linux/drivers/net/wireless/rt2x00/rt2x00queue.c
Johannes Berg 7351c6bd48 mac80211: request TX status where needed
Right now all frames mac80211 hands to the driver
have the IEEE80211_TX_CTL_REQ_TX_STATUS flag set to
request TX status. This isn't really necessary, only
the injected frames need TX status (the latter for
hostapd) so move setting this flag.

The rate control algorithms also need TX status, but
they don't require it.

Also, rt2x00 uses that bit for its own purposes and
seems to require it being set for all frames, but
that can be fixed in rt2x00.

This doesn't really change anything for any drivers
but in the future drivers using hw-rate control may
opt to not report TX status for frames that don't
have the IEEE80211_TX_CTL_REQ_TX_STATUS flag set.

Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Acked-by: Ivo van Doorn <IvDoorn@gmail.com> [rt2x00 bits]
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-11-19 11:08:56 -05:00

927 lines
24 KiB
C

/*
Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt2x00lib
Abstract: rt2x00 queue specific routines.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include "rt2x00.h"
#include "rt2x00lib.h"
struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
struct queue_entry *entry)
{
struct sk_buff *skb;
struct skb_frame_desc *skbdesc;
unsigned int frame_size;
unsigned int head_size = 0;
unsigned int tail_size = 0;
/*
* The frame size includes descriptor size, because the
* hardware directly receive the frame into the skbuffer.
*/
frame_size = entry->queue->data_size + entry->queue->desc_size;
/*
* The payload should be aligned to a 4-byte boundary,
* this means we need at least 3 bytes for moving the frame
* into the correct offset.
*/
head_size = 4;
/*
* For IV/EIV/ICV assembly we must make sure there is
* at least 8 bytes bytes available in headroom for IV/EIV
* and 8 bytes for ICV data as tailroon.
*/
if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
head_size += 8;
tail_size += 8;
}
/*
* Allocate skbuffer.
*/
skb = dev_alloc_skb(frame_size + head_size + tail_size);
if (!skb)
return NULL;
/*
* Make sure we not have a frame with the requested bytes
* available in the head and tail.
*/
skb_reserve(skb, head_size);
skb_put(skb, frame_size);
/*
* Populate skbdesc.
*/
skbdesc = get_skb_frame_desc(skb);
memset(skbdesc, 0, sizeof(*skbdesc));
skbdesc->entry = entry;
if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
skb->data,
skb->len,
DMA_FROM_DEVICE);
skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
}
return skb;
}
void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
{
struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
/*
* If device has requested headroom, we should make sure that
* is also mapped to the DMA so it can be used for transfering
* additional descriptor information to the hardware.
*/
skb_push(skb, rt2x00dev->hw->extra_tx_headroom);
skbdesc->skb_dma =
dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
/*
* Restore data pointer to original location again.
*/
skb_pull(skb, rt2x00dev->hw->extra_tx_headroom);
skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
}
EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
{
struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
DMA_FROM_DEVICE);
skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
}
if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
/*
* Add headroom to the skb length, it has been removed
* by the driver, but it was actually mapped to DMA.
*/
dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma,
skb->len + rt2x00dev->hw->extra_tx_headroom,
DMA_TO_DEVICE);
skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
}
}
void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
{
if (!skb)
return;
rt2x00queue_unmap_skb(rt2x00dev, skb);
dev_kfree_skb_any(skb);
}
void rt2x00queue_align_frame(struct sk_buff *skb)
{
unsigned int frame_length = skb->len;
unsigned int align = ALIGN_SIZE(skb, 0);
if (!align)
return;
skb_push(skb, align);
memmove(skb->data, skb->data + align, frame_length);
skb_trim(skb, frame_length);
}
void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_lengt)
{
unsigned int frame_length = skb->len;
unsigned int align = ALIGN_SIZE(skb, header_lengt);
if (!align)
return;
skb_push(skb, align);
memmove(skb->data, skb->data + align, frame_length);
skb_trim(skb, frame_length);
}
void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
{
struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
unsigned int frame_length = skb->len;
unsigned int header_align = ALIGN_SIZE(skb, 0);
unsigned int payload_align = ALIGN_SIZE(skb, header_length);
unsigned int l2pad = 4 - (payload_align - header_align);
if (header_align == payload_align) {
/*
* Both header and payload must be moved the same
* amount of bytes to align them properly. This means
* we don't use the L2 padding but just move the entire
* frame.
*/
rt2x00queue_align_frame(skb);
} else if (!payload_align) {
/*
* Simple L2 padding, only the header needs to be moved,
* the payload is already properly aligned.
*/
skb_push(skb, header_align);
memmove(skb->data, skb->data + header_align, frame_length);
skbdesc->flags |= SKBDESC_L2_PADDED;
} else {
/*
*
* Complicated L2 padding, both header and payload need
* to be moved. By default we only move to the start
* of the buffer, so our header alignment needs to be
* increased if there is not enough room for the header
* to be moved.
*/
if (payload_align > header_align)
header_align += 4;
skb_push(skb, header_align);
memmove(skb->data, skb->data + header_align, header_length);
memmove(skb->data + header_length + l2pad,
skb->data + header_length + l2pad + header_align,
frame_length - header_length);
skbdesc->flags |= SKBDESC_L2_PADDED;
}
}
void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
{
struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
unsigned int l2pad = 4 - (header_length & 3);
if (!l2pad || (skbdesc->flags & SKBDESC_L2_PADDED))
return;
memmove(skb->data + l2pad, skb->data, header_length);
skb_pull(skb, l2pad);
}
static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
struct txentry_desc *txdesc)
{
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
unsigned long irqflags;
if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
unlikely(!tx_info->control.vif))
return;
/*
* Hardware should insert sequence counter.
* FIXME: We insert a software sequence counter first for
* hardware that doesn't support hardware sequence counting.
*
* This is wrong because beacons are not getting sequence
* numbers assigned properly.
*
* A secondary problem exists for drivers that cannot toggle
* sequence counting per-frame, since those will override the
* sequence counter given by mac80211.
*/
spin_lock_irqsave(&intf->seqlock, irqflags);
if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
intf->seqno += 0x10;
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
spin_unlock_irqrestore(&intf->seqlock, irqflags);
__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
}
static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
struct txentry_desc *txdesc,
const struct rt2x00_rate *hwrate)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
unsigned int data_length;
unsigned int duration;
unsigned int residual;
/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
data_length = entry->skb->len + 4;
data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
/*
* PLCP setup
* Length calculation depends on OFDM/CCK rate.
*/
txdesc->signal = hwrate->plcp;
txdesc->service = 0x04;
if (hwrate->flags & DEV_RATE_OFDM) {
txdesc->length_high = (data_length >> 6) & 0x3f;
txdesc->length_low = data_length & 0x3f;
} else {
/*
* Convert length to microseconds.
*/
residual = GET_DURATION_RES(data_length, hwrate->bitrate);
duration = GET_DURATION(data_length, hwrate->bitrate);
if (residual != 0) {
duration++;
/*
* Check if we need to set the Length Extension
*/
if (hwrate->bitrate == 110 && residual <= 30)
txdesc->service |= 0x80;
}
txdesc->length_high = (duration >> 8) & 0xff;
txdesc->length_low = duration & 0xff;
/*
* When preamble is enabled we should set the
* preamble bit for the signal.
*/
if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
txdesc->signal |= 0x08;
}
}
static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
struct txentry_desc *txdesc)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
struct ieee80211_rate *rate =
ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
const struct rt2x00_rate *hwrate;
memset(txdesc, 0, sizeof(*txdesc));
/*
* Initialize information from queue
*/
txdesc->queue = entry->queue->qid;
txdesc->cw_min = entry->queue->cw_min;
txdesc->cw_max = entry->queue->cw_max;
txdesc->aifs = entry->queue->aifs;
/*
* Header and alignment information.
*/
txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
txdesc->l2pad = ALIGN_SIZE(entry->skb, txdesc->header_length);
/*
* Check whether this frame is to be acked.
*/
if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
/*
* Check if this is a RTS/CTS frame
*/
if (ieee80211_is_rts(hdr->frame_control) ||
ieee80211_is_cts(hdr->frame_control)) {
__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
if (ieee80211_is_rts(hdr->frame_control))
__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
else
__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
if (tx_info->control.rts_cts_rate_idx >= 0)
rate =
ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
}
/*
* Determine retry information.
*/
txdesc->retry_limit = tx_info->control.rates[0].count - 1;
if (txdesc->retry_limit >= rt2x00dev->long_retry)
__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
/*
* Check if more fragments are pending
*/
if (ieee80211_has_morefrags(hdr->frame_control) ||
(tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)) {
__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
}
/*
* Beacons and probe responses require the tsf timestamp
* to be inserted into the frame.
*/
if (ieee80211_is_beacon(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control))
__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
/*
* Determine with what IFS priority this frame should be send.
* Set ifs to IFS_SIFS when the this is not the first fragment,
* or this fragment came after RTS/CTS.
*/
if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
!test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
txdesc->ifs = IFS_BACKOFF;
} else
txdesc->ifs = IFS_SIFS;
/*
* Determine rate modulation.
*/
hwrate = rt2x00_get_rate(rate->hw_value);
txdesc->rate_mode = RATE_MODE_CCK;
if (hwrate->flags & DEV_RATE_OFDM)
txdesc->rate_mode = RATE_MODE_OFDM;
/*
* Apply TX descriptor handling by components
*/
rt2x00crypto_create_tx_descriptor(entry, txdesc);
rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
}
static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
struct txentry_desc *txdesc)
{
struct data_queue *queue = entry->queue;
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
/*
* All processing on the frame has been completed, this means
* it is now ready to be dumped to userspace through debugfs.
*/
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
/*
* Check if we need to kick the queue, there are however a few rules
* 1) Don't kick beacon queue
* 2) Don't kick unless this is the last in frame in a burst.
* When the burst flag is set, this frame is always followed
* by another frame which in some way are related to eachother.
* This is true for fragments, RTS or CTS-to-self frames.
* 3) Rule 2 can be broken when the available entries
* in the queue are less then a certain threshold.
*/
if (entry->queue->qid == QID_BEACON)
return;
if (rt2x00queue_threshold(queue) ||
!test_bit(ENTRY_TXD_BURST, &txdesc->flags))
rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
}
int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
bool local)
{
struct ieee80211_tx_info *tx_info;
struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
struct txentry_desc txdesc;
struct skb_frame_desc *skbdesc;
u8 rate_idx, rate_flags;
if (unlikely(rt2x00queue_full(queue)))
return -ENOBUFS;
if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
ERROR(queue->rt2x00dev,
"Arrived at non-free entry in the non-full queue %d.\n"
"Please file bug report to %s.\n",
queue->qid, DRV_PROJECT);
return -EINVAL;
}
/*
* Copy all TX descriptor information into txdesc,
* after that we are free to use the skb->cb array
* for our information.
*/
entry->skb = skb;
rt2x00queue_create_tx_descriptor(entry, &txdesc);
/*
* All information is retrieved from the skb->cb array,
* now we should claim ownership of the driver part of that
* array, preserving the bitrate index and flags.
*/
tx_info = IEEE80211_SKB_CB(skb);
rate_idx = tx_info->control.rates[0].idx;
rate_flags = tx_info->control.rates[0].flags;
skbdesc = get_skb_frame_desc(skb);
memset(skbdesc, 0, sizeof(*skbdesc));
skbdesc->entry = entry;
skbdesc->tx_rate_idx = rate_idx;
skbdesc->tx_rate_flags = rate_flags;
if (local)
skbdesc->flags |= SKBDESC_NOT_MAC80211;
/*
* When hardware encryption is supported, and this frame
* is to be encrypted, we should strip the IV/EIV data from
* the frame so we can provide it to the driver seperately.
*/
if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
!test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
rt2x00crypto_tx_copy_iv(skb, &txdesc);
else
rt2x00crypto_tx_remove_iv(skb, &txdesc);
}
/*
* When DMA allocation is required we should guarentee to the
* driver that the DMA is aligned to a 4-byte boundary.
* However some drivers require L2 padding to pad the payload
* rather then the header. This could be a requirement for
* PCI and USB devices, while header alignment only is valid
* for PCI devices.
*/
if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
rt2x00queue_align_frame(entry->skb);
/*
* It could be possible that the queue was corrupted and this
* call failed. Since we always return NETDEV_TX_OK to mac80211,
* this frame will simply be dropped.
*/
if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
entry->skb = NULL;
return -EIO;
}
if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
rt2x00queue_map_txskb(queue->rt2x00dev, skb);
set_bit(ENTRY_DATA_PENDING, &entry->flags);
rt2x00queue_index_inc(queue, Q_INDEX);
rt2x00queue_write_tx_descriptor(entry, &txdesc);
return 0;
}
int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
struct ieee80211_vif *vif,
const bool enable_beacon)
{
struct rt2x00_intf *intf = vif_to_intf(vif);
struct skb_frame_desc *skbdesc;
struct txentry_desc txdesc;
__le32 desc[16];
if (unlikely(!intf->beacon))
return -ENOBUFS;
mutex_lock(&intf->beacon_skb_mutex);
/*
* Clean up the beacon skb.
*/
rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
intf->beacon->skb = NULL;
if (!enable_beacon) {
rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, QID_BEACON);
mutex_unlock(&intf->beacon_skb_mutex);
return 0;
}
intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
if (!intf->beacon->skb) {
mutex_unlock(&intf->beacon_skb_mutex);
return -ENOMEM;
}
/*
* Copy all TX descriptor information into txdesc,
* after that we are free to use the skb->cb array
* for our information.
*/
rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
/*
* For the descriptor we use a local array from where the
* driver can move it to the correct location required for
* the hardware.
*/
memset(desc, 0, sizeof(desc));
/*
* Fill in skb descriptor
*/
skbdesc = get_skb_frame_desc(intf->beacon->skb);
memset(skbdesc, 0, sizeof(*skbdesc));
skbdesc->desc = desc;
skbdesc->desc_len = intf->beacon->queue->desc_size;
skbdesc->entry = intf->beacon;
/*
* Write TX descriptor into reserved room in front of the beacon.
*/
rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
/*
* Send beacon to hardware.
* Also enable beacon generation, which might have been disabled
* by the driver during the config_beacon() callback function.
*/
rt2x00dev->ops->lib->write_beacon(intf->beacon);
rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
mutex_unlock(&intf->beacon_skb_mutex);
return 0;
}
struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
const enum data_queue_qid queue)
{
int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
if (queue == QID_RX)
return rt2x00dev->rx;
if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
return &rt2x00dev->tx[queue];
if (!rt2x00dev->bcn)
return NULL;
if (queue == QID_BEACON)
return &rt2x00dev->bcn[0];
else if (queue == QID_ATIM && atim)
return &rt2x00dev->bcn[1];
return NULL;
}
EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
enum queue_index index)
{
struct queue_entry *entry;
unsigned long irqflags;
if (unlikely(index >= Q_INDEX_MAX)) {
ERROR(queue->rt2x00dev,
"Entry requested from invalid index type (%d)\n", index);
return NULL;
}
spin_lock_irqsave(&queue->lock, irqflags);
entry = &queue->entries[queue->index[index]];
spin_unlock_irqrestore(&queue->lock, irqflags);
return entry;
}
EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
{
unsigned long irqflags;
if (unlikely(index >= Q_INDEX_MAX)) {
ERROR(queue->rt2x00dev,
"Index change on invalid index type (%d)\n", index);
return;
}
spin_lock_irqsave(&queue->lock, irqflags);
queue->index[index]++;
if (queue->index[index] >= queue->limit)
queue->index[index] = 0;
if (index == Q_INDEX) {
queue->length++;
} else if (index == Q_INDEX_DONE) {
queue->length--;
queue->count++;
}
spin_unlock_irqrestore(&queue->lock, irqflags);
}
static void rt2x00queue_reset(struct data_queue *queue)
{
unsigned long irqflags;
spin_lock_irqsave(&queue->lock, irqflags);
queue->count = 0;
queue->length = 0;
memset(queue->index, 0, sizeof(queue->index));
spin_unlock_irqrestore(&queue->lock, irqflags);
}
void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
{
struct data_queue *queue;
txall_queue_for_each(rt2x00dev, queue)
rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, queue->qid);
}
void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
{
struct data_queue *queue;
unsigned int i;
queue_for_each(rt2x00dev, queue) {
rt2x00queue_reset(queue);
for (i = 0; i < queue->limit; i++) {
queue->entries[i].flags = 0;
rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
}
}
}
static int rt2x00queue_alloc_entries(struct data_queue *queue,
const struct data_queue_desc *qdesc)
{
struct queue_entry *entries;
unsigned int entry_size;
unsigned int i;
rt2x00queue_reset(queue);
queue->limit = qdesc->entry_num;
queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
queue->data_size = qdesc->data_size;
queue->desc_size = qdesc->desc_size;
/*
* Allocate all queue entries.
*/
entry_size = sizeof(*entries) + qdesc->priv_size;
entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
if (!entries)
return -ENOMEM;
#define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
( ((char *)(__base)) + ((__limit) * (__esize)) + \
((__index) * (__psize)) )
for (i = 0; i < queue->limit; i++) {
entries[i].flags = 0;
entries[i].queue = queue;
entries[i].skb = NULL;
entries[i].entry_idx = i;
entries[i].priv_data =
QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
sizeof(*entries), qdesc->priv_size);
}
#undef QUEUE_ENTRY_PRIV_OFFSET
queue->entries = entries;
return 0;
}
static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
struct data_queue *queue)
{
unsigned int i;
if (!queue->entries)
return;
for (i = 0; i < queue->limit; i++) {
if (queue->entries[i].skb)
rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
}
}
static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
struct data_queue *queue)
{
unsigned int i;
struct sk_buff *skb;
for (i = 0; i < queue->limit; i++) {
skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
if (!skb)
return -ENOMEM;
queue->entries[i].skb = skb;
}
return 0;
}
int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
{
struct data_queue *queue;
int status;
status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
if (status)
goto exit;
tx_queue_for_each(rt2x00dev, queue) {
status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
if (status)
goto exit;
}
status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
if (status)
goto exit;
if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
rt2x00dev->ops->atim);
if (status)
goto exit;
}
status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
if (status)
goto exit;
return 0;
exit:
ERROR(rt2x00dev, "Queue entries allocation failed.\n");
rt2x00queue_uninitialize(rt2x00dev);
return status;
}
void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
{
struct data_queue *queue;
rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
queue_for_each(rt2x00dev, queue) {
kfree(queue->entries);
queue->entries = NULL;
}
}
static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
struct data_queue *queue, enum data_queue_qid qid)
{
spin_lock_init(&queue->lock);
queue->rt2x00dev = rt2x00dev;
queue->qid = qid;
queue->txop = 0;
queue->aifs = 2;
queue->cw_min = 5;
queue->cw_max = 10;
}
int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
{
struct data_queue *queue;
enum data_queue_qid qid;
unsigned int req_atim =
!!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
/*
* We need the following queues:
* RX: 1
* TX: ops->tx_queues
* Beacon: 1
* Atim: 1 (if required)
*/
rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
if (!queue) {
ERROR(rt2x00dev, "Queue allocation failed.\n");
return -ENOMEM;
}
/*
* Initialize pointers
*/
rt2x00dev->rx = queue;
rt2x00dev->tx = &queue[1];
rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
/*
* Initialize queue parameters.
* RX: qid = QID_RX
* TX: qid = QID_AC_BE + index
* TX: cw_min: 2^5 = 32.
* TX: cw_max: 2^10 = 1024.
* BCN: qid = QID_BEACON
* ATIM: qid = QID_ATIM
*/
rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
qid = QID_AC_BE;
tx_queue_for_each(rt2x00dev, queue)
rt2x00queue_init(rt2x00dev, queue, qid++);
rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
if (req_atim)
rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
return 0;
}
void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
{
kfree(rt2x00dev->rx);
rt2x00dev->rx = NULL;
rt2x00dev->tx = NULL;
rt2x00dev->bcn = NULL;
}