mirror of
https://github.com/torvalds/linux.git
synced 2024-12-29 14:21:47 +00:00
27bc50fc90
linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam R. Howlett. An overlapping range-based tree for vmas. It it apparently slight more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat (https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com). This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU= =xfWx -----END PGP SIGNATURE----- Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam Howlett. An overlapping range-based tree for vmas. It it apparently slightly more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat at [1]. This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1] * tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits) hugetlb: allocate vma lock for all sharable vmas hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer hugetlb: fix vma lock handling during split vma and range unmapping mglru: mm/vmscan.c: fix imprecise comments mm/mglru: don't sync disk for each aging cycle mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol mm: memcontrol: use do_memsw_account() in a few more places mm: memcontrol: deprecate swapaccounting=0 mode mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled mm/secretmem: remove reduntant return value mm/hugetlb: add available_huge_pages() func mm: remove unused inline functions from include/linux/mm_inline.h selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd selftests/vm: add thp collapse shmem testing selftests/vm: add thp collapse file and tmpfs testing selftests/vm: modularize thp collapse memory operations selftests/vm: dedup THP helpers mm/khugepaged: add tracepoint to hpage_collapse_scan_file() mm/madvise: add file and shmem support to MADV_COLLAPSE ...
540 lines
14 KiB
Plaintext
540 lines
14 KiB
Plaintext
# SPDX-License-Identifier: GPL-2.0
|
|
comment "Processor Type"
|
|
|
|
choice
|
|
prompt "CPU family support"
|
|
default M68KCLASSIC if MMU
|
|
default COLDFIRE if !MMU
|
|
help
|
|
The Freescale (was Motorola) M68K family of processors implements
|
|
the full 68000 processor instruction set.
|
|
The Freescale ColdFire family of processors is a modern derivative
|
|
of the 68000 processor family. They are mainly targeted at embedded
|
|
applications, and are all System-On-Chip (SOC) devices, as opposed
|
|
to stand alone CPUs. They implement a subset of the original 68000
|
|
processor instruction set.
|
|
If you anticipate running this kernel on a computer with a classic
|
|
MC68xxx processor, select M68KCLASSIC.
|
|
If you anticipate running this kernel on a computer with a ColdFire
|
|
processor, select COLDFIRE.
|
|
|
|
config M68KCLASSIC
|
|
bool "Classic M68K CPU family support"
|
|
select HAVE_ARCH_PFN_VALID
|
|
|
|
config COLDFIRE
|
|
bool "Coldfire CPU family support"
|
|
select ARCH_HAVE_CUSTOM_GPIO_H
|
|
select CPU_HAS_NO_BITFIELDS
|
|
select CPU_HAS_NO_CAS
|
|
select CPU_HAS_NO_MULDIV64
|
|
select GENERIC_CSUM
|
|
select GPIOLIB
|
|
select HAVE_LEGACY_CLK
|
|
|
|
endchoice
|
|
|
|
if M68KCLASSIC
|
|
|
|
config M68000
|
|
def_bool y
|
|
depends on !MMU
|
|
select CPU_HAS_NO_BITFIELDS
|
|
select CPU_HAS_NO_CAS
|
|
select CPU_HAS_NO_MULDIV64
|
|
select CPU_HAS_NO_UNALIGNED
|
|
select GENERIC_CSUM
|
|
select CPU_NO_EFFICIENT_FFS
|
|
select HAVE_ARCH_HASH
|
|
select LEGACY_TIMER_TICK
|
|
help
|
|
The Freescale (was Motorola) 68000 CPU is the first generation of
|
|
the well known M68K family of processors. The CPU core as well as
|
|
being available as a stand alone CPU was also used in many
|
|
System-On-Chip devices (eg 68328, 68302, etc). It does not contain
|
|
a paging MMU.
|
|
|
|
config M68020
|
|
bool "68020 support"
|
|
depends on MMU
|
|
select FPU
|
|
select CPU_HAS_ADDRESS_SPACES
|
|
help
|
|
If you anticipate running this kernel on a computer with a MC68020
|
|
processor, say Y. Otherwise, say N. Note that the 68020 requires a
|
|
68851 MMU (Memory Management Unit) to run Linux/m68k, except on the
|
|
Sun 3, which provides its own version.
|
|
|
|
config M68030
|
|
bool "68030 support"
|
|
depends on MMU && !MMU_SUN3
|
|
select FPU
|
|
select CPU_HAS_ADDRESS_SPACES
|
|
help
|
|
If you anticipate running this kernel on a computer with a MC68030
|
|
processor, say Y. Otherwise, say N. Note that a MC68EC030 will not
|
|
work, as it does not include an MMU (Memory Management Unit).
|
|
|
|
config M68040
|
|
bool "68040 support"
|
|
depends on MMU && !MMU_SUN3
|
|
select FPU
|
|
select CPU_HAS_ADDRESS_SPACES
|
|
help
|
|
If you anticipate running this kernel on a computer with a MC68LC040
|
|
or MC68040 processor, say Y. Otherwise, say N. Note that an
|
|
MC68EC040 will not work, as it does not include an MMU (Memory
|
|
Management Unit).
|
|
|
|
config M68060
|
|
bool "68060 support"
|
|
depends on MMU && !MMU_SUN3
|
|
select FPU
|
|
select CPU_HAS_ADDRESS_SPACES
|
|
help
|
|
If you anticipate running this kernel on a computer with a MC68060
|
|
processor, say Y. Otherwise, say N.
|
|
|
|
config M68328
|
|
bool
|
|
depends on !MMU
|
|
select M68000
|
|
help
|
|
Motorola 68328 processor support.
|
|
|
|
config M68EZ328
|
|
bool
|
|
depends on !MMU
|
|
select M68000
|
|
help
|
|
Motorola 68EX328 processor support.
|
|
|
|
config M68VZ328
|
|
bool
|
|
depends on !MMU
|
|
select M68000
|
|
help
|
|
Motorola 68VZ328 processor support.
|
|
|
|
endif # M68KCLASSIC
|
|
|
|
if COLDFIRE
|
|
|
|
choice
|
|
prompt "ColdFire SoC type"
|
|
default M520x
|
|
help
|
|
Select the type of ColdFire System-on-Chip (SoC) that you want
|
|
to build for.
|
|
|
|
config M5206
|
|
bool "MCF5206"
|
|
depends on !MMU
|
|
select COLDFIRE_SW_A7
|
|
select COLDFIRE_TIMERS
|
|
select HAVE_MBAR
|
|
select CPU_NO_EFFICIENT_FFS
|
|
help
|
|
Motorola ColdFire 5206 processor support.
|
|
|
|
config M5206e
|
|
bool "MCF5206e"
|
|
depends on !MMU
|
|
select COLDFIRE_SW_A7
|
|
select COLDFIRE_TIMERS
|
|
select HAVE_MBAR
|
|
select CPU_NO_EFFICIENT_FFS
|
|
help
|
|
Motorola ColdFire 5206e processor support.
|
|
|
|
config M520x
|
|
bool "MCF520x"
|
|
depends on !MMU
|
|
select COLDFIRE_PIT_TIMER
|
|
select HAVE_CACHE_SPLIT
|
|
help
|
|
Freescale Coldfire 5207/5208 processor support.
|
|
|
|
config M523x
|
|
bool "MCF523x"
|
|
depends on !MMU
|
|
select COLDFIRE_PIT_TIMER
|
|
select HAVE_CACHE_SPLIT
|
|
select HAVE_IPSBAR
|
|
help
|
|
Freescale Coldfire 5230/1/2/4/5 processor support
|
|
|
|
config M5249
|
|
bool "MCF5249"
|
|
depends on !MMU
|
|
select COLDFIRE_SW_A7
|
|
select COLDFIRE_TIMERS
|
|
select HAVE_MBAR
|
|
select CPU_NO_EFFICIENT_FFS
|
|
help
|
|
Motorola ColdFire 5249 processor support.
|
|
|
|
config M525x
|
|
bool "MCF525x"
|
|
depends on !MMU
|
|
select COLDFIRE_SW_A7
|
|
select COLDFIRE_TIMERS
|
|
select HAVE_MBAR
|
|
select CPU_NO_EFFICIENT_FFS
|
|
help
|
|
Freescale (Motorola) Coldfire 5251/5253 processor support.
|
|
|
|
config M5271
|
|
bool "MCF5271"
|
|
depends on !MMU
|
|
select COLDFIRE_PIT_TIMER
|
|
select M527x
|
|
select HAVE_CACHE_SPLIT
|
|
select HAVE_IPSBAR
|
|
help
|
|
Freescale (Motorola) ColdFire 5270/5271 processor support.
|
|
|
|
config M5272
|
|
bool "MCF5272"
|
|
depends on !MMU
|
|
select COLDFIRE_SW_A7
|
|
select COLDFIRE_TIMERS
|
|
select HAVE_MBAR
|
|
select CPU_NO_EFFICIENT_FFS
|
|
help
|
|
Motorola ColdFire 5272 processor support.
|
|
|
|
config M5275
|
|
bool "MCF5275"
|
|
depends on !MMU
|
|
select COLDFIRE_PIT_TIMER
|
|
select M527x
|
|
select HAVE_CACHE_SPLIT
|
|
select HAVE_IPSBAR
|
|
help
|
|
Freescale (Motorola) ColdFire 5274/5275 processor support.
|
|
|
|
config M528x
|
|
bool "MCF528x"
|
|
depends on !MMU
|
|
select COLDFIRE_PIT_TIMER
|
|
select HAVE_CACHE_SPLIT
|
|
select HAVE_IPSBAR
|
|
help
|
|
Motorola ColdFire 5280/5282 processor support.
|
|
|
|
config M5307
|
|
bool "MCF5307"
|
|
depends on !MMU
|
|
select COLDFIRE_TIMERS
|
|
select COLDFIRE_SW_A7
|
|
select HAVE_CACHE_CB
|
|
select HAVE_MBAR
|
|
select CPU_NO_EFFICIENT_FFS
|
|
help
|
|
Motorola ColdFire 5307 processor support.
|
|
|
|
config M532x
|
|
bool "MCF532x"
|
|
depends on !MMU
|
|
select COLDFIRE_TIMERS
|
|
select M53xx
|
|
select HAVE_CACHE_CB
|
|
help
|
|
Freescale (Motorola) ColdFire 532x processor support.
|
|
|
|
config M537x
|
|
bool "MCF537x"
|
|
depends on !MMU
|
|
select COLDFIRE_TIMERS
|
|
select M53xx
|
|
select HAVE_CACHE_CB
|
|
help
|
|
Freescale ColdFire 537x processor support.
|
|
|
|
config M5407
|
|
bool "MCF5407"
|
|
depends on !MMU
|
|
select COLDFIRE_SW_A7
|
|
select COLDFIRE_TIMERS
|
|
select HAVE_CACHE_CB
|
|
select HAVE_MBAR
|
|
select CPU_NO_EFFICIENT_FFS
|
|
help
|
|
Motorola ColdFire 5407 processor support.
|
|
|
|
config M547x
|
|
bool "MCF547x"
|
|
select M54xx
|
|
select COLDFIRE_SLTIMERS
|
|
select MMU_COLDFIRE if MMU
|
|
select FPU if MMU
|
|
select HAVE_CACHE_CB
|
|
select HAVE_MBAR
|
|
select CPU_NO_EFFICIENT_FFS
|
|
help
|
|
Freescale ColdFire 5470/5471/5472/5473/5474/5475 processor support.
|
|
|
|
config M548x
|
|
bool "MCF548x"
|
|
select COLDFIRE_SLTIMERS
|
|
select MMU_COLDFIRE if MMU
|
|
select FPU if MMU
|
|
select M54xx
|
|
select HAVE_CACHE_CB
|
|
select HAVE_MBAR
|
|
select CPU_NO_EFFICIENT_FFS
|
|
help
|
|
Freescale ColdFire 5480/5481/5482/5483/5484/5485 processor support.
|
|
|
|
config M5441x
|
|
bool "MCF5441x"
|
|
select COLDFIRE_PIT_TIMER
|
|
select MMU_COLDFIRE if MMU
|
|
select HAVE_CACHE_CB
|
|
help
|
|
Freescale Coldfire 54410/54415/54416/54417/54418 processor support.
|
|
|
|
endchoice
|
|
|
|
config M527x
|
|
bool
|
|
|
|
config M53xx
|
|
bool
|
|
|
|
config M54xx
|
|
select HAVE_PCI
|
|
bool
|
|
|
|
config COLDFIRE_PIT_TIMER
|
|
bool
|
|
|
|
config COLDFIRE_TIMERS
|
|
bool
|
|
select LEGACY_TIMER_TICK
|
|
|
|
config COLDFIRE_SLTIMERS
|
|
bool
|
|
select LEGACY_TIMER_TICK
|
|
|
|
endif # COLDFIRE
|
|
|
|
comment "Processor Specific Options"
|
|
|
|
config M68KFPU_EMU
|
|
bool "Math emulation support"
|
|
depends on M68KCLASSIC && FPU
|
|
help
|
|
At some point in the future, this will cause floating-point math
|
|
instructions to be emulated by the kernel on machines that lack a
|
|
floating-point math coprocessor. Thrill-seekers and chronically
|
|
sleep-deprived psychotic hacker types can say Y now, everyone else
|
|
should probably wait a while.
|
|
|
|
config M68KFPU_EMU_EXTRAPREC
|
|
bool "Math emulation extra precision"
|
|
depends on M68KFPU_EMU
|
|
help
|
|
The fpu uses normally a few bit more during calculations for
|
|
correct rounding, the emulator can (often) do the same but this
|
|
extra calculation can cost quite some time, so you can disable
|
|
it here. The emulator will then "only" calculate with a 64 bit
|
|
mantissa and round slightly incorrect, what is more than enough
|
|
for normal usage.
|
|
|
|
config M68KFPU_EMU_ONLY
|
|
bool "Math emulation only kernel"
|
|
depends on M68KFPU_EMU
|
|
help
|
|
This option prevents any floating-point instructions from being
|
|
compiled into the kernel, thereby the kernel doesn't save any
|
|
floating point context anymore during task switches, so this
|
|
kernel will only be usable on machines without a floating-point
|
|
math coprocessor. This makes the kernel a bit faster as no tests
|
|
needs to be executed whether a floating-point instruction in the
|
|
kernel should be executed or not.
|
|
|
|
config ADVANCED
|
|
bool "Advanced configuration options"
|
|
depends on MMU
|
|
help
|
|
This gives you access to some advanced options for the CPU. The
|
|
defaults should be fine for most users, but these options may make
|
|
it possible for you to improve performance somewhat if you know what
|
|
you are doing.
|
|
|
|
Note that the answer to this question won't directly affect the
|
|
kernel: saying N will just cause the configurator to skip all
|
|
the questions about these options.
|
|
|
|
Most users should say N to this question.
|
|
|
|
config RMW_INSNS
|
|
bool "Use read-modify-write instructions"
|
|
depends on ADVANCED && !CPU_HAS_NO_CAS
|
|
help
|
|
This allows to use certain instructions that work with indivisible
|
|
read-modify-write bus cycles. While this is faster than the
|
|
workaround of disabling interrupts, it can conflict with DMA
|
|
( = direct memory access) on many Amiga systems, and it is also said
|
|
to destabilize other machines. It is very likely that this will
|
|
cause serious problems on any Amiga or Atari Medusa if set. The only
|
|
configuration where it should work are 68030-based Ataris, where it
|
|
apparently improves performance. But you've been warned! Unless you
|
|
really know what you are doing, say N. Try Y only if you're quite
|
|
adventurous.
|
|
|
|
config SINGLE_MEMORY_CHUNK
|
|
bool "Use one physical chunk of memory only" if ADVANCED && !SUN3
|
|
depends on MMU
|
|
default y if SUN3 || MMU_COLDFIRE
|
|
help
|
|
Ignore all but the first contiguous chunk of physical memory for VM
|
|
purposes. This will save a few bytes kernel size and may speed up
|
|
some operations.
|
|
When this option os set to N, you may want to lower "Maximum zone
|
|
order" to save memory that could be wasted for unused memory map.
|
|
Say N if not sure.
|
|
|
|
config ARCH_FORCE_MAX_ORDER
|
|
int "Maximum zone order" if ADVANCED
|
|
depends on !SINGLE_MEMORY_CHUNK
|
|
default "11"
|
|
help
|
|
The kernel memory allocator divides physically contiguous memory
|
|
blocks into "zones", where each zone is a power of two number of
|
|
pages. This option selects the largest power of two that the kernel
|
|
keeps in the memory allocator. If you need to allocate very large
|
|
blocks of physically contiguous memory, then you may need to
|
|
increase this value.
|
|
|
|
For systems that have holes in their physical address space this
|
|
value also defines the minimal size of the hole that allows
|
|
freeing unused memory map.
|
|
|
|
This config option is actually maximum order plus one. For example,
|
|
a value of 11 means that the largest free memory block is 2^10 pages.
|
|
|
|
config 060_WRITETHROUGH
|
|
bool "Use write-through caching for 68060 supervisor accesses"
|
|
depends on ADVANCED && M68060
|
|
help
|
|
The 68060 generally uses copyback caching of recently accessed data.
|
|
Copyback caching means that memory writes will be held in an on-chip
|
|
cache and only written back to memory some time later. Saying Y
|
|
here will force supervisor (kernel) accesses to use writethrough
|
|
caching. Writethrough caching means that data is written to memory
|
|
straight away, so that cache and memory data always agree.
|
|
Writethrough caching is less efficient, but is needed for some
|
|
drivers on 68060 based systems where the 68060 bus snooping signal
|
|
is hardwired on. The 53c710 SCSI driver is known to suffer from
|
|
this problem.
|
|
|
|
config M68K_L2_CACHE
|
|
bool
|
|
depends on MAC
|
|
default y
|
|
|
|
config CPU_HAS_NO_BITFIELDS
|
|
bool
|
|
|
|
config CPU_HAS_NO_CAS
|
|
bool
|
|
|
|
config CPU_HAS_NO_MULDIV64
|
|
bool
|
|
|
|
config CPU_HAS_NO_UNALIGNED
|
|
bool
|
|
|
|
config CPU_HAS_ADDRESS_SPACES
|
|
bool
|
|
select ALTERNATE_USER_ADDRESS_SPACE
|
|
|
|
config FPU
|
|
bool
|
|
|
|
config COLDFIRE_SW_A7
|
|
bool
|
|
|
|
config HAVE_CACHE_SPLIT
|
|
bool
|
|
|
|
config HAVE_CACHE_CB
|
|
bool
|
|
|
|
config HAVE_MBAR
|
|
bool
|
|
|
|
config HAVE_IPSBAR
|
|
bool
|
|
|
|
config CLOCK_FREQ
|
|
int "Set the core clock frequency"
|
|
default "25000000" if M5206
|
|
default "54000000" if M5206e
|
|
default "166666666" if M520x
|
|
default "140000000" if M5249
|
|
default "150000000" if M527x || M523x
|
|
default "90000000" if M5307
|
|
default "50000000" if M5407
|
|
default "266000000" if M54xx
|
|
default "66666666"
|
|
depends on COLDFIRE
|
|
help
|
|
Define the CPU clock frequency in use. This is the core clock
|
|
frequency, it may or may not be the same as the external clock
|
|
crystal fitted to your board. Some processors have an internal
|
|
PLL and can have their frequency programmed at run time, others
|
|
use internal dividers. In general the kernel won't setup a PLL
|
|
if it is fitted (there are some exceptions). This value will be
|
|
specific to the exact CPU that you are using.
|
|
|
|
config OLDMASK
|
|
bool "Old mask 5307 (1H55J) silicon"
|
|
depends on M5307
|
|
help
|
|
Build support for the older revision ColdFire 5307 silicon.
|
|
Specifically this is the 1H55J mask revision.
|
|
|
|
if HAVE_CACHE_SPLIT
|
|
choice
|
|
prompt "Split Cache Configuration"
|
|
default CACHE_I
|
|
|
|
config CACHE_I
|
|
bool "Instruction"
|
|
help
|
|
Use all of the ColdFire CPU cache memory as an instruction cache.
|
|
|
|
config CACHE_D
|
|
bool "Data"
|
|
help
|
|
Use all of the ColdFire CPU cache memory as a data cache.
|
|
|
|
config CACHE_BOTH
|
|
bool "Both"
|
|
help
|
|
Split the ColdFire CPU cache, and use half as an instruction cache
|
|
and half as a data cache.
|
|
endchoice
|
|
endif # HAVE_CACHE_SPLIT
|
|
|
|
if HAVE_CACHE_CB
|
|
choice
|
|
prompt "Data cache mode"
|
|
default CACHE_WRITETHRU
|
|
|
|
config CACHE_WRITETHRU
|
|
bool "Write-through"
|
|
help
|
|
The ColdFire CPU cache is set into Write-through mode.
|
|
|
|
config CACHE_COPYBACK
|
|
bool "Copy-back"
|
|
help
|
|
The ColdFire CPU cache is set into Copy-back mode.
|
|
endchoice
|
|
endif # HAVE_CACHE_CB
|