mirror of
https://github.com/torvalds/linux.git
synced 2024-12-15 15:41:58 +00:00
6ded22c1bf
There are quite some div64 calls inside btrfs_map_block() and its variants. Such calls are for @stripe_nr, where @stripe_nr is the number of stripes before our logical bytenr inside a chunk. However we can eliminate such div64 calls by just reducing the width of @stripe_nr from 64 to 32. This can be done because our chunk size limit is already 10G, with fixed stripe length 64K. Thus a U32 is definitely enough to contain the number of stripes. With such width reduction, we can get rid of slower div64, and extra warning for certain 32bit arch. This patch would do: - Add a new tree-checker chunk validation on chunk length Make sure no chunk can reach 256G, which can also act as a bitflip checker. - Reduce the width from u64 to u32 for @stripe_nr variables - Replace unnecessary div64 calls with regular modulo and division 32bit division and modulo are much faster than 64bit operations, and we are finally free of the div64 fear at least in those involved functions. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
1952 lines
58 KiB
C
1952 lines
58 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) Qu Wenruo 2017. All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* The module is used to catch unexpected/corrupted tree block data.
|
|
* Such behavior can be caused either by a fuzzed image or bugs.
|
|
*
|
|
* The objective is to do leaf/node validation checks when tree block is read
|
|
* from disk, and check *every* possible member, so other code won't
|
|
* need to checking them again.
|
|
*
|
|
* Due to the potential and unwanted damage, every checker needs to be
|
|
* carefully reviewed otherwise so it does not prevent mount of valid images.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/error-injection.h>
|
|
#include "messages.h"
|
|
#include "ctree.h"
|
|
#include "tree-checker.h"
|
|
#include "disk-io.h"
|
|
#include "compression.h"
|
|
#include "volumes.h"
|
|
#include "misc.h"
|
|
#include "btrfs_inode.h"
|
|
#include "fs.h"
|
|
#include "accessors.h"
|
|
#include "file-item.h"
|
|
|
|
/*
|
|
* Error message should follow the following format:
|
|
* corrupt <type>: <identifier>, <reason>[, <bad_value>]
|
|
*
|
|
* @type: leaf or node
|
|
* @identifier: the necessary info to locate the leaf/node.
|
|
* It's recommended to decode key.objecitd/offset if it's
|
|
* meaningful.
|
|
* @reason: describe the error
|
|
* @bad_value: optional, it's recommended to output bad value and its
|
|
* expected value (range).
|
|
*
|
|
* Since comma is used to separate the components, only space is allowed
|
|
* inside each component.
|
|
*/
|
|
|
|
/*
|
|
* Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt.
|
|
* Allows callers to customize the output.
|
|
*/
|
|
__printf(3, 4)
|
|
__cold
|
|
static void generic_err(const struct extent_buffer *eb, int slot,
|
|
const char *fmt, ...)
|
|
{
|
|
const struct btrfs_fs_info *fs_info = eb->fs_info;
|
|
struct va_format vaf;
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
|
|
btrfs_crit(fs_info,
|
|
"corrupt %s: root=%llu block=%llu slot=%d, %pV",
|
|
btrfs_header_level(eb) == 0 ? "leaf" : "node",
|
|
btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf);
|
|
va_end(args);
|
|
}
|
|
|
|
/*
|
|
* Customized reporter for extent data item, since its key objectid and
|
|
* offset has its own meaning.
|
|
*/
|
|
__printf(3, 4)
|
|
__cold
|
|
static void file_extent_err(const struct extent_buffer *eb, int slot,
|
|
const char *fmt, ...)
|
|
{
|
|
const struct btrfs_fs_info *fs_info = eb->fs_info;
|
|
struct btrfs_key key;
|
|
struct va_format vaf;
|
|
va_list args;
|
|
|
|
btrfs_item_key_to_cpu(eb, &key, slot);
|
|
va_start(args, fmt);
|
|
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
|
|
btrfs_crit(fs_info,
|
|
"corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV",
|
|
btrfs_header_level(eb) == 0 ? "leaf" : "node",
|
|
btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
|
|
key.objectid, key.offset, &vaf);
|
|
va_end(args);
|
|
}
|
|
|
|
/*
|
|
* Return 0 if the btrfs_file_extent_##name is aligned to @alignment
|
|
* Else return 1
|
|
*/
|
|
#define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \
|
|
({ \
|
|
if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \
|
|
(alignment)))) \
|
|
file_extent_err((leaf), (slot), \
|
|
"invalid %s for file extent, have %llu, should be aligned to %u", \
|
|
(#name), btrfs_file_extent_##name((leaf), (fi)), \
|
|
(alignment)); \
|
|
(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \
|
|
})
|
|
|
|
static u64 file_extent_end(struct extent_buffer *leaf,
|
|
struct btrfs_key *key,
|
|
struct btrfs_file_extent_item *extent)
|
|
{
|
|
u64 end;
|
|
u64 len;
|
|
|
|
if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) {
|
|
len = btrfs_file_extent_ram_bytes(leaf, extent);
|
|
end = ALIGN(key->offset + len, leaf->fs_info->sectorsize);
|
|
} else {
|
|
len = btrfs_file_extent_num_bytes(leaf, extent);
|
|
end = key->offset + len;
|
|
}
|
|
return end;
|
|
}
|
|
|
|
/*
|
|
* Customized report for dir_item, the only new important information is
|
|
* key->objectid, which represents inode number
|
|
*/
|
|
__printf(3, 4)
|
|
__cold
|
|
static void dir_item_err(const struct extent_buffer *eb, int slot,
|
|
const char *fmt, ...)
|
|
{
|
|
const struct btrfs_fs_info *fs_info = eb->fs_info;
|
|
struct btrfs_key key;
|
|
struct va_format vaf;
|
|
va_list args;
|
|
|
|
btrfs_item_key_to_cpu(eb, &key, slot);
|
|
va_start(args, fmt);
|
|
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
|
|
btrfs_crit(fs_info,
|
|
"corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV",
|
|
btrfs_header_level(eb) == 0 ? "leaf" : "node",
|
|
btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
|
|
key.objectid, &vaf);
|
|
va_end(args);
|
|
}
|
|
|
|
/*
|
|
* This functions checks prev_key->objectid, to ensure current key and prev_key
|
|
* share the same objectid as inode number.
|
|
*
|
|
* This is to detect missing INODE_ITEM in subvolume trees.
|
|
*
|
|
* Return true if everything is OK or we don't need to check.
|
|
* Return false if anything is wrong.
|
|
*/
|
|
static bool check_prev_ino(struct extent_buffer *leaf,
|
|
struct btrfs_key *key, int slot,
|
|
struct btrfs_key *prev_key)
|
|
{
|
|
/* No prev key, skip check */
|
|
if (slot == 0)
|
|
return true;
|
|
|
|
/* Only these key->types needs to be checked */
|
|
ASSERT(key->type == BTRFS_XATTR_ITEM_KEY ||
|
|
key->type == BTRFS_INODE_REF_KEY ||
|
|
key->type == BTRFS_DIR_INDEX_KEY ||
|
|
key->type == BTRFS_DIR_ITEM_KEY ||
|
|
key->type == BTRFS_EXTENT_DATA_KEY);
|
|
|
|
/*
|
|
* Only subvolume trees along with their reloc trees need this check.
|
|
* Things like log tree doesn't follow this ino requirement.
|
|
*/
|
|
if (!is_fstree(btrfs_header_owner(leaf)))
|
|
return true;
|
|
|
|
if (key->objectid == prev_key->objectid)
|
|
return true;
|
|
|
|
/* Error found */
|
|
dir_item_err(leaf, slot,
|
|
"invalid previous key objectid, have %llu expect %llu",
|
|
prev_key->objectid, key->objectid);
|
|
return false;
|
|
}
|
|
static int check_extent_data_item(struct extent_buffer *leaf,
|
|
struct btrfs_key *key, int slot,
|
|
struct btrfs_key *prev_key)
|
|
{
|
|
struct btrfs_fs_info *fs_info = leaf->fs_info;
|
|
struct btrfs_file_extent_item *fi;
|
|
u32 sectorsize = fs_info->sectorsize;
|
|
u32 item_size = btrfs_item_size(leaf, slot);
|
|
u64 extent_end;
|
|
|
|
if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
|
|
file_extent_err(leaf, slot,
|
|
"unaligned file_offset for file extent, have %llu should be aligned to %u",
|
|
key->offset, sectorsize);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/*
|
|
* Previous key must have the same key->objectid (ino).
|
|
* It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA.
|
|
* But if objectids mismatch, it means we have a missing
|
|
* INODE_ITEM.
|
|
*/
|
|
if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
|
|
return -EUCLEAN;
|
|
|
|
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
|
|
|
|
/*
|
|
* Make sure the item contains at least inline header, so the file
|
|
* extent type is not some garbage.
|
|
*/
|
|
if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) {
|
|
file_extent_err(leaf, slot,
|
|
"invalid item size, have %u expect [%zu, %u)",
|
|
item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START,
|
|
SZ_4K);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(btrfs_file_extent_type(leaf, fi) >=
|
|
BTRFS_NR_FILE_EXTENT_TYPES)) {
|
|
file_extent_err(leaf, slot,
|
|
"invalid type for file extent, have %u expect range [0, %u]",
|
|
btrfs_file_extent_type(leaf, fi),
|
|
BTRFS_NR_FILE_EXTENT_TYPES - 1);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/*
|
|
* Support for new compression/encryption must introduce incompat flag,
|
|
* and must be caught in open_ctree().
|
|
*/
|
|
if (unlikely(btrfs_file_extent_compression(leaf, fi) >=
|
|
BTRFS_NR_COMPRESS_TYPES)) {
|
|
file_extent_err(leaf, slot,
|
|
"invalid compression for file extent, have %u expect range [0, %u]",
|
|
btrfs_file_extent_compression(leaf, fi),
|
|
BTRFS_NR_COMPRESS_TYPES - 1);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(btrfs_file_extent_encryption(leaf, fi))) {
|
|
file_extent_err(leaf, slot,
|
|
"invalid encryption for file extent, have %u expect 0",
|
|
btrfs_file_extent_encryption(leaf, fi));
|
|
return -EUCLEAN;
|
|
}
|
|
if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
|
|
/* Inline extent must have 0 as key offset */
|
|
if (unlikely(key->offset)) {
|
|
file_extent_err(leaf, slot,
|
|
"invalid file_offset for inline file extent, have %llu expect 0",
|
|
key->offset);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/* Compressed inline extent has no on-disk size, skip it */
|
|
if (btrfs_file_extent_compression(leaf, fi) !=
|
|
BTRFS_COMPRESS_NONE)
|
|
return 0;
|
|
|
|
/* Uncompressed inline extent size must match item size */
|
|
if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START +
|
|
btrfs_file_extent_ram_bytes(leaf, fi))) {
|
|
file_extent_err(leaf, slot,
|
|
"invalid ram_bytes for uncompressed inline extent, have %u expect %llu",
|
|
item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START +
|
|
btrfs_file_extent_ram_bytes(leaf, fi));
|
|
return -EUCLEAN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Regular or preallocated extent has fixed item size */
|
|
if (unlikely(item_size != sizeof(*fi))) {
|
|
file_extent_err(leaf, slot,
|
|
"invalid item size for reg/prealloc file extent, have %u expect %zu",
|
|
item_size, sizeof(*fi));
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) ||
|
|
CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) ||
|
|
CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) ||
|
|
CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) ||
|
|
CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize)))
|
|
return -EUCLEAN;
|
|
|
|
/* Catch extent end overflow */
|
|
if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi),
|
|
key->offset, &extent_end))) {
|
|
file_extent_err(leaf, slot,
|
|
"extent end overflow, have file offset %llu extent num bytes %llu",
|
|
key->offset,
|
|
btrfs_file_extent_num_bytes(leaf, fi));
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/*
|
|
* Check that no two consecutive file extent items, in the same leaf,
|
|
* present ranges that overlap each other.
|
|
*/
|
|
if (slot > 0 &&
|
|
prev_key->objectid == key->objectid &&
|
|
prev_key->type == BTRFS_EXTENT_DATA_KEY) {
|
|
struct btrfs_file_extent_item *prev_fi;
|
|
u64 prev_end;
|
|
|
|
prev_fi = btrfs_item_ptr(leaf, slot - 1,
|
|
struct btrfs_file_extent_item);
|
|
prev_end = file_extent_end(leaf, prev_key, prev_fi);
|
|
if (unlikely(prev_end > key->offset)) {
|
|
file_extent_err(leaf, slot - 1,
|
|
"file extent end range (%llu) goes beyond start offset (%llu) of the next file extent",
|
|
prev_end, key->offset);
|
|
return -EUCLEAN;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key,
|
|
int slot, struct btrfs_key *prev_key)
|
|
{
|
|
struct btrfs_fs_info *fs_info = leaf->fs_info;
|
|
u32 sectorsize = fs_info->sectorsize;
|
|
const u32 csumsize = fs_info->csum_size;
|
|
|
|
if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) {
|
|
generic_err(leaf, slot,
|
|
"invalid key objectid for csum item, have %llu expect %llu",
|
|
key->objectid, BTRFS_EXTENT_CSUM_OBJECTID);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
|
|
generic_err(leaf, slot,
|
|
"unaligned key offset for csum item, have %llu should be aligned to %u",
|
|
key->offset, sectorsize);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) {
|
|
generic_err(leaf, slot,
|
|
"unaligned item size for csum item, have %u should be aligned to %u",
|
|
btrfs_item_size(leaf, slot), csumsize);
|
|
return -EUCLEAN;
|
|
}
|
|
if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) {
|
|
u64 prev_csum_end;
|
|
u32 prev_item_size;
|
|
|
|
prev_item_size = btrfs_item_size(leaf, slot - 1);
|
|
prev_csum_end = (prev_item_size / csumsize) * sectorsize;
|
|
prev_csum_end += prev_key->offset;
|
|
if (unlikely(prev_csum_end > key->offset)) {
|
|
generic_err(leaf, slot - 1,
|
|
"csum end range (%llu) goes beyond the start range (%llu) of the next csum item",
|
|
prev_csum_end, key->offset);
|
|
return -EUCLEAN;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Inode item error output has the same format as dir_item_err() */
|
|
#define inode_item_err(eb, slot, fmt, ...) \
|
|
dir_item_err(eb, slot, fmt, __VA_ARGS__)
|
|
|
|
static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key,
|
|
int slot)
|
|
{
|
|
struct btrfs_key item_key;
|
|
bool is_inode_item;
|
|
|
|
btrfs_item_key_to_cpu(leaf, &item_key, slot);
|
|
is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY);
|
|
|
|
/* For XATTR_ITEM, location key should be all 0 */
|
|
if (item_key.type == BTRFS_XATTR_ITEM_KEY) {
|
|
if (unlikely(key->objectid != 0 || key->type != 0 ||
|
|
key->offset != 0))
|
|
return -EUCLEAN;
|
|
return 0;
|
|
}
|
|
|
|
if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID ||
|
|
key->objectid > BTRFS_LAST_FREE_OBJECTID) &&
|
|
key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID &&
|
|
key->objectid != BTRFS_FREE_INO_OBJECTID)) {
|
|
if (is_inode_item) {
|
|
generic_err(leaf, slot,
|
|
"invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
|
|
key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
|
|
BTRFS_FIRST_FREE_OBJECTID,
|
|
BTRFS_LAST_FREE_OBJECTID,
|
|
BTRFS_FREE_INO_OBJECTID);
|
|
} else {
|
|
dir_item_err(leaf, slot,
|
|
"invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
|
|
key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
|
|
BTRFS_FIRST_FREE_OBJECTID,
|
|
BTRFS_LAST_FREE_OBJECTID,
|
|
BTRFS_FREE_INO_OBJECTID);
|
|
}
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(key->offset != 0)) {
|
|
if (is_inode_item)
|
|
inode_item_err(leaf, slot,
|
|
"invalid key offset: has %llu expect 0",
|
|
key->offset);
|
|
else
|
|
dir_item_err(leaf, slot,
|
|
"invalid location key offset:has %llu expect 0",
|
|
key->offset);
|
|
return -EUCLEAN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key,
|
|
int slot)
|
|
{
|
|
struct btrfs_key item_key;
|
|
bool is_root_item;
|
|
|
|
btrfs_item_key_to_cpu(leaf, &item_key, slot);
|
|
is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY);
|
|
|
|
/* No such tree id */
|
|
if (unlikely(key->objectid == 0)) {
|
|
if (is_root_item)
|
|
generic_err(leaf, slot, "invalid root id 0");
|
|
else
|
|
dir_item_err(leaf, slot,
|
|
"invalid location key root id 0");
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */
|
|
if (unlikely(!is_fstree(key->objectid) && !is_root_item)) {
|
|
dir_item_err(leaf, slot,
|
|
"invalid location key objectid, have %llu expect [%llu, %llu]",
|
|
key->objectid, BTRFS_FIRST_FREE_OBJECTID,
|
|
BTRFS_LAST_FREE_OBJECTID);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/*
|
|
* ROOT_ITEM with non-zero offset means this is a snapshot, created at
|
|
* @offset transid.
|
|
* Furthermore, for location key in DIR_ITEM, its offset is always -1.
|
|
*
|
|
* So here we only check offset for reloc tree whose key->offset must
|
|
* be a valid tree.
|
|
*/
|
|
if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
|
|
key->offset == 0)) {
|
|
generic_err(leaf, slot, "invalid root id 0 for reloc tree");
|
|
return -EUCLEAN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int check_dir_item(struct extent_buffer *leaf,
|
|
struct btrfs_key *key, struct btrfs_key *prev_key,
|
|
int slot)
|
|
{
|
|
struct btrfs_fs_info *fs_info = leaf->fs_info;
|
|
struct btrfs_dir_item *di;
|
|
u32 item_size = btrfs_item_size(leaf, slot);
|
|
u32 cur = 0;
|
|
|
|
if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
|
|
return -EUCLEAN;
|
|
|
|
di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
|
|
while (cur < item_size) {
|
|
struct btrfs_key location_key;
|
|
u32 name_len;
|
|
u32 data_len;
|
|
u32 max_name_len;
|
|
u32 total_size;
|
|
u32 name_hash;
|
|
u8 dir_type;
|
|
int ret;
|
|
|
|
/* header itself should not cross item boundary */
|
|
if (unlikely(cur + sizeof(*di) > item_size)) {
|
|
dir_item_err(leaf, slot,
|
|
"dir item header crosses item boundary, have %zu boundary %u",
|
|
cur + sizeof(*di), item_size);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/* Location key check */
|
|
btrfs_dir_item_key_to_cpu(leaf, di, &location_key);
|
|
if (location_key.type == BTRFS_ROOT_ITEM_KEY) {
|
|
ret = check_root_key(leaf, &location_key, slot);
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
} else if (location_key.type == BTRFS_INODE_ITEM_KEY ||
|
|
location_key.type == 0) {
|
|
ret = check_inode_key(leaf, &location_key, slot);
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
} else {
|
|
dir_item_err(leaf, slot,
|
|
"invalid location key type, have %u, expect %u or %u",
|
|
location_key.type, BTRFS_ROOT_ITEM_KEY,
|
|
BTRFS_INODE_ITEM_KEY);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/* dir type check */
|
|
dir_type = btrfs_dir_ftype(leaf, di);
|
|
if (unlikely(dir_type >= BTRFS_FT_MAX)) {
|
|
dir_item_err(leaf, slot,
|
|
"invalid dir item type, have %u expect [0, %u)",
|
|
dir_type, BTRFS_FT_MAX);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY &&
|
|
dir_type != BTRFS_FT_XATTR)) {
|
|
dir_item_err(leaf, slot,
|
|
"invalid dir item type for XATTR key, have %u expect %u",
|
|
dir_type, BTRFS_FT_XATTR);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(dir_type == BTRFS_FT_XATTR &&
|
|
key->type != BTRFS_XATTR_ITEM_KEY)) {
|
|
dir_item_err(leaf, slot,
|
|
"xattr dir type found for non-XATTR key");
|
|
return -EUCLEAN;
|
|
}
|
|
if (dir_type == BTRFS_FT_XATTR)
|
|
max_name_len = XATTR_NAME_MAX;
|
|
else
|
|
max_name_len = BTRFS_NAME_LEN;
|
|
|
|
/* Name/data length check */
|
|
name_len = btrfs_dir_name_len(leaf, di);
|
|
data_len = btrfs_dir_data_len(leaf, di);
|
|
if (unlikely(name_len > max_name_len)) {
|
|
dir_item_err(leaf, slot,
|
|
"dir item name len too long, have %u max %u",
|
|
name_len, max_name_len);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) {
|
|
dir_item_err(leaf, slot,
|
|
"dir item name and data len too long, have %u max %u",
|
|
name_len + data_len,
|
|
BTRFS_MAX_XATTR_SIZE(fs_info));
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) {
|
|
dir_item_err(leaf, slot,
|
|
"dir item with invalid data len, have %u expect 0",
|
|
data_len);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
total_size = sizeof(*di) + name_len + data_len;
|
|
|
|
/* header and name/data should not cross item boundary */
|
|
if (unlikely(cur + total_size > item_size)) {
|
|
dir_item_err(leaf, slot,
|
|
"dir item data crosses item boundary, have %u boundary %u",
|
|
cur + total_size, item_size);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/*
|
|
* Special check for XATTR/DIR_ITEM, as key->offset is name
|
|
* hash, should match its name
|
|
*/
|
|
if (key->type == BTRFS_DIR_ITEM_KEY ||
|
|
key->type == BTRFS_XATTR_ITEM_KEY) {
|
|
char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)];
|
|
|
|
read_extent_buffer(leaf, namebuf,
|
|
(unsigned long)(di + 1), name_len);
|
|
name_hash = btrfs_name_hash(namebuf, name_len);
|
|
if (unlikely(key->offset != name_hash)) {
|
|
dir_item_err(leaf, slot,
|
|
"name hash mismatch with key, have 0x%016x expect 0x%016llx",
|
|
name_hash, key->offset);
|
|
return -EUCLEAN;
|
|
}
|
|
}
|
|
cur += total_size;
|
|
di = (struct btrfs_dir_item *)((void *)di + total_size);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
__printf(3, 4)
|
|
__cold
|
|
static void block_group_err(const struct extent_buffer *eb, int slot,
|
|
const char *fmt, ...)
|
|
{
|
|
const struct btrfs_fs_info *fs_info = eb->fs_info;
|
|
struct btrfs_key key;
|
|
struct va_format vaf;
|
|
va_list args;
|
|
|
|
btrfs_item_key_to_cpu(eb, &key, slot);
|
|
va_start(args, fmt);
|
|
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
|
|
btrfs_crit(fs_info,
|
|
"corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV",
|
|
btrfs_header_level(eb) == 0 ? "leaf" : "node",
|
|
btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
|
|
key.objectid, key.offset, &vaf);
|
|
va_end(args);
|
|
}
|
|
|
|
static int check_block_group_item(struct extent_buffer *leaf,
|
|
struct btrfs_key *key, int slot)
|
|
{
|
|
struct btrfs_fs_info *fs_info = leaf->fs_info;
|
|
struct btrfs_block_group_item bgi;
|
|
u32 item_size = btrfs_item_size(leaf, slot);
|
|
u64 chunk_objectid;
|
|
u64 flags;
|
|
u64 type;
|
|
|
|
/*
|
|
* Here we don't really care about alignment since extent allocator can
|
|
* handle it. We care more about the size.
|
|
*/
|
|
if (unlikely(key->offset == 0)) {
|
|
block_group_err(leaf, slot,
|
|
"invalid block group size 0");
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
if (unlikely(item_size != sizeof(bgi))) {
|
|
block_group_err(leaf, slot,
|
|
"invalid item size, have %u expect %zu",
|
|
item_size, sizeof(bgi));
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
|
|
sizeof(bgi));
|
|
chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi);
|
|
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
|
|
/*
|
|
* We don't init the nr_global_roots until we load the global
|
|
* roots, so this could be 0 at mount time. If it's 0 we'll
|
|
* just assume we're fine, and later we'll check against our
|
|
* actual value.
|
|
*/
|
|
if (unlikely(fs_info->nr_global_roots &&
|
|
chunk_objectid >= fs_info->nr_global_roots)) {
|
|
block_group_err(leaf, slot,
|
|
"invalid block group global root id, have %llu, needs to be <= %llu",
|
|
chunk_objectid,
|
|
fs_info->nr_global_roots);
|
|
return -EUCLEAN;
|
|
}
|
|
} else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
|
|
block_group_err(leaf, slot,
|
|
"invalid block group chunk objectid, have %llu expect %llu",
|
|
btrfs_stack_block_group_chunk_objectid(&bgi),
|
|
BTRFS_FIRST_CHUNK_TREE_OBJECTID);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) {
|
|
block_group_err(leaf, slot,
|
|
"invalid block group used, have %llu expect [0, %llu)",
|
|
btrfs_stack_block_group_used(&bgi), key->offset);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
flags = btrfs_stack_block_group_flags(&bgi);
|
|
if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) {
|
|
block_group_err(leaf, slot,
|
|
"invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set",
|
|
flags & BTRFS_BLOCK_GROUP_PROFILE_MASK,
|
|
hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK));
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
|
|
if (unlikely(type != BTRFS_BLOCK_GROUP_DATA &&
|
|
type != BTRFS_BLOCK_GROUP_METADATA &&
|
|
type != BTRFS_BLOCK_GROUP_SYSTEM &&
|
|
type != (BTRFS_BLOCK_GROUP_METADATA |
|
|
BTRFS_BLOCK_GROUP_DATA))) {
|
|
block_group_err(leaf, slot,
|
|
"invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx",
|
|
type, hweight64(type),
|
|
BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA,
|
|
BTRFS_BLOCK_GROUP_SYSTEM,
|
|
BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA);
|
|
return -EUCLEAN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
__printf(4, 5)
|
|
__cold
|
|
static void chunk_err(const struct extent_buffer *leaf,
|
|
const struct btrfs_chunk *chunk, u64 logical,
|
|
const char *fmt, ...)
|
|
{
|
|
const struct btrfs_fs_info *fs_info = leaf->fs_info;
|
|
bool is_sb;
|
|
struct va_format vaf;
|
|
va_list args;
|
|
int i;
|
|
int slot = -1;
|
|
|
|
/* Only superblock eb is able to have such small offset */
|
|
is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET);
|
|
|
|
if (!is_sb) {
|
|
/*
|
|
* Get the slot number by iterating through all slots, this
|
|
* would provide better readability.
|
|
*/
|
|
for (i = 0; i < btrfs_header_nritems(leaf); i++) {
|
|
if (btrfs_item_ptr_offset(leaf, i) ==
|
|
(unsigned long)chunk) {
|
|
slot = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
va_start(args, fmt);
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
|
|
if (is_sb)
|
|
btrfs_crit(fs_info,
|
|
"corrupt superblock syschunk array: chunk_start=%llu, %pV",
|
|
logical, &vaf);
|
|
else
|
|
btrfs_crit(fs_info,
|
|
"corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV",
|
|
BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot,
|
|
logical, &vaf);
|
|
va_end(args);
|
|
}
|
|
|
|
/*
|
|
* The common chunk check which could also work on super block sys chunk array.
|
|
*
|
|
* Return -EUCLEAN if anything is corrupted.
|
|
* Return 0 if everything is OK.
|
|
*/
|
|
int btrfs_check_chunk_valid(struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk, u64 logical)
|
|
{
|
|
struct btrfs_fs_info *fs_info = leaf->fs_info;
|
|
u64 length;
|
|
u64 chunk_end;
|
|
u64 stripe_len;
|
|
u16 num_stripes;
|
|
u16 sub_stripes;
|
|
u64 type;
|
|
u64 features;
|
|
bool mixed = false;
|
|
int raid_index;
|
|
int nparity;
|
|
int ncopies;
|
|
|
|
length = btrfs_chunk_length(leaf, chunk);
|
|
stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
|
|
num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
|
|
sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
|
|
type = btrfs_chunk_type(leaf, chunk);
|
|
raid_index = btrfs_bg_flags_to_raid_index(type);
|
|
ncopies = btrfs_raid_array[raid_index].ncopies;
|
|
nparity = btrfs_raid_array[raid_index].nparity;
|
|
|
|
if (unlikely(!num_stripes)) {
|
|
chunk_err(leaf, chunk, logical,
|
|
"invalid chunk num_stripes, have %u", num_stripes);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(num_stripes < ncopies)) {
|
|
chunk_err(leaf, chunk, logical,
|
|
"invalid chunk num_stripes < ncopies, have %u < %d",
|
|
num_stripes, ncopies);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(nparity && num_stripes == nparity)) {
|
|
chunk_err(leaf, chunk, logical,
|
|
"invalid chunk num_stripes == nparity, have %u == %d",
|
|
num_stripes, nparity);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) {
|
|
chunk_err(leaf, chunk, logical,
|
|
"invalid chunk logical, have %llu should aligned to %u",
|
|
logical, fs_info->sectorsize);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) {
|
|
chunk_err(leaf, chunk, logical,
|
|
"invalid chunk sectorsize, have %u expect %u",
|
|
btrfs_chunk_sector_size(leaf, chunk),
|
|
fs_info->sectorsize);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) {
|
|
chunk_err(leaf, chunk, logical,
|
|
"invalid chunk length, have %llu", length);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(check_add_overflow(logical, length, &chunk_end))) {
|
|
chunk_err(leaf, chunk, logical,
|
|
"invalid chunk logical start and length, have logical start %llu length %llu",
|
|
logical, length);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) {
|
|
chunk_err(leaf, chunk, logical,
|
|
"invalid chunk stripe length: %llu",
|
|
stripe_len);
|
|
return -EUCLEAN;
|
|
}
|
|
/*
|
|
* We artificially limit the chunk size, so that the number of stripes
|
|
* inside a chunk can be fit into a U32. The current limit (256G) is
|
|
* way too large for real world usage anyway, and it's also much larger
|
|
* than our existing limit (10G).
|
|
*
|
|
* Thus it should be a good way to catch obvious bitflips.
|
|
*/
|
|
if (unlikely(length >= ((u64)U32_MAX << BTRFS_STRIPE_LEN_SHIFT))) {
|
|
chunk_err(leaf, chunk, logical,
|
|
"chunk length too large: have %llu limit %llu",
|
|
length, (u64)U32_MAX << BTRFS_STRIPE_LEN_SHIFT);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
|
|
BTRFS_BLOCK_GROUP_PROFILE_MASK))) {
|
|
chunk_err(leaf, chunk, logical,
|
|
"unrecognized chunk type: 0x%llx",
|
|
~(BTRFS_BLOCK_GROUP_TYPE_MASK |
|
|
BTRFS_BLOCK_GROUP_PROFILE_MASK) &
|
|
btrfs_chunk_type(leaf, chunk));
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
|
|
(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) {
|
|
chunk_err(leaf, chunk, logical,
|
|
"invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
|
|
type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) {
|
|
chunk_err(leaf, chunk, logical,
|
|
"missing chunk type flag, have 0x%llx one bit must be set in 0x%llx",
|
|
type, BTRFS_BLOCK_GROUP_TYPE_MASK);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
|
|
(type & (BTRFS_BLOCK_GROUP_METADATA |
|
|
BTRFS_BLOCK_GROUP_DATA)))) {
|
|
chunk_err(leaf, chunk, logical,
|
|
"system chunk with data or metadata type: 0x%llx",
|
|
type);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
features = btrfs_super_incompat_flags(fs_info->super_copy);
|
|
if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
|
|
mixed = true;
|
|
|
|
if (!mixed) {
|
|
if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) &&
|
|
(type & BTRFS_BLOCK_GROUP_DATA))) {
|
|
chunk_err(leaf, chunk, logical,
|
|
"mixed chunk type in non-mixed mode: 0x%llx", type);
|
|
return -EUCLEAN;
|
|
}
|
|
}
|
|
|
|
if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 &&
|
|
sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) ||
|
|
(type & BTRFS_BLOCK_GROUP_RAID1 &&
|
|
num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) ||
|
|
(type & BTRFS_BLOCK_GROUP_RAID1C3 &&
|
|
num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) ||
|
|
(type & BTRFS_BLOCK_GROUP_RAID1C4 &&
|
|
num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) ||
|
|
(type & BTRFS_BLOCK_GROUP_RAID5 &&
|
|
num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) ||
|
|
(type & BTRFS_BLOCK_GROUP_RAID6 &&
|
|
num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) ||
|
|
(type & BTRFS_BLOCK_GROUP_DUP &&
|
|
num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) ||
|
|
((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
|
|
num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) {
|
|
chunk_err(leaf, chunk, logical,
|
|
"invalid num_stripes:sub_stripes %u:%u for profile %llu",
|
|
num_stripes, sub_stripes,
|
|
type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Enhanced version of chunk item checker.
|
|
*
|
|
* The common btrfs_check_chunk_valid() doesn't check item size since it needs
|
|
* to work on super block sys_chunk_array which doesn't have full item ptr.
|
|
*/
|
|
static int check_leaf_chunk_item(struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk,
|
|
struct btrfs_key *key, int slot)
|
|
{
|
|
int num_stripes;
|
|
|
|
if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) {
|
|
chunk_err(leaf, chunk, key->offset,
|
|
"invalid chunk item size: have %u expect [%zu, %u)",
|
|
btrfs_item_size(leaf, slot),
|
|
sizeof(struct btrfs_chunk),
|
|
BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
|
|
/* Let btrfs_check_chunk_valid() handle this error type */
|
|
if (num_stripes == 0)
|
|
goto out;
|
|
|
|
if (unlikely(btrfs_chunk_item_size(num_stripes) !=
|
|
btrfs_item_size(leaf, slot))) {
|
|
chunk_err(leaf, chunk, key->offset,
|
|
"invalid chunk item size: have %u expect %lu",
|
|
btrfs_item_size(leaf, slot),
|
|
btrfs_chunk_item_size(num_stripes));
|
|
return -EUCLEAN;
|
|
}
|
|
out:
|
|
return btrfs_check_chunk_valid(leaf, chunk, key->offset);
|
|
}
|
|
|
|
__printf(3, 4)
|
|
__cold
|
|
static void dev_item_err(const struct extent_buffer *eb, int slot,
|
|
const char *fmt, ...)
|
|
{
|
|
struct btrfs_key key;
|
|
struct va_format vaf;
|
|
va_list args;
|
|
|
|
btrfs_item_key_to_cpu(eb, &key, slot);
|
|
va_start(args, fmt);
|
|
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
|
|
btrfs_crit(eb->fs_info,
|
|
"corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV",
|
|
btrfs_header_level(eb) == 0 ? "leaf" : "node",
|
|
btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
|
|
key.objectid, &vaf);
|
|
va_end(args);
|
|
}
|
|
|
|
static int check_dev_item(struct extent_buffer *leaf,
|
|
struct btrfs_key *key, int slot)
|
|
{
|
|
struct btrfs_dev_item *ditem;
|
|
const u32 item_size = btrfs_item_size(leaf, slot);
|
|
|
|
if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) {
|
|
dev_item_err(leaf, slot,
|
|
"invalid objectid: has=%llu expect=%llu",
|
|
key->objectid, BTRFS_DEV_ITEMS_OBJECTID);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
if (unlikely(item_size != sizeof(*ditem))) {
|
|
dev_item_err(leaf, slot, "invalid item size: has %u expect %zu",
|
|
item_size, sizeof(*ditem));
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item);
|
|
if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) {
|
|
dev_item_err(leaf, slot,
|
|
"devid mismatch: key has=%llu item has=%llu",
|
|
key->offset, btrfs_device_id(leaf, ditem));
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/*
|
|
* For device total_bytes, we don't have reliable way to check it, as
|
|
* it can be 0 for device removal. Device size check can only be done
|
|
* by dev extents check.
|
|
*/
|
|
if (unlikely(btrfs_device_bytes_used(leaf, ditem) >
|
|
btrfs_device_total_bytes(leaf, ditem))) {
|
|
dev_item_err(leaf, slot,
|
|
"invalid bytes used: have %llu expect [0, %llu]",
|
|
btrfs_device_bytes_used(leaf, ditem),
|
|
btrfs_device_total_bytes(leaf, ditem));
|
|
return -EUCLEAN;
|
|
}
|
|
/*
|
|
* Remaining members like io_align/type/gen/dev_group aren't really
|
|
* utilized. Skip them to make later usage of them easier.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static int check_inode_item(struct extent_buffer *leaf,
|
|
struct btrfs_key *key, int slot)
|
|
{
|
|
struct btrfs_fs_info *fs_info = leaf->fs_info;
|
|
struct btrfs_inode_item *iitem;
|
|
u64 super_gen = btrfs_super_generation(fs_info->super_copy);
|
|
u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777);
|
|
const u32 item_size = btrfs_item_size(leaf, slot);
|
|
u32 mode;
|
|
int ret;
|
|
u32 flags;
|
|
u32 ro_flags;
|
|
|
|
ret = check_inode_key(leaf, key, slot);
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
|
|
if (unlikely(item_size != sizeof(*iitem))) {
|
|
generic_err(leaf, slot, "invalid item size: has %u expect %zu",
|
|
item_size, sizeof(*iitem));
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item);
|
|
|
|
/* Here we use super block generation + 1 to handle log tree */
|
|
if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) {
|
|
inode_item_err(leaf, slot,
|
|
"invalid inode generation: has %llu expect (0, %llu]",
|
|
btrfs_inode_generation(leaf, iitem),
|
|
super_gen + 1);
|
|
return -EUCLEAN;
|
|
}
|
|
/* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */
|
|
if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) {
|
|
inode_item_err(leaf, slot,
|
|
"invalid inode transid: has %llu expect [0, %llu]",
|
|
btrfs_inode_transid(leaf, iitem), super_gen + 1);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/*
|
|
* For size and nbytes it's better not to be too strict, as for dir
|
|
* item its size/nbytes can easily get wrong, but doesn't affect
|
|
* anything in the fs. So here we skip the check.
|
|
*/
|
|
mode = btrfs_inode_mode(leaf, iitem);
|
|
if (unlikely(mode & ~valid_mask)) {
|
|
inode_item_err(leaf, slot,
|
|
"unknown mode bit detected: 0x%x",
|
|
mode & ~valid_mask);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/*
|
|
* S_IFMT is not bit mapped so we can't completely rely on
|
|
* is_power_of_2/has_single_bit_set, but it can save us from checking
|
|
* FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS
|
|
*/
|
|
if (!has_single_bit_set(mode & S_IFMT)) {
|
|
if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) {
|
|
inode_item_err(leaf, slot,
|
|
"invalid mode: has 0%o expect valid S_IF* bit(s)",
|
|
mode & S_IFMT);
|
|
return -EUCLEAN;
|
|
}
|
|
}
|
|
if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) {
|
|
inode_item_err(leaf, slot,
|
|
"invalid nlink: has %u expect no more than 1 for dir",
|
|
btrfs_inode_nlink(leaf, iitem));
|
|
return -EUCLEAN;
|
|
}
|
|
btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags);
|
|
if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) {
|
|
inode_item_err(leaf, slot,
|
|
"unknown incompat flags detected: 0x%x", flags);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(!sb_rdonly(fs_info->sb) &&
|
|
(ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) {
|
|
inode_item_err(leaf, slot,
|
|
"unknown ro-compat flags detected on writeable mount: 0x%x",
|
|
ro_flags);
|
|
return -EUCLEAN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key,
|
|
int slot)
|
|
{
|
|
struct btrfs_fs_info *fs_info = leaf->fs_info;
|
|
struct btrfs_root_item ri = { 0 };
|
|
const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY |
|
|
BTRFS_ROOT_SUBVOL_DEAD;
|
|
int ret;
|
|
|
|
ret = check_root_key(leaf, key, slot);
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
|
|
if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) &&
|
|
btrfs_item_size(leaf, slot) !=
|
|
btrfs_legacy_root_item_size())) {
|
|
generic_err(leaf, slot,
|
|
"invalid root item size, have %u expect %zu or %u",
|
|
btrfs_item_size(leaf, slot), sizeof(ri),
|
|
btrfs_legacy_root_item_size());
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/*
|
|
* For legacy root item, the members starting at generation_v2 will be
|
|
* all filled with 0.
|
|
* And since we allow geneartion_v2 as 0, it will still pass the check.
|
|
*/
|
|
read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot),
|
|
btrfs_item_size(leaf, slot));
|
|
|
|
/* Generation related */
|
|
if (unlikely(btrfs_root_generation(&ri) >
|
|
btrfs_super_generation(fs_info->super_copy) + 1)) {
|
|
generic_err(leaf, slot,
|
|
"invalid root generation, have %llu expect (0, %llu]",
|
|
btrfs_root_generation(&ri),
|
|
btrfs_super_generation(fs_info->super_copy) + 1);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(btrfs_root_generation_v2(&ri) >
|
|
btrfs_super_generation(fs_info->super_copy) + 1)) {
|
|
generic_err(leaf, slot,
|
|
"invalid root v2 generation, have %llu expect (0, %llu]",
|
|
btrfs_root_generation_v2(&ri),
|
|
btrfs_super_generation(fs_info->super_copy) + 1);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(btrfs_root_last_snapshot(&ri) >
|
|
btrfs_super_generation(fs_info->super_copy) + 1)) {
|
|
generic_err(leaf, slot,
|
|
"invalid root last_snapshot, have %llu expect (0, %llu]",
|
|
btrfs_root_last_snapshot(&ri),
|
|
btrfs_super_generation(fs_info->super_copy) + 1);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/* Alignment and level check */
|
|
if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) {
|
|
generic_err(leaf, slot,
|
|
"invalid root bytenr, have %llu expect to be aligned to %u",
|
|
btrfs_root_bytenr(&ri), fs_info->sectorsize);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) {
|
|
generic_err(leaf, slot,
|
|
"invalid root level, have %u expect [0, %u]",
|
|
btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) {
|
|
generic_err(leaf, slot,
|
|
"invalid root level, have %u expect [0, %u]",
|
|
btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/* Flags check */
|
|
if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) {
|
|
generic_err(leaf, slot,
|
|
"invalid root flags, have 0x%llx expect mask 0x%llx",
|
|
btrfs_root_flags(&ri), valid_root_flags);
|
|
return -EUCLEAN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
__printf(3,4)
|
|
__cold
|
|
static void extent_err(const struct extent_buffer *eb, int slot,
|
|
const char *fmt, ...)
|
|
{
|
|
struct btrfs_key key;
|
|
struct va_format vaf;
|
|
va_list args;
|
|
u64 bytenr;
|
|
u64 len;
|
|
|
|
btrfs_item_key_to_cpu(eb, &key, slot);
|
|
bytenr = key.objectid;
|
|
if (key.type == BTRFS_METADATA_ITEM_KEY ||
|
|
key.type == BTRFS_TREE_BLOCK_REF_KEY ||
|
|
key.type == BTRFS_SHARED_BLOCK_REF_KEY)
|
|
len = eb->fs_info->nodesize;
|
|
else
|
|
len = key.offset;
|
|
va_start(args, fmt);
|
|
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
|
|
btrfs_crit(eb->fs_info,
|
|
"corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV",
|
|
btrfs_header_level(eb) == 0 ? "leaf" : "node",
|
|
eb->start, slot, bytenr, len, &vaf);
|
|
va_end(args);
|
|
}
|
|
|
|
static int check_extent_item(struct extent_buffer *leaf,
|
|
struct btrfs_key *key, int slot,
|
|
struct btrfs_key *prev_key)
|
|
{
|
|
struct btrfs_fs_info *fs_info = leaf->fs_info;
|
|
struct btrfs_extent_item *ei;
|
|
bool is_tree_block = false;
|
|
unsigned long ptr; /* Current pointer inside inline refs */
|
|
unsigned long end; /* Extent item end */
|
|
const u32 item_size = btrfs_item_size(leaf, slot);
|
|
u64 flags;
|
|
u64 generation;
|
|
u64 total_refs; /* Total refs in btrfs_extent_item */
|
|
u64 inline_refs = 0; /* found total inline refs */
|
|
|
|
if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
|
|
!btrfs_fs_incompat(fs_info, SKINNY_METADATA))) {
|
|
generic_err(leaf, slot,
|
|
"invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled");
|
|
return -EUCLEAN;
|
|
}
|
|
/* key->objectid is the bytenr for both key types */
|
|
if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) {
|
|
generic_err(leaf, slot,
|
|
"invalid key objectid, have %llu expect to be aligned to %u",
|
|
key->objectid, fs_info->sectorsize);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/* key->offset is tree level for METADATA_ITEM_KEY */
|
|
if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
|
|
key->offset >= BTRFS_MAX_LEVEL)) {
|
|
extent_err(leaf, slot,
|
|
"invalid tree level, have %llu expect [0, %u]",
|
|
key->offset, BTRFS_MAX_LEVEL - 1);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/*
|
|
* EXTENT/METADATA_ITEM consists of:
|
|
* 1) One btrfs_extent_item
|
|
* Records the total refs, type and generation of the extent.
|
|
*
|
|
* 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only)
|
|
* Records the first key and level of the tree block.
|
|
*
|
|
* 2) Zero or more btrfs_extent_inline_ref(s)
|
|
* Each inline ref has one btrfs_extent_inline_ref shows:
|
|
* 2.1) The ref type, one of the 4
|
|
* TREE_BLOCK_REF Tree block only
|
|
* SHARED_BLOCK_REF Tree block only
|
|
* EXTENT_DATA_REF Data only
|
|
* SHARED_DATA_REF Data only
|
|
* 2.2) Ref type specific data
|
|
* Either using btrfs_extent_inline_ref::offset, or specific
|
|
* data structure.
|
|
*/
|
|
if (unlikely(item_size < sizeof(*ei))) {
|
|
extent_err(leaf, slot,
|
|
"invalid item size, have %u expect [%zu, %u)",
|
|
item_size, sizeof(*ei),
|
|
BTRFS_LEAF_DATA_SIZE(fs_info));
|
|
return -EUCLEAN;
|
|
}
|
|
end = item_size + btrfs_item_ptr_offset(leaf, slot);
|
|
|
|
/* Checks against extent_item */
|
|
ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
|
|
flags = btrfs_extent_flags(leaf, ei);
|
|
total_refs = btrfs_extent_refs(leaf, ei);
|
|
generation = btrfs_extent_generation(leaf, ei);
|
|
if (unlikely(generation >
|
|
btrfs_super_generation(fs_info->super_copy) + 1)) {
|
|
extent_err(leaf, slot,
|
|
"invalid generation, have %llu expect (0, %llu]",
|
|
generation,
|
|
btrfs_super_generation(fs_info->super_copy) + 1);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA |
|
|
BTRFS_EXTENT_FLAG_TREE_BLOCK)))) {
|
|
extent_err(leaf, slot,
|
|
"invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx",
|
|
flags, BTRFS_EXTENT_FLAG_DATA |
|
|
BTRFS_EXTENT_FLAG_TREE_BLOCK);
|
|
return -EUCLEAN;
|
|
}
|
|
is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK);
|
|
if (is_tree_block) {
|
|
if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY &&
|
|
key->offset != fs_info->nodesize)) {
|
|
extent_err(leaf, slot,
|
|
"invalid extent length, have %llu expect %u",
|
|
key->offset, fs_info->nodesize);
|
|
return -EUCLEAN;
|
|
}
|
|
} else {
|
|
if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) {
|
|
extent_err(leaf, slot,
|
|
"invalid key type, have %u expect %u for data backref",
|
|
key->type, BTRFS_EXTENT_ITEM_KEY);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) {
|
|
extent_err(leaf, slot,
|
|
"invalid extent length, have %llu expect aligned to %u",
|
|
key->offset, fs_info->sectorsize);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
|
|
extent_err(leaf, slot,
|
|
"invalid extent flag, data has full backref set");
|
|
return -EUCLEAN;
|
|
}
|
|
}
|
|
ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1);
|
|
|
|
/* Check the special case of btrfs_tree_block_info */
|
|
if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) {
|
|
struct btrfs_tree_block_info *info;
|
|
|
|
info = (struct btrfs_tree_block_info *)ptr;
|
|
if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) {
|
|
extent_err(leaf, slot,
|
|
"invalid tree block info level, have %u expect [0, %u]",
|
|
btrfs_tree_block_level(leaf, info),
|
|
BTRFS_MAX_LEVEL - 1);
|
|
return -EUCLEAN;
|
|
}
|
|
ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1);
|
|
}
|
|
|
|
/* Check inline refs */
|
|
while (ptr < end) {
|
|
struct btrfs_extent_inline_ref *iref;
|
|
struct btrfs_extent_data_ref *dref;
|
|
struct btrfs_shared_data_ref *sref;
|
|
u64 dref_offset;
|
|
u64 inline_offset;
|
|
u8 inline_type;
|
|
|
|
if (unlikely(ptr + sizeof(*iref) > end)) {
|
|
extent_err(leaf, slot,
|
|
"inline ref item overflows extent item, ptr %lu iref size %zu end %lu",
|
|
ptr, sizeof(*iref), end);
|
|
return -EUCLEAN;
|
|
}
|
|
iref = (struct btrfs_extent_inline_ref *)ptr;
|
|
inline_type = btrfs_extent_inline_ref_type(leaf, iref);
|
|
inline_offset = btrfs_extent_inline_ref_offset(leaf, iref);
|
|
if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) {
|
|
extent_err(leaf, slot,
|
|
"inline ref item overflows extent item, ptr %lu iref size %u end %lu",
|
|
ptr, inline_type, end);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
switch (inline_type) {
|
|
/* inline_offset is subvolid of the owner, no need to check */
|
|
case BTRFS_TREE_BLOCK_REF_KEY:
|
|
inline_refs++;
|
|
break;
|
|
/* Contains parent bytenr */
|
|
case BTRFS_SHARED_BLOCK_REF_KEY:
|
|
if (unlikely(!IS_ALIGNED(inline_offset,
|
|
fs_info->sectorsize))) {
|
|
extent_err(leaf, slot,
|
|
"invalid tree parent bytenr, have %llu expect aligned to %u",
|
|
inline_offset, fs_info->sectorsize);
|
|
return -EUCLEAN;
|
|
}
|
|
inline_refs++;
|
|
break;
|
|
/*
|
|
* Contains owner subvolid, owner key objectid, adjusted offset.
|
|
* The only obvious corruption can happen in that offset.
|
|
*/
|
|
case BTRFS_EXTENT_DATA_REF_KEY:
|
|
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
dref_offset = btrfs_extent_data_ref_offset(leaf, dref);
|
|
if (unlikely(!IS_ALIGNED(dref_offset,
|
|
fs_info->sectorsize))) {
|
|
extent_err(leaf, slot,
|
|
"invalid data ref offset, have %llu expect aligned to %u",
|
|
dref_offset, fs_info->sectorsize);
|
|
return -EUCLEAN;
|
|
}
|
|
inline_refs += btrfs_extent_data_ref_count(leaf, dref);
|
|
break;
|
|
/* Contains parent bytenr and ref count */
|
|
case BTRFS_SHARED_DATA_REF_KEY:
|
|
sref = (struct btrfs_shared_data_ref *)(iref + 1);
|
|
if (unlikely(!IS_ALIGNED(inline_offset,
|
|
fs_info->sectorsize))) {
|
|
extent_err(leaf, slot,
|
|
"invalid data parent bytenr, have %llu expect aligned to %u",
|
|
inline_offset, fs_info->sectorsize);
|
|
return -EUCLEAN;
|
|
}
|
|
inline_refs += btrfs_shared_data_ref_count(leaf, sref);
|
|
break;
|
|
default:
|
|
extent_err(leaf, slot, "unknown inline ref type: %u",
|
|
inline_type);
|
|
return -EUCLEAN;
|
|
}
|
|
ptr += btrfs_extent_inline_ref_size(inline_type);
|
|
}
|
|
/* No padding is allowed */
|
|
if (unlikely(ptr != end)) {
|
|
extent_err(leaf, slot,
|
|
"invalid extent item size, padding bytes found");
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/* Finally, check the inline refs against total refs */
|
|
if (unlikely(inline_refs > total_refs)) {
|
|
extent_err(leaf, slot,
|
|
"invalid extent refs, have %llu expect >= inline %llu",
|
|
total_refs, inline_refs);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) ||
|
|
(prev_key->type == BTRFS_METADATA_ITEM_KEY)) {
|
|
u64 prev_end = prev_key->objectid;
|
|
|
|
if (prev_key->type == BTRFS_METADATA_ITEM_KEY)
|
|
prev_end += fs_info->nodesize;
|
|
else
|
|
prev_end += prev_key->offset;
|
|
|
|
if (unlikely(prev_end > key->objectid)) {
|
|
extent_err(leaf, slot,
|
|
"previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]",
|
|
prev_key->objectid, prev_key->type,
|
|
prev_key->offset, key->objectid, key->type,
|
|
key->offset);
|
|
return -EUCLEAN;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_simple_keyed_refs(struct extent_buffer *leaf,
|
|
struct btrfs_key *key, int slot)
|
|
{
|
|
u32 expect_item_size = 0;
|
|
|
|
if (key->type == BTRFS_SHARED_DATA_REF_KEY)
|
|
expect_item_size = sizeof(struct btrfs_shared_data_ref);
|
|
|
|
if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) {
|
|
generic_err(leaf, slot,
|
|
"invalid item size, have %u expect %u for key type %u",
|
|
btrfs_item_size(leaf, slot),
|
|
expect_item_size, key->type);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
|
|
generic_err(leaf, slot,
|
|
"invalid key objectid for shared block ref, have %llu expect aligned to %u",
|
|
key->objectid, leaf->fs_info->sectorsize);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY &&
|
|
!IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) {
|
|
extent_err(leaf, slot,
|
|
"invalid tree parent bytenr, have %llu expect aligned to %u",
|
|
key->offset, leaf->fs_info->sectorsize);
|
|
return -EUCLEAN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int check_extent_data_ref(struct extent_buffer *leaf,
|
|
struct btrfs_key *key, int slot)
|
|
{
|
|
struct btrfs_extent_data_ref *dref;
|
|
unsigned long ptr = btrfs_item_ptr_offset(leaf, slot);
|
|
const unsigned long end = ptr + btrfs_item_size(leaf, slot);
|
|
|
|
if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) {
|
|
generic_err(leaf, slot,
|
|
"invalid item size, have %u expect aligned to %zu for key type %u",
|
|
btrfs_item_size(leaf, slot),
|
|
sizeof(*dref), key->type);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
|
|
generic_err(leaf, slot,
|
|
"invalid key objectid for shared block ref, have %llu expect aligned to %u",
|
|
key->objectid, leaf->fs_info->sectorsize);
|
|
return -EUCLEAN;
|
|
}
|
|
for (; ptr < end; ptr += sizeof(*dref)) {
|
|
u64 offset;
|
|
|
|
/*
|
|
* We cannot check the extent_data_ref hash due to possible
|
|
* overflow from the leaf due to hash collisions.
|
|
*/
|
|
dref = (struct btrfs_extent_data_ref *)ptr;
|
|
offset = btrfs_extent_data_ref_offset(leaf, dref);
|
|
if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) {
|
|
extent_err(leaf, slot,
|
|
"invalid extent data backref offset, have %llu expect aligned to %u",
|
|
offset, leaf->fs_info->sectorsize);
|
|
return -EUCLEAN;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define inode_ref_err(eb, slot, fmt, args...) \
|
|
inode_item_err(eb, slot, fmt, ##args)
|
|
static int check_inode_ref(struct extent_buffer *leaf,
|
|
struct btrfs_key *key, struct btrfs_key *prev_key,
|
|
int slot)
|
|
{
|
|
struct btrfs_inode_ref *iref;
|
|
unsigned long ptr;
|
|
unsigned long end;
|
|
|
|
if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
|
|
return -EUCLEAN;
|
|
/* namelen can't be 0, so item_size == sizeof() is also invalid */
|
|
if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) {
|
|
inode_ref_err(leaf, slot,
|
|
"invalid item size, have %u expect (%zu, %u)",
|
|
btrfs_item_size(leaf, slot),
|
|
sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
ptr = btrfs_item_ptr_offset(leaf, slot);
|
|
end = ptr + btrfs_item_size(leaf, slot);
|
|
while (ptr < end) {
|
|
u16 namelen;
|
|
|
|
if (unlikely(ptr + sizeof(iref) > end)) {
|
|
inode_ref_err(leaf, slot,
|
|
"inode ref overflow, ptr %lu end %lu inode_ref_size %zu",
|
|
ptr, end, sizeof(iref));
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
iref = (struct btrfs_inode_ref *)ptr;
|
|
namelen = btrfs_inode_ref_name_len(leaf, iref);
|
|
if (unlikely(ptr + sizeof(*iref) + namelen > end)) {
|
|
inode_ref_err(leaf, slot,
|
|
"inode ref overflow, ptr %lu end %lu namelen %u",
|
|
ptr, end, namelen);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/*
|
|
* NOTE: In theory we should record all found index numbers
|
|
* to find any duplicated indexes, but that will be too time
|
|
* consuming for inodes with too many hard links.
|
|
*/
|
|
ptr += sizeof(*iref) + namelen;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Common point to switch the item-specific validation.
|
|
*/
|
|
static int check_leaf_item(struct extent_buffer *leaf,
|
|
struct btrfs_key *key, int slot,
|
|
struct btrfs_key *prev_key)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_chunk *chunk;
|
|
|
|
switch (key->type) {
|
|
case BTRFS_EXTENT_DATA_KEY:
|
|
ret = check_extent_data_item(leaf, key, slot, prev_key);
|
|
break;
|
|
case BTRFS_EXTENT_CSUM_KEY:
|
|
ret = check_csum_item(leaf, key, slot, prev_key);
|
|
break;
|
|
case BTRFS_DIR_ITEM_KEY:
|
|
case BTRFS_DIR_INDEX_KEY:
|
|
case BTRFS_XATTR_ITEM_KEY:
|
|
ret = check_dir_item(leaf, key, prev_key, slot);
|
|
break;
|
|
case BTRFS_INODE_REF_KEY:
|
|
ret = check_inode_ref(leaf, key, prev_key, slot);
|
|
break;
|
|
case BTRFS_BLOCK_GROUP_ITEM_KEY:
|
|
ret = check_block_group_item(leaf, key, slot);
|
|
break;
|
|
case BTRFS_CHUNK_ITEM_KEY:
|
|
chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
|
|
ret = check_leaf_chunk_item(leaf, chunk, key, slot);
|
|
break;
|
|
case BTRFS_DEV_ITEM_KEY:
|
|
ret = check_dev_item(leaf, key, slot);
|
|
break;
|
|
case BTRFS_INODE_ITEM_KEY:
|
|
ret = check_inode_item(leaf, key, slot);
|
|
break;
|
|
case BTRFS_ROOT_ITEM_KEY:
|
|
ret = check_root_item(leaf, key, slot);
|
|
break;
|
|
case BTRFS_EXTENT_ITEM_KEY:
|
|
case BTRFS_METADATA_ITEM_KEY:
|
|
ret = check_extent_item(leaf, key, slot, prev_key);
|
|
break;
|
|
case BTRFS_TREE_BLOCK_REF_KEY:
|
|
case BTRFS_SHARED_DATA_REF_KEY:
|
|
case BTRFS_SHARED_BLOCK_REF_KEY:
|
|
ret = check_simple_keyed_refs(leaf, key, slot);
|
|
break;
|
|
case BTRFS_EXTENT_DATA_REF_KEY:
|
|
ret = check_extent_data_ref(leaf, key, slot);
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int check_leaf(struct extent_buffer *leaf, bool check_item_data)
|
|
{
|
|
struct btrfs_fs_info *fs_info = leaf->fs_info;
|
|
/* No valid key type is 0, so all key should be larger than this key */
|
|
struct btrfs_key prev_key = {0, 0, 0};
|
|
struct btrfs_key key;
|
|
u32 nritems = btrfs_header_nritems(leaf);
|
|
int slot;
|
|
|
|
if (unlikely(btrfs_header_level(leaf) != 0)) {
|
|
generic_err(leaf, 0,
|
|
"invalid level for leaf, have %d expect 0",
|
|
btrfs_header_level(leaf));
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/*
|
|
* Extent buffers from a relocation tree have a owner field that
|
|
* corresponds to the subvolume tree they are based on. So just from an
|
|
* extent buffer alone we can not find out what is the id of the
|
|
* corresponding subvolume tree, so we can not figure out if the extent
|
|
* buffer corresponds to the root of the relocation tree or not. So
|
|
* skip this check for relocation trees.
|
|
*/
|
|
if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
|
|
u64 owner = btrfs_header_owner(leaf);
|
|
|
|
/* These trees must never be empty */
|
|
if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID ||
|
|
owner == BTRFS_CHUNK_TREE_OBJECTID ||
|
|
owner == BTRFS_DEV_TREE_OBJECTID ||
|
|
owner == BTRFS_FS_TREE_OBJECTID ||
|
|
owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
|
|
generic_err(leaf, 0,
|
|
"invalid root, root %llu must never be empty",
|
|
owner);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/* Unknown tree */
|
|
if (unlikely(owner == 0)) {
|
|
generic_err(leaf, 0,
|
|
"invalid owner, root 0 is not defined");
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/* EXTENT_TREE_V2 can have empty extent trees. */
|
|
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
|
|
return 0;
|
|
|
|
if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) {
|
|
generic_err(leaf, 0,
|
|
"invalid root, root %llu must never be empty",
|
|
owner);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (unlikely(nritems == 0))
|
|
return 0;
|
|
|
|
/*
|
|
* Check the following things to make sure this is a good leaf, and
|
|
* leaf users won't need to bother with similar sanity checks:
|
|
*
|
|
* 1) key ordering
|
|
* 2) item offset and size
|
|
* No overlap, no hole, all inside the leaf.
|
|
* 3) item content
|
|
* If possible, do comprehensive sanity check.
|
|
* NOTE: All checks must only rely on the item data itself.
|
|
*/
|
|
for (slot = 0; slot < nritems; slot++) {
|
|
u32 item_end_expected;
|
|
u64 item_data_end;
|
|
int ret;
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
|
|
/* Make sure the keys are in the right order */
|
|
if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) {
|
|
generic_err(leaf, slot,
|
|
"bad key order, prev (%llu %u %llu) current (%llu %u %llu)",
|
|
prev_key.objectid, prev_key.type,
|
|
prev_key.offset, key.objectid, key.type,
|
|
key.offset);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
item_data_end = (u64)btrfs_item_offset(leaf, slot) +
|
|
btrfs_item_size(leaf, slot);
|
|
/*
|
|
* Make sure the offset and ends are right, remember that the
|
|
* item data starts at the end of the leaf and grows towards the
|
|
* front.
|
|
*/
|
|
if (slot == 0)
|
|
item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info);
|
|
else
|
|
item_end_expected = btrfs_item_offset(leaf,
|
|
slot - 1);
|
|
if (unlikely(item_data_end != item_end_expected)) {
|
|
generic_err(leaf, slot,
|
|
"unexpected item end, have %llu expect %u",
|
|
item_data_end, item_end_expected);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/*
|
|
* Check to make sure that we don't point outside of the leaf,
|
|
* just in case all the items are consistent to each other, but
|
|
* all point outside of the leaf.
|
|
*/
|
|
if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) {
|
|
generic_err(leaf, slot,
|
|
"slot end outside of leaf, have %llu expect range [0, %u]",
|
|
item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info));
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/* Also check if the item pointer overlaps with btrfs item. */
|
|
if (unlikely(btrfs_item_ptr_offset(leaf, slot) <
|
|
btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) {
|
|
generic_err(leaf, slot,
|
|
"slot overlaps with its data, item end %lu data start %lu",
|
|
btrfs_item_nr_offset(leaf, slot) +
|
|
sizeof(struct btrfs_item),
|
|
btrfs_item_ptr_offset(leaf, slot));
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
if (check_item_data) {
|
|
/*
|
|
* Check if the item size and content meet other
|
|
* criteria
|
|
*/
|
|
ret = check_leaf_item(leaf, &key, slot, &prev_key);
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
}
|
|
|
|
prev_key.objectid = key.objectid;
|
|
prev_key.type = key.type;
|
|
prev_key.offset = key.offset;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_check_leaf_full(struct extent_buffer *leaf)
|
|
{
|
|
return check_leaf(leaf, true);
|
|
}
|
|
ALLOW_ERROR_INJECTION(btrfs_check_leaf_full, ERRNO);
|
|
|
|
int btrfs_check_leaf_relaxed(struct extent_buffer *leaf)
|
|
{
|
|
return check_leaf(leaf, false);
|
|
}
|
|
|
|
int btrfs_check_node(struct extent_buffer *node)
|
|
{
|
|
struct btrfs_fs_info *fs_info = node->fs_info;
|
|
unsigned long nr = btrfs_header_nritems(node);
|
|
struct btrfs_key key, next_key;
|
|
int slot;
|
|
int level = btrfs_header_level(node);
|
|
u64 bytenr;
|
|
int ret = 0;
|
|
|
|
if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) {
|
|
generic_err(node, 0,
|
|
"invalid level for node, have %d expect [1, %d]",
|
|
level, BTRFS_MAX_LEVEL - 1);
|
|
return -EUCLEAN;
|
|
}
|
|
if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) {
|
|
btrfs_crit(fs_info,
|
|
"corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]",
|
|
btrfs_header_owner(node), node->start,
|
|
nr == 0 ? "small" : "large", nr,
|
|
BTRFS_NODEPTRS_PER_BLOCK(fs_info));
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
for (slot = 0; slot < nr - 1; slot++) {
|
|
bytenr = btrfs_node_blockptr(node, slot);
|
|
btrfs_node_key_to_cpu(node, &key, slot);
|
|
btrfs_node_key_to_cpu(node, &next_key, slot + 1);
|
|
|
|
if (unlikely(!bytenr)) {
|
|
generic_err(node, slot,
|
|
"invalid NULL node pointer");
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) {
|
|
generic_err(node, slot,
|
|
"unaligned pointer, have %llu should be aligned to %u",
|
|
bytenr, fs_info->sectorsize);
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
|
|
if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) {
|
|
generic_err(node, slot,
|
|
"bad key order, current (%llu %u %llu) next (%llu %u %llu)",
|
|
key.objectid, key.type, key.offset,
|
|
next_key.objectid, next_key.type,
|
|
next_key.offset);
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO);
|
|
|
|
int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner)
|
|
{
|
|
const bool is_subvol = is_fstree(root_owner);
|
|
const u64 eb_owner = btrfs_header_owner(eb);
|
|
|
|
/*
|
|
* Skip dummy fs, as selftests don't create unique ebs for each dummy
|
|
* root.
|
|
*/
|
|
if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &eb->fs_info->fs_state))
|
|
return 0;
|
|
/*
|
|
* There are several call sites (backref walking, qgroup, and data
|
|
* reloc) passing 0 as @root_owner, as they are not holding the
|
|
* tree root. In that case, we can not do a reliable ownership check,
|
|
* so just exit.
|
|
*/
|
|
if (root_owner == 0)
|
|
return 0;
|
|
/*
|
|
* These trees use key.offset as their owner, our callers don't have
|
|
* the extra capacity to pass key.offset here. So we just skip them.
|
|
*/
|
|
if (root_owner == BTRFS_TREE_LOG_OBJECTID ||
|
|
root_owner == BTRFS_TREE_RELOC_OBJECTID)
|
|
return 0;
|
|
|
|
if (!is_subvol) {
|
|
/* For non-subvolume trees, the eb owner should match root owner */
|
|
if (unlikely(root_owner != eb_owner)) {
|
|
btrfs_crit(eb->fs_info,
|
|
"corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu",
|
|
btrfs_header_level(eb) == 0 ? "leaf" : "node",
|
|
root_owner, btrfs_header_bytenr(eb), eb_owner,
|
|
root_owner);
|
|
return -EUCLEAN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For subvolume trees, owners can mismatch, but they should all belong
|
|
* to subvolume trees.
|
|
*/
|
|
if (unlikely(is_subvol != is_fstree(eb_owner))) {
|
|
btrfs_crit(eb->fs_info,
|
|
"corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]",
|
|
btrfs_header_level(eb) == 0 ? "leaf" : "node",
|
|
root_owner, btrfs_header_bytenr(eb), eb_owner,
|
|
BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID);
|
|
return -EUCLEAN;
|
|
}
|
|
return 0;
|
|
}
|