linux/fs/f2fs/checkpoint.c
Chao Yu 1f43e2ad7b f2fs: introduce CP_TRIMMED_FLAG to avoid unneeded discard
Introduce CP_TRIMMED_FLAG to indicate all invalid block were trimmed
before umount, so once we do mount with image which contain the flag,
we don't record invalid blocks as undiscard one, when fstrim is being
triggered, we can avoid issuing redundant discard commands.

Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-05-03 10:04:56 -07:00

1389 lines
34 KiB
C

/*
* fs/f2fs/checkpoint.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/mpage.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/f2fs_fs.h>
#include <linux/pagevec.h>
#include <linux/swap.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include "trace.h"
#include <trace/events/f2fs.h>
static struct kmem_cache *ino_entry_slab;
struct kmem_cache *inode_entry_slab;
void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
{
set_ckpt_flags(sbi, CP_ERROR_FLAG);
sbi->sb->s_flags |= MS_RDONLY;
if (!end_io)
f2fs_flush_merged_bios(sbi);
}
/*
* We guarantee no failure on the returned page.
*/
struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
{
struct address_space *mapping = META_MAPPING(sbi);
struct page *page = NULL;
repeat:
page = f2fs_grab_cache_page(mapping, index, false);
if (!page) {
cond_resched();
goto repeat;
}
f2fs_wait_on_page_writeback(page, META, true);
if (!PageUptodate(page))
SetPageUptodate(page);
return page;
}
/*
* We guarantee no failure on the returned page.
*/
static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
bool is_meta)
{
struct address_space *mapping = META_MAPPING(sbi);
struct page *page;
struct f2fs_io_info fio = {
.sbi = sbi,
.type = META,
.op = REQ_OP_READ,
.op_flags = REQ_META | REQ_PRIO,
.old_blkaddr = index,
.new_blkaddr = index,
.encrypted_page = NULL,
};
if (unlikely(!is_meta))
fio.op_flags &= ~REQ_META;
repeat:
page = f2fs_grab_cache_page(mapping, index, false);
if (!page) {
cond_resched();
goto repeat;
}
if (PageUptodate(page))
goto out;
fio.page = page;
if (f2fs_submit_page_bio(&fio)) {
f2fs_put_page(page, 1);
goto repeat;
}
lock_page(page);
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
/*
* if there is any IO error when accessing device, make our filesystem
* readonly and make sure do not write checkpoint with non-uptodate
* meta page.
*/
if (unlikely(!PageUptodate(page)))
f2fs_stop_checkpoint(sbi, false);
out:
return page;
}
struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
{
return __get_meta_page(sbi, index, true);
}
/* for POR only */
struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
{
return __get_meta_page(sbi, index, false);
}
bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
{
switch (type) {
case META_NAT:
break;
case META_SIT:
if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
return false;
break;
case META_SSA:
if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
blkaddr < SM_I(sbi)->ssa_blkaddr))
return false;
break;
case META_CP:
if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
blkaddr < __start_cp_addr(sbi)))
return false;
break;
case META_POR:
if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
blkaddr < MAIN_BLKADDR(sbi)))
return false;
break;
default:
BUG();
}
return true;
}
/*
* Readahead CP/NAT/SIT/SSA pages
*/
int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
int type, bool sync)
{
struct page *page;
block_t blkno = start;
struct f2fs_io_info fio = {
.sbi = sbi,
.type = META,
.op = REQ_OP_READ,
.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
.encrypted_page = NULL,
};
struct blk_plug plug;
if (unlikely(type == META_POR))
fio.op_flags &= ~REQ_META;
blk_start_plug(&plug);
for (; nrpages-- > 0; blkno++) {
if (!is_valid_blkaddr(sbi, blkno, type))
goto out;
switch (type) {
case META_NAT:
if (unlikely(blkno >=
NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
blkno = 0;
/* get nat block addr */
fio.new_blkaddr = current_nat_addr(sbi,
blkno * NAT_ENTRY_PER_BLOCK);
break;
case META_SIT:
/* get sit block addr */
fio.new_blkaddr = current_sit_addr(sbi,
blkno * SIT_ENTRY_PER_BLOCK);
break;
case META_SSA:
case META_CP:
case META_POR:
fio.new_blkaddr = blkno;
break;
default:
BUG();
}
page = f2fs_grab_cache_page(META_MAPPING(sbi),
fio.new_blkaddr, false);
if (!page)
continue;
if (PageUptodate(page)) {
f2fs_put_page(page, 1);
continue;
}
fio.page = page;
fio.old_blkaddr = fio.new_blkaddr;
f2fs_submit_page_mbio(&fio);
f2fs_put_page(page, 0);
}
out:
f2fs_submit_merged_bio(sbi, META, READ);
blk_finish_plug(&plug);
return blkno - start;
}
void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
{
struct page *page;
bool readahead = false;
page = find_get_page(META_MAPPING(sbi), index);
if (!page || !PageUptodate(page))
readahead = true;
f2fs_put_page(page, 0);
if (readahead)
ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
}
static int f2fs_write_meta_page(struct page *page,
struct writeback_control *wbc)
{
struct f2fs_sb_info *sbi = F2FS_P_SB(page);
trace_f2fs_writepage(page, META);
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
goto redirty_out;
if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
goto redirty_out;
if (unlikely(f2fs_cp_error(sbi)))
goto redirty_out;
write_meta_page(sbi, page);
dec_page_count(sbi, F2FS_DIRTY_META);
if (wbc->for_reclaim)
f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
0, page->index, META, WRITE);
unlock_page(page);
if (unlikely(f2fs_cp_error(sbi)))
f2fs_submit_merged_bio(sbi, META, WRITE);
return 0;
redirty_out:
redirty_page_for_writepage(wbc, page);
return AOP_WRITEPAGE_ACTIVATE;
}
static int f2fs_write_meta_pages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
long diff, written;
/* collect a number of dirty meta pages and write together */
if (wbc->for_kupdate ||
get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
goto skip_write;
/* if locked failed, cp will flush dirty pages instead */
if (!mutex_trylock(&sbi->cp_mutex))
goto skip_write;
trace_f2fs_writepages(mapping->host, wbc, META);
diff = nr_pages_to_write(sbi, META, wbc);
written = sync_meta_pages(sbi, META, wbc->nr_to_write);
mutex_unlock(&sbi->cp_mutex);
wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
return 0;
skip_write:
wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
trace_f2fs_writepages(mapping->host, wbc, META);
return 0;
}
long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
long nr_to_write)
{
struct address_space *mapping = META_MAPPING(sbi);
pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
struct pagevec pvec;
long nwritten = 0;
struct writeback_control wbc = {
.for_reclaim = 0,
};
struct blk_plug plug;
pagevec_init(&pvec, 0);
blk_start_plug(&plug);
while (index <= end) {
int i, nr_pages;
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
PAGECACHE_TAG_DIRTY,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
if (unlikely(nr_pages == 0))
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
if (prev == ULONG_MAX)
prev = page->index - 1;
if (nr_to_write != LONG_MAX && page->index != prev + 1) {
pagevec_release(&pvec);
goto stop;
}
lock_page(page);
if (unlikely(page->mapping != mapping)) {
continue_unlock:
unlock_page(page);
continue;
}
if (!PageDirty(page)) {
/* someone wrote it for us */
goto continue_unlock;
}
f2fs_wait_on_page_writeback(page, META, true);
BUG_ON(PageWriteback(page));
if (!clear_page_dirty_for_io(page))
goto continue_unlock;
if (mapping->a_ops->writepage(page, &wbc)) {
unlock_page(page);
break;
}
nwritten++;
prev = page->index;
if (unlikely(nwritten >= nr_to_write))
break;
}
pagevec_release(&pvec);
cond_resched();
}
stop:
if (nwritten)
f2fs_submit_merged_bio(sbi, type, WRITE);
blk_finish_plug(&plug);
return nwritten;
}
static int f2fs_set_meta_page_dirty(struct page *page)
{
trace_f2fs_set_page_dirty(page, META);
if (!PageUptodate(page))
SetPageUptodate(page);
if (!PageDirty(page)) {
f2fs_set_page_dirty_nobuffers(page);
inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
SetPagePrivate(page);
f2fs_trace_pid(page);
return 1;
}
return 0;
}
const struct address_space_operations f2fs_meta_aops = {
.writepage = f2fs_write_meta_page,
.writepages = f2fs_write_meta_pages,
.set_page_dirty = f2fs_set_meta_page_dirty,
.invalidatepage = f2fs_invalidate_page,
.releasepage = f2fs_release_page,
#ifdef CONFIG_MIGRATION
.migratepage = f2fs_migrate_page,
#endif
};
static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
{
struct inode_management *im = &sbi->im[type];
struct ino_entry *e, *tmp;
tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
retry:
radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
spin_lock(&im->ino_lock);
e = radix_tree_lookup(&im->ino_root, ino);
if (!e) {
e = tmp;
if (radix_tree_insert(&im->ino_root, ino, e)) {
spin_unlock(&im->ino_lock);
radix_tree_preload_end();
goto retry;
}
memset(e, 0, sizeof(struct ino_entry));
e->ino = ino;
list_add_tail(&e->list, &im->ino_list);
if (type != ORPHAN_INO)
im->ino_num++;
}
spin_unlock(&im->ino_lock);
radix_tree_preload_end();
if (e != tmp)
kmem_cache_free(ino_entry_slab, tmp);
}
static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
{
struct inode_management *im = &sbi->im[type];
struct ino_entry *e;
spin_lock(&im->ino_lock);
e = radix_tree_lookup(&im->ino_root, ino);
if (e) {
list_del(&e->list);
radix_tree_delete(&im->ino_root, ino);
im->ino_num--;
spin_unlock(&im->ino_lock);
kmem_cache_free(ino_entry_slab, e);
return;
}
spin_unlock(&im->ino_lock);
}
void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
{
/* add new dirty ino entry into list */
__add_ino_entry(sbi, ino, type);
}
void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
{
/* remove dirty ino entry from list */
__remove_ino_entry(sbi, ino, type);
}
/* mode should be APPEND_INO or UPDATE_INO */
bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
{
struct inode_management *im = &sbi->im[mode];
struct ino_entry *e;
spin_lock(&im->ino_lock);
e = radix_tree_lookup(&im->ino_root, ino);
spin_unlock(&im->ino_lock);
return e ? true : false;
}
void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
{
struct ino_entry *e, *tmp;
int i;
for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
struct inode_management *im = &sbi->im[i];
spin_lock(&im->ino_lock);
list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
list_del(&e->list);
radix_tree_delete(&im->ino_root, e->ino);
kmem_cache_free(ino_entry_slab, e);
im->ino_num--;
}
spin_unlock(&im->ino_lock);
}
}
int acquire_orphan_inode(struct f2fs_sb_info *sbi)
{
struct inode_management *im = &sbi->im[ORPHAN_INO];
int err = 0;
spin_lock(&im->ino_lock);
#ifdef CONFIG_F2FS_FAULT_INJECTION
if (time_to_inject(sbi, FAULT_ORPHAN)) {
spin_unlock(&im->ino_lock);
f2fs_show_injection_info(FAULT_ORPHAN);
return -ENOSPC;
}
#endif
if (unlikely(im->ino_num >= sbi->max_orphans))
err = -ENOSPC;
else
im->ino_num++;
spin_unlock(&im->ino_lock);
return err;
}
void release_orphan_inode(struct f2fs_sb_info *sbi)
{
struct inode_management *im = &sbi->im[ORPHAN_INO];
spin_lock(&im->ino_lock);
f2fs_bug_on(sbi, im->ino_num == 0);
im->ino_num--;
spin_unlock(&im->ino_lock);
}
void add_orphan_inode(struct inode *inode)
{
/* add new orphan ino entry into list */
__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
update_inode_page(inode);
}
void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
/* remove orphan entry from orphan list */
__remove_ino_entry(sbi, ino, ORPHAN_INO);
}
static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
struct inode *inode;
struct node_info ni;
int err = acquire_orphan_inode(sbi);
if (err) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_msg(sbi->sb, KERN_WARNING,
"%s: orphan failed (ino=%x), run fsck to fix.",
__func__, ino);
return err;
}
__add_ino_entry(sbi, ino, ORPHAN_INO);
inode = f2fs_iget_retry(sbi->sb, ino);
if (IS_ERR(inode)) {
/*
* there should be a bug that we can't find the entry
* to orphan inode.
*/
f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
return PTR_ERR(inode);
}
clear_nlink(inode);
/* truncate all the data during iput */
iput(inode);
get_node_info(sbi, ino, &ni);
/* ENOMEM was fully retried in f2fs_evict_inode. */
if (ni.blk_addr != NULL_ADDR) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_msg(sbi->sb, KERN_WARNING,
"%s: orphan failed (ino=%x) by kernel, retry mount.",
__func__, ino);
return -EIO;
}
__remove_ino_entry(sbi, ino, ORPHAN_INO);
return 0;
}
int recover_orphan_inodes(struct f2fs_sb_info *sbi)
{
block_t start_blk, orphan_blocks, i, j;
int err;
if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
return 0;
start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
for (i = 0; i < orphan_blocks; i++) {
struct page *page = get_meta_page(sbi, start_blk + i);
struct f2fs_orphan_block *orphan_blk;
orphan_blk = (struct f2fs_orphan_block *)page_address(page);
for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
err = recover_orphan_inode(sbi, ino);
if (err) {
f2fs_put_page(page, 1);
return err;
}
}
f2fs_put_page(page, 1);
}
/* clear Orphan Flag */
clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
return 0;
}
static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
{
struct list_head *head;
struct f2fs_orphan_block *orphan_blk = NULL;
unsigned int nentries = 0;
unsigned short index = 1;
unsigned short orphan_blocks;
struct page *page = NULL;
struct ino_entry *orphan = NULL;
struct inode_management *im = &sbi->im[ORPHAN_INO];
orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
/*
* we don't need to do spin_lock(&im->ino_lock) here, since all the
* orphan inode operations are covered under f2fs_lock_op().
* And, spin_lock should be avoided due to page operations below.
*/
head = &im->ino_list;
/* loop for each orphan inode entry and write them in Jornal block */
list_for_each_entry(orphan, head, list) {
if (!page) {
page = grab_meta_page(sbi, start_blk++);
orphan_blk =
(struct f2fs_orphan_block *)page_address(page);
memset(orphan_blk, 0, sizeof(*orphan_blk));
}
orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
if (nentries == F2FS_ORPHANS_PER_BLOCK) {
/*
* an orphan block is full of 1020 entries,
* then we need to flush current orphan blocks
* and bring another one in memory
*/
orphan_blk->blk_addr = cpu_to_le16(index);
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
orphan_blk->entry_count = cpu_to_le32(nentries);
set_page_dirty(page);
f2fs_put_page(page, 1);
index++;
nentries = 0;
page = NULL;
}
}
if (page) {
orphan_blk->blk_addr = cpu_to_le16(index);
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
orphan_blk->entry_count = cpu_to_le32(nentries);
set_page_dirty(page);
f2fs_put_page(page, 1);
}
}
static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
struct f2fs_checkpoint **cp_block, struct page **cp_page,
unsigned long long *version)
{
unsigned long blk_size = sbi->blocksize;
size_t crc_offset = 0;
__u32 crc = 0;
*cp_page = get_meta_page(sbi, cp_addr);
*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
if (crc_offset > (blk_size - sizeof(__le32))) {
f2fs_msg(sbi->sb, KERN_WARNING,
"invalid crc_offset: %zu", crc_offset);
return -EINVAL;
}
crc = cur_cp_crc(*cp_block);
if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
return -EINVAL;
}
*version = cur_cp_version(*cp_block);
return 0;
}
static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
block_t cp_addr, unsigned long long *version)
{
struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
struct f2fs_checkpoint *cp_block = NULL;
unsigned long long cur_version = 0, pre_version = 0;
int err;
err = get_checkpoint_version(sbi, cp_addr, &cp_block,
&cp_page_1, version);
if (err)
goto invalid_cp1;
pre_version = *version;
cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
err = get_checkpoint_version(sbi, cp_addr, &cp_block,
&cp_page_2, version);
if (err)
goto invalid_cp2;
cur_version = *version;
if (cur_version == pre_version) {
*version = cur_version;
f2fs_put_page(cp_page_2, 1);
return cp_page_1;
}
invalid_cp2:
f2fs_put_page(cp_page_2, 1);
invalid_cp1:
f2fs_put_page(cp_page_1, 1);
return NULL;
}
int get_valid_checkpoint(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *cp_block;
struct f2fs_super_block *fsb = sbi->raw_super;
struct page *cp1, *cp2, *cur_page;
unsigned long blk_size = sbi->blocksize;
unsigned long long cp1_version = 0, cp2_version = 0;
unsigned long long cp_start_blk_no;
unsigned int cp_blks = 1 + __cp_payload(sbi);
block_t cp_blk_no;
int i;
sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
if (!sbi->ckpt)
return -ENOMEM;
/*
* Finding out valid cp block involves read both
* sets( cp pack1 and cp pack 2)
*/
cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
/* The second checkpoint pack should start at the next segment */
cp_start_blk_no += ((unsigned long long)1) <<
le32_to_cpu(fsb->log_blocks_per_seg);
cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
if (cp1 && cp2) {
if (ver_after(cp2_version, cp1_version))
cur_page = cp2;
else
cur_page = cp1;
} else if (cp1) {
cur_page = cp1;
} else if (cp2) {
cur_page = cp2;
} else {
goto fail_no_cp;
}
cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
memcpy(sbi->ckpt, cp_block, blk_size);
/* Sanity checking of checkpoint */
if (sanity_check_ckpt(sbi))
goto free_fail_no_cp;
if (cur_page == cp1)
sbi->cur_cp_pack = 1;
else
sbi->cur_cp_pack = 2;
if (cp_blks <= 1)
goto done;
cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
if (cur_page == cp2)
cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
for (i = 1; i < cp_blks; i++) {
void *sit_bitmap_ptr;
unsigned char *ckpt = (unsigned char *)sbi->ckpt;
cur_page = get_meta_page(sbi, cp_blk_no + i);
sit_bitmap_ptr = page_address(cur_page);
memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
f2fs_put_page(cur_page, 1);
}
done:
f2fs_put_page(cp1, 1);
f2fs_put_page(cp2, 1);
return 0;
free_fail_no_cp:
f2fs_put_page(cp1, 1);
f2fs_put_page(cp2, 1);
fail_no_cp:
kfree(sbi->ckpt);
return -EINVAL;
}
static void __add_dirty_inode(struct inode *inode, enum inode_type type)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
if (is_inode_flag_set(inode, flag))
return;
set_inode_flag(inode, flag);
if (!f2fs_is_volatile_file(inode))
list_add_tail(&F2FS_I(inode)->dirty_list,
&sbi->inode_list[type]);
stat_inc_dirty_inode(sbi, type);
}
static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
{
int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
return;
list_del_init(&F2FS_I(inode)->dirty_list);
clear_inode_flag(inode, flag);
stat_dec_dirty_inode(F2FS_I_SB(inode), type);
}
void update_dirty_page(struct inode *inode, struct page *page)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
!S_ISLNK(inode->i_mode))
return;
spin_lock(&sbi->inode_lock[type]);
if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
__add_dirty_inode(inode, type);
inode_inc_dirty_pages(inode);
spin_unlock(&sbi->inode_lock[type]);
SetPagePrivate(page);
f2fs_trace_pid(page);
}
void remove_dirty_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
!S_ISLNK(inode->i_mode))
return;
if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
return;
spin_lock(&sbi->inode_lock[type]);
__remove_dirty_inode(inode, type);
spin_unlock(&sbi->inode_lock[type]);
}
int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
{
struct list_head *head;
struct inode *inode;
struct f2fs_inode_info *fi;
bool is_dir = (type == DIR_INODE);
trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
get_pages(sbi, is_dir ?
F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
retry:
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
spin_lock(&sbi->inode_lock[type]);
head = &sbi->inode_list[type];
if (list_empty(head)) {
spin_unlock(&sbi->inode_lock[type]);
trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
get_pages(sbi, is_dir ?
F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
return 0;
}
fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
inode = igrab(&fi->vfs_inode);
spin_unlock(&sbi->inode_lock[type]);
if (inode) {
filemap_fdatawrite(inode->i_mapping);
iput(inode);
} else {
/*
* We should submit bio, since it exists several
* wribacking dentry pages in the freeing inode.
*/
f2fs_submit_merged_bio(sbi, DATA, WRITE);
cond_resched();
}
goto retry;
}
int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
{
struct list_head *head = &sbi->inode_list[DIRTY_META];
struct inode *inode;
struct f2fs_inode_info *fi;
s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
while (total--) {
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
spin_lock(&sbi->inode_lock[DIRTY_META]);
if (list_empty(head)) {
spin_unlock(&sbi->inode_lock[DIRTY_META]);
return 0;
}
fi = list_first_entry(head, struct f2fs_inode_info,
gdirty_list);
inode = igrab(&fi->vfs_inode);
spin_unlock(&sbi->inode_lock[DIRTY_META]);
if (inode) {
sync_inode_metadata(inode, 0);
/* it's on eviction */
if (is_inode_flag_set(inode, FI_DIRTY_INODE))
update_inode_page(inode);
iput(inode);
}
};
return 0;
}
static void __prepare_cp_block(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct f2fs_nm_info *nm_i = NM_I(sbi);
nid_t last_nid = nm_i->next_scan_nid;
next_free_nid(sbi, &last_nid);
ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
ckpt->next_free_nid = cpu_to_le32(last_nid);
}
/*
* Freeze all the FS-operations for checkpoint.
*/
static int block_operations(struct f2fs_sb_info *sbi)
{
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL,
.nr_to_write = LONG_MAX,
.for_reclaim = 0,
};
struct blk_plug plug;
int err = 0;
blk_start_plug(&plug);
retry_flush_dents:
f2fs_lock_all(sbi);
/* write all the dirty dentry pages */
if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
f2fs_unlock_all(sbi);
err = sync_dirty_inodes(sbi, DIR_INODE);
if (err)
goto out;
cond_resched();
goto retry_flush_dents;
}
/*
* POR: we should ensure that there are no dirty node pages
* until finishing nat/sit flush. inode->i_blocks can be updated.
*/
down_write(&sbi->node_change);
if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
up_write(&sbi->node_change);
f2fs_unlock_all(sbi);
err = f2fs_sync_inode_meta(sbi);
if (err)
goto out;
cond_resched();
goto retry_flush_dents;
}
retry_flush_nodes:
down_write(&sbi->node_write);
if (get_pages(sbi, F2FS_DIRTY_NODES)) {
up_write(&sbi->node_write);
err = sync_node_pages(sbi, &wbc);
if (err) {
up_write(&sbi->node_change);
f2fs_unlock_all(sbi);
goto out;
}
cond_resched();
goto retry_flush_nodes;
}
/*
* sbi->node_change is used only for AIO write_begin path which produces
* dirty node blocks and some checkpoint values by block allocation.
*/
__prepare_cp_block(sbi);
up_write(&sbi->node_change);
out:
blk_finish_plug(&plug);
return err;
}
static void unblock_operations(struct f2fs_sb_info *sbi)
{
up_write(&sbi->node_write);
f2fs_unlock_all(sbi);
}
static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
{
DEFINE_WAIT(wait);
for (;;) {
prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
if (!get_pages(sbi, F2FS_WB_CP_DATA))
break;
io_schedule_timeout(5*HZ);
}
finish_wait(&sbi->cp_wait, &wait);
}
static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
{
unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
spin_lock(&sbi->cp_lock);
if ((cpc->reason & CP_UMOUNT) &&
le32_to_cpu(ckpt->cp_pack_total_block_count) >
sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
disable_nat_bits(sbi, false);
if (cpc->reason & CP_TRIMMED)
__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
if (cpc->reason & CP_UMOUNT)
__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
else
__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
if (cpc->reason & CP_FASTBOOT)
__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
else
__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
if (orphan_num)
__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
else
__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
/* set this flag to activate crc|cp_ver for recovery */
__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
spin_unlock(&sbi->cp_lock);
}
static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct f2fs_nm_info *nm_i = NM_I(sbi);
unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
block_t start_blk;
unsigned int data_sum_blocks, orphan_blocks;
__u32 crc32 = 0;
int i;
int cp_payload_blks = __cp_payload(sbi);
struct super_block *sb = sbi->sb;
struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
u64 kbytes_written;
/* Flush all the NAT/SIT pages */
while (get_pages(sbi, F2FS_DIRTY_META)) {
sync_meta_pages(sbi, META, LONG_MAX);
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
}
/*
* modify checkpoint
* version number is already updated
*/
ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
ckpt->cur_node_segno[i] =
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
ckpt->cur_node_blkoff[i] =
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
ckpt->alloc_type[i + CURSEG_HOT_NODE] =
curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
}
for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
ckpt->cur_data_segno[i] =
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
ckpt->cur_data_blkoff[i] =
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
ckpt->alloc_type[i + CURSEG_HOT_DATA] =
curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
}
/* 2 cp + n data seg summary + orphan inode blocks */
data_sum_blocks = npages_for_summary_flush(sbi, false);
spin_lock(&sbi->cp_lock);
if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
else
__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
spin_unlock(&sbi->cp_lock);
orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
orphan_blocks);
if (__remain_node_summaries(cpc->reason))
ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
cp_payload_blks + data_sum_blocks +
orphan_blocks + NR_CURSEG_NODE_TYPE);
else
ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
cp_payload_blks + data_sum_blocks +
orphan_blocks);
/* update ckpt flag for checkpoint */
update_ckpt_flags(sbi, cpc);
/* update SIT/NAT bitmap */
get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
*((__le32 *)((unsigned char *)ckpt +
le32_to_cpu(ckpt->checksum_offset)))
= cpu_to_le32(crc32);
start_blk = __start_cp_next_addr(sbi);
/* write nat bits */
if (enabled_nat_bits(sbi, cpc)) {
__u64 cp_ver = cur_cp_version(ckpt);
block_t blk;
cp_ver |= ((__u64)crc32 << 32);
*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
for (i = 0; i < nm_i->nat_bits_blocks; i++)
update_meta_page(sbi, nm_i->nat_bits +
(i << F2FS_BLKSIZE_BITS), blk + i);
/* Flush all the NAT BITS pages */
while (get_pages(sbi, F2FS_DIRTY_META)) {
sync_meta_pages(sbi, META, LONG_MAX);
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
}
}
/* need to wait for end_io results */
wait_on_all_pages_writeback(sbi);
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
/* write out checkpoint buffer at block 0 */
update_meta_page(sbi, ckpt, start_blk++);
for (i = 1; i < 1 + cp_payload_blks; i++)
update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
start_blk++);
if (orphan_num) {
write_orphan_inodes(sbi, start_blk);
start_blk += orphan_blocks;
}
write_data_summaries(sbi, start_blk);
start_blk += data_sum_blocks;
/* Record write statistics in the hot node summary */
kbytes_written = sbi->kbytes_written;
if (sb->s_bdev->bd_part)
kbytes_written += BD_PART_WRITTEN(sbi);
seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
if (__remain_node_summaries(cpc->reason)) {
write_node_summaries(sbi, start_blk);
start_blk += NR_CURSEG_NODE_TYPE;
}
/* writeout checkpoint block */
update_meta_page(sbi, ckpt, start_blk);
/* wait for previous submitted node/meta pages writeback */
wait_on_all_pages_writeback(sbi);
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
/* update user_block_counts */
sbi->last_valid_block_count = sbi->total_valid_block_count;
percpu_counter_set(&sbi->alloc_valid_block_count, 0);
/* Here, we only have one bio having CP pack */
sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
/* wait for previous submitted meta pages writeback */
wait_on_all_pages_writeback(sbi);
release_ino_entry(sbi, false);
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
clear_sbi_flag(sbi, SBI_IS_DIRTY);
clear_sbi_flag(sbi, SBI_NEED_CP);
__set_cp_next_pack(sbi);
/*
* redirty superblock if metadata like node page or inode cache is
* updated during writing checkpoint.
*/
if (get_pages(sbi, F2FS_DIRTY_NODES) ||
get_pages(sbi, F2FS_DIRTY_IMETA))
set_sbi_flag(sbi, SBI_IS_DIRTY);
f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
return 0;
}
/*
* We guarantee that this checkpoint procedure will not fail.
*/
int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
unsigned long long ckpt_ver;
int err = 0;
mutex_lock(&sbi->cp_mutex);
if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
goto out;
if (unlikely(f2fs_cp_error(sbi))) {
err = -EIO;
goto out;
}
if (f2fs_readonly(sbi->sb)) {
err = -EROFS;
goto out;
}
trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
err = block_operations(sbi);
if (err)
goto out;
trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
f2fs_flush_merged_bios(sbi);
/* this is the case of multiple fstrims without any changes */
if (cpc->reason & CP_DISCARD) {
if (!exist_trim_candidates(sbi, cpc)) {
unblock_operations(sbi);
goto out;
}
if (NM_I(sbi)->dirty_nat_cnt == 0 &&
SIT_I(sbi)->dirty_sentries == 0 &&
prefree_segments(sbi) == 0) {
flush_sit_entries(sbi, cpc);
clear_prefree_segments(sbi, cpc);
unblock_operations(sbi);
goto out;
}
}
/*
* update checkpoint pack index
* Increase the version number so that
* SIT entries and seg summaries are written at correct place
*/
ckpt_ver = cur_cp_version(ckpt);
ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
/* write cached NAT/SIT entries to NAT/SIT area */
flush_nat_entries(sbi, cpc);
flush_sit_entries(sbi, cpc);
/* unlock all the fs_lock[] in do_checkpoint() */
err = do_checkpoint(sbi, cpc);
if (err)
release_discard_addrs(sbi);
else
clear_prefree_segments(sbi, cpc);
unblock_operations(sbi);
stat_inc_cp_count(sbi->stat_info);
if (cpc->reason & CP_RECOVERY)
f2fs_msg(sbi->sb, KERN_NOTICE,
"checkpoint: version = %llx", ckpt_ver);
/* do checkpoint periodically */
f2fs_update_time(sbi, CP_TIME);
trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
out:
mutex_unlock(&sbi->cp_mutex);
return err;
}
void init_ino_entry_info(struct f2fs_sb_info *sbi)
{
int i;
for (i = 0; i < MAX_INO_ENTRY; i++) {
struct inode_management *im = &sbi->im[i];
INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
spin_lock_init(&im->ino_lock);
INIT_LIST_HEAD(&im->ino_list);
im->ino_num = 0;
}
sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
NR_CURSEG_TYPE - __cp_payload(sbi)) *
F2FS_ORPHANS_PER_BLOCK;
}
int __init create_checkpoint_caches(void)
{
ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
sizeof(struct ino_entry));
if (!ino_entry_slab)
return -ENOMEM;
inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
sizeof(struct inode_entry));
if (!inode_entry_slab) {
kmem_cache_destroy(ino_entry_slab);
return -ENOMEM;
}
return 0;
}
void destroy_checkpoint_caches(void)
{
kmem_cache_destroy(ino_entry_slab);
kmem_cache_destroy(inode_entry_slab);
}