mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 13:41:51 +00:00
69139d2919
After a vsock socket has been added to a BPF sockmap, its prot->recvmsg
has been replaced with vsock_bpf_recvmsg(). Thus the following
recursiion could happen:
vsock_bpf_recvmsg()
-> __vsock_recvmsg()
-> vsock_connectible_recvmsg()
-> prot->recvmsg()
-> vsock_bpf_recvmsg() again
We need to fix it by calling the original ->recvmsg() without any BPF
sockmap logic in __vsock_recvmsg().
Fixes: 634f1a7110
("vsock: support sockmap")
Reported-by: syzbot+bdb4bd87b5e22058e2a4@syzkaller.appspotmail.com
Tested-by: syzbot+bdb4bd87b5e22058e2a4@syzkaller.appspotmail.com
Cc: Bobby Eshleman <bobby.eshleman@bytedance.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Stefano Garzarella <sgarzare@redhat.com>
Signed-off-by: Cong Wang <cong.wang@bytedance.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Link: https://patch.msgid.link/20240812022153.86512-1-xiyou.wangcong@gmail.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2581 lines
62 KiB
C
2581 lines
62 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* VMware vSockets Driver
|
|
*
|
|
* Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
|
|
*/
|
|
|
|
/* Implementation notes:
|
|
*
|
|
* - There are two kinds of sockets: those created by user action (such as
|
|
* calling socket(2)) and those created by incoming connection request packets.
|
|
*
|
|
* - There are two "global" tables, one for bound sockets (sockets that have
|
|
* specified an address that they are responsible for) and one for connected
|
|
* sockets (sockets that have established a connection with another socket).
|
|
* These tables are "global" in that all sockets on the system are placed
|
|
* within them. - Note, though, that the bound table contains an extra entry
|
|
* for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
|
|
* that list. The bound table is used solely for lookup of sockets when packets
|
|
* are received and that's not necessary for SOCK_DGRAM sockets since we create
|
|
* a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
|
|
* sockets out of the bound hash buckets will reduce the chance of collisions
|
|
* when looking for SOCK_STREAM sockets and prevents us from having to check the
|
|
* socket type in the hash table lookups.
|
|
*
|
|
* - Sockets created by user action will either be "client" sockets that
|
|
* initiate a connection or "server" sockets that listen for connections; we do
|
|
* not support simultaneous connects (two "client" sockets connecting).
|
|
*
|
|
* - "Server" sockets are referred to as listener sockets throughout this
|
|
* implementation because they are in the TCP_LISTEN state. When a
|
|
* connection request is received (the second kind of socket mentioned above),
|
|
* we create a new socket and refer to it as a pending socket. These pending
|
|
* sockets are placed on the pending connection list of the listener socket.
|
|
* When future packets are received for the address the listener socket is
|
|
* bound to, we check if the source of the packet is from one that has an
|
|
* existing pending connection. If it does, we process the packet for the
|
|
* pending socket. When that socket reaches the connected state, it is removed
|
|
* from the listener socket's pending list and enqueued in the listener
|
|
* socket's accept queue. Callers of accept(2) will accept connected sockets
|
|
* from the listener socket's accept queue. If the socket cannot be accepted
|
|
* for some reason then it is marked rejected. Once the connection is
|
|
* accepted, it is owned by the user process and the responsibility for cleanup
|
|
* falls with that user process.
|
|
*
|
|
* - It is possible that these pending sockets will never reach the connected
|
|
* state; in fact, we may never receive another packet after the connection
|
|
* request. Because of this, we must schedule a cleanup function to run in the
|
|
* future, after some amount of time passes where a connection should have been
|
|
* established. This function ensures that the socket is off all lists so it
|
|
* cannot be retrieved, then drops all references to the socket so it is cleaned
|
|
* up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
|
|
* function will also cleanup rejected sockets, those that reach the connected
|
|
* state but leave it before they have been accepted.
|
|
*
|
|
* - Lock ordering for pending or accept queue sockets is:
|
|
*
|
|
* lock_sock(listener);
|
|
* lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
|
|
*
|
|
* Using explicit nested locking keeps lockdep happy since normally only one
|
|
* lock of a given class may be taken at a time.
|
|
*
|
|
* - Sockets created by user action will be cleaned up when the user process
|
|
* calls close(2), causing our release implementation to be called. Our release
|
|
* implementation will perform some cleanup then drop the last reference so our
|
|
* sk_destruct implementation is invoked. Our sk_destruct implementation will
|
|
* perform additional cleanup that's common for both types of sockets.
|
|
*
|
|
* - A socket's reference count is what ensures that the structure won't be
|
|
* freed. Each entry in a list (such as the "global" bound and connected tables
|
|
* and the listener socket's pending list and connected queue) ensures a
|
|
* reference. When we defer work until process context and pass a socket as our
|
|
* argument, we must ensure the reference count is increased to ensure the
|
|
* socket isn't freed before the function is run; the deferred function will
|
|
* then drop the reference.
|
|
*
|
|
* - sk->sk_state uses the TCP state constants because they are widely used by
|
|
* other address families and exposed to userspace tools like ss(8):
|
|
*
|
|
* TCP_CLOSE - unconnected
|
|
* TCP_SYN_SENT - connecting
|
|
* TCP_ESTABLISHED - connected
|
|
* TCP_CLOSING - disconnecting
|
|
* TCP_LISTEN - listening
|
|
*/
|
|
|
|
#include <linux/compat.h>
|
|
#include <linux/types.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/cred.h>
|
|
#include <linux/errqueue.h>
|
|
#include <linux/init.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/kmod.h>
|
|
#include <linux/list.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/net.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/random.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/socket.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/workqueue.h>
|
|
#include <net/sock.h>
|
|
#include <net/af_vsock.h>
|
|
#include <uapi/linux/vm_sockets.h>
|
|
|
|
static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
|
|
static void vsock_sk_destruct(struct sock *sk);
|
|
static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
|
|
|
|
/* Protocol family. */
|
|
struct proto vsock_proto = {
|
|
.name = "AF_VSOCK",
|
|
.owner = THIS_MODULE,
|
|
.obj_size = sizeof(struct vsock_sock),
|
|
#ifdef CONFIG_BPF_SYSCALL
|
|
.psock_update_sk_prot = vsock_bpf_update_proto,
|
|
#endif
|
|
};
|
|
|
|
/* The default peer timeout indicates how long we will wait for a peer response
|
|
* to a control message.
|
|
*/
|
|
#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
|
|
|
|
#define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
|
|
#define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
|
|
#define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
|
|
|
|
/* Transport used for host->guest communication */
|
|
static const struct vsock_transport *transport_h2g;
|
|
/* Transport used for guest->host communication */
|
|
static const struct vsock_transport *transport_g2h;
|
|
/* Transport used for DGRAM communication */
|
|
static const struct vsock_transport *transport_dgram;
|
|
/* Transport used for local communication */
|
|
static const struct vsock_transport *transport_local;
|
|
static DEFINE_MUTEX(vsock_register_mutex);
|
|
|
|
/**** UTILS ****/
|
|
|
|
/* Each bound VSocket is stored in the bind hash table and each connected
|
|
* VSocket is stored in the connected hash table.
|
|
*
|
|
* Unbound sockets are all put on the same list attached to the end of the hash
|
|
* table (vsock_unbound_sockets). Bound sockets are added to the hash table in
|
|
* the bucket that their local address hashes to (vsock_bound_sockets(addr)
|
|
* represents the list that addr hashes to).
|
|
*
|
|
* Specifically, we initialize the vsock_bind_table array to a size of
|
|
* VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
|
|
* vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
|
|
* vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
|
|
* mods with VSOCK_HASH_SIZE to ensure this.
|
|
*/
|
|
#define MAX_PORT_RETRIES 24
|
|
|
|
#define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
|
|
#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
|
|
#define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
|
|
|
|
/* XXX This can probably be implemented in a better way. */
|
|
#define VSOCK_CONN_HASH(src, dst) \
|
|
(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
|
|
#define vsock_connected_sockets(src, dst) \
|
|
(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
|
|
#define vsock_connected_sockets_vsk(vsk) \
|
|
vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
|
|
|
|
struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
|
|
EXPORT_SYMBOL_GPL(vsock_bind_table);
|
|
struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
|
|
EXPORT_SYMBOL_GPL(vsock_connected_table);
|
|
DEFINE_SPINLOCK(vsock_table_lock);
|
|
EXPORT_SYMBOL_GPL(vsock_table_lock);
|
|
|
|
/* Autobind this socket to the local address if necessary. */
|
|
static int vsock_auto_bind(struct vsock_sock *vsk)
|
|
{
|
|
struct sock *sk = sk_vsock(vsk);
|
|
struct sockaddr_vm local_addr;
|
|
|
|
if (vsock_addr_bound(&vsk->local_addr))
|
|
return 0;
|
|
vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
|
|
return __vsock_bind(sk, &local_addr);
|
|
}
|
|
|
|
static void vsock_init_tables(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
|
|
INIT_LIST_HEAD(&vsock_bind_table[i]);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
|
|
INIT_LIST_HEAD(&vsock_connected_table[i]);
|
|
}
|
|
|
|
static void __vsock_insert_bound(struct list_head *list,
|
|
struct vsock_sock *vsk)
|
|
{
|
|
sock_hold(&vsk->sk);
|
|
list_add(&vsk->bound_table, list);
|
|
}
|
|
|
|
static void __vsock_insert_connected(struct list_head *list,
|
|
struct vsock_sock *vsk)
|
|
{
|
|
sock_hold(&vsk->sk);
|
|
list_add(&vsk->connected_table, list);
|
|
}
|
|
|
|
static void __vsock_remove_bound(struct vsock_sock *vsk)
|
|
{
|
|
list_del_init(&vsk->bound_table);
|
|
sock_put(&vsk->sk);
|
|
}
|
|
|
|
static void __vsock_remove_connected(struct vsock_sock *vsk)
|
|
{
|
|
list_del_init(&vsk->connected_table);
|
|
sock_put(&vsk->sk);
|
|
}
|
|
|
|
static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
|
|
{
|
|
struct vsock_sock *vsk;
|
|
|
|
list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
|
|
if (vsock_addr_equals_addr(addr, &vsk->local_addr))
|
|
return sk_vsock(vsk);
|
|
|
|
if (addr->svm_port == vsk->local_addr.svm_port &&
|
|
(vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
|
|
addr->svm_cid == VMADDR_CID_ANY))
|
|
return sk_vsock(vsk);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
|
|
struct sockaddr_vm *dst)
|
|
{
|
|
struct vsock_sock *vsk;
|
|
|
|
list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
|
|
connected_table) {
|
|
if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
|
|
dst->svm_port == vsk->local_addr.svm_port) {
|
|
return sk_vsock(vsk);
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void vsock_insert_unbound(struct vsock_sock *vsk)
|
|
{
|
|
spin_lock_bh(&vsock_table_lock);
|
|
__vsock_insert_bound(vsock_unbound_sockets, vsk);
|
|
spin_unlock_bh(&vsock_table_lock);
|
|
}
|
|
|
|
void vsock_insert_connected(struct vsock_sock *vsk)
|
|
{
|
|
struct list_head *list = vsock_connected_sockets(
|
|
&vsk->remote_addr, &vsk->local_addr);
|
|
|
|
spin_lock_bh(&vsock_table_lock);
|
|
__vsock_insert_connected(list, vsk);
|
|
spin_unlock_bh(&vsock_table_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_insert_connected);
|
|
|
|
void vsock_remove_bound(struct vsock_sock *vsk)
|
|
{
|
|
spin_lock_bh(&vsock_table_lock);
|
|
if (__vsock_in_bound_table(vsk))
|
|
__vsock_remove_bound(vsk);
|
|
spin_unlock_bh(&vsock_table_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_remove_bound);
|
|
|
|
void vsock_remove_connected(struct vsock_sock *vsk)
|
|
{
|
|
spin_lock_bh(&vsock_table_lock);
|
|
if (__vsock_in_connected_table(vsk))
|
|
__vsock_remove_connected(vsk);
|
|
spin_unlock_bh(&vsock_table_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_remove_connected);
|
|
|
|
struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
|
|
{
|
|
struct sock *sk;
|
|
|
|
spin_lock_bh(&vsock_table_lock);
|
|
sk = __vsock_find_bound_socket(addr);
|
|
if (sk)
|
|
sock_hold(sk);
|
|
|
|
spin_unlock_bh(&vsock_table_lock);
|
|
|
|
return sk;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
|
|
|
|
struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
|
|
struct sockaddr_vm *dst)
|
|
{
|
|
struct sock *sk;
|
|
|
|
spin_lock_bh(&vsock_table_lock);
|
|
sk = __vsock_find_connected_socket(src, dst);
|
|
if (sk)
|
|
sock_hold(sk);
|
|
|
|
spin_unlock_bh(&vsock_table_lock);
|
|
|
|
return sk;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
|
|
|
|
void vsock_remove_sock(struct vsock_sock *vsk)
|
|
{
|
|
vsock_remove_bound(vsk);
|
|
vsock_remove_connected(vsk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_remove_sock);
|
|
|
|
void vsock_for_each_connected_socket(struct vsock_transport *transport,
|
|
void (*fn)(struct sock *sk))
|
|
{
|
|
int i;
|
|
|
|
spin_lock_bh(&vsock_table_lock);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
|
|
struct vsock_sock *vsk;
|
|
list_for_each_entry(vsk, &vsock_connected_table[i],
|
|
connected_table) {
|
|
if (vsk->transport != transport)
|
|
continue;
|
|
|
|
fn(sk_vsock(vsk));
|
|
}
|
|
}
|
|
|
|
spin_unlock_bh(&vsock_table_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
|
|
|
|
void vsock_add_pending(struct sock *listener, struct sock *pending)
|
|
{
|
|
struct vsock_sock *vlistener;
|
|
struct vsock_sock *vpending;
|
|
|
|
vlistener = vsock_sk(listener);
|
|
vpending = vsock_sk(pending);
|
|
|
|
sock_hold(pending);
|
|
sock_hold(listener);
|
|
list_add_tail(&vpending->pending_links, &vlistener->pending_links);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_add_pending);
|
|
|
|
void vsock_remove_pending(struct sock *listener, struct sock *pending)
|
|
{
|
|
struct vsock_sock *vpending = vsock_sk(pending);
|
|
|
|
list_del_init(&vpending->pending_links);
|
|
sock_put(listener);
|
|
sock_put(pending);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_remove_pending);
|
|
|
|
void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
|
|
{
|
|
struct vsock_sock *vlistener;
|
|
struct vsock_sock *vconnected;
|
|
|
|
vlistener = vsock_sk(listener);
|
|
vconnected = vsock_sk(connected);
|
|
|
|
sock_hold(connected);
|
|
sock_hold(listener);
|
|
list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
|
|
|
|
static bool vsock_use_local_transport(unsigned int remote_cid)
|
|
{
|
|
if (!transport_local)
|
|
return false;
|
|
|
|
if (remote_cid == VMADDR_CID_LOCAL)
|
|
return true;
|
|
|
|
if (transport_g2h) {
|
|
return remote_cid == transport_g2h->get_local_cid();
|
|
} else {
|
|
return remote_cid == VMADDR_CID_HOST;
|
|
}
|
|
}
|
|
|
|
static void vsock_deassign_transport(struct vsock_sock *vsk)
|
|
{
|
|
if (!vsk->transport)
|
|
return;
|
|
|
|
vsk->transport->destruct(vsk);
|
|
module_put(vsk->transport->module);
|
|
vsk->transport = NULL;
|
|
}
|
|
|
|
/* Assign a transport to a socket and call the .init transport callback.
|
|
*
|
|
* Note: for connection oriented socket this must be called when vsk->remote_addr
|
|
* is set (e.g. during the connect() or when a connection request on a listener
|
|
* socket is received).
|
|
* The vsk->remote_addr is used to decide which transport to use:
|
|
* - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
|
|
* g2h is not loaded, will use local transport;
|
|
* - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
|
|
* includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
|
|
* - remote CID > VMADDR_CID_HOST will use host->guest transport;
|
|
*/
|
|
int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
|
|
{
|
|
const struct vsock_transport *new_transport;
|
|
struct sock *sk = sk_vsock(vsk);
|
|
unsigned int remote_cid = vsk->remote_addr.svm_cid;
|
|
__u8 remote_flags;
|
|
int ret;
|
|
|
|
/* If the packet is coming with the source and destination CIDs higher
|
|
* than VMADDR_CID_HOST, then a vsock channel where all the packets are
|
|
* forwarded to the host should be established. Then the host will
|
|
* need to forward the packets to the guest.
|
|
*
|
|
* The flag is set on the (listen) receive path (psk is not NULL). On
|
|
* the connect path the flag can be set by the user space application.
|
|
*/
|
|
if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
|
|
vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
|
|
vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
|
|
|
|
remote_flags = vsk->remote_addr.svm_flags;
|
|
|
|
switch (sk->sk_type) {
|
|
case SOCK_DGRAM:
|
|
new_transport = transport_dgram;
|
|
break;
|
|
case SOCK_STREAM:
|
|
case SOCK_SEQPACKET:
|
|
if (vsock_use_local_transport(remote_cid))
|
|
new_transport = transport_local;
|
|
else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
|
|
(remote_flags & VMADDR_FLAG_TO_HOST))
|
|
new_transport = transport_g2h;
|
|
else
|
|
new_transport = transport_h2g;
|
|
break;
|
|
default:
|
|
return -ESOCKTNOSUPPORT;
|
|
}
|
|
|
|
if (vsk->transport) {
|
|
if (vsk->transport == new_transport)
|
|
return 0;
|
|
|
|
/* transport->release() must be called with sock lock acquired.
|
|
* This path can only be taken during vsock_connect(), where we
|
|
* have already held the sock lock. In the other cases, this
|
|
* function is called on a new socket which is not assigned to
|
|
* any transport.
|
|
*/
|
|
vsk->transport->release(vsk);
|
|
vsock_deassign_transport(vsk);
|
|
}
|
|
|
|
/* We increase the module refcnt to prevent the transport unloading
|
|
* while there are open sockets assigned to it.
|
|
*/
|
|
if (!new_transport || !try_module_get(new_transport->module))
|
|
return -ENODEV;
|
|
|
|
if (sk->sk_type == SOCK_SEQPACKET) {
|
|
if (!new_transport->seqpacket_allow ||
|
|
!new_transport->seqpacket_allow(remote_cid)) {
|
|
module_put(new_transport->module);
|
|
return -ESOCKTNOSUPPORT;
|
|
}
|
|
}
|
|
|
|
ret = new_transport->init(vsk, psk);
|
|
if (ret) {
|
|
module_put(new_transport->module);
|
|
return ret;
|
|
}
|
|
|
|
vsk->transport = new_transport;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_assign_transport);
|
|
|
|
bool vsock_find_cid(unsigned int cid)
|
|
{
|
|
if (transport_g2h && cid == transport_g2h->get_local_cid())
|
|
return true;
|
|
|
|
if (transport_h2g && cid == VMADDR_CID_HOST)
|
|
return true;
|
|
|
|
if (transport_local && cid == VMADDR_CID_LOCAL)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_find_cid);
|
|
|
|
static struct sock *vsock_dequeue_accept(struct sock *listener)
|
|
{
|
|
struct vsock_sock *vlistener;
|
|
struct vsock_sock *vconnected;
|
|
|
|
vlistener = vsock_sk(listener);
|
|
|
|
if (list_empty(&vlistener->accept_queue))
|
|
return NULL;
|
|
|
|
vconnected = list_entry(vlistener->accept_queue.next,
|
|
struct vsock_sock, accept_queue);
|
|
|
|
list_del_init(&vconnected->accept_queue);
|
|
sock_put(listener);
|
|
/* The caller will need a reference on the connected socket so we let
|
|
* it call sock_put().
|
|
*/
|
|
|
|
return sk_vsock(vconnected);
|
|
}
|
|
|
|
static bool vsock_is_accept_queue_empty(struct sock *sk)
|
|
{
|
|
struct vsock_sock *vsk = vsock_sk(sk);
|
|
return list_empty(&vsk->accept_queue);
|
|
}
|
|
|
|
static bool vsock_is_pending(struct sock *sk)
|
|
{
|
|
struct vsock_sock *vsk = vsock_sk(sk);
|
|
return !list_empty(&vsk->pending_links);
|
|
}
|
|
|
|
static int vsock_send_shutdown(struct sock *sk, int mode)
|
|
{
|
|
struct vsock_sock *vsk = vsock_sk(sk);
|
|
|
|
if (!vsk->transport)
|
|
return -ENODEV;
|
|
|
|
return vsk->transport->shutdown(vsk, mode);
|
|
}
|
|
|
|
static void vsock_pending_work(struct work_struct *work)
|
|
{
|
|
struct sock *sk;
|
|
struct sock *listener;
|
|
struct vsock_sock *vsk;
|
|
bool cleanup;
|
|
|
|
vsk = container_of(work, struct vsock_sock, pending_work.work);
|
|
sk = sk_vsock(vsk);
|
|
listener = vsk->listener;
|
|
cleanup = true;
|
|
|
|
lock_sock(listener);
|
|
lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
|
|
|
|
if (vsock_is_pending(sk)) {
|
|
vsock_remove_pending(listener, sk);
|
|
|
|
sk_acceptq_removed(listener);
|
|
} else if (!vsk->rejected) {
|
|
/* We are not on the pending list and accept() did not reject
|
|
* us, so we must have been accepted by our user process. We
|
|
* just need to drop our references to the sockets and be on
|
|
* our way.
|
|
*/
|
|
cleanup = false;
|
|
goto out;
|
|
}
|
|
|
|
/* We need to remove ourself from the global connected sockets list so
|
|
* incoming packets can't find this socket, and to reduce the reference
|
|
* count.
|
|
*/
|
|
vsock_remove_connected(vsk);
|
|
|
|
sk->sk_state = TCP_CLOSE;
|
|
|
|
out:
|
|
release_sock(sk);
|
|
release_sock(listener);
|
|
if (cleanup)
|
|
sock_put(sk);
|
|
|
|
sock_put(sk);
|
|
sock_put(listener);
|
|
}
|
|
|
|
/**** SOCKET OPERATIONS ****/
|
|
|
|
static int __vsock_bind_connectible(struct vsock_sock *vsk,
|
|
struct sockaddr_vm *addr)
|
|
{
|
|
static u32 port;
|
|
struct sockaddr_vm new_addr;
|
|
|
|
if (!port)
|
|
port = get_random_u32_above(LAST_RESERVED_PORT);
|
|
|
|
vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
|
|
|
|
if (addr->svm_port == VMADDR_PORT_ANY) {
|
|
bool found = false;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < MAX_PORT_RETRIES; i++) {
|
|
if (port <= LAST_RESERVED_PORT)
|
|
port = LAST_RESERVED_PORT + 1;
|
|
|
|
new_addr.svm_port = port++;
|
|
|
|
if (!__vsock_find_bound_socket(&new_addr)) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
return -EADDRNOTAVAIL;
|
|
} else {
|
|
/* If port is in reserved range, ensure caller
|
|
* has necessary privileges.
|
|
*/
|
|
if (addr->svm_port <= LAST_RESERVED_PORT &&
|
|
!capable(CAP_NET_BIND_SERVICE)) {
|
|
return -EACCES;
|
|
}
|
|
|
|
if (__vsock_find_bound_socket(&new_addr))
|
|
return -EADDRINUSE;
|
|
}
|
|
|
|
vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
|
|
|
|
/* Remove connection oriented sockets from the unbound list and add them
|
|
* to the hash table for easy lookup by its address. The unbound list
|
|
* is simply an extra entry at the end of the hash table, a trick used
|
|
* by AF_UNIX.
|
|
*/
|
|
__vsock_remove_bound(vsk);
|
|
__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __vsock_bind_dgram(struct vsock_sock *vsk,
|
|
struct sockaddr_vm *addr)
|
|
{
|
|
return vsk->transport->dgram_bind(vsk, addr);
|
|
}
|
|
|
|
static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
|
|
{
|
|
struct vsock_sock *vsk = vsock_sk(sk);
|
|
int retval;
|
|
|
|
/* First ensure this socket isn't already bound. */
|
|
if (vsock_addr_bound(&vsk->local_addr))
|
|
return -EINVAL;
|
|
|
|
/* Now bind to the provided address or select appropriate values if
|
|
* none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
|
|
* like AF_INET prevents binding to a non-local IP address (in most
|
|
* cases), we only allow binding to a local CID.
|
|
*/
|
|
if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
|
|
return -EADDRNOTAVAIL;
|
|
|
|
switch (sk->sk_socket->type) {
|
|
case SOCK_STREAM:
|
|
case SOCK_SEQPACKET:
|
|
spin_lock_bh(&vsock_table_lock);
|
|
retval = __vsock_bind_connectible(vsk, addr);
|
|
spin_unlock_bh(&vsock_table_lock);
|
|
break;
|
|
|
|
case SOCK_DGRAM:
|
|
retval = __vsock_bind_dgram(vsk, addr);
|
|
break;
|
|
|
|
default:
|
|
retval = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static void vsock_connect_timeout(struct work_struct *work);
|
|
|
|
static struct sock *__vsock_create(struct net *net,
|
|
struct socket *sock,
|
|
struct sock *parent,
|
|
gfp_t priority,
|
|
unsigned short type,
|
|
int kern)
|
|
{
|
|
struct sock *sk;
|
|
struct vsock_sock *psk;
|
|
struct vsock_sock *vsk;
|
|
|
|
sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
|
|
if (!sk)
|
|
return NULL;
|
|
|
|
sock_init_data(sock, sk);
|
|
|
|
/* sk->sk_type is normally set in sock_init_data, but only if sock is
|
|
* non-NULL. We make sure that our sockets always have a type by
|
|
* setting it here if needed.
|
|
*/
|
|
if (!sock)
|
|
sk->sk_type = type;
|
|
|
|
vsk = vsock_sk(sk);
|
|
vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
|
|
vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
|
|
|
|
sk->sk_destruct = vsock_sk_destruct;
|
|
sk->sk_backlog_rcv = vsock_queue_rcv_skb;
|
|
sock_reset_flag(sk, SOCK_DONE);
|
|
|
|
INIT_LIST_HEAD(&vsk->bound_table);
|
|
INIT_LIST_HEAD(&vsk->connected_table);
|
|
vsk->listener = NULL;
|
|
INIT_LIST_HEAD(&vsk->pending_links);
|
|
INIT_LIST_HEAD(&vsk->accept_queue);
|
|
vsk->rejected = false;
|
|
vsk->sent_request = false;
|
|
vsk->ignore_connecting_rst = false;
|
|
vsk->peer_shutdown = 0;
|
|
INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
|
|
INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
|
|
|
|
psk = parent ? vsock_sk(parent) : NULL;
|
|
if (parent) {
|
|
vsk->trusted = psk->trusted;
|
|
vsk->owner = get_cred(psk->owner);
|
|
vsk->connect_timeout = psk->connect_timeout;
|
|
vsk->buffer_size = psk->buffer_size;
|
|
vsk->buffer_min_size = psk->buffer_min_size;
|
|
vsk->buffer_max_size = psk->buffer_max_size;
|
|
security_sk_clone(parent, sk);
|
|
} else {
|
|
vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
|
|
vsk->owner = get_current_cred();
|
|
vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
|
|
vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
|
|
vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
|
|
vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
|
|
}
|
|
|
|
return sk;
|
|
}
|
|
|
|
static bool sock_type_connectible(u16 type)
|
|
{
|
|
return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
|
|
}
|
|
|
|
static void __vsock_release(struct sock *sk, int level)
|
|
{
|
|
if (sk) {
|
|
struct sock *pending;
|
|
struct vsock_sock *vsk;
|
|
|
|
vsk = vsock_sk(sk);
|
|
pending = NULL; /* Compiler warning. */
|
|
|
|
/* When "level" is SINGLE_DEPTH_NESTING, use the nested
|
|
* version to avoid the warning "possible recursive locking
|
|
* detected". When "level" is 0, lock_sock_nested(sk, level)
|
|
* is the same as lock_sock(sk).
|
|
*/
|
|
lock_sock_nested(sk, level);
|
|
|
|
if (vsk->transport)
|
|
vsk->transport->release(vsk);
|
|
else if (sock_type_connectible(sk->sk_type))
|
|
vsock_remove_sock(vsk);
|
|
|
|
sock_orphan(sk);
|
|
sk->sk_shutdown = SHUTDOWN_MASK;
|
|
|
|
skb_queue_purge(&sk->sk_receive_queue);
|
|
|
|
/* Clean up any sockets that never were accepted. */
|
|
while ((pending = vsock_dequeue_accept(sk)) != NULL) {
|
|
__vsock_release(pending, SINGLE_DEPTH_NESTING);
|
|
sock_put(pending);
|
|
}
|
|
|
|
release_sock(sk);
|
|
sock_put(sk);
|
|
}
|
|
}
|
|
|
|
static void vsock_sk_destruct(struct sock *sk)
|
|
{
|
|
struct vsock_sock *vsk = vsock_sk(sk);
|
|
|
|
vsock_deassign_transport(vsk);
|
|
|
|
/* When clearing these addresses, there's no need to set the family and
|
|
* possibly register the address family with the kernel.
|
|
*/
|
|
vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
|
|
vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
|
|
|
|
put_cred(vsk->owner);
|
|
}
|
|
|
|
static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
int err;
|
|
|
|
err = sock_queue_rcv_skb(sk, skb);
|
|
if (err)
|
|
kfree_skb(skb);
|
|
|
|
return err;
|
|
}
|
|
|
|
struct sock *vsock_create_connected(struct sock *parent)
|
|
{
|
|
return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
|
|
parent->sk_type, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_create_connected);
|
|
|
|
s64 vsock_stream_has_data(struct vsock_sock *vsk)
|
|
{
|
|
return vsk->transport->stream_has_data(vsk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_stream_has_data);
|
|
|
|
s64 vsock_connectible_has_data(struct vsock_sock *vsk)
|
|
{
|
|
struct sock *sk = sk_vsock(vsk);
|
|
|
|
if (sk->sk_type == SOCK_SEQPACKET)
|
|
return vsk->transport->seqpacket_has_data(vsk);
|
|
else
|
|
return vsock_stream_has_data(vsk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
|
|
|
|
s64 vsock_stream_has_space(struct vsock_sock *vsk)
|
|
{
|
|
return vsk->transport->stream_has_space(vsk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_stream_has_space);
|
|
|
|
void vsock_data_ready(struct sock *sk)
|
|
{
|
|
struct vsock_sock *vsk = vsock_sk(sk);
|
|
|
|
if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
|
|
sock_flag(sk, SOCK_DONE))
|
|
sk->sk_data_ready(sk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_data_ready);
|
|
|
|
static int vsock_release(struct socket *sock)
|
|
{
|
|
__vsock_release(sock->sk, 0);
|
|
sock->sk = NULL;
|
|
sock->state = SS_FREE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
|
|
{
|
|
int err;
|
|
struct sock *sk;
|
|
struct sockaddr_vm *vm_addr;
|
|
|
|
sk = sock->sk;
|
|
|
|
if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
|
|
return -EINVAL;
|
|
|
|
lock_sock(sk);
|
|
err = __vsock_bind(sk, vm_addr);
|
|
release_sock(sk);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int vsock_getname(struct socket *sock,
|
|
struct sockaddr *addr, int peer)
|
|
{
|
|
int err;
|
|
struct sock *sk;
|
|
struct vsock_sock *vsk;
|
|
struct sockaddr_vm *vm_addr;
|
|
|
|
sk = sock->sk;
|
|
vsk = vsock_sk(sk);
|
|
err = 0;
|
|
|
|
lock_sock(sk);
|
|
|
|
if (peer) {
|
|
if (sock->state != SS_CONNECTED) {
|
|
err = -ENOTCONN;
|
|
goto out;
|
|
}
|
|
vm_addr = &vsk->remote_addr;
|
|
} else {
|
|
vm_addr = &vsk->local_addr;
|
|
}
|
|
|
|
if (!vm_addr) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* sys_getsockname() and sys_getpeername() pass us a
|
|
* MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
|
|
* that macro is defined in socket.c instead of .h, so we hardcode its
|
|
* value here.
|
|
*/
|
|
BUILD_BUG_ON(sizeof(*vm_addr) > 128);
|
|
memcpy(addr, vm_addr, sizeof(*vm_addr));
|
|
err = sizeof(*vm_addr);
|
|
|
|
out:
|
|
release_sock(sk);
|
|
return err;
|
|
}
|
|
|
|
static int vsock_shutdown(struct socket *sock, int mode)
|
|
{
|
|
int err;
|
|
struct sock *sk;
|
|
|
|
/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
|
|
* RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
|
|
* here like the other address families do. Note also that the
|
|
* increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
|
|
* which is what we want.
|
|
*/
|
|
mode++;
|
|
|
|
if ((mode & ~SHUTDOWN_MASK) || !mode)
|
|
return -EINVAL;
|
|
|
|
/* If this is a connection oriented socket and it is not connected then
|
|
* bail out immediately. If it is a DGRAM socket then we must first
|
|
* kick the socket so that it wakes up from any sleeping calls, for
|
|
* example recv(), and then afterwards return the error.
|
|
*/
|
|
|
|
sk = sock->sk;
|
|
|
|
lock_sock(sk);
|
|
if (sock->state == SS_UNCONNECTED) {
|
|
err = -ENOTCONN;
|
|
if (sock_type_connectible(sk->sk_type))
|
|
goto out;
|
|
} else {
|
|
sock->state = SS_DISCONNECTING;
|
|
err = 0;
|
|
}
|
|
|
|
/* Receive and send shutdowns are treated alike. */
|
|
mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
|
|
if (mode) {
|
|
sk->sk_shutdown |= mode;
|
|
sk->sk_state_change(sk);
|
|
|
|
if (sock_type_connectible(sk->sk_type)) {
|
|
sock_reset_flag(sk, SOCK_DONE);
|
|
vsock_send_shutdown(sk, mode);
|
|
}
|
|
}
|
|
|
|
out:
|
|
release_sock(sk);
|
|
return err;
|
|
}
|
|
|
|
static __poll_t vsock_poll(struct file *file, struct socket *sock,
|
|
poll_table *wait)
|
|
{
|
|
struct sock *sk;
|
|
__poll_t mask;
|
|
struct vsock_sock *vsk;
|
|
|
|
sk = sock->sk;
|
|
vsk = vsock_sk(sk);
|
|
|
|
poll_wait(file, sk_sleep(sk), wait);
|
|
mask = 0;
|
|
|
|
if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
|
|
/* Signify that there has been an error on this socket. */
|
|
mask |= EPOLLERR;
|
|
|
|
/* INET sockets treat local write shutdown and peer write shutdown as a
|
|
* case of EPOLLHUP set.
|
|
*/
|
|
if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
|
|
((sk->sk_shutdown & SEND_SHUTDOWN) &&
|
|
(vsk->peer_shutdown & SEND_SHUTDOWN))) {
|
|
mask |= EPOLLHUP;
|
|
}
|
|
|
|
if (sk->sk_shutdown & RCV_SHUTDOWN ||
|
|
vsk->peer_shutdown & SEND_SHUTDOWN) {
|
|
mask |= EPOLLRDHUP;
|
|
}
|
|
|
|
if (sock->type == SOCK_DGRAM) {
|
|
/* For datagram sockets we can read if there is something in
|
|
* the queue and write as long as the socket isn't shutdown for
|
|
* sending.
|
|
*/
|
|
if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
|
|
(sk->sk_shutdown & RCV_SHUTDOWN)) {
|
|
mask |= EPOLLIN | EPOLLRDNORM;
|
|
}
|
|
|
|
if (!(sk->sk_shutdown & SEND_SHUTDOWN))
|
|
mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
|
|
|
|
} else if (sock_type_connectible(sk->sk_type)) {
|
|
const struct vsock_transport *transport;
|
|
|
|
lock_sock(sk);
|
|
|
|
transport = vsk->transport;
|
|
|
|
/* Listening sockets that have connections in their accept
|
|
* queue can be read.
|
|
*/
|
|
if (sk->sk_state == TCP_LISTEN
|
|
&& !vsock_is_accept_queue_empty(sk))
|
|
mask |= EPOLLIN | EPOLLRDNORM;
|
|
|
|
/* If there is something in the queue then we can read. */
|
|
if (transport && transport->stream_is_active(vsk) &&
|
|
!(sk->sk_shutdown & RCV_SHUTDOWN)) {
|
|
bool data_ready_now = false;
|
|
int target = sock_rcvlowat(sk, 0, INT_MAX);
|
|
int ret = transport->notify_poll_in(
|
|
vsk, target, &data_ready_now);
|
|
if (ret < 0) {
|
|
mask |= EPOLLERR;
|
|
} else {
|
|
if (data_ready_now)
|
|
mask |= EPOLLIN | EPOLLRDNORM;
|
|
|
|
}
|
|
}
|
|
|
|
/* Sockets whose connections have been closed, reset, or
|
|
* terminated should also be considered read, and we check the
|
|
* shutdown flag for that.
|
|
*/
|
|
if (sk->sk_shutdown & RCV_SHUTDOWN ||
|
|
vsk->peer_shutdown & SEND_SHUTDOWN) {
|
|
mask |= EPOLLIN | EPOLLRDNORM;
|
|
}
|
|
|
|
/* Connected sockets that can produce data can be written. */
|
|
if (transport && sk->sk_state == TCP_ESTABLISHED) {
|
|
if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
|
|
bool space_avail_now = false;
|
|
int ret = transport->notify_poll_out(
|
|
vsk, 1, &space_avail_now);
|
|
if (ret < 0) {
|
|
mask |= EPOLLERR;
|
|
} else {
|
|
if (space_avail_now)
|
|
/* Remove EPOLLWRBAND since INET
|
|
* sockets are not setting it.
|
|
*/
|
|
mask |= EPOLLOUT | EPOLLWRNORM;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Simulate INET socket poll behaviors, which sets
|
|
* EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
|
|
* but local send is not shutdown.
|
|
*/
|
|
if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
|
|
if (!(sk->sk_shutdown & SEND_SHUTDOWN))
|
|
mask |= EPOLLOUT | EPOLLWRNORM;
|
|
|
|
}
|
|
|
|
release_sock(sk);
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
|
|
{
|
|
struct vsock_sock *vsk = vsock_sk(sk);
|
|
|
|
return vsk->transport->read_skb(vsk, read_actor);
|
|
}
|
|
|
|
static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
|
|
size_t len)
|
|
{
|
|
int err;
|
|
struct sock *sk;
|
|
struct vsock_sock *vsk;
|
|
struct sockaddr_vm *remote_addr;
|
|
const struct vsock_transport *transport;
|
|
|
|
if (msg->msg_flags & MSG_OOB)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* For now, MSG_DONTWAIT is always assumed... */
|
|
err = 0;
|
|
sk = sock->sk;
|
|
vsk = vsock_sk(sk);
|
|
|
|
lock_sock(sk);
|
|
|
|
transport = vsk->transport;
|
|
|
|
err = vsock_auto_bind(vsk);
|
|
if (err)
|
|
goto out;
|
|
|
|
|
|
/* If the provided message contains an address, use that. Otherwise
|
|
* fall back on the socket's remote handle (if it has been connected).
|
|
*/
|
|
if (msg->msg_name &&
|
|
vsock_addr_cast(msg->msg_name, msg->msg_namelen,
|
|
&remote_addr) == 0) {
|
|
/* Ensure this address is of the right type and is a valid
|
|
* destination.
|
|
*/
|
|
|
|
if (remote_addr->svm_cid == VMADDR_CID_ANY)
|
|
remote_addr->svm_cid = transport->get_local_cid();
|
|
|
|
if (!vsock_addr_bound(remote_addr)) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
} else if (sock->state == SS_CONNECTED) {
|
|
remote_addr = &vsk->remote_addr;
|
|
|
|
if (remote_addr->svm_cid == VMADDR_CID_ANY)
|
|
remote_addr->svm_cid = transport->get_local_cid();
|
|
|
|
/* XXX Should connect() or this function ensure remote_addr is
|
|
* bound?
|
|
*/
|
|
if (!vsock_addr_bound(&vsk->remote_addr)) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
} else {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (!transport->dgram_allow(remote_addr->svm_cid,
|
|
remote_addr->svm_port)) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
|
|
|
|
out:
|
|
release_sock(sk);
|
|
return err;
|
|
}
|
|
|
|
static int vsock_dgram_connect(struct socket *sock,
|
|
struct sockaddr *addr, int addr_len, int flags)
|
|
{
|
|
int err;
|
|
struct sock *sk;
|
|
struct vsock_sock *vsk;
|
|
struct sockaddr_vm *remote_addr;
|
|
|
|
sk = sock->sk;
|
|
vsk = vsock_sk(sk);
|
|
|
|
err = vsock_addr_cast(addr, addr_len, &remote_addr);
|
|
if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
|
|
lock_sock(sk);
|
|
vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
|
|
VMADDR_PORT_ANY);
|
|
sock->state = SS_UNCONNECTED;
|
|
release_sock(sk);
|
|
return 0;
|
|
} else if (err != 0)
|
|
return -EINVAL;
|
|
|
|
lock_sock(sk);
|
|
|
|
err = vsock_auto_bind(vsk);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
|
|
remote_addr->svm_port)) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
|
|
sock->state = SS_CONNECTED;
|
|
|
|
/* sock map disallows redirection of non-TCP sockets with sk_state !=
|
|
* TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
|
|
* TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
|
|
*
|
|
* This doesn't seem to be abnormal state for datagram sockets, as the
|
|
* same approach can be see in other datagram socket types as well
|
|
* (such as unix sockets).
|
|
*/
|
|
sk->sk_state = TCP_ESTABLISHED;
|
|
|
|
out:
|
|
release_sock(sk);
|
|
return err;
|
|
}
|
|
|
|
int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
|
|
size_t len, int flags)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
struct vsock_sock *vsk = vsock_sk(sk);
|
|
|
|
return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
|
|
}
|
|
|
|
int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
|
|
size_t len, int flags)
|
|
{
|
|
#ifdef CONFIG_BPF_SYSCALL
|
|
struct sock *sk = sock->sk;
|
|
const struct proto *prot;
|
|
|
|
prot = READ_ONCE(sk->sk_prot);
|
|
if (prot != &vsock_proto)
|
|
return prot->recvmsg(sk, msg, len, flags, NULL);
|
|
#endif
|
|
|
|
return __vsock_dgram_recvmsg(sock, msg, len, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
|
|
|
|
static const struct proto_ops vsock_dgram_ops = {
|
|
.family = PF_VSOCK,
|
|
.owner = THIS_MODULE,
|
|
.release = vsock_release,
|
|
.bind = vsock_bind,
|
|
.connect = vsock_dgram_connect,
|
|
.socketpair = sock_no_socketpair,
|
|
.accept = sock_no_accept,
|
|
.getname = vsock_getname,
|
|
.poll = vsock_poll,
|
|
.ioctl = sock_no_ioctl,
|
|
.listen = sock_no_listen,
|
|
.shutdown = vsock_shutdown,
|
|
.sendmsg = vsock_dgram_sendmsg,
|
|
.recvmsg = vsock_dgram_recvmsg,
|
|
.mmap = sock_no_mmap,
|
|
.read_skb = vsock_read_skb,
|
|
};
|
|
|
|
static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
|
|
{
|
|
const struct vsock_transport *transport = vsk->transport;
|
|
|
|
if (!transport || !transport->cancel_pkt)
|
|
return -EOPNOTSUPP;
|
|
|
|
return transport->cancel_pkt(vsk);
|
|
}
|
|
|
|
static void vsock_connect_timeout(struct work_struct *work)
|
|
{
|
|
struct sock *sk;
|
|
struct vsock_sock *vsk;
|
|
|
|
vsk = container_of(work, struct vsock_sock, connect_work.work);
|
|
sk = sk_vsock(vsk);
|
|
|
|
lock_sock(sk);
|
|
if (sk->sk_state == TCP_SYN_SENT &&
|
|
(sk->sk_shutdown != SHUTDOWN_MASK)) {
|
|
sk->sk_state = TCP_CLOSE;
|
|
sk->sk_socket->state = SS_UNCONNECTED;
|
|
sk->sk_err = ETIMEDOUT;
|
|
sk_error_report(sk);
|
|
vsock_transport_cancel_pkt(vsk);
|
|
}
|
|
release_sock(sk);
|
|
|
|
sock_put(sk);
|
|
}
|
|
|
|
static int vsock_connect(struct socket *sock, struct sockaddr *addr,
|
|
int addr_len, int flags)
|
|
{
|
|
int err;
|
|
struct sock *sk;
|
|
struct vsock_sock *vsk;
|
|
const struct vsock_transport *transport;
|
|
struct sockaddr_vm *remote_addr;
|
|
long timeout;
|
|
DEFINE_WAIT(wait);
|
|
|
|
err = 0;
|
|
sk = sock->sk;
|
|
vsk = vsock_sk(sk);
|
|
|
|
lock_sock(sk);
|
|
|
|
/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
|
|
switch (sock->state) {
|
|
case SS_CONNECTED:
|
|
err = -EISCONN;
|
|
goto out;
|
|
case SS_DISCONNECTING:
|
|
err = -EINVAL;
|
|
goto out;
|
|
case SS_CONNECTING:
|
|
/* This continues on so we can move sock into the SS_CONNECTED
|
|
* state once the connection has completed (at which point err
|
|
* will be set to zero also). Otherwise, we will either wait
|
|
* for the connection or return -EALREADY should this be a
|
|
* non-blocking call.
|
|
*/
|
|
err = -EALREADY;
|
|
if (flags & O_NONBLOCK)
|
|
goto out;
|
|
break;
|
|
default:
|
|
if ((sk->sk_state == TCP_LISTEN) ||
|
|
vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Set the remote address that we are connecting to. */
|
|
memcpy(&vsk->remote_addr, remote_addr,
|
|
sizeof(vsk->remote_addr));
|
|
|
|
err = vsock_assign_transport(vsk, NULL);
|
|
if (err)
|
|
goto out;
|
|
|
|
transport = vsk->transport;
|
|
|
|
/* The hypervisor and well-known contexts do not have socket
|
|
* endpoints.
|
|
*/
|
|
if (!transport ||
|
|
!transport->stream_allow(remote_addr->svm_cid,
|
|
remote_addr->svm_port)) {
|
|
err = -ENETUNREACH;
|
|
goto out;
|
|
}
|
|
|
|
if (vsock_msgzerocopy_allow(transport)) {
|
|
set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
|
|
} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
|
|
/* If this option was set before 'connect()',
|
|
* when transport was unknown, check that this
|
|
* feature is supported here.
|
|
*/
|
|
err = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
err = vsock_auto_bind(vsk);
|
|
if (err)
|
|
goto out;
|
|
|
|
sk->sk_state = TCP_SYN_SENT;
|
|
|
|
err = transport->connect(vsk);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
/* Mark sock as connecting and set the error code to in
|
|
* progress in case this is a non-blocking connect.
|
|
*/
|
|
sock->state = SS_CONNECTING;
|
|
err = -EINPROGRESS;
|
|
}
|
|
|
|
/* The receive path will handle all communication until we are able to
|
|
* enter the connected state. Here we wait for the connection to be
|
|
* completed or a notification of an error.
|
|
*/
|
|
timeout = vsk->connect_timeout;
|
|
prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
|
|
|
|
while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
|
|
if (flags & O_NONBLOCK) {
|
|
/* If we're not going to block, we schedule a timeout
|
|
* function to generate a timeout on the connection
|
|
* attempt, in case the peer doesn't respond in a
|
|
* timely manner. We hold on to the socket until the
|
|
* timeout fires.
|
|
*/
|
|
sock_hold(sk);
|
|
|
|
/* If the timeout function is already scheduled,
|
|
* reschedule it, then ungrab the socket refcount to
|
|
* keep it balanced.
|
|
*/
|
|
if (mod_delayed_work(system_wq, &vsk->connect_work,
|
|
timeout))
|
|
sock_put(sk);
|
|
|
|
/* Skip ahead to preserve error code set above. */
|
|
goto out_wait;
|
|
}
|
|
|
|
release_sock(sk);
|
|
timeout = schedule_timeout(timeout);
|
|
lock_sock(sk);
|
|
|
|
if (signal_pending(current)) {
|
|
err = sock_intr_errno(timeout);
|
|
sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
|
|
sock->state = SS_UNCONNECTED;
|
|
vsock_transport_cancel_pkt(vsk);
|
|
vsock_remove_connected(vsk);
|
|
goto out_wait;
|
|
} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
|
|
err = -ETIMEDOUT;
|
|
sk->sk_state = TCP_CLOSE;
|
|
sock->state = SS_UNCONNECTED;
|
|
vsock_transport_cancel_pkt(vsk);
|
|
goto out_wait;
|
|
}
|
|
|
|
prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
|
|
}
|
|
|
|
if (sk->sk_err) {
|
|
err = -sk->sk_err;
|
|
sk->sk_state = TCP_CLOSE;
|
|
sock->state = SS_UNCONNECTED;
|
|
} else {
|
|
err = 0;
|
|
}
|
|
|
|
out_wait:
|
|
finish_wait(sk_sleep(sk), &wait);
|
|
out:
|
|
release_sock(sk);
|
|
return err;
|
|
}
|
|
|
|
static int vsock_accept(struct socket *sock, struct socket *newsock,
|
|
struct proto_accept_arg *arg)
|
|
{
|
|
struct sock *listener;
|
|
int err;
|
|
struct sock *connected;
|
|
struct vsock_sock *vconnected;
|
|
long timeout;
|
|
DEFINE_WAIT(wait);
|
|
|
|
err = 0;
|
|
listener = sock->sk;
|
|
|
|
lock_sock(listener);
|
|
|
|
if (!sock_type_connectible(sock->type)) {
|
|
err = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
if (listener->sk_state != TCP_LISTEN) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Wait for children sockets to appear; these are the new sockets
|
|
* created upon connection establishment.
|
|
*/
|
|
timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK);
|
|
prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
|
|
|
|
while ((connected = vsock_dequeue_accept(listener)) == NULL &&
|
|
listener->sk_err == 0) {
|
|
release_sock(listener);
|
|
timeout = schedule_timeout(timeout);
|
|
finish_wait(sk_sleep(listener), &wait);
|
|
lock_sock(listener);
|
|
|
|
if (signal_pending(current)) {
|
|
err = sock_intr_errno(timeout);
|
|
goto out;
|
|
} else if (timeout == 0) {
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
|
|
}
|
|
finish_wait(sk_sleep(listener), &wait);
|
|
|
|
if (listener->sk_err)
|
|
err = -listener->sk_err;
|
|
|
|
if (connected) {
|
|
sk_acceptq_removed(listener);
|
|
|
|
lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
|
|
vconnected = vsock_sk(connected);
|
|
|
|
/* If the listener socket has received an error, then we should
|
|
* reject this socket and return. Note that we simply mark the
|
|
* socket rejected, drop our reference, and let the cleanup
|
|
* function handle the cleanup; the fact that we found it in
|
|
* the listener's accept queue guarantees that the cleanup
|
|
* function hasn't run yet.
|
|
*/
|
|
if (err) {
|
|
vconnected->rejected = true;
|
|
} else {
|
|
newsock->state = SS_CONNECTED;
|
|
sock_graft(connected, newsock);
|
|
if (vsock_msgzerocopy_allow(vconnected->transport))
|
|
set_bit(SOCK_SUPPORT_ZC,
|
|
&connected->sk_socket->flags);
|
|
}
|
|
|
|
release_sock(connected);
|
|
sock_put(connected);
|
|
}
|
|
|
|
out:
|
|
release_sock(listener);
|
|
return err;
|
|
}
|
|
|
|
static int vsock_listen(struct socket *sock, int backlog)
|
|
{
|
|
int err;
|
|
struct sock *sk;
|
|
struct vsock_sock *vsk;
|
|
|
|
sk = sock->sk;
|
|
|
|
lock_sock(sk);
|
|
|
|
if (!sock_type_connectible(sk->sk_type)) {
|
|
err = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
if (sock->state != SS_UNCONNECTED) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
vsk = vsock_sk(sk);
|
|
|
|
if (!vsock_addr_bound(&vsk->local_addr)) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
sk->sk_max_ack_backlog = backlog;
|
|
sk->sk_state = TCP_LISTEN;
|
|
|
|
err = 0;
|
|
|
|
out:
|
|
release_sock(sk);
|
|
return err;
|
|
}
|
|
|
|
static void vsock_update_buffer_size(struct vsock_sock *vsk,
|
|
const struct vsock_transport *transport,
|
|
u64 val)
|
|
{
|
|
if (val > vsk->buffer_max_size)
|
|
val = vsk->buffer_max_size;
|
|
|
|
if (val < vsk->buffer_min_size)
|
|
val = vsk->buffer_min_size;
|
|
|
|
if (val != vsk->buffer_size &&
|
|
transport && transport->notify_buffer_size)
|
|
transport->notify_buffer_size(vsk, &val);
|
|
|
|
vsk->buffer_size = val;
|
|
}
|
|
|
|
static int vsock_connectible_setsockopt(struct socket *sock,
|
|
int level,
|
|
int optname,
|
|
sockptr_t optval,
|
|
unsigned int optlen)
|
|
{
|
|
int err;
|
|
struct sock *sk;
|
|
struct vsock_sock *vsk;
|
|
const struct vsock_transport *transport;
|
|
u64 val;
|
|
|
|
if (level != AF_VSOCK && level != SOL_SOCKET)
|
|
return -ENOPROTOOPT;
|
|
|
|
#define COPY_IN(_v) \
|
|
do { \
|
|
if (optlen < sizeof(_v)) { \
|
|
err = -EINVAL; \
|
|
goto exit; \
|
|
} \
|
|
if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
|
|
err = -EFAULT; \
|
|
goto exit; \
|
|
} \
|
|
} while (0)
|
|
|
|
err = 0;
|
|
sk = sock->sk;
|
|
vsk = vsock_sk(sk);
|
|
|
|
lock_sock(sk);
|
|
|
|
transport = vsk->transport;
|
|
|
|
if (level == SOL_SOCKET) {
|
|
int zerocopy;
|
|
|
|
if (optname != SO_ZEROCOPY) {
|
|
release_sock(sk);
|
|
return sock_setsockopt(sock, level, optname, optval, optlen);
|
|
}
|
|
|
|
/* Use 'int' type here, because variable to
|
|
* set this option usually has this type.
|
|
*/
|
|
COPY_IN(zerocopy);
|
|
|
|
if (zerocopy < 0 || zerocopy > 1) {
|
|
err = -EINVAL;
|
|
goto exit;
|
|
}
|
|
|
|
if (transport && !vsock_msgzerocopy_allow(transport)) {
|
|
err = -EOPNOTSUPP;
|
|
goto exit;
|
|
}
|
|
|
|
sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
|
|
goto exit;
|
|
}
|
|
|
|
switch (optname) {
|
|
case SO_VM_SOCKETS_BUFFER_SIZE:
|
|
COPY_IN(val);
|
|
vsock_update_buffer_size(vsk, transport, val);
|
|
break;
|
|
|
|
case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
|
|
COPY_IN(val);
|
|
vsk->buffer_max_size = val;
|
|
vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
|
|
break;
|
|
|
|
case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
|
|
COPY_IN(val);
|
|
vsk->buffer_min_size = val;
|
|
vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
|
|
break;
|
|
|
|
case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
|
|
case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
|
|
struct __kernel_sock_timeval tv;
|
|
|
|
err = sock_copy_user_timeval(&tv, optval, optlen,
|
|
optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
|
|
if (err)
|
|
break;
|
|
if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
|
|
tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
|
|
vsk->connect_timeout = tv.tv_sec * HZ +
|
|
DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
|
|
if (vsk->connect_timeout == 0)
|
|
vsk->connect_timeout =
|
|
VSOCK_DEFAULT_CONNECT_TIMEOUT;
|
|
|
|
} else {
|
|
err = -ERANGE;
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
err = -ENOPROTOOPT;
|
|
break;
|
|
}
|
|
|
|
#undef COPY_IN
|
|
|
|
exit:
|
|
release_sock(sk);
|
|
return err;
|
|
}
|
|
|
|
static int vsock_connectible_getsockopt(struct socket *sock,
|
|
int level, int optname,
|
|
char __user *optval,
|
|
int __user *optlen)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
struct vsock_sock *vsk = vsock_sk(sk);
|
|
|
|
union {
|
|
u64 val64;
|
|
struct old_timeval32 tm32;
|
|
struct __kernel_old_timeval tm;
|
|
struct __kernel_sock_timeval stm;
|
|
} v;
|
|
|
|
int lv = sizeof(v.val64);
|
|
int len;
|
|
|
|
if (level != AF_VSOCK)
|
|
return -ENOPROTOOPT;
|
|
|
|
if (get_user(len, optlen))
|
|
return -EFAULT;
|
|
|
|
memset(&v, 0, sizeof(v));
|
|
|
|
switch (optname) {
|
|
case SO_VM_SOCKETS_BUFFER_SIZE:
|
|
v.val64 = vsk->buffer_size;
|
|
break;
|
|
|
|
case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
|
|
v.val64 = vsk->buffer_max_size;
|
|
break;
|
|
|
|
case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
|
|
v.val64 = vsk->buffer_min_size;
|
|
break;
|
|
|
|
case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
|
|
case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
|
|
lv = sock_get_timeout(vsk->connect_timeout, &v,
|
|
optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
|
|
break;
|
|
|
|
default:
|
|
return -ENOPROTOOPT;
|
|
}
|
|
|
|
if (len < lv)
|
|
return -EINVAL;
|
|
if (len > lv)
|
|
len = lv;
|
|
if (copy_to_user(optval, &v, len))
|
|
return -EFAULT;
|
|
|
|
if (put_user(len, optlen))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
|
|
size_t len)
|
|
{
|
|
struct sock *sk;
|
|
struct vsock_sock *vsk;
|
|
const struct vsock_transport *transport;
|
|
ssize_t total_written;
|
|
long timeout;
|
|
int err;
|
|
struct vsock_transport_send_notify_data send_data;
|
|
DEFINE_WAIT_FUNC(wait, woken_wake_function);
|
|
|
|
sk = sock->sk;
|
|
vsk = vsock_sk(sk);
|
|
total_written = 0;
|
|
err = 0;
|
|
|
|
if (msg->msg_flags & MSG_OOB)
|
|
return -EOPNOTSUPP;
|
|
|
|
lock_sock(sk);
|
|
|
|
transport = vsk->transport;
|
|
|
|
/* Callers should not provide a destination with connection oriented
|
|
* sockets.
|
|
*/
|
|
if (msg->msg_namelen) {
|
|
err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
/* Send data only if both sides are not shutdown in the direction. */
|
|
if (sk->sk_shutdown & SEND_SHUTDOWN ||
|
|
vsk->peer_shutdown & RCV_SHUTDOWN) {
|
|
err = -EPIPE;
|
|
goto out;
|
|
}
|
|
|
|
if (!transport || sk->sk_state != TCP_ESTABLISHED ||
|
|
!vsock_addr_bound(&vsk->local_addr)) {
|
|
err = -ENOTCONN;
|
|
goto out;
|
|
}
|
|
|
|
if (!vsock_addr_bound(&vsk->remote_addr)) {
|
|
err = -EDESTADDRREQ;
|
|
goto out;
|
|
}
|
|
|
|
if (msg->msg_flags & MSG_ZEROCOPY &&
|
|
!vsock_msgzerocopy_allow(transport)) {
|
|
err = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
/* Wait for room in the produce queue to enqueue our user's data. */
|
|
timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
|
|
|
|
err = transport->notify_send_init(vsk, &send_data);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
while (total_written < len) {
|
|
ssize_t written;
|
|
|
|
add_wait_queue(sk_sleep(sk), &wait);
|
|
while (vsock_stream_has_space(vsk) == 0 &&
|
|
sk->sk_err == 0 &&
|
|
!(sk->sk_shutdown & SEND_SHUTDOWN) &&
|
|
!(vsk->peer_shutdown & RCV_SHUTDOWN)) {
|
|
|
|
/* Don't wait for non-blocking sockets. */
|
|
if (timeout == 0) {
|
|
err = -EAGAIN;
|
|
remove_wait_queue(sk_sleep(sk), &wait);
|
|
goto out_err;
|
|
}
|
|
|
|
err = transport->notify_send_pre_block(vsk, &send_data);
|
|
if (err < 0) {
|
|
remove_wait_queue(sk_sleep(sk), &wait);
|
|
goto out_err;
|
|
}
|
|
|
|
release_sock(sk);
|
|
timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
|
|
lock_sock(sk);
|
|
if (signal_pending(current)) {
|
|
err = sock_intr_errno(timeout);
|
|
remove_wait_queue(sk_sleep(sk), &wait);
|
|
goto out_err;
|
|
} else if (timeout == 0) {
|
|
err = -EAGAIN;
|
|
remove_wait_queue(sk_sleep(sk), &wait);
|
|
goto out_err;
|
|
}
|
|
}
|
|
remove_wait_queue(sk_sleep(sk), &wait);
|
|
|
|
/* These checks occur both as part of and after the loop
|
|
* conditional since we need to check before and after
|
|
* sleeping.
|
|
*/
|
|
if (sk->sk_err) {
|
|
err = -sk->sk_err;
|
|
goto out_err;
|
|
} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
|
|
(vsk->peer_shutdown & RCV_SHUTDOWN)) {
|
|
err = -EPIPE;
|
|
goto out_err;
|
|
}
|
|
|
|
err = transport->notify_send_pre_enqueue(vsk, &send_data);
|
|
if (err < 0)
|
|
goto out_err;
|
|
|
|
/* Note that enqueue will only write as many bytes as are free
|
|
* in the produce queue, so we don't need to ensure len is
|
|
* smaller than the queue size. It is the caller's
|
|
* responsibility to check how many bytes we were able to send.
|
|
*/
|
|
|
|
if (sk->sk_type == SOCK_SEQPACKET) {
|
|
written = transport->seqpacket_enqueue(vsk,
|
|
msg, len - total_written);
|
|
} else {
|
|
written = transport->stream_enqueue(vsk,
|
|
msg, len - total_written);
|
|
}
|
|
|
|
if (written < 0) {
|
|
err = written;
|
|
goto out_err;
|
|
}
|
|
|
|
total_written += written;
|
|
|
|
err = transport->notify_send_post_enqueue(
|
|
vsk, written, &send_data);
|
|
if (err < 0)
|
|
goto out_err;
|
|
|
|
}
|
|
|
|
out_err:
|
|
if (total_written > 0) {
|
|
/* Return number of written bytes only if:
|
|
* 1) SOCK_STREAM socket.
|
|
* 2) SOCK_SEQPACKET socket when whole buffer is sent.
|
|
*/
|
|
if (sk->sk_type == SOCK_STREAM || total_written == len)
|
|
err = total_written;
|
|
}
|
|
out:
|
|
if (sk->sk_type == SOCK_STREAM)
|
|
err = sk_stream_error(sk, msg->msg_flags, err);
|
|
|
|
release_sock(sk);
|
|
return err;
|
|
}
|
|
|
|
static int vsock_connectible_wait_data(struct sock *sk,
|
|
struct wait_queue_entry *wait,
|
|
long timeout,
|
|
struct vsock_transport_recv_notify_data *recv_data,
|
|
size_t target)
|
|
{
|
|
const struct vsock_transport *transport;
|
|
struct vsock_sock *vsk;
|
|
s64 data;
|
|
int err;
|
|
|
|
vsk = vsock_sk(sk);
|
|
err = 0;
|
|
transport = vsk->transport;
|
|
|
|
while (1) {
|
|
prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
|
|
data = vsock_connectible_has_data(vsk);
|
|
if (data != 0)
|
|
break;
|
|
|
|
if (sk->sk_err != 0 ||
|
|
(sk->sk_shutdown & RCV_SHUTDOWN) ||
|
|
(vsk->peer_shutdown & SEND_SHUTDOWN)) {
|
|
break;
|
|
}
|
|
|
|
/* Don't wait for non-blocking sockets. */
|
|
if (timeout == 0) {
|
|
err = -EAGAIN;
|
|
break;
|
|
}
|
|
|
|
if (recv_data) {
|
|
err = transport->notify_recv_pre_block(vsk, target, recv_data);
|
|
if (err < 0)
|
|
break;
|
|
}
|
|
|
|
release_sock(sk);
|
|
timeout = schedule_timeout(timeout);
|
|
lock_sock(sk);
|
|
|
|
if (signal_pending(current)) {
|
|
err = sock_intr_errno(timeout);
|
|
break;
|
|
} else if (timeout == 0) {
|
|
err = -EAGAIN;
|
|
break;
|
|
}
|
|
}
|
|
|
|
finish_wait(sk_sleep(sk), wait);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
/* Internal transport error when checking for available
|
|
* data. XXX This should be changed to a connection
|
|
* reset in a later change.
|
|
*/
|
|
if (data < 0)
|
|
return -ENOMEM;
|
|
|
|
return data;
|
|
}
|
|
|
|
static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
|
|
size_t len, int flags)
|
|
{
|
|
struct vsock_transport_recv_notify_data recv_data;
|
|
const struct vsock_transport *transport;
|
|
struct vsock_sock *vsk;
|
|
ssize_t copied;
|
|
size_t target;
|
|
long timeout;
|
|
int err;
|
|
|
|
DEFINE_WAIT(wait);
|
|
|
|
vsk = vsock_sk(sk);
|
|
transport = vsk->transport;
|
|
|
|
/* We must not copy less than target bytes into the user's buffer
|
|
* before returning successfully, so we wait for the consume queue to
|
|
* have that much data to consume before dequeueing. Note that this
|
|
* makes it impossible to handle cases where target is greater than the
|
|
* queue size.
|
|
*/
|
|
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
|
|
if (target >= transport->stream_rcvhiwat(vsk)) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
|
|
copied = 0;
|
|
|
|
err = transport->notify_recv_init(vsk, target, &recv_data);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
|
|
while (1) {
|
|
ssize_t read;
|
|
|
|
err = vsock_connectible_wait_data(sk, &wait, timeout,
|
|
&recv_data, target);
|
|
if (err <= 0)
|
|
break;
|
|
|
|
err = transport->notify_recv_pre_dequeue(vsk, target,
|
|
&recv_data);
|
|
if (err < 0)
|
|
break;
|
|
|
|
read = transport->stream_dequeue(vsk, msg, len - copied, flags);
|
|
if (read < 0) {
|
|
err = read;
|
|
break;
|
|
}
|
|
|
|
copied += read;
|
|
|
|
err = transport->notify_recv_post_dequeue(vsk, target, read,
|
|
!(flags & MSG_PEEK), &recv_data);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
if (read >= target || flags & MSG_PEEK)
|
|
break;
|
|
|
|
target -= read;
|
|
}
|
|
|
|
if (sk->sk_err)
|
|
err = -sk->sk_err;
|
|
else if (sk->sk_shutdown & RCV_SHUTDOWN)
|
|
err = 0;
|
|
|
|
if (copied > 0)
|
|
err = copied;
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
|
|
size_t len, int flags)
|
|
{
|
|
const struct vsock_transport *transport;
|
|
struct vsock_sock *vsk;
|
|
ssize_t msg_len;
|
|
long timeout;
|
|
int err = 0;
|
|
DEFINE_WAIT(wait);
|
|
|
|
vsk = vsock_sk(sk);
|
|
transport = vsk->transport;
|
|
|
|
timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
|
|
|
|
err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
|
|
if (err <= 0)
|
|
goto out;
|
|
|
|
msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
|
|
|
|
if (msg_len < 0) {
|
|
err = msg_len;
|
|
goto out;
|
|
}
|
|
|
|
if (sk->sk_err) {
|
|
err = -sk->sk_err;
|
|
} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
|
|
err = 0;
|
|
} else {
|
|
/* User sets MSG_TRUNC, so return real length of
|
|
* packet.
|
|
*/
|
|
if (flags & MSG_TRUNC)
|
|
err = msg_len;
|
|
else
|
|
err = len - msg_data_left(msg);
|
|
|
|
/* Always set MSG_TRUNC if real length of packet is
|
|
* bigger than user's buffer.
|
|
*/
|
|
if (msg_len > len)
|
|
msg->msg_flags |= MSG_TRUNC;
|
|
}
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
int
|
|
__vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
|
|
int flags)
|
|
{
|
|
struct sock *sk;
|
|
struct vsock_sock *vsk;
|
|
const struct vsock_transport *transport;
|
|
int err;
|
|
|
|
sk = sock->sk;
|
|
|
|
if (unlikely(flags & MSG_ERRQUEUE))
|
|
return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
|
|
|
|
vsk = vsock_sk(sk);
|
|
err = 0;
|
|
|
|
lock_sock(sk);
|
|
|
|
transport = vsk->transport;
|
|
|
|
if (!transport || sk->sk_state != TCP_ESTABLISHED) {
|
|
/* Recvmsg is supposed to return 0 if a peer performs an
|
|
* orderly shutdown. Differentiate between that case and when a
|
|
* peer has not connected or a local shutdown occurred with the
|
|
* SOCK_DONE flag.
|
|
*/
|
|
if (sock_flag(sk, SOCK_DONE))
|
|
err = 0;
|
|
else
|
|
err = -ENOTCONN;
|
|
|
|
goto out;
|
|
}
|
|
|
|
if (flags & MSG_OOB) {
|
|
err = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
/* We don't check peer_shutdown flag here since peer may actually shut
|
|
* down, but there can be data in the queue that a local socket can
|
|
* receive.
|
|
*/
|
|
if (sk->sk_shutdown & RCV_SHUTDOWN) {
|
|
err = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* It is valid on Linux to pass in a zero-length receive buffer. This
|
|
* is not an error. We may as well bail out now.
|
|
*/
|
|
if (!len) {
|
|
err = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (sk->sk_type == SOCK_STREAM)
|
|
err = __vsock_stream_recvmsg(sk, msg, len, flags);
|
|
else
|
|
err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
|
|
|
|
out:
|
|
release_sock(sk);
|
|
return err;
|
|
}
|
|
|
|
int
|
|
vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
|
|
int flags)
|
|
{
|
|
#ifdef CONFIG_BPF_SYSCALL
|
|
struct sock *sk = sock->sk;
|
|
const struct proto *prot;
|
|
|
|
prot = READ_ONCE(sk->sk_prot);
|
|
if (prot != &vsock_proto)
|
|
return prot->recvmsg(sk, msg, len, flags, NULL);
|
|
#endif
|
|
|
|
return __vsock_connectible_recvmsg(sock, msg, len, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
|
|
|
|
static int vsock_set_rcvlowat(struct sock *sk, int val)
|
|
{
|
|
const struct vsock_transport *transport;
|
|
struct vsock_sock *vsk;
|
|
|
|
vsk = vsock_sk(sk);
|
|
|
|
if (val > vsk->buffer_size)
|
|
return -EINVAL;
|
|
|
|
transport = vsk->transport;
|
|
|
|
if (transport && transport->notify_set_rcvlowat) {
|
|
int err;
|
|
|
|
err = transport->notify_set_rcvlowat(vsk, val);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
|
|
return 0;
|
|
}
|
|
|
|
static const struct proto_ops vsock_stream_ops = {
|
|
.family = PF_VSOCK,
|
|
.owner = THIS_MODULE,
|
|
.release = vsock_release,
|
|
.bind = vsock_bind,
|
|
.connect = vsock_connect,
|
|
.socketpair = sock_no_socketpair,
|
|
.accept = vsock_accept,
|
|
.getname = vsock_getname,
|
|
.poll = vsock_poll,
|
|
.ioctl = sock_no_ioctl,
|
|
.listen = vsock_listen,
|
|
.shutdown = vsock_shutdown,
|
|
.setsockopt = vsock_connectible_setsockopt,
|
|
.getsockopt = vsock_connectible_getsockopt,
|
|
.sendmsg = vsock_connectible_sendmsg,
|
|
.recvmsg = vsock_connectible_recvmsg,
|
|
.mmap = sock_no_mmap,
|
|
.set_rcvlowat = vsock_set_rcvlowat,
|
|
.read_skb = vsock_read_skb,
|
|
};
|
|
|
|
static const struct proto_ops vsock_seqpacket_ops = {
|
|
.family = PF_VSOCK,
|
|
.owner = THIS_MODULE,
|
|
.release = vsock_release,
|
|
.bind = vsock_bind,
|
|
.connect = vsock_connect,
|
|
.socketpair = sock_no_socketpair,
|
|
.accept = vsock_accept,
|
|
.getname = vsock_getname,
|
|
.poll = vsock_poll,
|
|
.ioctl = sock_no_ioctl,
|
|
.listen = vsock_listen,
|
|
.shutdown = vsock_shutdown,
|
|
.setsockopt = vsock_connectible_setsockopt,
|
|
.getsockopt = vsock_connectible_getsockopt,
|
|
.sendmsg = vsock_connectible_sendmsg,
|
|
.recvmsg = vsock_connectible_recvmsg,
|
|
.mmap = sock_no_mmap,
|
|
.read_skb = vsock_read_skb,
|
|
};
|
|
|
|
static int vsock_create(struct net *net, struct socket *sock,
|
|
int protocol, int kern)
|
|
{
|
|
struct vsock_sock *vsk;
|
|
struct sock *sk;
|
|
int ret;
|
|
|
|
if (!sock)
|
|
return -EINVAL;
|
|
|
|
if (protocol && protocol != PF_VSOCK)
|
|
return -EPROTONOSUPPORT;
|
|
|
|
switch (sock->type) {
|
|
case SOCK_DGRAM:
|
|
sock->ops = &vsock_dgram_ops;
|
|
break;
|
|
case SOCK_STREAM:
|
|
sock->ops = &vsock_stream_ops;
|
|
break;
|
|
case SOCK_SEQPACKET:
|
|
sock->ops = &vsock_seqpacket_ops;
|
|
break;
|
|
default:
|
|
return -ESOCKTNOSUPPORT;
|
|
}
|
|
|
|
sock->state = SS_UNCONNECTED;
|
|
|
|
sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
|
|
if (!sk)
|
|
return -ENOMEM;
|
|
|
|
vsk = vsock_sk(sk);
|
|
|
|
if (sock->type == SOCK_DGRAM) {
|
|
ret = vsock_assign_transport(vsk, NULL);
|
|
if (ret < 0) {
|
|
sock_put(sk);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
|
|
* proto_ops, so there is no handler for custom logic.
|
|
*/
|
|
if (sock_type_connectible(sock->type))
|
|
set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
|
|
|
|
vsock_insert_unbound(vsk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct net_proto_family vsock_family_ops = {
|
|
.family = AF_VSOCK,
|
|
.create = vsock_create,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static long vsock_dev_do_ioctl(struct file *filp,
|
|
unsigned int cmd, void __user *ptr)
|
|
{
|
|
u32 __user *p = ptr;
|
|
u32 cid = VMADDR_CID_ANY;
|
|
int retval = 0;
|
|
|
|
switch (cmd) {
|
|
case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
|
|
/* To be compatible with the VMCI behavior, we prioritize the
|
|
* guest CID instead of well-know host CID (VMADDR_CID_HOST).
|
|
*/
|
|
if (transport_g2h)
|
|
cid = transport_g2h->get_local_cid();
|
|
else if (transport_h2g)
|
|
cid = transport_h2g->get_local_cid();
|
|
|
|
if (put_user(cid, p) != 0)
|
|
retval = -EFAULT;
|
|
break;
|
|
|
|
default:
|
|
retval = -ENOIOCTLCMD;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static long vsock_dev_ioctl(struct file *filp,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static long vsock_dev_compat_ioctl(struct file *filp,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
|
|
}
|
|
#endif
|
|
|
|
static const struct file_operations vsock_device_ops = {
|
|
.owner = THIS_MODULE,
|
|
.unlocked_ioctl = vsock_dev_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = vsock_dev_compat_ioctl,
|
|
#endif
|
|
.open = nonseekable_open,
|
|
};
|
|
|
|
static struct miscdevice vsock_device = {
|
|
.name = "vsock",
|
|
.fops = &vsock_device_ops,
|
|
};
|
|
|
|
static int __init vsock_init(void)
|
|
{
|
|
int err = 0;
|
|
|
|
vsock_init_tables();
|
|
|
|
vsock_proto.owner = THIS_MODULE;
|
|
vsock_device.minor = MISC_DYNAMIC_MINOR;
|
|
err = misc_register(&vsock_device);
|
|
if (err) {
|
|
pr_err("Failed to register misc device\n");
|
|
goto err_reset_transport;
|
|
}
|
|
|
|
err = proto_register(&vsock_proto, 1); /* we want our slab */
|
|
if (err) {
|
|
pr_err("Cannot register vsock protocol\n");
|
|
goto err_deregister_misc;
|
|
}
|
|
|
|
err = sock_register(&vsock_family_ops);
|
|
if (err) {
|
|
pr_err("could not register af_vsock (%d) address family: %d\n",
|
|
AF_VSOCK, err);
|
|
goto err_unregister_proto;
|
|
}
|
|
|
|
vsock_bpf_build_proto();
|
|
|
|
return 0;
|
|
|
|
err_unregister_proto:
|
|
proto_unregister(&vsock_proto);
|
|
err_deregister_misc:
|
|
misc_deregister(&vsock_device);
|
|
err_reset_transport:
|
|
return err;
|
|
}
|
|
|
|
static void __exit vsock_exit(void)
|
|
{
|
|
misc_deregister(&vsock_device);
|
|
sock_unregister(AF_VSOCK);
|
|
proto_unregister(&vsock_proto);
|
|
}
|
|
|
|
const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
|
|
{
|
|
return vsk->transport;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_core_get_transport);
|
|
|
|
int vsock_core_register(const struct vsock_transport *t, int features)
|
|
{
|
|
const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
|
|
int err = mutex_lock_interruptible(&vsock_register_mutex);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
t_h2g = transport_h2g;
|
|
t_g2h = transport_g2h;
|
|
t_dgram = transport_dgram;
|
|
t_local = transport_local;
|
|
|
|
if (features & VSOCK_TRANSPORT_F_H2G) {
|
|
if (t_h2g) {
|
|
err = -EBUSY;
|
|
goto err_busy;
|
|
}
|
|
t_h2g = t;
|
|
}
|
|
|
|
if (features & VSOCK_TRANSPORT_F_G2H) {
|
|
if (t_g2h) {
|
|
err = -EBUSY;
|
|
goto err_busy;
|
|
}
|
|
t_g2h = t;
|
|
}
|
|
|
|
if (features & VSOCK_TRANSPORT_F_DGRAM) {
|
|
if (t_dgram) {
|
|
err = -EBUSY;
|
|
goto err_busy;
|
|
}
|
|
t_dgram = t;
|
|
}
|
|
|
|
if (features & VSOCK_TRANSPORT_F_LOCAL) {
|
|
if (t_local) {
|
|
err = -EBUSY;
|
|
goto err_busy;
|
|
}
|
|
t_local = t;
|
|
}
|
|
|
|
transport_h2g = t_h2g;
|
|
transport_g2h = t_g2h;
|
|
transport_dgram = t_dgram;
|
|
transport_local = t_local;
|
|
|
|
err_busy:
|
|
mutex_unlock(&vsock_register_mutex);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_core_register);
|
|
|
|
void vsock_core_unregister(const struct vsock_transport *t)
|
|
{
|
|
mutex_lock(&vsock_register_mutex);
|
|
|
|
if (transport_h2g == t)
|
|
transport_h2g = NULL;
|
|
|
|
if (transport_g2h == t)
|
|
transport_g2h = NULL;
|
|
|
|
if (transport_dgram == t)
|
|
transport_dgram = NULL;
|
|
|
|
if (transport_local == t)
|
|
transport_local = NULL;
|
|
|
|
mutex_unlock(&vsock_register_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vsock_core_unregister);
|
|
|
|
module_init(vsock_init);
|
|
module_exit(vsock_exit);
|
|
|
|
MODULE_AUTHOR("VMware, Inc.");
|
|
MODULE_DESCRIPTION("VMware Virtual Socket Family");
|
|
MODULE_VERSION("1.0.2.0-k");
|
|
MODULE_LICENSE("GPL v2");
|