
|
|
|
if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
|
|
verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
|
|
insn_idx);
|
|
return -EFAULT;
|
|
}
|
|
|
|
insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
|
|
insn_buf[1] = addr[0];
|
|
insn_buf[2] = addr[1];
|
|
insn_buf[3] = *insn;
|
|
*cnt = 4;
|
|
} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
|
|
desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
|
|
desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
|
|
struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
|
|
struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
|
|
|
|
if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
|
|
verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
|
|
insn_idx);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
|
|
!kptr_struct_meta) {
|
|
verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
|
|
insn_idx);
|
|
return -EFAULT;
|
|
}
|
|
|
|
insn_buf[0] = addr[0];
|
|
insn_buf[1] = addr[1];
|
|
insn_buf[2] = *insn;
|
|
*cnt = 3;
|
|
} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
|
|
desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
|
|
desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
|
|
struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
|
|
int struct_meta_reg = BPF_REG_3;
|
|
int node_offset_reg = BPF_REG_4;
|
|
|
|
/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
|
|
if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
|
|
struct_meta_reg = BPF_REG_4;
|
|
node_offset_reg = BPF_REG_5;
|
|
}
|
|
|
|
if (!kptr_struct_meta) {
|
|
verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
|
|
insn_idx);
|
|
return -EFAULT;
|
|
}
|
|
|
|
__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
|
|
node_offset_reg, insn, insn_buf, cnt);
|
|
} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
|
|
desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
|
|
insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
|
|
*cnt = 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
|
|
static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
|
|
{
|
|
struct bpf_subprog_info *info = env->subprog_info;
|
|
int cnt = env->subprog_cnt;
|
|
struct bpf_prog *prog;
|
|
|
|
/* We only reserve one slot for hidden subprogs in subprog_info. */
|
|
if (env->hidden_subprog_cnt) {
|
|
verbose(env, "verifier internal error: only one hidden subprog supported\n");
|
|
return -EFAULT;
|
|
}
|
|
/* We're not patching any existing instruction, just appending the new
|
|
* ones for the hidden subprog. Hence all of the adjustment operations
|
|
* in bpf_patch_insn_data are no-ops.
|
|
*/
|
|
prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
|
|
if (!prog)
|
|
return -ENOMEM;
|
|
env->prog = prog;
|
|
info[cnt + 1].start = info[cnt].start;
|
|
info[cnt].start = prog->len - len + 1;
|
|
env->subprog_cnt++;
|
|
env->hidden_subprog_cnt++;
|
|
return 0;
|
|
}
|
|
|
|
/* Do various post-verification rewrites in a single program pass.
|
|
* These rewrites simplify JIT and interpreter implementations.
|
|
*/
|
|
static int do_misc_fixups(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_prog *prog = env->prog;
|
|
enum bpf_attach_type eatype = prog->expected_attach_type;
|
|
enum bpf_prog_type prog_type = resolve_prog_type(prog);
|
|
struct bpf_insn *insn = prog->insnsi;
|
|
const struct bpf_func_proto *fn;
|
|
const int insn_cnt = prog->len;
|
|
const struct bpf_map_ops *ops;
|
|
struct bpf_insn_aux_data *aux;
|
|
struct bpf_insn insn_buf[16];
|
|
struct bpf_prog *new_prog;
|
|
struct bpf_map *map_ptr;
|
|
int i, ret, cnt, delta = 0;
|
|
|
|
if (env->seen_exception && !env->exception_callback_subprog) {
|
|
struct bpf_insn patch[] = {
|
|
env->prog->insnsi[insn_cnt - 1],
|
|
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
|
|
BPF_EXIT_INSN(),
|
|
};
|
|
|
|
ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
|
|
if (ret < 0)
|
|
return ret;
|
|
prog = env->prog;
|
|
insn = prog->insnsi;
|
|
|
|
env->exception_callback_subprog = env->subprog_cnt - 1;
|
|
/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
|
|
env->subprog_info[env->exception_callback_subprog].is_cb = true;
|
|
env->subprog_info[env->exception_callback_subprog].is_async_cb = true;
|
|
env->subprog_info[env->exception_callback_subprog].is_exception_cb = true;
|
|
}
|
|
|
|
for (i = 0; i < insn_cnt; i++, insn++) {
|
|
/* Make divide-by-zero exceptions impossible. */
|
|
if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
|
|
insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
|
|
insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
|
|
insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
|
|
bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
|
|
bool isdiv = BPF_OP(insn->code) == BPF_DIV;
|
|
struct bpf_insn *patchlet;
|
|
struct bpf_insn chk_and_div[] = {
|
|
/* [R,W]x div 0 -> 0 */
|
|
BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
|
|
BPF_JNE | BPF_K, insn->src_reg,
|
|
0, 2, 0),
|
|
BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
|
|
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
|
|
*insn,
|
|
};
|
|
struct bpf_insn chk_and_mod[] = {
|
|
/* [R,W]x mod 0 -> [R,W]x */
|
|
BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
|
|
BPF_JEQ | BPF_K, insn->src_reg,
|
|
0, 1 + (is64 ? 0 : 1), 0),
|
|
*insn,
|
|
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
|
|
BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
|
|
};
|
|
|
|
patchlet = isdiv ? chk_and_div : chk_and_mod;
|
|
cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
|
|
ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
|
|
|
|
new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
|
|
delta += cnt - 1;
|
|
env->prog = prog = new_prog;
|
|
insn = new_prog->insnsi + i + delta;
|
|
continue;
|
|
}
|
|
|
|
/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
|
|
if (BPF_CLASS(insn->code) == BPF_LD &&
|
|
(BPF_MODE(insn->code) == BPF_ABS ||
|
|
BPF_MODE(insn->code) == BPF_IND)) {
|
|
cnt = env->ops->gen_ld_abs(insn, insn_buf);
|
|
if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
|
|
verbose(env, "bpf verifier is misconfigured\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
|
|
delta += cnt - 1;
|
|
env->prog = prog = new_prog;
|
|
insn = new_prog->insnsi + i + delta;
|
|
continue;
|
|
}
|
|
|
|
/* Rewrite pointer arithmetic to mitigate speculation attacks. */
|
|
if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
|
|
insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
|
|
const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
|
|
const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
|
|
struct bpf_insn *patch = &insn_buf[0];
|
|
bool issrc, isneg, isimm;
|
|
u32 off_reg;
|
|
|
|
aux = &env->insn_aux_data[i + delta];
|
|
if (!aux->alu_state ||
|
|
aux->alu_state == BPF_ALU_NON_POINTER)
|
|
continue;
|
|
|
|
isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
|
|
issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
|
|
BPF_ALU_SANITIZE_SRC;
|
|
isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
|
|
|
|
off_reg = issrc ? insn->src_reg : insn->dst_reg;
|
|
if (isimm) {
|
|
*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
|
|
} else {
|
|
if (isneg)
|
|
*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
|
|
*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
|
|
*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
|
|
*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
|
|
*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
|
|
*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
|
|
*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
|
|
}
|
|
if (!issrc)
|
|
*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
|
|
insn->src_reg = BPF_REG_AX;
|
|
if (isneg)
|
|
insn->code = insn->code == code_add ?
|
|
code_sub : code_add;
|
|
*patch++ = *insn;
|
|
if (issrc && isneg && !isimm)
|
|
*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
|
|
cnt = patch - insn_buf;
|
|
|
|
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
|
|
delta += cnt - 1;
|
|
env->prog = prog = new_prog;
|
|
insn = new_prog->insnsi + i + delta;
|
|
continue;
|
|
}
|
|
|
|
if (insn->code != (BPF_JMP | BPF_CALL))
|
|
continue;
|
|
if (insn->src_reg == BPF_PSEUDO_CALL)
|
|
continue;
|
|
if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
|
|
ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
|
|
if (ret)
|
|
return ret;
|
|
if (cnt == 0)
|
|
continue;
|
|
|
|
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
|
|
delta += cnt - 1;
|
|
env->prog = prog = new_prog;
|
|
insn = new_prog->insnsi + i + delta;
|
|
continue;
|
|
}
|
|
|
|
if (insn->imm == BPF_FUNC_get_route_realm)
|
|
prog->dst_needed = 1;
|
|
if (insn->imm == BPF_FUNC_get_prandom_u32)
|
|
bpf_user_rnd_init_once();
|
|
if (insn->imm == BPF_FUNC_override_return)
|
|
prog->kprobe_override = 1;
|
|
if (insn->imm == BPF_FUNC_tail_call) {
|
|
/* If we tail call into other programs, we
|
|
* cannot make any assumptions since they can
|
|
* be replaced dynamically during runtime in
|
|
* the program array.
|
|
*/
|
|
prog->cb_access = 1;
|
|
if (!allow_tail_call_in_subprogs(env))
|
|
prog->aux->stack_depth = MAX_BPF_STACK;
|
|
prog->aux->max_pkt_offset = MAX_PACKET_OFF;
|
|
|
|
/* mark bpf_tail_call as different opcode to avoid
|
|
* conditional branch in the interpreter for every normal
|
|
* call and to prevent accidental JITing by JIT compiler
|
|
* that doesn't support bpf_tail_call yet
|
|
*/
|
|
insn->imm = 0;
|
|
insn->code = BPF_JMP | BPF_TAIL_CALL;
|
|
|
|
aux = &env->insn_aux_data[i + delta];
|
|
if (env->bpf_capable && !prog->blinding_requested &&
|
|
prog->jit_requested &&
|
|
!bpf_map_key_poisoned(aux) &&
|
|
!bpf_map_ptr_poisoned(aux) &&
|
|
!bpf_map_ptr_unpriv(aux)) {
|
|
struct bpf_jit_poke_descriptor desc = {
|
|
.reason = BPF_POKE_REASON_TAIL_CALL,
|
|
.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
|
|
.tail_call.key = bpf_map_key_immediate(aux),
|
|
.insn_idx = i + delta,
|
|
};
|
|
|
|
ret = bpf_jit_add_poke_descriptor(prog, &desc);
|
|
if (ret < 0) {
|
|
verbose(env, "adding tail call poke descriptor failed\n");
|
|
return ret;
|
|
}
|
|
|
|
insn->imm = ret + 1;
|
|
continue;
|
|
}
|
|
|
|
if (!bpf_map_ptr_unpriv(aux))
|
|
continue;
|
|
|
|
/* instead of changing every JIT dealing with tail_call
|
|
* emit two extra insns:
|
|
* if (index >= max_entries) goto out;
|
|
* index &= array->index_mask;
|
|
* to avoid out-of-bounds cpu speculation
|
|
*/
|
|
if (bpf_map_ptr_poisoned(aux)) {
|
|
verbose(env, "tail_call abusing map_ptr\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
|
|
insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
|
|
map_ptr->max_entries, 2);
|
|
insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
|
|
container_of(map_ptr,
|
|
struct bpf_array,
|
|
map)->index_mask);
|
|
insn_buf[2] = *insn;
|
|
cnt = 3;
|
|
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
|
|
delta += cnt - 1;
|
|
env->prog = prog = new_prog;
|
|
insn = new_prog->insnsi + i + delta;
|
|
continue;
|
|
}
|
|
|
|
if (insn->imm == BPF_FUNC_timer_set_callback) {
|
|
/* The verifier will process callback_fn as many times as necessary
|
|
* with different maps and the register states prepared by
|
|
* set_timer_callback_state will be accurate.
|
|
*
|
|
* The following use case is valid:
|
|
* map1 is shared by prog1, prog2, prog3.
|
|
* prog1 calls bpf_timer_init for some map1 elements
|
|
* prog2 calls bpf_timer_set_callback for some map1 elements.
|
|
* Those that were not bpf_timer_init-ed will return -EINVAL.
|
|
* prog3 calls bpf_timer_start for some map1 elements.
|
|
* Those that were not both bpf_timer_init-ed and
|
|
* bpf_timer_set_callback-ed will return -EINVAL.
|
|
*/
|
|
struct bpf_insn ld_addrs[2] = {
|
|
BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
|
|
};
|
|
|
|
insn_buf[0] = ld_addrs[0];
|
|
insn_buf[1] = ld_addrs[1];
|
|
insn_buf[2] = *insn;
|
|
cnt = 3;
|
|
|
|
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
|
|
delta += cnt - 1;
|
|
env->prog = prog = new_prog;
|
|
insn = new_prog->insnsi + i + delta;
|
|
goto patch_call_imm;
|
|
}
|
|
|
|
if (is_storage_get_function(insn->imm)) {
|
|
if (!env->prog->aux->sleepable ||
|
|
env->insn_aux_data[i + delta].storage_get_func_atomic)
|
|
insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
|
|
else
|
|
insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
|
|
insn_buf[1] = *insn;
|
|
cnt = 2;
|
|
|
|
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
|
|
delta += cnt - 1;
|
|
env->prog = prog = new_prog;
|
|
insn = new_prog->insnsi + i + delta;
|
|
goto patch_call_imm;
|
|
}
|
|
|
|
/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
|
|
if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
|
|
/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
|
|
* bpf_mem_alloc() returns a ptr to the percpu data ptr.
|
|
*/
|
|
insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
|
|
insn_buf[1] = *insn;
|
|
cnt = 2;
|
|
|
|
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
|
|
delta += cnt - 1;
|
|
env->prog = prog = new_prog;
|
|
insn = new_prog->insnsi + i + delta;
|
|
goto patch_call_imm;
|
|
}
|
|
|
|
/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
|
|
* and other inlining handlers are currently limited to 64 bit
|
|
* only.
|
|
*/
|
|
if (prog->jit_requested && BITS_PER_LONG == 64 &&
|
|
(insn->imm == BPF_FUNC_map_lookup_elem ||
|
|
insn->imm == BPF_FUNC_map_update_elem ||
|
|
insn->imm == BPF_FUNC_map_delete_elem ||
|
|
insn->imm == BPF_FUNC_map_push_elem ||
|
|
insn->imm == BPF_FUNC_map_pop_elem ||
|
|
insn->imm == BPF_FUNC_map_peek_elem ||
|
|
insn->imm == BPF_FUNC_redirect_map ||
|
|
insn->imm == BPF_FUNC_for_each_map_elem ||
|
|
insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
|
|
aux = &env->insn_aux_data[i + delta];
|
|
if (bpf_map_ptr_poisoned(aux))
|
|
goto patch_call_imm;
|
|
|
|
map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
|
|
ops = map_ptr->ops;
|
|
if (insn->imm == BPF_FUNC_map_lookup_elem &&
|
|
ops->map_gen_lookup) {
|
|
cnt = ops->map_gen_lookup(map_ptr, insn_buf);
|
|
if (cnt == -EOPNOTSUPP)
|
|
goto patch_map_ops_generic;
|
|
if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
|
|
verbose(env, "bpf verifier is misconfigured\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
new_prog = bpf_patch_insn_data(env, i + delta,
|
|
insn_buf, cnt);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
|
|
delta += cnt - 1;
|
|
env->prog = prog = new_prog;
|
|
insn = new_prog->insnsi + i + delta;
|
|
continue;
|
|
}
|
|
|
|
BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
|
|
(void *(*)(struct bpf_map *map, void *key))NULL));
|
|
BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
|
|
(long (*)(struct bpf_map *map, void *key))NULL));
|
|
BUILD_BUG_ON(!__same_type(ops->map_update_elem,
|
|
(long (*)(struct bpf_map *map, void *key, void *value,
|
|
u64 flags))NULL));
|
|
BUILD_BUG_ON(!__same_type(ops->map_push_elem,
|
|
(long (*)(struct bpf_map *map, void *value,
|
|
u64 flags))NULL));
|
|
BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
|
|
(long (*)(struct bpf_map *map, void *value))NULL));
|
|
BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
|
|
(long (*)(struct bpf_map *map, void *value))NULL));
|
|
BUILD_BUG_ON(!__same_type(ops->map_redirect,
|
|
(long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
|
|
BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
|
|
(long (*)(struct bpf_map *map,
|
|
bpf_callback_t callback_fn,
|
|
void *callback_ctx,
|
|
u64 flags))NULL));
|
|
BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
|
|
(void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
|
|
|
|
patch_map_ops_generic:
|
|
switch (insn->imm) {
|
|
case BPF_FUNC_map_lookup_elem:
|
|
insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
|
|
continue;
|
|
case BPF_FUNC_map_update_elem:
|
|
insn->imm = BPF_CALL_IMM(ops->map_update_elem);
|
|
continue;
|
|
case BPF_FUNC_map_delete_elem:
|
|
insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
|
|
continue;
|
|
case BPF_FUNC_map_push_elem:
|
|
insn->imm = BPF_CALL_IMM(ops->map_push_elem);
|
|
continue;
|
|
case BPF_FUNC_map_pop_elem:
|
|
insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
|
|
continue;
|
|
case BPF_FUNC_map_peek_elem:
|
|
insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
|
|
continue;
|
|
case BPF_FUNC_redirect_map:
|
|
insn->imm = BPF_CALL_IMM(ops->map_redirect);
|
|
continue;
|
|
case BPF_FUNC_for_each_map_elem:
|
|
insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
|
|
continue;
|
|
case BPF_FUNC_map_lookup_percpu_elem:
|
|
insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
|
|
continue;
|
|
}
|
|
|
|
goto patch_call_imm;
|
|
}
|
|
|
|
/* Implement bpf_jiffies64 inline. */
|
|
if (prog->jit_requested && BITS_PER_LONG == 64 &&
|
|
insn->imm == BPF_FUNC_jiffies64) {
|
|
struct bpf_insn ld_jiffies_addr[2] = {
|
|
BPF_LD_IMM64(BPF_REG_0,
|
|
(unsigned long)&jiffies),
|
|
};
|
|
|
|
insn_buf[0] = ld_jiffies_addr[0];
|
|
insn_buf[1] = ld_jiffies_addr[1];
|
|
insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
|
|
BPF_REG_0, 0);
|
|
cnt = 3;
|
|
|
|
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
|
|
cnt);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
|
|
delta += cnt - 1;
|
|
env->prog = prog = new_prog;
|
|
insn = new_prog->insnsi + i + delta;
|
|
continue;
|
|
}
|
|
|
|
/* Implement bpf_get_func_arg inline. */
|
|
if (prog_type == BPF_PROG_TYPE_TRACING &&
|
|
insn->imm == BPF_FUNC_get_func_arg) {
|
|
/* Load nr_args from ctx - 8 */
|
|
insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
|
|
insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
|
|
insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
|
|
insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
|
|
insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
|
|
insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
|
|
insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
|
|
insn_buf[7] = BPF_JMP_A(1);
|
|
insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
|
|
cnt = 9;
|
|
|
|
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
|
|
delta += cnt - 1;
|
|
env->prog = prog = new_prog;
|
|
insn = new_prog->insnsi + i + delta;
|
|
continue;
|
|
}
|
|
|
|
/* Implement bpf_get_func_ret inline. */
|
|
if (prog_type == BPF_PROG_TYPE_TRACING &&
|
|
insn->imm == BPF_FUNC_get_func_ret) {
|
|
if (eatype == BPF_TRACE_FEXIT ||
|
|
eatype == BPF_MODIFY_RETURN) {
|
|
/* Load nr_args from ctx - 8 */
|
|
insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
|
|
insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
|
|
insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
|
|
insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
|
|
insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
|
|
insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
|
|
cnt = 6;
|
|
} else {
|
|
insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
|
|
cnt = 1;
|
|
}
|
|
|
|
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
|
|
delta += cnt - 1;
|
|
env->prog = prog = new_prog;
|
|
insn = new_prog->insnsi + i + delta;
|
|
continue;
|
|
}
|
|
|
|
/* Implement get_func_arg_cnt inline. */
|
|
if (prog_type == BPF_PROG_TYPE_TRACING &&
|
|
insn->imm == BPF_FUNC_get_func_arg_cnt) {
|
|
/* Load nr_args from ctx - 8 */
|
|
insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
|
|
|
|
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
|
|
env->prog = prog = new_prog;
|
|
insn = new_prog->insnsi + i + delta;
|
|
continue;
|
|
}
|
|
|
|
/* Implement bpf_get_func_ip inline. */
|
|
if (prog_type == BPF_PROG_TYPE_TRACING &&
|
|
insn->imm == BPF_FUNC_get_func_ip) {
|
|
/* Load IP address from ctx - 16 */
|
|
insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
|
|
|
|
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
|
|
env->prog = prog = new_prog;
|
|
insn = new_prog->insnsi + i + delta;
|
|
continue;
|
|
}
|
|
|
|
patch_call_imm:
|
|
fn = env->ops->get_func_proto(insn->imm, env->prog);
|
|
/* all functions that have prototype and verifier allowed
|
|
* programs to call them, must be real in-kernel functions
|
|
*/
|
|
if (!fn->func) {
|
|
verbose(env,
|
|
"kernel subsystem misconfigured func %s#%d\n",
|
|
func_id_name(insn->imm), insn->imm);
|
|
return -EFAULT;
|
|
}
|
|
insn->imm = fn->func - __bpf_call_base;
|
|
}
|
|
|
|
/* Since poke tab is now finalized, publish aux to tracker. */
|
|
for (i = 0; i < prog->aux->size_poke_tab; i++) {
|
|
map_ptr = prog->aux->poke_tab[i].tail_call.map;
|
|
if (!map_ptr->ops->map_poke_track ||
|
|
!map_ptr->ops->map_poke_untrack ||
|
|
!map_ptr->ops->map_poke_run) {
|
|
verbose(env, "bpf verifier is misconfigured\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
|
|
if (ret < 0) {
|
|
verbose(env, "tracking tail call prog failed\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
sort_kfunc_descs_by_imm_off(env->prog);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
|
|
int position,
|
|
s32 stack_base,
|
|
u32 callback_subprogno,
|
|
u32 *cnt)
|
|
{
|
|
s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
|
|
s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
|
|
s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
|
|
int reg_loop_max = BPF_REG_6;
|
|
int reg_loop_cnt = BPF_REG_7;
|
|
int reg_loop_ctx = BPF_REG_8;
|
|
|
|
struct bpf_prog *new_prog;
|
|
u32 callback_start;
|
|
u32 call_insn_offset;
|
|
s32 callback_offset;
|
|
|
|
/* This represents an inlined version of bpf_iter.c:bpf_loop,
|
|
* be careful to modify this code in sync.
|
|
*/
|
|
struct bpf_insn insn_buf[] = {
|
|
/* Return error and jump to the end of the patch if
|
|
* expected number of iterations is too big.
|
|
*/
|
|
BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
|
|
BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
|
|
BPF_JMP_IMM(BPF_JA, 0, 0, 16),
|
|
/* spill R6, R7, R8 to use these as loop vars */
|
|
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
|
|
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
|
|
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
|
|
/* initialize loop vars */
|
|
BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
|
|
BPF_MOV32_IMM(reg_loop_cnt, 0),
|
|
BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
|
|
/* loop header,
|
|
* if reg_loop_cnt >= reg_loop_max skip the loop body
|
|
*/
|
|
BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
|
|
/* callback call,
|
|
* correct callback offset would be set after patching
|
|
*/
|
|
BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
|
|
BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
|
|
BPF_CALL_REL(0),
|
|
/* increment loop counter */
|
|
BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
|
|
/* jump to loop header if callback returned 0 */
|
|
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
|
|
/* return value of bpf_loop,
|
|
* set R0 to the number of iterations
|
|
*/
|
|
BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
|
|
/* restore original values of R6, R7, R8 */
|
|
BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
|
|
BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
|
|
BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
|
|
};
|
|
|
|
*cnt = ARRAY_SIZE(insn_buf);
|
|
new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
|
|
if (!new_prog)
|
|
return new_prog;
|
|
|
|
/* callback start is known only after patching */
|
|
callback_start = env->subprog_info[callback_subprogno].start;
|
|
/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
|
|
call_insn_offset = position + 12;
|
|
callback_offset = callback_start - call_insn_offset - 1;
|
|
new_prog->insnsi[call_insn_offset].imm = callback_offset;
|
|
|
|
return new_prog;
|
|
}
|
|
|
|
static bool is_bpf_loop_call(struct bpf_insn *insn)
|
|
{
|
|
return insn->code == (BPF_JMP | BPF_CALL) &&
|
|
insn->src_reg == 0 &&
|
|
insn->imm == BPF_FUNC_loop;
|
|
}
|
|
|
|
/* For all sub-programs in the program (including main) check
|
|
* insn_aux_data to see if there are bpf_loop calls that require
|
|
* inlining. If such calls are found the calls are replaced with a
|
|
* sequence of instructions produced by `inline_bpf_loop` function and
|
|
* subprog stack_depth is increased by the size of 3 registers.
|
|
* This stack space is used to spill values of the R6, R7, R8. These
|
|
* registers are used to store the loop bound, counter and context
|
|
* variables.
|
|
*/
|
|
static int optimize_bpf_loop(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_subprog_info *subprogs = env->subprog_info;
|
|
int i, cur_subprog = 0, cnt, delta = 0;
|
|
struct bpf_insn *insn = env->prog->insnsi;
|
|
int insn_cnt = env->prog->len;
|
|
u16 stack_depth = subprogs[cur_subprog].stack_depth;
|
|
u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
|
|
u16 stack_depth_extra = 0;
|
|
|
|
for (i = 0; i < insn_cnt; i++, insn++) {
|
|
struct bpf_loop_inline_state *inline_state =
|
|
&env->insn_aux_data[i + delta].loop_inline_state;
|
|
|
|
if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
|
|
struct bpf_prog *new_prog;
|
|
|
|
stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
|
|
new_prog = inline_bpf_loop(env,
|
|
i + delta,
|
|
-(stack_depth + stack_depth_extra),
|
|
inline_state->callback_subprogno,
|
|
&cnt);
|
|
if (!new_prog)
|
|
return -ENOMEM;
|
|
|
|
delta += cnt - 1;
|
|
env->prog = new_prog;
|
|
insn = new_prog->insnsi + i + delta;
|
|
}
|
|
|
|
if (subprogs[cur_subprog + 1].start == i + delta + 1) {
|
|
subprogs[cur_subprog].stack_depth += stack_depth_extra;
|
|
cur_subprog++;
|
|
stack_depth = subprogs[cur_subprog].stack_depth;
|
|
stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
|
|
stack_depth_extra = 0;
|
|
}
|
|
}
|
|
|
|
env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void free_states(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_verifier_state_list *sl, *sln;
|
|
int i;
|
|
|
|
sl = env->free_list;
|
|
while (sl) {
|
|
sln = sl->next;
|
|
free_verifier_state(&sl->state, false);
|
|
kfree(sl);
|
|
sl = sln;
|
|
}
|
|
env->free_list = NULL;
|
|
|
|
if (!env->explored_states)
|
|
return;
|
|
|
|
for (i = 0; i < state_htab_size(env); i++) {
|
|
sl = env->explored_states[i];
|
|
|
|
while (sl) {
|
|
sln = sl->next;
|
|
free_verifier_state(&sl->state, false);
|
|
kfree(sl);
|
|
sl = sln;
|
|
}
|
|
env->explored_states[i] = NULL;
|
|
}
|
|
}
|
|
|
|
static int do_check_common(struct bpf_verifier_env *env, int subprog, bool is_ex_cb)
|
|
{
|
|
bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
|
|
struct bpf_verifier_state *state;
|
|
struct bpf_reg_state *regs;
|
|
int ret, i;
|
|
|
|
env->prev_linfo = NULL;
|
|
env->pass_cnt++;
|
|
|
|
state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
|
|
if (!state)
|
|
return -ENOMEM;
|
|
state->curframe = 0;
|
|
state->speculative = false;
|
|
state->branches = 1;
|
|
state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
|
|
if (!state->frame[0]) {
|
|
kfree(state);
|
|
return -ENOMEM;
|
|
}
|
|
env->cur_state = state;
|
|
init_func_state(env, state->frame[0],
|
|
BPF_MAIN_FUNC /* callsite */,
|
|
0 /* frameno */,
|
|
subprog);
|
|
state->first_insn_idx = env->subprog_info[subprog].start;
|
|
state->last_insn_idx = -1;
|
|
|
|
regs = state->frame[state->curframe]->regs;
|
|
if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
|
|
ret = btf_prepare_func_args(env, subprog, regs, is_ex_cb);
|
|
if (ret)
|
|
goto out;
|
|
for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
|
|
if (regs[i].type == PTR_TO_CTX)
|
|
mark_reg_known_zero(env, regs, i);
|
|
else if (regs[i].type == SCALAR_VALUE)
|
|
mark_reg_unknown(env, regs, i);
|
|
else if (base_type(regs[i].type) == PTR_TO_MEM) {
|
|
const u32 mem_size = regs[i].mem_size;
|
|
|
|
mark_reg_known_zero(env, regs, i);
|
|
regs[i].mem_size = mem_size;
|
|
regs[i].id = ++env->id_gen;
|
|
}
|
|
}
|
|
if (is_ex_cb) {
|
|
state->frame[0]->in_exception_callback_fn = true;
|
|
env->subprog_info[subprog].is_cb = true;
|
|
env->subprog_info[subprog].is_async_cb = true;
|
|
env->subprog_info[subprog].is_exception_cb = true;
|
|
}
|
|
} else {
|
|
/* 1st arg to a function */
|
|
regs[BPF_REG_1].type = PTR_TO_CTX;
|
|
mark_reg_known_zero(env, regs, BPF_REG_1);
|
|
ret = btf_check_subprog_arg_match(env, subprog, regs);
|
|
if (ret == -EFAULT)
|
|
/* unlikely verifier bug. abort.
|
|
* ret == 0 and ret < 0 are sadly acceptable for
|
|
* main() function due to backward compatibility.
|
|
* Like socket filter program may be written as:
|
|
* int bpf_prog(struct pt_regs *ctx)
|
|
* and never dereference that ctx in the program.
|
|
* 'struct pt_regs' is a type mismatch for socket
|
|
* filter that should be using 'struct __sk_buff'.
|
|
*/
|
|
goto out;
|
|
}
|
|
|
|
ret = do_check(env);
|
|
out:
|
|
/* check for NULL is necessary, since cur_state can be freed inside
|
|
* do_check() under memory pressure.
|
|
*/
|
|
if (env->cur_state) {
|
|
free_verifier_state(env->cur_state, true);
|
|
env->cur_state = NULL;
|
|
}
|
|
while (!pop_stack(env, NULL, NULL, false));
|
|
if (!ret && pop_log)
|
|
bpf_vlog_reset(&env->log, 0);
|
|
free_states(env);
|
|
return ret;
|
|
}
|
|
|
|
/* Lazily verify all global functions based on their BTF, if they are called
|
|
* from main BPF program or any of subprograms transitively.
|
|
* BPF global subprogs called from dead code are not validated.
|
|
* All callable global functions must pass verification.
|
|
* Otherwise the whole program is rejected.
|
|
* Consider:
|
|
* int bar(int);
|
|
* int foo(int f)
|
|
* {
|
|
* return bar(f);
|
|
* }
|
|
* int bar(int b)
|
|
* {
|
|
* ...
|
|
* }
|
|
* foo() will be verified first for R1=any_scalar_value. During verification it
|
|
* will be assumed that bar() already verified successfully and call to bar()
|
|
* from foo() will be checked for type match only. Later bar() will be verified
|
|
* independently to check that it's safe for R1=any_scalar_value.
|
|
*/
|
|
static int do_check_subprogs(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_prog_aux *aux = env->prog->aux;
|
|
struct bpf_func_info_aux *sub_aux;
|
|
int i, ret, new_cnt;
|
|
|
|
if (!aux->func_info)
|
|
return 0;
|
|
|
|
/* exception callback is presumed to be always called */
|
|
if (env->exception_callback_subprog)
|
|
subprog_aux(env, env->exception_callback_subprog)->called = true;
|
|
|
|
again:
|
|
new_cnt = 0;
|
|
for (i = 1; i < env->subprog_cnt; i++) {
|
|
if (!subprog_is_global(env, i))
|
|
continue;
|
|
|
|
sub_aux = subprog_aux(env, i);
|
|
if (!sub_aux->called || sub_aux->verified)
|
|
continue;
|
|
|
|
env->insn_idx = env->subprog_info[i].start;
|
|
WARN_ON_ONCE(env->insn_idx == 0);
|
|
ret = do_check_common(env, i, env->exception_callback_subprog == i);
|
|
if (ret) {
|
|
return ret;
|
|
} else if (env->log.level & BPF_LOG_LEVEL) {
|
|
verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
|
|
i, subprog_name(env, i));
|
|
}
|
|
|
|
/* We verified new global subprog, it might have called some
|
|
* more global subprogs that we haven't verified yet, so we
|
|
* need to do another pass over subprogs to verify those.
|
|
*/
|
|
sub_aux->verified = true;
|
|
new_cnt++;
|
|
}
|
|
|
|
/* We can't loop forever as we verify at least one global subprog on
|
|
* each pass.
|
|
*/
|
|
if (new_cnt)
|
|
goto again;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int do_check_main(struct bpf_verifier_env *env)
|
|
{
|
|
int ret;
|
|
|
|
env->insn_idx = 0;
|
|
ret = do_check_common(env, 0, false);
|
|
if (!ret)
|
|
env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
|
|
return ret;
|
|
}
|
|
|
|
|
|
static void print_verification_stats(struct bpf_verifier_env *env)
|
|
{
|
|
int i;
|
|
|
|
if (env->log.level & BPF_LOG_STATS) {
|
|
verbose(env, "verification time %lld usec\n",
|
|
div_u64(env->verification_time, 1000));
|
|
verbose(env, "stack depth ");
|
|
for (i = 0; i < env->subprog_cnt; i++) {
|
|
u32 depth = env->subprog_info[i].stack_depth;
|
|
|
|
verbose(env, "%d", depth);
|
|
if (i + 1 < env->subprog_cnt)
|
|
verbose(env, "+");
|
|
}
|
|
verbose(env, "\n");
|
|
}
|
|
verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
|
|
"total_states %d peak_states %d mark_read %d\n",
|
|
env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
|
|
env->max_states_per_insn, env->total_states,
|
|
env->peak_states, env->longest_mark_read_walk);
|
|
}
|
|
|
|
static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
|
|
{
|
|
const struct btf_type *t, *func_proto;
|
|
const struct bpf_struct_ops *st_ops;
|
|
const struct btf_member *member;
|
|
struct bpf_prog *prog = env->prog;
|
|
u32 btf_id, member_idx;
|
|
const char *mname;
|
|
|
|
if (!prog->gpl_compatible) {
|
|
verbose(env, "struct ops programs must have a GPL compatible license\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_id = prog->aux->attach_btf_id;
|
|
st_ops = bpf_struct_ops_find(btf_id);
|
|
if (!st_ops) {
|
|
verbose(env, "attach_btf_id %u is not a supported struct\n",
|
|
btf_id);
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
t = st_ops->type;
|
|
member_idx = prog->expected_attach_type;
|
|
if (member_idx >= btf_type_vlen(t)) {
|
|
verbose(env, "attach to invalid member idx %u of struct %s\n",
|
|
member_idx, st_ops->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
member = &btf_type_member(t)[member_idx];
|
|
mname = btf_name_by_offset(btf_vmlinux, member->name_off);
|
|
func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
|
|
NULL);
|
|
if (!func_proto) {
|
|
verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
|
|
mname, member_idx, st_ops->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (st_ops->check_member) {
|
|
int err = st_ops->check_member(t, member, prog);
|
|
|
|
if (err) {
|
|
verbose(env, "attach to unsupported member %s of struct %s\n",
|
|
mname, st_ops->name);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
prog->aux->attach_func_proto = func_proto;
|
|
prog->aux->attach_func_name = mname;
|
|
env->ops = st_ops->verifier_ops;
|
|
|
|
return 0;
|
|
}
|
|
#define SECURITY_PREFIX "security_"
|
|
|
|
static int check_attach_modify_return(unsigned long addr, const char *func_name)
|
|
{
|
|
if (within_error_injection_list(addr) ||
|
|
!strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
|
|
return 0;
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* list of non-sleepable functions that are otherwise on
|
|
* ALLOW_ERROR_INJECTION list
|
|
*/
|
|
BTF_SET_START(btf_non_sleepable_error_inject)
|
|
/* Three functions below can be called from sleepable and non-sleepable context.
|
|
* Assume non-sleepable from bpf safety point of view.
|
|
*/
|
|
BTF_ID(func, __filemap_add_folio)
|
|
BTF_ID(func, should_fail_alloc_page)
|
|
BTF_ID(func, should_failslab)
|
|
BTF_SET_END(btf_non_sleepable_error_inject)
|
|
|
|
static int check_non_sleepable_error_inject(u32 btf_id)
|
|
{
|
|
return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
|
|
}
|
|
|
|
int bpf_check_attach_target(struct bpf_verifier_log *log,
|
|
const struct bpf_prog *prog,
|
|
const struct bpf_prog *tgt_prog,
|
|
u32 btf_id,
|
|
struct bpf_attach_target_info *tgt_info)
|
|
{
|
|
bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
|
|
const char prefix[] = "btf_trace_";
|
|
int ret = 0, subprog = -1, i;
|
|
const struct btf_type *t;
|
|
bool conservative = true;
|
|
const char *tname;
|
|
struct btf *btf;
|
|
long addr = 0;
|
|
struct module *mod = NULL;
|
|
|
|
if (!btf_id) {
|
|
bpf_log(log, "Tracing programs must provide btf_id\n");
|
|
return -EINVAL;
|
|
}
|
|
btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
|
|
if (!btf) {
|
|
bpf_log(log,
|
|
"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
|
|
return -EINVAL;
|
|
}
|
|
t = btf_type_by_id(btf, btf_id);
|
|
if (!t) {
|
|
bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
|
|
return -EINVAL;
|
|
}
|
|
tname = btf_name_by_offset(btf, t->name_off);
|
|
if (!tname) {
|
|
bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
|
|
return -EINVAL;
|
|
}
|
|
if (tgt_prog) {
|
|
struct bpf_prog_aux *aux = tgt_prog->aux;
|
|
|
|
if (bpf_prog_is_dev_bound(prog->aux) &&
|
|
!bpf_prog_dev_bound_match(prog, tgt_prog)) {
|
|
bpf_log(log, "Target program bound device mismatch");
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < aux->func_info_cnt; i++)
|
|
if (aux->func_info[i].type_id == btf_id) {
|
|
subprog = i;
|
|
break;
|
|
}
|
|
if (subprog == -1) {
|
|
bpf_log(log, "Subprog %s doesn't exist\n", tname);
|
|
return -EINVAL;
|
|
}
|
|
if (aux->func && aux->func[subprog]->aux->exception_cb) {
|
|
bpf_log(log,
|
|
"%s programs cannot attach to exception callback\n",
|
|
prog_extension ? "Extension" : "FENTRY/FEXIT");
|
|
return -EINVAL;
|
|
}
|
|
conservative = aux->func_info_aux[subprog].unreliable;
|
|
if (prog_extension) {
|
|
if (conservative) {
|
|
bpf_log(log,
|
|
"Cannot replace static functions\n");
|
|
return -EINVAL;
|
|
}
|
|
if (!prog->jit_requested) {
|
|
bpf_log(log,
|
|
"Extension programs should be JITed\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
if (!tgt_prog->jited) {
|
|
bpf_log(log, "Can attach to only JITed progs\n");
|
|
return -EINVAL;
|
|
}
|
|
if (tgt_prog->type == prog->type) {
|
|
/* Cannot fentry/fexit another fentry/fexit program.
|
|
* Cannot attach program extension to another extension.
|
|
* It's ok to attach fentry/fexit to extension program.
|
|
*/
|
|
bpf_log(log, "Cannot recursively attach\n");
|
|
return -EINVAL;
|
|
}
|
|
if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
|
|
prog_extension &&
|
|
(tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
|
|
tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
|
|
/* Program extensions can extend all program types
|
|
* except fentry/fexit. The reason is the following.
|
|
* The fentry/fexit programs are used for performance
|
|
* analysis, stats and can be attached to any program
|
|
* type except themselves. When extension program is
|
|
* replacing XDP function it is necessary to allow
|
|
* performance analysis of all functions. Both original
|
|
* XDP program and its program extension. Hence
|
|
* attaching fentry/fexit to BPF_PROG_TYPE_EXT is
|
|
* allowed. If extending of fentry/fexit was allowed it
|
|
* would be possible to create long call chain
|
|
* fentry->extension->fentry->extension beyond
|
|
* reasonable stack size. Hence extending fentry is not
|
|
* allowed.
|
|
*/
|
|
bpf_log(log, "Cannot extend fentry/fexit\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (prog_extension) {
|
|
bpf_log(log, "Cannot replace kernel functions\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
switch (prog->expected_attach_type) {
|
|
case BPF_TRACE_RAW_TP:
|
|
if (tgt_prog) {
|
|
bpf_log(log,
|
|
"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
|
|
return -EINVAL;
|
|
}
|
|
if (!btf_type_is_typedef(t)) {
|
|
bpf_log(log, "attach_btf_id %u is not a typedef\n",
|
|
btf_id);
|
|
return -EINVAL;
|
|
}
|
|
if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
|
|
bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
|
|
btf_id, tname);
|
|
return -EINVAL;
|
|
}
|
|
tname += sizeof(prefix) - 1;
|
|
t = btf_type_by_id(btf, t->type);
|
|
if (!btf_type_is_ptr(t))
|
|
/* should never happen in valid vmlinux build */
|
|
return -EINVAL;
|
|
t = btf_type_by_id(btf, t->type);
|
|
if (!btf_type_is_func_proto(t))
|
|
/* should never happen in valid vmlinux build */
|
|
return -EINVAL;
|
|
|
|
break;
|
|
case BPF_TRACE_ITER:
|
|
if (!btf_type_is_func(t)) {
|
|
bpf_log(log, "attach_btf_id %u is not a function\n",
|
|
btf_id);
|
|
return -EINVAL;
|
|
}
|
|
t = btf_type_by_id(btf, t->type);
|
|
if (!btf_type_is_func_proto(t))
|
|
return -EINVAL;
|
|
ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
default:
|
|
if (!prog_extension)
|
|
return -EINVAL;
|
|
fallthrough;
|
|
case BPF_MODIFY_RETURN:
|
|
case BPF_LSM_MAC:
|
|
case BPF_LSM_CGROUP:
|
|
case BPF_TRACE_FENTRY:
|
|
case BPF_TRACE_FEXIT:
|
|
if (!btf_type_is_func(t)) {
|
|
bpf_log(log, "attach_btf_id %u is not a function\n",
|
|
btf_id);
|
|
return -EINVAL;
|
|
}
|
|
if (prog_extension &&
|
|
btf_check_type_match(log, prog, btf, t))
|
|
return -EINVAL;
|
|
t = btf_type_by_id(btf, t->type);
|
|
if (!btf_type_is_func_proto(t))
|
|
return -EINVAL;
|
|
|
|
if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
|
|
(!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
|
|
prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
|
|
return -EINVAL;
|
|
|
|
if (tgt_prog && conservative)
|
|
t = NULL;
|
|
|
|
ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (tgt_prog) {
|
|
if (subprog == 0)
|
|
addr = (long) tgt_prog->bpf_func;
|
|
else
|
|
addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
|
|
} else {
|
|
if (btf_is_module(btf)) {
|
|
mod = btf_try_get_module(btf);
|
|
if (mod)
|
|
addr = find_kallsyms_symbol_value(mod, tname);
|
|
else
|
|
addr = 0;
|
|
} else {
|
|
addr = kallsyms_lookup_name(tname);
|
|
}
|
|
if (!addr) {
|
|
module_put(mod);
|
|
bpf_log(log,
|
|
"The address of function %s cannot be found\n",
|
|
tname);
|
|
return -ENOENT;
|
|
}
|
|
}
|
|
|
|
if (prog->aux->sleepable) {
|
|
ret = -EINVAL;
|
|
switch (prog->type) {
|
|
case BPF_PROG_TYPE_TRACING:
|
|
|
|
/* fentry/fexit/fmod_ret progs can be sleepable if they are
|
|
* attached to ALLOW_ERROR_INJECTION and are not in denylist.
|
|
*/
|
|
if (!check_non_sleepable_error_inject(btf_id) &&
|
|
within_error_injection_list(addr))
|
|
ret = 0;
|
|
/* fentry/fexit/fmod_ret progs can also be sleepable if they are
|
|
* in the fmodret id set with the KF_SLEEPABLE flag.
|
|
*/
|
|
else {
|
|
u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
|
|
prog);
|
|
|
|
if (flags && (*flags & KF_SLEEPABLE))
|
|
ret = 0;
|
|
}
|
|
break;
|
|
case BPF_PROG_TYPE_LSM:
|
|
/* LSM progs check that they are attached to bpf_lsm_*() funcs.
|
|
* Only some of them are sleepable.
|
|
*/
|
|
if (bpf_lsm_is_sleepable_hook(btf_id))
|
|
ret = 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (ret) {
|
|
module_put(mod);
|
|
bpf_log(log, "%s is not sleepable\n", tname);
|
|
return ret;
|
|
}
|
|
} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
|
|
if (tgt_prog) {
|
|
module_put(mod);
|
|
bpf_log(log, "can't modify return codes of BPF programs\n");
|
|
return -EINVAL;
|
|
}
|
|
ret = -EINVAL;
|
|
if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
|
|
!check_attach_modify_return(addr, tname))
|
|
ret = 0;
|
|
if (ret) {
|
|
module_put(mod);
|
|
bpf_log(log, "%s() is not modifiable\n", tname);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
tgt_info->tgt_addr = addr;
|
|
tgt_info->tgt_name = tname;
|
|
tgt_info->tgt_type = t;
|
|
tgt_info->tgt_mod = mod;
|
|
return 0;
|
|
}
|
|
|
|
BTF_SET_START(btf_id_deny)
|
|
BTF_ID_UNUSED
|
|
#ifdef CONFIG_SMP
|
|
BTF_ID(func, migrate_disable)
|
|
BTF_ID(func, migrate_enable)
|
|
#endif
|
|
#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
|
|
BTF_ID(func, rcu_read_unlock_strict)
|
|
#endif
|
|
#if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
|
|
BTF_ID(func, preempt_count_add)
|
|
BTF_ID(func, preempt_count_sub)
|
|
#endif
|
|
#ifdef CONFIG_PREEMPT_RCU
|
|
BTF_ID(func, __rcu_read_lock)
|
|
BTF_ID(func, __rcu_read_unlock)
|
|
#endif
|
|
BTF_SET_END(btf_id_deny)
|
|
|
|
static bool can_be_sleepable(struct bpf_prog *prog)
|
|
{
|
|
if (prog->type == BPF_PROG_TYPE_TRACING) {
|
|
switch (prog->expected_attach_type) {
|
|
case BPF_TRACE_FENTRY:
|
|
case BPF_TRACE_FEXIT:
|
|
case BPF_MODIFY_RETURN:
|
|
case BPF_TRACE_ITER:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
return prog->type == BPF_PROG_TYPE_LSM ||
|
|
prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
|
|
prog->type == BPF_PROG_TYPE_STRUCT_OPS;
|
|
}
|
|
|
|
static int check_attach_btf_id(struct bpf_verifier_env *env)
|
|
{
|
|
struct bpf_prog *prog = env->prog;
|
|
struct bpf_prog *tgt_prog = prog->aux->dst_prog;
|
|
struct bpf_attach_target_info tgt_info = {};
|
|
u32 btf_id = prog->aux->attach_btf_id;
|
|
struct bpf_trampoline *tr;
|
|
int ret;
|
|
u64 key;
|
|
|
|
if (prog->type == BPF_PROG_TYPE_SYSCALL) {
|
|
if (prog->aux->sleepable)
|
|
/* attach_btf_id checked to be zero already */
|
|
return 0;
|
|
verbose(env, "Syscall programs can only be sleepable\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (prog->aux->sleepable && !can_be_sleepable(prog)) {
|
|
verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
|
|
return check_struct_ops_btf_id(env);
|
|
|
|
if (prog->type != BPF_PROG_TYPE_TRACING &&
|
|
prog->type != BPF_PROG_TYPE_LSM &&
|
|
prog->type != BPF_PROG_TYPE_EXT)
|
|
return 0;
|
|
|
|
ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
|
|
/* to make freplace equivalent to their targets, they need to
|
|
* inherit env->ops and expected_attach_type for the rest of the
|
|
* verification
|
|
*/
|
|
env->ops = bpf_verifier_ops[tgt_prog->type];
|
|
prog->expected_attach_type = tgt_prog->expected_attach_type;
|
|
}
|
|
|
|
/* store info about the attachment target that will be used later */
|
|
prog->aux->attach_func_proto = tgt_info.tgt_type;
|
|
prog->aux->attach_func_name = tgt_info.tgt_name;
|
|
prog->aux->mod = tgt_info.tgt_mod;
|
|
|
|
if (tgt_prog) {
|
|
prog->aux->saved_dst_prog_type = tgt_prog->type;
|
|
prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
|
|
}
|
|
|
|
if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
|
|
prog->aux->attach_btf_trace = true;
|
|
return 0;
|
|
} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
|
|
if (!bpf_iter_prog_supported(prog))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
if (prog->type == BPF_PROG_TYPE_LSM) {
|
|
ret = bpf_lsm_verify_prog(&env->log, prog);
|
|
if (ret < 0)
|
|
return ret;
|
|
} else if (prog->type == BPF_PROG_TYPE_TRACING &&
|
|
btf_id_set_contains(&btf_id_deny, btf_id)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
|
|
tr = bpf_trampoline_get(key, &tgt_info);
|
|
if (!tr)
|
|
return -ENOMEM;
|
|
|
|
if (tgt_prog && tgt_prog->aux->tail_call_reachable)
|
|
tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
|
|
|
|
prog->aux->dst_trampoline = tr;
|
|
return 0;
|
|
}
|
|
|
|
struct btf *bpf_get_btf_vmlinux(void)
|
|
{
|
|
if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
|
|
mutex_lock(&bpf_verifier_lock);
|
|
if (!btf_vmlinux)
|
|
btf_vmlinux = btf_parse_vmlinux();
|
|
mutex_unlock(&bpf_verifier_lock);
|
|
}
|
|
return btf_vmlinux;
|
|
}
|
|
|
|
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
|
|
{
|
|
u64 start_time = ktime_get_ns();
|
|
struct bpf_verifier_env *env;
|
|
int i, len, ret = -EINVAL, err;
|
|
u32 log_true_size;
|
|
bool is_priv;
|
|
|
|
/* no program is valid */
|
|
if (ARRAY_SIZE(bpf_verifier_ops) == 0)
|
|
return -EINVAL;
|
|
|
|
/* 'struct bpf_verifier_env' can be global, but since it's not small,
|
|
* allocate/free it every time bpf_check() is called
|
|
*/
|
|
env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
|
|
if (!env)
|
|
return -ENOMEM;
|
|
|
|
env->bt.env = env;
|
|
|
|
len = (*prog)->len;
|
|
env->insn_aux_data =
|
|
vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
|
|
ret = -ENOMEM;
|
|
if (!env->insn_aux_data)
|
|
goto err_free_env;
|
|
for (i = 0; i < len; i++)
|
|
env->insn_aux_data[i].orig_idx = i;
|
|
env->prog = *prog;
|
|
env->ops = bpf_verifier_ops[env->prog->type];
|
|
env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
|
|
|
|
env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token);
|
|
env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token);
|
|
env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token);
|
|
env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token);
|
|
env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF);
|
|
|
|
bpf_get_btf_vmlinux();
|
|
|
|
/* grab the mutex to protect few globals used by verifier */
|
|
if (!is_priv)
|
|
mutex_lock(&bpf_verifier_lock);
|
|
|
|
/* user could have requested verbose verifier output
|
|
* and supplied buffer to store the verification trace
|
|
*/
|
|
ret = bpf_vlog_init(&env->log, attr->log_level,
|
|
(char __user *) (unsigned long) attr->log_buf,
|
|
attr->log_size);
|
|
if (ret)
|
|
goto err_unlock;
|
|
|
|
mark_verifier_state_clean(env);
|
|
|
|
if (IS_ERR(btf_vmlinux)) {
|
|
/* Either gcc or pahole or kernel are broken. */
|
|
verbose(env, "in-kernel BTF is malformed\n");
|
|
ret = PTR_ERR(btf_vmlinux);
|
|
goto skip_full_check;
|
|
}
|
|
|
|
env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
|
|
if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
|
|
env->strict_alignment = true;
|
|
if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
|
|
env->strict_alignment = false;
|
|
|
|
if (is_priv)
|
|
env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
|
|
env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
|
|
|
|
env->explored_states = kvcalloc(state_htab_size(env),
|
|
sizeof(struct bpf_verifier_state_list *),
|
|
GFP_USER);
|
|
ret = -ENOMEM;
|
|
if (!env->explored_states)
|
|
goto skip_full_check;
|
|
|
|
ret = check_btf_info_early(env, attr, uattr);
|
|
if (ret < 0)
|
|
goto skip_full_check;
|
|
|
|
ret = add_subprog_and_kfunc(env);
|
|
if (ret < 0)
|
|
goto skip_full_check;
|
|
|
|
ret = check_subprogs(env);
|
|
if (ret < 0)
|
|
goto skip_full_check;
|
|
|
|
ret = check_btf_info(env, attr, uattr);
|
|
if (ret < 0)
|
|
goto skip_full_check;
|
|
|
|
ret = check_attach_btf_id(env);
|
|
if (ret)
|
|
goto skip_full_check;
|
|
|
|
ret = resolve_pseudo_ldimm64(env);
|
|
if (ret < 0)
|
|
goto skip_full_check;
|
|
|
|
if (bpf_prog_is_offloaded(env->prog->aux)) {
|
|
ret = bpf_prog_offload_verifier_prep(env->prog);
|
|
if (ret)
|
|
goto skip_full_check;
|
|
}
|
|
|
|
ret = check_cfg(env);
|
|
if (ret < 0)
|
|
goto skip_full_check;
|
|
|
|
ret = do_check_main(env);
|
|
ret = ret ?: do_check_subprogs(env);
|
|
|
|
if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
|
|
ret = bpf_prog_offload_finalize(env);
|
|
|
|
skip_full_check:
|
|
kvfree(env->explored_states);
|
|
|
|
if (ret == 0)
|
|
ret = check_max_stack_depth(env);
|
|
|
|
/* instruction rewrites happen after this point */
|
|
if (ret == 0)
|
|
ret = optimize_bpf_loop(env);
|
|
|
|
if (is_priv) {
|
|
if (ret == 0)
|
|
opt_hard_wire_dead_code_branches(env);
|
|
if (ret == 0)
|
|
ret = opt_remove_dead_code(env);
|
|
if (ret == 0)
|
|
ret = opt_remove_nops(env);
|
|
} else {
|
|
if (ret == 0)
|
|
sanitize_dead_code(env);
|
|
}
|
|
|
|
if (ret == 0)
|
|
/* program is valid, convert *(u32*)(ctx + off) accesses */
|
|
ret = convert_ctx_accesses(env);
|
|
|
|
if (ret == 0)
|
|
ret = do_misc_fixups(env);
|
|
|
|
/* do 32-bit optimization after insn patching has done so those patched
|
|
* insns could be handled correctly.
|
|
*/
|
|
if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
|
|
ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
|
|
env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
|
|
: false;
|
|
}
|
|
|
|
if (ret == 0)
|
|
ret = fixup_call_args(env);
|
|
|
|
env->verification_time = ktime_get_ns() - start_time;
|
|
print_verification_stats(env);
|
|
env->prog->aux->verified_insns = env->insn_processed;
|
|
|
|
/* preserve original error even if log finalization is successful */
|
|
err = bpf_vlog_finalize(&env->log, &log_true_size);
|
|
if (err)
|
|
ret = err;
|
|
|
|
if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
|
|
copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
|
|
&log_true_size, sizeof(log_true_size))) {
|
|
ret = -EFAULT;
|
|
goto err_release_maps;
|
|
}
|
|
|
|
if (ret)
|
|
goto err_release_maps;
|
|
|
|
if (env->used_map_cnt) {
|
|
/* if program passed verifier, update used_maps in bpf_prog_info */
|
|
env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
|
|
sizeof(env->used_maps[0]),
|
|
GFP_KERNEL);
|
|
|
|
if (!env->prog->aux->used_maps) {
|
|
ret = -ENOMEM;
|
|
goto err_release_maps;
|
|
}
|
|
|
|
memcpy(env->prog->aux->used_maps, env->used_maps,
|
|
sizeof(env->used_maps[0]) * env->used_map_cnt);
|
|
env->prog->aux->used_map_cnt = env->used_map_cnt;
|
|
}
|
|
if (env->used_btf_cnt) {
|
|
/* if program passed verifier, update used_btfs in bpf_prog_aux */
|
|
env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
|
|
sizeof(env->used_btfs[0]),
|
|
GFP_KERNEL);
|
|
if (!env->prog->aux->used_btfs) {
|
|
ret = -ENOMEM;
|
|
goto err_release_maps;
|
|
}
|
|
|
|
memcpy(env->prog->aux->used_btfs, env->used_btfs,
|
|
sizeof(env->used_btfs[0]) * env->used_btf_cnt);
|
|
env->prog->aux->used_btf_cnt = env->used_btf_cnt;
|
|
}
|
|
if (env->used_map_cnt || env->used_btf_cnt) {
|
|
/* program is valid. Convert pseudo bpf_ld_imm64 into generic
|
|
* bpf_ld_imm64 instructions
|
|
*/
|
|
convert_pseudo_ld_imm64(env);
|
|
}
|
|
|
|
adjust_btf_func(env);
|
|
|
|
err_release_maps:
|
|
if (!env->prog->aux->used_maps)
|
|
/* if we didn't copy map pointers into bpf_prog_info, release
|
|
* them now. Otherwise free_used_maps() will release them.
|
|
*/
|
|
release_maps(env);
|
|
if (!env->prog->aux->used_btfs)
|
|
release_btfs(env);
|
|
|
|
/* extension progs temporarily inherit the attach_type of their targets
|
|
for verification purposes, so set it back to zero before returning
|
|
*/
|
|
if (env->prog->type == BPF_PROG_TYPE_EXT)
|
|
env->prog->expected_attach_type = 0;
|
|
|
|
*prog = env->prog;
|
|
err_unlock:
|
|
if (!is_priv)
|
|
mutex_unlock(&bpf_verifier_lock);
|
|
vfree(env->insn_aux_data);
|
|
err_free_env:
|
|
kfree(env);
|
|
return ret;
|
|
}
|