mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 04:02:20 +00:00
4477b39c32
Commit 3a7e02c040
("minmax: avoid overly complicated constant
expressions in VM code") added the simpler MIN_T/MAX_T macros in order
to avoid some excessive expansion from the rather complicated regular
min/max macros.
The complexity of those macros stems from two issues:
(a) trying to use them in situations that require a C constant
expression (in static initializers and for array sizes)
(b) the type sanity checking
and MIN_T/MAX_T avoids both of these issues.
Now, in the whole (long) discussion about all this, it was pointed out
that the whole type sanity checking is entirely unnecessary for
min_t/max_t which get a fixed type that the comparison is done in.
But that still leaves min_t/max_t unnecessarily complicated due to
worries about the C constant expression case.
However, it turns out that there really aren't very many cases that use
min_t/max_t for this, and we can just force-convert those.
This does exactly that.
Which in turn will then allow for much simpler implementations of
min_t()/max_t(). All the usual "macros in all upper case will evaluate
the arguments multiple times" rules apply.
We should do all the same things for the regular min/max() vs MIN/MAX()
cases, but that has the added complexity of various drivers defining
their own local versions of MIN/MAX, so that needs another level of
fixes first.
Link: https://lore.kernel.org/all/b47fad1d0cf8449886ad148f8c013dae@AcuMS.aculab.com/
Cc: David Laight <David.Laight@aculab.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
5081 lines
147 KiB
C
5081 lines
147 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
|
|
* Copyright (C) 2016-2017 Milan Broz
|
|
* Copyright (C) 2016-2017 Mikulas Patocka
|
|
*
|
|
* This file is released under the GPL.
|
|
*/
|
|
|
|
#include "dm-bio-record.h"
|
|
|
|
#include <linux/compiler.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device-mapper.h>
|
|
#include <linux/dm-io.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/random.h>
|
|
#include <linux/reboot.h>
|
|
#include <crypto/hash.h>
|
|
#include <crypto/skcipher.h>
|
|
#include <linux/async_tx.h>
|
|
#include <linux/dm-bufio.h>
|
|
|
|
#include "dm-audit.h"
|
|
|
|
#define DM_MSG_PREFIX "integrity"
|
|
|
|
#define DEFAULT_INTERLEAVE_SECTORS 32768
|
|
#define DEFAULT_JOURNAL_SIZE_FACTOR 7
|
|
#define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
|
|
#define DEFAULT_BUFFER_SECTORS 128
|
|
#define DEFAULT_JOURNAL_WATERMARK 50
|
|
#define DEFAULT_SYNC_MSEC 10000
|
|
#define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
|
|
#define MIN_LOG2_INTERLEAVE_SECTORS 3
|
|
#define MAX_LOG2_INTERLEAVE_SECTORS 31
|
|
#define METADATA_WORKQUEUE_MAX_ACTIVE 16
|
|
#define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
|
|
#define RECALC_WRITE_SUPER 16
|
|
#define BITMAP_BLOCK_SIZE 4096 /* don't change it */
|
|
#define BITMAP_FLUSH_INTERVAL (10 * HZ)
|
|
#define DISCARD_FILLER 0xf6
|
|
#define SALT_SIZE 16
|
|
#define RECHECK_POOL_SIZE 256
|
|
|
|
/*
|
|
* Warning - DEBUG_PRINT prints security-sensitive data to the log,
|
|
* so it should not be enabled in the official kernel
|
|
*/
|
|
//#define DEBUG_PRINT
|
|
//#define INTERNAL_VERIFY
|
|
|
|
/*
|
|
* On disk structures
|
|
*/
|
|
|
|
#define SB_MAGIC "integrt"
|
|
#define SB_VERSION_1 1
|
|
#define SB_VERSION_2 2
|
|
#define SB_VERSION_3 3
|
|
#define SB_VERSION_4 4
|
|
#define SB_VERSION_5 5
|
|
#define SB_VERSION_6 6
|
|
#define SB_SECTORS 8
|
|
#define MAX_SECTORS_PER_BLOCK 8
|
|
|
|
struct superblock {
|
|
__u8 magic[8];
|
|
__u8 version;
|
|
__u8 log2_interleave_sectors;
|
|
__le16 integrity_tag_size;
|
|
__le32 journal_sections;
|
|
__le64 provided_data_sectors; /* userspace uses this value */
|
|
__le32 flags;
|
|
__u8 log2_sectors_per_block;
|
|
__u8 log2_blocks_per_bitmap_bit;
|
|
__u8 pad[2];
|
|
__le64 recalc_sector;
|
|
__u8 pad2[8];
|
|
__u8 salt[SALT_SIZE];
|
|
};
|
|
|
|
#define SB_FLAG_HAVE_JOURNAL_MAC 0x1
|
|
#define SB_FLAG_RECALCULATING 0x2
|
|
#define SB_FLAG_DIRTY_BITMAP 0x4
|
|
#define SB_FLAG_FIXED_PADDING 0x8
|
|
#define SB_FLAG_FIXED_HMAC 0x10
|
|
#define SB_FLAG_INLINE 0x20
|
|
|
|
#define JOURNAL_ENTRY_ROUNDUP 8
|
|
|
|
typedef __le64 commit_id_t;
|
|
#define JOURNAL_MAC_PER_SECTOR 8
|
|
|
|
struct journal_entry {
|
|
union {
|
|
struct {
|
|
__le32 sector_lo;
|
|
__le32 sector_hi;
|
|
} s;
|
|
__le64 sector;
|
|
} u;
|
|
commit_id_t last_bytes[];
|
|
/* __u8 tag[0]; */
|
|
};
|
|
|
|
#define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
|
|
|
|
#if BITS_PER_LONG == 64
|
|
#define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
|
|
#else
|
|
#define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
|
|
#endif
|
|
#define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
|
|
#define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
|
|
#define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1))
|
|
#define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
|
|
#define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2))
|
|
|
|
#define JOURNAL_BLOCK_SECTORS 8
|
|
#define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
|
|
#define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
|
|
|
|
struct journal_sector {
|
|
struct_group(sectors,
|
|
__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
|
|
__u8 mac[JOURNAL_MAC_PER_SECTOR];
|
|
);
|
|
commit_id_t commit_id;
|
|
};
|
|
|
|
#define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
|
|
|
|
#define METADATA_PADDING_SECTORS 8
|
|
|
|
#define N_COMMIT_IDS 4
|
|
|
|
static unsigned char prev_commit_seq(unsigned char seq)
|
|
{
|
|
return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
|
|
}
|
|
|
|
static unsigned char next_commit_seq(unsigned char seq)
|
|
{
|
|
return (seq + 1) % N_COMMIT_IDS;
|
|
}
|
|
|
|
/*
|
|
* In-memory structures
|
|
*/
|
|
|
|
struct journal_node {
|
|
struct rb_node node;
|
|
sector_t sector;
|
|
};
|
|
|
|
struct alg_spec {
|
|
char *alg_string;
|
|
char *key_string;
|
|
__u8 *key;
|
|
unsigned int key_size;
|
|
};
|
|
|
|
struct dm_integrity_c {
|
|
struct dm_dev *dev;
|
|
struct dm_dev *meta_dev;
|
|
unsigned int tag_size;
|
|
__s8 log2_tag_size;
|
|
unsigned int tuple_size;
|
|
sector_t start;
|
|
mempool_t journal_io_mempool;
|
|
struct dm_io_client *io;
|
|
struct dm_bufio_client *bufio;
|
|
struct workqueue_struct *metadata_wq;
|
|
struct superblock *sb;
|
|
unsigned int journal_pages;
|
|
unsigned int n_bitmap_blocks;
|
|
|
|
struct page_list *journal;
|
|
struct page_list *journal_io;
|
|
struct page_list *journal_xor;
|
|
struct page_list *recalc_bitmap;
|
|
struct page_list *may_write_bitmap;
|
|
struct bitmap_block_status *bbs;
|
|
unsigned int bitmap_flush_interval;
|
|
int synchronous_mode;
|
|
struct bio_list synchronous_bios;
|
|
struct delayed_work bitmap_flush_work;
|
|
|
|
struct crypto_skcipher *journal_crypt;
|
|
struct scatterlist **journal_scatterlist;
|
|
struct scatterlist **journal_io_scatterlist;
|
|
struct skcipher_request **sk_requests;
|
|
|
|
struct crypto_shash *journal_mac;
|
|
|
|
struct journal_node *journal_tree;
|
|
struct rb_root journal_tree_root;
|
|
|
|
sector_t provided_data_sectors;
|
|
|
|
unsigned short journal_entry_size;
|
|
unsigned char journal_entries_per_sector;
|
|
unsigned char journal_section_entries;
|
|
unsigned short journal_section_sectors;
|
|
unsigned int journal_sections;
|
|
unsigned int journal_entries;
|
|
sector_t data_device_sectors;
|
|
sector_t meta_device_sectors;
|
|
unsigned int initial_sectors;
|
|
unsigned int metadata_run;
|
|
__s8 log2_metadata_run;
|
|
__u8 log2_buffer_sectors;
|
|
__u8 sectors_per_block;
|
|
__u8 log2_blocks_per_bitmap_bit;
|
|
|
|
unsigned char mode;
|
|
|
|
int failed;
|
|
|
|
struct crypto_shash *internal_hash;
|
|
|
|
struct dm_target *ti;
|
|
|
|
/* these variables are locked with endio_wait.lock */
|
|
struct rb_root in_progress;
|
|
struct list_head wait_list;
|
|
wait_queue_head_t endio_wait;
|
|
struct workqueue_struct *wait_wq;
|
|
struct workqueue_struct *offload_wq;
|
|
|
|
unsigned char commit_seq;
|
|
commit_id_t commit_ids[N_COMMIT_IDS];
|
|
|
|
unsigned int committed_section;
|
|
unsigned int n_committed_sections;
|
|
|
|
unsigned int uncommitted_section;
|
|
unsigned int n_uncommitted_sections;
|
|
|
|
unsigned int free_section;
|
|
unsigned char free_section_entry;
|
|
unsigned int free_sectors;
|
|
|
|
unsigned int free_sectors_threshold;
|
|
|
|
struct workqueue_struct *commit_wq;
|
|
struct work_struct commit_work;
|
|
|
|
struct workqueue_struct *writer_wq;
|
|
struct work_struct writer_work;
|
|
|
|
struct workqueue_struct *recalc_wq;
|
|
struct work_struct recalc_work;
|
|
|
|
struct bio_list flush_bio_list;
|
|
|
|
unsigned long autocommit_jiffies;
|
|
struct timer_list autocommit_timer;
|
|
unsigned int autocommit_msec;
|
|
|
|
wait_queue_head_t copy_to_journal_wait;
|
|
|
|
struct completion crypto_backoff;
|
|
|
|
bool wrote_to_journal;
|
|
bool journal_uptodate;
|
|
bool just_formatted;
|
|
bool recalculate_flag;
|
|
bool reset_recalculate_flag;
|
|
bool discard;
|
|
bool fix_padding;
|
|
bool fix_hmac;
|
|
bool legacy_recalculate;
|
|
|
|
struct alg_spec internal_hash_alg;
|
|
struct alg_spec journal_crypt_alg;
|
|
struct alg_spec journal_mac_alg;
|
|
|
|
atomic64_t number_of_mismatches;
|
|
|
|
mempool_t recheck_pool;
|
|
struct bio_set recheck_bios;
|
|
|
|
struct notifier_block reboot_notifier;
|
|
};
|
|
|
|
struct dm_integrity_range {
|
|
sector_t logical_sector;
|
|
sector_t n_sectors;
|
|
bool waiting;
|
|
union {
|
|
struct rb_node node;
|
|
struct {
|
|
struct task_struct *task;
|
|
struct list_head wait_entry;
|
|
};
|
|
};
|
|
};
|
|
|
|
struct dm_integrity_io {
|
|
struct work_struct work;
|
|
|
|
struct dm_integrity_c *ic;
|
|
enum req_op op;
|
|
bool fua;
|
|
|
|
struct dm_integrity_range range;
|
|
|
|
sector_t metadata_block;
|
|
unsigned int metadata_offset;
|
|
|
|
atomic_t in_flight;
|
|
blk_status_t bi_status;
|
|
|
|
struct completion *completion;
|
|
|
|
struct dm_bio_details bio_details;
|
|
|
|
char *integrity_payload;
|
|
bool integrity_payload_from_mempool;
|
|
};
|
|
|
|
struct journal_completion {
|
|
struct dm_integrity_c *ic;
|
|
atomic_t in_flight;
|
|
struct completion comp;
|
|
};
|
|
|
|
struct journal_io {
|
|
struct dm_integrity_range range;
|
|
struct journal_completion *comp;
|
|
};
|
|
|
|
struct bitmap_block_status {
|
|
struct work_struct work;
|
|
struct dm_integrity_c *ic;
|
|
unsigned int idx;
|
|
unsigned long *bitmap;
|
|
struct bio_list bio_queue;
|
|
spinlock_t bio_queue_lock;
|
|
|
|
};
|
|
|
|
static struct kmem_cache *journal_io_cache;
|
|
|
|
#define JOURNAL_IO_MEMPOOL 32
|
|
|
|
#ifdef DEBUG_PRINT
|
|
#define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
|
|
#define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
|
|
len ? ": " : "", len, bytes)
|
|
#else
|
|
#define DEBUG_print(x, ...) do { } while (0)
|
|
#define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
|
|
#endif
|
|
|
|
static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
|
|
static int dm_integrity_map_inline(struct dm_integrity_io *dio);
|
|
static void integrity_bio_wait(struct work_struct *w);
|
|
static void dm_integrity_dtr(struct dm_target *ti);
|
|
|
|
static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
|
|
{
|
|
if (err == -EILSEQ)
|
|
atomic64_inc(&ic->number_of_mismatches);
|
|
if (!cmpxchg(&ic->failed, 0, err))
|
|
DMERR("Error on %s: %d", msg, err);
|
|
}
|
|
|
|
static int dm_integrity_failed(struct dm_integrity_c *ic)
|
|
{
|
|
return READ_ONCE(ic->failed);
|
|
}
|
|
|
|
static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
|
|
{
|
|
if (ic->legacy_recalculate)
|
|
return false;
|
|
if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
|
|
ic->internal_hash_alg.key || ic->journal_mac_alg.key :
|
|
ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
|
|
unsigned int j, unsigned char seq)
|
|
{
|
|
/*
|
|
* Xor the number with section and sector, so that if a piece of
|
|
* journal is written at wrong place, it is detected.
|
|
*/
|
|
return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
|
|
}
|
|
|
|
static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
|
|
sector_t *area, sector_t *offset)
|
|
{
|
|
if (!ic->meta_dev) {
|
|
__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
|
|
*area = data_sector >> log2_interleave_sectors;
|
|
*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
|
|
} else {
|
|
*area = 0;
|
|
*offset = data_sector;
|
|
}
|
|
}
|
|
|
|
#define sector_to_block(ic, n) \
|
|
do { \
|
|
BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \
|
|
(n) >>= (ic)->sb->log2_sectors_per_block; \
|
|
} while (0)
|
|
|
|
static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
|
|
sector_t offset, unsigned int *metadata_offset)
|
|
{
|
|
__u64 ms;
|
|
unsigned int mo;
|
|
|
|
ms = area << ic->sb->log2_interleave_sectors;
|
|
if (likely(ic->log2_metadata_run >= 0))
|
|
ms += area << ic->log2_metadata_run;
|
|
else
|
|
ms += area * ic->metadata_run;
|
|
ms >>= ic->log2_buffer_sectors;
|
|
|
|
sector_to_block(ic, offset);
|
|
|
|
if (likely(ic->log2_tag_size >= 0)) {
|
|
ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
|
|
mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
|
|
} else {
|
|
ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
|
|
mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
|
|
}
|
|
*metadata_offset = mo;
|
|
return ms;
|
|
}
|
|
|
|
static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
|
|
{
|
|
sector_t result;
|
|
|
|
if (ic->meta_dev)
|
|
return offset;
|
|
|
|
result = area << ic->sb->log2_interleave_sectors;
|
|
if (likely(ic->log2_metadata_run >= 0))
|
|
result += (area + 1) << ic->log2_metadata_run;
|
|
else
|
|
result += (area + 1) * ic->metadata_run;
|
|
|
|
result += (sector_t)ic->initial_sectors + offset;
|
|
result += ic->start;
|
|
|
|
return result;
|
|
}
|
|
|
|
static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
|
|
{
|
|
if (unlikely(*sec_ptr >= ic->journal_sections))
|
|
*sec_ptr -= ic->journal_sections;
|
|
}
|
|
|
|
static void sb_set_version(struct dm_integrity_c *ic)
|
|
{
|
|
if (ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE))
|
|
ic->sb->version = SB_VERSION_6;
|
|
else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
|
|
ic->sb->version = SB_VERSION_5;
|
|
else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
|
|
ic->sb->version = SB_VERSION_4;
|
|
else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
|
|
ic->sb->version = SB_VERSION_3;
|
|
else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
|
|
ic->sb->version = SB_VERSION_2;
|
|
else
|
|
ic->sb->version = SB_VERSION_1;
|
|
}
|
|
|
|
static int sb_mac(struct dm_integrity_c *ic, bool wr)
|
|
{
|
|
SHASH_DESC_ON_STACK(desc, ic->journal_mac);
|
|
int r;
|
|
unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
|
|
__u8 *sb = (__u8 *)ic->sb;
|
|
__u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
|
|
|
|
if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) {
|
|
dm_integrity_io_error(ic, "digest is too long", -EINVAL);
|
|
return -EINVAL;
|
|
}
|
|
|
|
desc->tfm = ic->journal_mac;
|
|
|
|
if (likely(wr)) {
|
|
r = crypto_shash_digest(desc, sb, mac - sb, mac);
|
|
if (unlikely(r < 0)) {
|
|
dm_integrity_io_error(ic, "crypto_shash_digest", r);
|
|
return r;
|
|
}
|
|
} else {
|
|
__u8 actual_mac[HASH_MAX_DIGESTSIZE];
|
|
|
|
r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
|
|
if (unlikely(r < 0)) {
|
|
dm_integrity_io_error(ic, "crypto_shash_digest", r);
|
|
return r;
|
|
}
|
|
if (memcmp(mac, actual_mac, mac_size)) {
|
|
dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
|
|
dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
|
|
return -EILSEQ;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
|
|
{
|
|
struct dm_io_request io_req;
|
|
struct dm_io_region io_loc;
|
|
const enum req_op op = opf & REQ_OP_MASK;
|
|
int r;
|
|
|
|
io_req.bi_opf = opf;
|
|
io_req.mem.type = DM_IO_KMEM;
|
|
io_req.mem.ptr.addr = ic->sb;
|
|
io_req.notify.fn = NULL;
|
|
io_req.client = ic->io;
|
|
io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
|
|
io_loc.sector = ic->start;
|
|
io_loc.count = SB_SECTORS;
|
|
|
|
if (op == REQ_OP_WRITE) {
|
|
sb_set_version(ic);
|
|
if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
|
|
r = sb_mac(ic, true);
|
|
if (unlikely(r))
|
|
return r;
|
|
}
|
|
}
|
|
|
|
r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
|
|
if (unlikely(r))
|
|
return r;
|
|
|
|
if (op == REQ_OP_READ) {
|
|
if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
|
|
r = sb_mac(ic, false);
|
|
if (unlikely(r))
|
|
return r;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define BITMAP_OP_TEST_ALL_SET 0
|
|
#define BITMAP_OP_TEST_ALL_CLEAR 1
|
|
#define BITMAP_OP_SET 2
|
|
#define BITMAP_OP_CLEAR 3
|
|
|
|
static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
|
|
sector_t sector, sector_t n_sectors, int mode)
|
|
{
|
|
unsigned long bit, end_bit, this_end_bit, page, end_page;
|
|
unsigned long *data;
|
|
|
|
if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
|
|
DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
|
|
sector,
|
|
n_sectors,
|
|
ic->sb->log2_sectors_per_block,
|
|
ic->log2_blocks_per_bitmap_bit,
|
|
mode);
|
|
BUG();
|
|
}
|
|
|
|
if (unlikely(!n_sectors))
|
|
return true;
|
|
|
|
bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
|
|
end_bit = (sector + n_sectors - 1) >>
|
|
(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
|
|
|
|
page = bit / (PAGE_SIZE * 8);
|
|
bit %= PAGE_SIZE * 8;
|
|
|
|
end_page = end_bit / (PAGE_SIZE * 8);
|
|
end_bit %= PAGE_SIZE * 8;
|
|
|
|
repeat:
|
|
if (page < end_page)
|
|
this_end_bit = PAGE_SIZE * 8 - 1;
|
|
else
|
|
this_end_bit = end_bit;
|
|
|
|
data = lowmem_page_address(bitmap[page].page);
|
|
|
|
if (mode == BITMAP_OP_TEST_ALL_SET) {
|
|
while (bit <= this_end_bit) {
|
|
if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
|
|
do {
|
|
if (data[bit / BITS_PER_LONG] != -1)
|
|
return false;
|
|
bit += BITS_PER_LONG;
|
|
} while (this_end_bit >= bit + BITS_PER_LONG - 1);
|
|
continue;
|
|
}
|
|
if (!test_bit(bit, data))
|
|
return false;
|
|
bit++;
|
|
}
|
|
} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
|
|
while (bit <= this_end_bit) {
|
|
if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
|
|
do {
|
|
if (data[bit / BITS_PER_LONG] != 0)
|
|
return false;
|
|
bit += BITS_PER_LONG;
|
|
} while (this_end_bit >= bit + BITS_PER_LONG - 1);
|
|
continue;
|
|
}
|
|
if (test_bit(bit, data))
|
|
return false;
|
|
bit++;
|
|
}
|
|
} else if (mode == BITMAP_OP_SET) {
|
|
while (bit <= this_end_bit) {
|
|
if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
|
|
do {
|
|
data[bit / BITS_PER_LONG] = -1;
|
|
bit += BITS_PER_LONG;
|
|
} while (this_end_bit >= bit + BITS_PER_LONG - 1);
|
|
continue;
|
|
}
|
|
__set_bit(bit, data);
|
|
bit++;
|
|
}
|
|
} else if (mode == BITMAP_OP_CLEAR) {
|
|
if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
|
|
clear_page(data);
|
|
else {
|
|
while (bit <= this_end_bit) {
|
|
if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
|
|
do {
|
|
data[bit / BITS_PER_LONG] = 0;
|
|
bit += BITS_PER_LONG;
|
|
} while (this_end_bit >= bit + BITS_PER_LONG - 1);
|
|
continue;
|
|
}
|
|
__clear_bit(bit, data);
|
|
bit++;
|
|
}
|
|
}
|
|
} else {
|
|
BUG();
|
|
}
|
|
|
|
if (unlikely(page < end_page)) {
|
|
bit = 0;
|
|
page++;
|
|
goto repeat;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
|
|
{
|
|
unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < n_bitmap_pages; i++) {
|
|
unsigned long *dst_data = lowmem_page_address(dst[i].page);
|
|
unsigned long *src_data = lowmem_page_address(src[i].page);
|
|
|
|
copy_page(dst_data, src_data);
|
|
}
|
|
}
|
|
|
|
static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
|
|
{
|
|
unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
|
|
unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
|
|
|
|
BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
|
|
return &ic->bbs[bitmap_block];
|
|
}
|
|
|
|
static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
|
|
bool e, const char *function)
|
|
{
|
|
#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
|
|
unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
|
|
|
|
if (unlikely(section >= ic->journal_sections) ||
|
|
unlikely(offset >= limit)) {
|
|
DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
|
|
function, section, offset, ic->journal_sections, limit);
|
|
BUG();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
|
|
unsigned int *pl_index, unsigned int *pl_offset)
|
|
{
|
|
unsigned int sector;
|
|
|
|
access_journal_check(ic, section, offset, false, "page_list_location");
|
|
|
|
sector = section * ic->journal_section_sectors + offset;
|
|
|
|
*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
|
|
*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
|
|
}
|
|
|
|
static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
|
|
unsigned int section, unsigned int offset, unsigned int *n_sectors)
|
|
{
|
|
unsigned int pl_index, pl_offset;
|
|
char *va;
|
|
|
|
page_list_location(ic, section, offset, &pl_index, &pl_offset);
|
|
|
|
if (n_sectors)
|
|
*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
|
|
|
|
va = lowmem_page_address(pl[pl_index].page);
|
|
|
|
return (struct journal_sector *)(va + pl_offset);
|
|
}
|
|
|
|
static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
|
|
{
|
|
return access_page_list(ic, ic->journal, section, offset, NULL);
|
|
}
|
|
|
|
static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
|
|
{
|
|
unsigned int rel_sector, offset;
|
|
struct journal_sector *js;
|
|
|
|
access_journal_check(ic, section, n, true, "access_journal_entry");
|
|
|
|
rel_sector = n % JOURNAL_BLOCK_SECTORS;
|
|
offset = n / JOURNAL_BLOCK_SECTORS;
|
|
|
|
js = access_journal(ic, section, rel_sector);
|
|
return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
|
|
}
|
|
|
|
static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
|
|
{
|
|
n <<= ic->sb->log2_sectors_per_block;
|
|
|
|
n += JOURNAL_BLOCK_SECTORS;
|
|
|
|
access_journal_check(ic, section, n, false, "access_journal_data");
|
|
|
|
return access_journal(ic, section, n);
|
|
}
|
|
|
|
static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
|
|
{
|
|
SHASH_DESC_ON_STACK(desc, ic->journal_mac);
|
|
int r;
|
|
unsigned int j, size;
|
|
|
|
desc->tfm = ic->journal_mac;
|
|
|
|
r = crypto_shash_init(desc);
|
|
if (unlikely(r < 0)) {
|
|
dm_integrity_io_error(ic, "crypto_shash_init", r);
|
|
goto err;
|
|
}
|
|
|
|
if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
|
|
__le64 section_le;
|
|
|
|
r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
|
|
if (unlikely(r < 0)) {
|
|
dm_integrity_io_error(ic, "crypto_shash_update", r);
|
|
goto err;
|
|
}
|
|
|
|
section_le = cpu_to_le64(section);
|
|
r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le));
|
|
if (unlikely(r < 0)) {
|
|
dm_integrity_io_error(ic, "crypto_shash_update", r);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < ic->journal_section_entries; j++) {
|
|
struct journal_entry *je = access_journal_entry(ic, section, j);
|
|
|
|
r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
|
|
if (unlikely(r < 0)) {
|
|
dm_integrity_io_error(ic, "crypto_shash_update", r);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
size = crypto_shash_digestsize(ic->journal_mac);
|
|
|
|
if (likely(size <= JOURNAL_MAC_SIZE)) {
|
|
r = crypto_shash_final(desc, result);
|
|
if (unlikely(r < 0)) {
|
|
dm_integrity_io_error(ic, "crypto_shash_final", r);
|
|
goto err;
|
|
}
|
|
memset(result + size, 0, JOURNAL_MAC_SIZE - size);
|
|
} else {
|
|
__u8 digest[HASH_MAX_DIGESTSIZE];
|
|
|
|
if (WARN_ON(size > sizeof(digest))) {
|
|
dm_integrity_io_error(ic, "digest_size", -EINVAL);
|
|
goto err;
|
|
}
|
|
r = crypto_shash_final(desc, digest);
|
|
if (unlikely(r < 0)) {
|
|
dm_integrity_io_error(ic, "crypto_shash_final", r);
|
|
goto err;
|
|
}
|
|
memcpy(result, digest, JOURNAL_MAC_SIZE);
|
|
}
|
|
|
|
return;
|
|
err:
|
|
memset(result, 0, JOURNAL_MAC_SIZE);
|
|
}
|
|
|
|
static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
|
|
{
|
|
__u8 result[JOURNAL_MAC_SIZE];
|
|
unsigned int j;
|
|
|
|
if (!ic->journal_mac)
|
|
return;
|
|
|
|
section_mac(ic, section, result);
|
|
|
|
for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
|
|
struct journal_sector *js = access_journal(ic, section, j);
|
|
|
|
if (likely(wr))
|
|
memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
|
|
else {
|
|
if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
|
|
dm_integrity_io_error(ic, "journal mac", -EILSEQ);
|
|
dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void complete_journal_op(void *context)
|
|
{
|
|
struct journal_completion *comp = context;
|
|
|
|
BUG_ON(!atomic_read(&comp->in_flight));
|
|
if (likely(atomic_dec_and_test(&comp->in_flight)))
|
|
complete(&comp->comp);
|
|
}
|
|
|
|
static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
|
|
unsigned int n_sections, struct journal_completion *comp)
|
|
{
|
|
struct async_submit_ctl submit;
|
|
size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
|
|
unsigned int pl_index, pl_offset, section_index;
|
|
struct page_list *source_pl, *target_pl;
|
|
|
|
if (likely(encrypt)) {
|
|
source_pl = ic->journal;
|
|
target_pl = ic->journal_io;
|
|
} else {
|
|
source_pl = ic->journal_io;
|
|
target_pl = ic->journal;
|
|
}
|
|
|
|
page_list_location(ic, section, 0, &pl_index, &pl_offset);
|
|
|
|
atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
|
|
|
|
init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
|
|
|
|
section_index = pl_index;
|
|
|
|
do {
|
|
size_t this_step;
|
|
struct page *src_pages[2];
|
|
struct page *dst_page;
|
|
|
|
while (unlikely(pl_index == section_index)) {
|
|
unsigned int dummy;
|
|
|
|
if (likely(encrypt))
|
|
rw_section_mac(ic, section, true);
|
|
section++;
|
|
n_sections--;
|
|
if (!n_sections)
|
|
break;
|
|
page_list_location(ic, section, 0, §ion_index, &dummy);
|
|
}
|
|
|
|
this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
|
|
dst_page = target_pl[pl_index].page;
|
|
src_pages[0] = source_pl[pl_index].page;
|
|
src_pages[1] = ic->journal_xor[pl_index].page;
|
|
|
|
async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
|
|
|
|
pl_index++;
|
|
pl_offset = 0;
|
|
n_bytes -= this_step;
|
|
} while (n_bytes);
|
|
|
|
BUG_ON(n_sections);
|
|
|
|
async_tx_issue_pending_all();
|
|
}
|
|
|
|
static void complete_journal_encrypt(void *data, int err)
|
|
{
|
|
struct journal_completion *comp = data;
|
|
|
|
if (unlikely(err)) {
|
|
if (likely(err == -EINPROGRESS)) {
|
|
complete(&comp->ic->crypto_backoff);
|
|
return;
|
|
}
|
|
dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
|
|
}
|
|
complete_journal_op(comp);
|
|
}
|
|
|
|
static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
|
|
{
|
|
int r;
|
|
|
|
skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
complete_journal_encrypt, comp);
|
|
if (likely(encrypt))
|
|
r = crypto_skcipher_encrypt(req);
|
|
else
|
|
r = crypto_skcipher_decrypt(req);
|
|
if (likely(!r))
|
|
return false;
|
|
if (likely(r == -EINPROGRESS))
|
|
return true;
|
|
if (likely(r == -EBUSY)) {
|
|
wait_for_completion(&comp->ic->crypto_backoff);
|
|
reinit_completion(&comp->ic->crypto_backoff);
|
|
return true;
|
|
}
|
|
dm_integrity_io_error(comp->ic, "encrypt", r);
|
|
return false;
|
|
}
|
|
|
|
static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
|
|
unsigned int n_sections, struct journal_completion *comp)
|
|
{
|
|
struct scatterlist **source_sg;
|
|
struct scatterlist **target_sg;
|
|
|
|
atomic_add(2, &comp->in_flight);
|
|
|
|
if (likely(encrypt)) {
|
|
source_sg = ic->journal_scatterlist;
|
|
target_sg = ic->journal_io_scatterlist;
|
|
} else {
|
|
source_sg = ic->journal_io_scatterlist;
|
|
target_sg = ic->journal_scatterlist;
|
|
}
|
|
|
|
do {
|
|
struct skcipher_request *req;
|
|
unsigned int ivsize;
|
|
char *iv;
|
|
|
|
if (likely(encrypt))
|
|
rw_section_mac(ic, section, true);
|
|
|
|
req = ic->sk_requests[section];
|
|
ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
|
|
iv = req->iv;
|
|
|
|
memcpy(iv, iv + ivsize, ivsize);
|
|
|
|
req->src = source_sg[section];
|
|
req->dst = target_sg[section];
|
|
|
|
if (unlikely(do_crypt(encrypt, req, comp)))
|
|
atomic_inc(&comp->in_flight);
|
|
|
|
section++;
|
|
n_sections--;
|
|
} while (n_sections);
|
|
|
|
atomic_dec(&comp->in_flight);
|
|
complete_journal_op(comp);
|
|
}
|
|
|
|
static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
|
|
unsigned int n_sections, struct journal_completion *comp)
|
|
{
|
|
if (ic->journal_xor)
|
|
return xor_journal(ic, encrypt, section, n_sections, comp);
|
|
else
|
|
return crypt_journal(ic, encrypt, section, n_sections, comp);
|
|
}
|
|
|
|
static void complete_journal_io(unsigned long error, void *context)
|
|
{
|
|
struct journal_completion *comp = context;
|
|
|
|
if (unlikely(error != 0))
|
|
dm_integrity_io_error(comp->ic, "writing journal", -EIO);
|
|
complete_journal_op(comp);
|
|
}
|
|
|
|
static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
|
|
unsigned int sector, unsigned int n_sectors,
|
|
struct journal_completion *comp)
|
|
{
|
|
struct dm_io_request io_req;
|
|
struct dm_io_region io_loc;
|
|
unsigned int pl_index, pl_offset;
|
|
int r;
|
|
|
|
if (unlikely(dm_integrity_failed(ic))) {
|
|
if (comp)
|
|
complete_journal_io(-1UL, comp);
|
|
return;
|
|
}
|
|
|
|
pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
|
|
pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
|
|
|
|
io_req.bi_opf = opf;
|
|
io_req.mem.type = DM_IO_PAGE_LIST;
|
|
if (ic->journal_io)
|
|
io_req.mem.ptr.pl = &ic->journal_io[pl_index];
|
|
else
|
|
io_req.mem.ptr.pl = &ic->journal[pl_index];
|
|
io_req.mem.offset = pl_offset;
|
|
if (likely(comp != NULL)) {
|
|
io_req.notify.fn = complete_journal_io;
|
|
io_req.notify.context = comp;
|
|
} else {
|
|
io_req.notify.fn = NULL;
|
|
}
|
|
io_req.client = ic->io;
|
|
io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
|
|
io_loc.sector = ic->start + SB_SECTORS + sector;
|
|
io_loc.count = n_sectors;
|
|
|
|
r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
|
|
if (unlikely(r)) {
|
|
dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
|
|
"reading journal" : "writing journal", r);
|
|
if (comp) {
|
|
WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
|
|
complete_journal_io(-1UL, comp);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
|
|
unsigned int section, unsigned int n_sections,
|
|
struct journal_completion *comp)
|
|
{
|
|
unsigned int sector, n_sectors;
|
|
|
|
sector = section * ic->journal_section_sectors;
|
|
n_sectors = n_sections * ic->journal_section_sectors;
|
|
|
|
rw_journal_sectors(ic, opf, sector, n_sectors, comp);
|
|
}
|
|
|
|
static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
|
|
{
|
|
struct journal_completion io_comp;
|
|
struct journal_completion crypt_comp_1;
|
|
struct journal_completion crypt_comp_2;
|
|
unsigned int i;
|
|
|
|
io_comp.ic = ic;
|
|
init_completion(&io_comp.comp);
|
|
|
|
if (commit_start + commit_sections <= ic->journal_sections) {
|
|
io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
|
|
if (ic->journal_io) {
|
|
crypt_comp_1.ic = ic;
|
|
init_completion(&crypt_comp_1.comp);
|
|
crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
|
|
encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
|
|
wait_for_completion_io(&crypt_comp_1.comp);
|
|
} else {
|
|
for (i = 0; i < commit_sections; i++)
|
|
rw_section_mac(ic, commit_start + i, true);
|
|
}
|
|
rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
|
|
commit_sections, &io_comp);
|
|
} else {
|
|
unsigned int to_end;
|
|
|
|
io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
|
|
to_end = ic->journal_sections - commit_start;
|
|
if (ic->journal_io) {
|
|
crypt_comp_1.ic = ic;
|
|
init_completion(&crypt_comp_1.comp);
|
|
crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
|
|
encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
|
|
if (try_wait_for_completion(&crypt_comp_1.comp)) {
|
|
rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
|
|
commit_start, to_end, &io_comp);
|
|
reinit_completion(&crypt_comp_1.comp);
|
|
crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
|
|
encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
|
|
wait_for_completion_io(&crypt_comp_1.comp);
|
|
} else {
|
|
crypt_comp_2.ic = ic;
|
|
init_completion(&crypt_comp_2.comp);
|
|
crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
|
|
encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
|
|
wait_for_completion_io(&crypt_comp_1.comp);
|
|
rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
|
|
wait_for_completion_io(&crypt_comp_2.comp);
|
|
}
|
|
} else {
|
|
for (i = 0; i < to_end; i++)
|
|
rw_section_mac(ic, commit_start + i, true);
|
|
rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
|
|
for (i = 0; i < commit_sections - to_end; i++)
|
|
rw_section_mac(ic, i, true);
|
|
}
|
|
rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
|
|
}
|
|
|
|
wait_for_completion_io(&io_comp.comp);
|
|
}
|
|
|
|
static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
|
|
unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
|
|
{
|
|
struct dm_io_request io_req;
|
|
struct dm_io_region io_loc;
|
|
int r;
|
|
unsigned int sector, pl_index, pl_offset;
|
|
|
|
BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
|
|
|
|
if (unlikely(dm_integrity_failed(ic))) {
|
|
fn(-1UL, data);
|
|
return;
|
|
}
|
|
|
|
sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
|
|
|
|
pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
|
|
pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
|
|
|
|
io_req.bi_opf = REQ_OP_WRITE;
|
|
io_req.mem.type = DM_IO_PAGE_LIST;
|
|
io_req.mem.ptr.pl = &ic->journal[pl_index];
|
|
io_req.mem.offset = pl_offset;
|
|
io_req.notify.fn = fn;
|
|
io_req.notify.context = data;
|
|
io_req.client = ic->io;
|
|
io_loc.bdev = ic->dev->bdev;
|
|
io_loc.sector = target;
|
|
io_loc.count = n_sectors;
|
|
|
|
r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
|
|
if (unlikely(r)) {
|
|
WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
|
|
fn(-1UL, data);
|
|
}
|
|
}
|
|
|
|
static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
|
|
{
|
|
return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
|
|
range1->logical_sector + range1->n_sectors > range2->logical_sector;
|
|
}
|
|
|
|
static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
|
|
{
|
|
struct rb_node **n = &ic->in_progress.rb_node;
|
|
struct rb_node *parent;
|
|
|
|
BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
|
|
|
|
if (likely(check_waiting)) {
|
|
struct dm_integrity_range *range;
|
|
|
|
list_for_each_entry(range, &ic->wait_list, wait_entry) {
|
|
if (unlikely(ranges_overlap(range, new_range)))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
parent = NULL;
|
|
|
|
while (*n) {
|
|
struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
|
|
|
|
parent = *n;
|
|
if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
|
|
n = &range->node.rb_left;
|
|
else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
|
|
n = &range->node.rb_right;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
rb_link_node(&new_range->node, parent, n);
|
|
rb_insert_color(&new_range->node, &ic->in_progress);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
|
|
{
|
|
rb_erase(&range->node, &ic->in_progress);
|
|
while (unlikely(!list_empty(&ic->wait_list))) {
|
|
struct dm_integrity_range *last_range =
|
|
list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
|
|
struct task_struct *last_range_task;
|
|
|
|
last_range_task = last_range->task;
|
|
list_del(&last_range->wait_entry);
|
|
if (!add_new_range(ic, last_range, false)) {
|
|
last_range->task = last_range_task;
|
|
list_add(&last_range->wait_entry, &ic->wait_list);
|
|
break;
|
|
}
|
|
last_range->waiting = false;
|
|
wake_up_process(last_range_task);
|
|
}
|
|
}
|
|
|
|
static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ic->endio_wait.lock, flags);
|
|
remove_range_unlocked(ic, range);
|
|
spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
|
|
}
|
|
|
|
static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
|
|
{
|
|
new_range->waiting = true;
|
|
list_add_tail(&new_range->wait_entry, &ic->wait_list);
|
|
new_range->task = current;
|
|
do {
|
|
__set_current_state(TASK_UNINTERRUPTIBLE);
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
io_schedule();
|
|
spin_lock_irq(&ic->endio_wait.lock);
|
|
} while (unlikely(new_range->waiting));
|
|
}
|
|
|
|
static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
|
|
{
|
|
if (unlikely(!add_new_range(ic, new_range, true)))
|
|
wait_and_add_new_range(ic, new_range);
|
|
}
|
|
|
|
static void init_journal_node(struct journal_node *node)
|
|
{
|
|
RB_CLEAR_NODE(&node->node);
|
|
node->sector = (sector_t)-1;
|
|
}
|
|
|
|
static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
|
|
{
|
|
struct rb_node **link;
|
|
struct rb_node *parent;
|
|
|
|
node->sector = sector;
|
|
BUG_ON(!RB_EMPTY_NODE(&node->node));
|
|
|
|
link = &ic->journal_tree_root.rb_node;
|
|
parent = NULL;
|
|
|
|
while (*link) {
|
|
struct journal_node *j;
|
|
|
|
parent = *link;
|
|
j = container_of(parent, struct journal_node, node);
|
|
if (sector < j->sector)
|
|
link = &j->node.rb_left;
|
|
else
|
|
link = &j->node.rb_right;
|
|
}
|
|
|
|
rb_link_node(&node->node, parent, link);
|
|
rb_insert_color(&node->node, &ic->journal_tree_root);
|
|
}
|
|
|
|
static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
|
|
{
|
|
BUG_ON(RB_EMPTY_NODE(&node->node));
|
|
rb_erase(&node->node, &ic->journal_tree_root);
|
|
init_journal_node(node);
|
|
}
|
|
|
|
#define NOT_FOUND (-1U)
|
|
|
|
static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
|
|
{
|
|
struct rb_node *n = ic->journal_tree_root.rb_node;
|
|
unsigned int found = NOT_FOUND;
|
|
|
|
*next_sector = (sector_t)-1;
|
|
while (n) {
|
|
struct journal_node *j = container_of(n, struct journal_node, node);
|
|
|
|
if (sector == j->sector)
|
|
found = j - ic->journal_tree;
|
|
|
|
if (sector < j->sector) {
|
|
*next_sector = j->sector;
|
|
n = j->node.rb_left;
|
|
} else
|
|
n = j->node.rb_right;
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
|
|
{
|
|
struct journal_node *node, *next_node;
|
|
struct rb_node *next;
|
|
|
|
if (unlikely(pos >= ic->journal_entries))
|
|
return false;
|
|
node = &ic->journal_tree[pos];
|
|
if (unlikely(RB_EMPTY_NODE(&node->node)))
|
|
return false;
|
|
if (unlikely(node->sector != sector))
|
|
return false;
|
|
|
|
next = rb_next(&node->node);
|
|
if (unlikely(!next))
|
|
return true;
|
|
|
|
next_node = container_of(next, struct journal_node, node);
|
|
return next_node->sector != sector;
|
|
}
|
|
|
|
static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
|
|
{
|
|
struct rb_node *next;
|
|
struct journal_node *next_node;
|
|
unsigned int next_section;
|
|
|
|
BUG_ON(RB_EMPTY_NODE(&node->node));
|
|
|
|
next = rb_next(&node->node);
|
|
if (unlikely(!next))
|
|
return false;
|
|
|
|
next_node = container_of(next, struct journal_node, node);
|
|
|
|
if (next_node->sector != node->sector)
|
|
return false;
|
|
|
|
next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
|
|
if (next_section >= ic->committed_section &&
|
|
next_section < ic->committed_section + ic->n_committed_sections)
|
|
return true;
|
|
if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
#define TAG_READ 0
|
|
#define TAG_WRITE 1
|
|
#define TAG_CMP 2
|
|
|
|
static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
|
|
unsigned int *metadata_offset, unsigned int total_size, int op)
|
|
{
|
|
#define MAY_BE_FILLER 1
|
|
#define MAY_BE_HASH 2
|
|
unsigned int hash_offset = 0;
|
|
unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
|
|
|
|
do {
|
|
unsigned char *data, *dp;
|
|
struct dm_buffer *b;
|
|
unsigned int to_copy;
|
|
int r;
|
|
|
|
r = dm_integrity_failed(ic);
|
|
if (unlikely(r))
|
|
return r;
|
|
|
|
data = dm_bufio_read(ic->bufio, *metadata_block, &b);
|
|
if (IS_ERR(data))
|
|
return PTR_ERR(data);
|
|
|
|
to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
|
|
dp = data + *metadata_offset;
|
|
if (op == TAG_READ) {
|
|
memcpy(tag, dp, to_copy);
|
|
} else if (op == TAG_WRITE) {
|
|
if (memcmp(dp, tag, to_copy)) {
|
|
memcpy(dp, tag, to_copy);
|
|
dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
|
|
}
|
|
} else {
|
|
/* e.g.: op == TAG_CMP */
|
|
|
|
if (likely(is_power_of_2(ic->tag_size))) {
|
|
if (unlikely(memcmp(dp, tag, to_copy)))
|
|
if (unlikely(!ic->discard) ||
|
|
unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
|
|
goto thorough_test;
|
|
}
|
|
} else {
|
|
unsigned int i, ts;
|
|
thorough_test:
|
|
ts = total_size;
|
|
|
|
for (i = 0; i < to_copy; i++, ts--) {
|
|
if (unlikely(dp[i] != tag[i]))
|
|
may_be &= ~MAY_BE_HASH;
|
|
if (likely(dp[i] != DISCARD_FILLER))
|
|
may_be &= ~MAY_BE_FILLER;
|
|
hash_offset++;
|
|
if (unlikely(hash_offset == ic->tag_size)) {
|
|
if (unlikely(!may_be)) {
|
|
dm_bufio_release(b);
|
|
return ts;
|
|
}
|
|
hash_offset = 0;
|
|
may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
dm_bufio_release(b);
|
|
|
|
tag += to_copy;
|
|
*metadata_offset += to_copy;
|
|
if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
|
|
(*metadata_block)++;
|
|
*metadata_offset = 0;
|
|
}
|
|
|
|
if (unlikely(!is_power_of_2(ic->tag_size)))
|
|
hash_offset = (hash_offset + to_copy) % ic->tag_size;
|
|
|
|
total_size -= to_copy;
|
|
} while (unlikely(total_size));
|
|
|
|
return 0;
|
|
#undef MAY_BE_FILLER
|
|
#undef MAY_BE_HASH
|
|
}
|
|
|
|
struct flush_request {
|
|
struct dm_io_request io_req;
|
|
struct dm_io_region io_reg;
|
|
struct dm_integrity_c *ic;
|
|
struct completion comp;
|
|
};
|
|
|
|
static void flush_notify(unsigned long error, void *fr_)
|
|
{
|
|
struct flush_request *fr = fr_;
|
|
|
|
if (unlikely(error != 0))
|
|
dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
|
|
complete(&fr->comp);
|
|
}
|
|
|
|
static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
|
|
{
|
|
int r;
|
|
struct flush_request fr;
|
|
|
|
if (!ic->meta_dev)
|
|
flush_data = false;
|
|
if (flush_data) {
|
|
fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
|
|
fr.io_req.mem.type = DM_IO_KMEM,
|
|
fr.io_req.mem.ptr.addr = NULL,
|
|
fr.io_req.notify.fn = flush_notify,
|
|
fr.io_req.notify.context = &fr;
|
|
fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
|
|
fr.io_reg.bdev = ic->dev->bdev,
|
|
fr.io_reg.sector = 0,
|
|
fr.io_reg.count = 0,
|
|
fr.ic = ic;
|
|
init_completion(&fr.comp);
|
|
r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT);
|
|
BUG_ON(r);
|
|
}
|
|
|
|
r = dm_bufio_write_dirty_buffers(ic->bufio);
|
|
if (unlikely(r))
|
|
dm_integrity_io_error(ic, "writing tags", r);
|
|
|
|
if (flush_data)
|
|
wait_for_completion(&fr.comp);
|
|
}
|
|
|
|
static void sleep_on_endio_wait(struct dm_integrity_c *ic)
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
__add_wait_queue(&ic->endio_wait, &wait);
|
|
__set_current_state(TASK_UNINTERRUPTIBLE);
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
io_schedule();
|
|
spin_lock_irq(&ic->endio_wait.lock);
|
|
__remove_wait_queue(&ic->endio_wait, &wait);
|
|
}
|
|
|
|
static void autocommit_fn(struct timer_list *t)
|
|
{
|
|
struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
|
|
|
|
if (likely(!dm_integrity_failed(ic)))
|
|
queue_work(ic->commit_wq, &ic->commit_work);
|
|
}
|
|
|
|
static void schedule_autocommit(struct dm_integrity_c *ic)
|
|
{
|
|
if (!timer_pending(&ic->autocommit_timer))
|
|
mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
|
|
}
|
|
|
|
static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
|
|
{
|
|
struct bio *bio;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ic->endio_wait.lock, flags);
|
|
bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
|
|
bio_list_add(&ic->flush_bio_list, bio);
|
|
spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
|
|
|
|
queue_work(ic->commit_wq, &ic->commit_work);
|
|
}
|
|
|
|
static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
|
|
{
|
|
int r;
|
|
|
|
r = dm_integrity_failed(ic);
|
|
if (unlikely(r) && !bio->bi_status)
|
|
bio->bi_status = errno_to_blk_status(r);
|
|
if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ic->endio_wait.lock, flags);
|
|
bio_list_add(&ic->synchronous_bios, bio);
|
|
queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
|
|
spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
|
|
return;
|
|
}
|
|
bio_endio(bio);
|
|
}
|
|
|
|
static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
|
|
{
|
|
struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
|
|
|
|
if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
|
|
submit_flush_bio(ic, dio);
|
|
else
|
|
do_endio(ic, bio);
|
|
}
|
|
|
|
static void dec_in_flight(struct dm_integrity_io *dio)
|
|
{
|
|
if (atomic_dec_and_test(&dio->in_flight)) {
|
|
struct dm_integrity_c *ic = dio->ic;
|
|
struct bio *bio;
|
|
|
|
remove_range(ic, &dio->range);
|
|
|
|
if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
|
|
schedule_autocommit(ic);
|
|
|
|
bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
|
|
if (unlikely(dio->bi_status) && !bio->bi_status)
|
|
bio->bi_status = dio->bi_status;
|
|
if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
|
|
dio->range.logical_sector += dio->range.n_sectors;
|
|
bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
|
|
INIT_WORK(&dio->work, integrity_bio_wait);
|
|
queue_work(ic->offload_wq, &dio->work);
|
|
return;
|
|
}
|
|
do_endio_flush(ic, dio);
|
|
}
|
|
}
|
|
|
|
static void integrity_end_io(struct bio *bio)
|
|
{
|
|
struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
|
|
|
|
dm_bio_restore(&dio->bio_details, bio);
|
|
if (bio->bi_integrity)
|
|
bio->bi_opf |= REQ_INTEGRITY;
|
|
|
|
if (dio->completion)
|
|
complete(dio->completion);
|
|
|
|
dec_in_flight(dio);
|
|
}
|
|
|
|
static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
|
|
const char *data, char *result)
|
|
{
|
|
__le64 sector_le = cpu_to_le64(sector);
|
|
SHASH_DESC_ON_STACK(req, ic->internal_hash);
|
|
int r;
|
|
unsigned int digest_size;
|
|
|
|
req->tfm = ic->internal_hash;
|
|
|
|
r = crypto_shash_init(req);
|
|
if (unlikely(r < 0)) {
|
|
dm_integrity_io_error(ic, "crypto_shash_init", r);
|
|
goto failed;
|
|
}
|
|
|
|
if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
|
|
r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
|
|
if (unlikely(r < 0)) {
|
|
dm_integrity_io_error(ic, "crypto_shash_update", r);
|
|
goto failed;
|
|
}
|
|
}
|
|
|
|
r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le));
|
|
if (unlikely(r < 0)) {
|
|
dm_integrity_io_error(ic, "crypto_shash_update", r);
|
|
goto failed;
|
|
}
|
|
|
|
r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
|
|
if (unlikely(r < 0)) {
|
|
dm_integrity_io_error(ic, "crypto_shash_update", r);
|
|
goto failed;
|
|
}
|
|
|
|
r = crypto_shash_final(req, result);
|
|
if (unlikely(r < 0)) {
|
|
dm_integrity_io_error(ic, "crypto_shash_final", r);
|
|
goto failed;
|
|
}
|
|
|
|
digest_size = crypto_shash_digestsize(ic->internal_hash);
|
|
if (unlikely(digest_size < ic->tag_size))
|
|
memset(result + digest_size, 0, ic->tag_size - digest_size);
|
|
|
|
return;
|
|
|
|
failed:
|
|
/* this shouldn't happen anyway, the hash functions have no reason to fail */
|
|
get_random_bytes(result, ic->tag_size);
|
|
}
|
|
|
|
static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
|
|
{
|
|
struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
|
|
struct dm_integrity_c *ic = dio->ic;
|
|
struct bvec_iter iter;
|
|
struct bio_vec bv;
|
|
sector_t sector, logical_sector, area, offset;
|
|
struct page *page;
|
|
|
|
get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
|
|
dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
|
|
&dio->metadata_offset);
|
|
sector = get_data_sector(ic, area, offset);
|
|
logical_sector = dio->range.logical_sector;
|
|
|
|
page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
|
|
|
|
__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
|
|
unsigned pos = 0;
|
|
|
|
do {
|
|
sector_t alignment;
|
|
char *mem;
|
|
char *buffer = page_to_virt(page);
|
|
int r;
|
|
struct dm_io_request io_req;
|
|
struct dm_io_region io_loc;
|
|
io_req.bi_opf = REQ_OP_READ;
|
|
io_req.mem.type = DM_IO_KMEM;
|
|
io_req.mem.ptr.addr = buffer;
|
|
io_req.notify.fn = NULL;
|
|
io_req.client = ic->io;
|
|
io_loc.bdev = ic->dev->bdev;
|
|
io_loc.sector = sector;
|
|
io_loc.count = ic->sectors_per_block;
|
|
|
|
/* Align the bio to logical block size */
|
|
alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT);
|
|
alignment &= -alignment;
|
|
io_loc.sector = round_down(io_loc.sector, alignment);
|
|
io_loc.count += sector - io_loc.sector;
|
|
buffer += (sector - io_loc.sector) << SECTOR_SHIFT;
|
|
io_loc.count = round_up(io_loc.count, alignment);
|
|
|
|
r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
|
|
if (unlikely(r)) {
|
|
dio->bi_status = errno_to_blk_status(r);
|
|
goto free_ret;
|
|
}
|
|
|
|
integrity_sector_checksum(ic, logical_sector, buffer, checksum);
|
|
r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
|
|
&dio->metadata_offset, ic->tag_size, TAG_CMP);
|
|
if (r) {
|
|
if (r > 0) {
|
|
DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
|
|
bio->bi_bdev, logical_sector);
|
|
atomic64_inc(&ic->number_of_mismatches);
|
|
dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
|
|
bio, logical_sector, 0);
|
|
r = -EILSEQ;
|
|
}
|
|
dio->bi_status = errno_to_blk_status(r);
|
|
goto free_ret;
|
|
}
|
|
|
|
mem = bvec_kmap_local(&bv);
|
|
memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
|
|
kunmap_local(mem);
|
|
|
|
pos += ic->sectors_per_block << SECTOR_SHIFT;
|
|
sector += ic->sectors_per_block;
|
|
logical_sector += ic->sectors_per_block;
|
|
} while (pos < bv.bv_len);
|
|
}
|
|
free_ret:
|
|
mempool_free(page, &ic->recheck_pool);
|
|
}
|
|
|
|
static void integrity_metadata(struct work_struct *w)
|
|
{
|
|
struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
|
|
struct dm_integrity_c *ic = dio->ic;
|
|
|
|
int r;
|
|
|
|
if (ic->internal_hash) {
|
|
struct bvec_iter iter;
|
|
struct bio_vec bv;
|
|
unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
|
|
struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
|
|
char *checksums;
|
|
unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
|
|
char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
|
|
sector_t sector;
|
|
unsigned int sectors_to_process;
|
|
|
|
if (unlikely(ic->mode == 'R'))
|
|
goto skip_io;
|
|
|
|
if (likely(dio->op != REQ_OP_DISCARD))
|
|
checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
|
|
GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
|
|
else
|
|
checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
|
|
if (!checksums) {
|
|
checksums = checksums_onstack;
|
|
if (WARN_ON(extra_space &&
|
|
digest_size > sizeof(checksums_onstack))) {
|
|
r = -EINVAL;
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
if (unlikely(dio->op == REQ_OP_DISCARD)) {
|
|
unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
|
|
unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
|
|
unsigned int max_blocks = max_size / ic->tag_size;
|
|
|
|
memset(checksums, DISCARD_FILLER, max_size);
|
|
|
|
while (bi_size) {
|
|
unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
|
|
|
|
this_step_blocks = min(this_step_blocks, max_blocks);
|
|
r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
|
|
this_step_blocks * ic->tag_size, TAG_WRITE);
|
|
if (unlikely(r)) {
|
|
if (likely(checksums != checksums_onstack))
|
|
kfree(checksums);
|
|
goto error;
|
|
}
|
|
|
|
bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
|
|
}
|
|
|
|
if (likely(checksums != checksums_onstack))
|
|
kfree(checksums);
|
|
goto skip_io;
|
|
}
|
|
|
|
sector = dio->range.logical_sector;
|
|
sectors_to_process = dio->range.n_sectors;
|
|
|
|
__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
|
|
struct bio_vec bv_copy = bv;
|
|
unsigned int pos;
|
|
char *mem, *checksums_ptr;
|
|
|
|
again:
|
|
mem = bvec_kmap_local(&bv_copy);
|
|
pos = 0;
|
|
checksums_ptr = checksums;
|
|
do {
|
|
integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
|
|
checksums_ptr += ic->tag_size;
|
|
sectors_to_process -= ic->sectors_per_block;
|
|
pos += ic->sectors_per_block << SECTOR_SHIFT;
|
|
sector += ic->sectors_per_block;
|
|
} while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
|
|
kunmap_local(mem);
|
|
|
|
r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
|
|
checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
|
|
if (unlikely(r)) {
|
|
if (likely(checksums != checksums_onstack))
|
|
kfree(checksums);
|
|
if (r > 0) {
|
|
integrity_recheck(dio, checksums_onstack);
|
|
goto skip_io;
|
|
}
|
|
goto error;
|
|
}
|
|
|
|
if (!sectors_to_process)
|
|
break;
|
|
|
|
if (unlikely(pos < bv_copy.bv_len)) {
|
|
bv_copy.bv_offset += pos;
|
|
bv_copy.bv_len -= pos;
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
if (likely(checksums != checksums_onstack))
|
|
kfree(checksums);
|
|
} else {
|
|
struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
|
|
|
|
if (bip) {
|
|
struct bio_vec biv;
|
|
struct bvec_iter iter;
|
|
unsigned int data_to_process = dio->range.n_sectors;
|
|
|
|
sector_to_block(ic, data_to_process);
|
|
data_to_process *= ic->tag_size;
|
|
|
|
bip_for_each_vec(biv, bip, iter) {
|
|
unsigned char *tag;
|
|
unsigned int this_len;
|
|
|
|
BUG_ON(PageHighMem(biv.bv_page));
|
|
tag = bvec_virt(&biv);
|
|
this_len = min(biv.bv_len, data_to_process);
|
|
r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
|
|
this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
|
|
if (unlikely(r))
|
|
goto error;
|
|
data_to_process -= this_len;
|
|
if (!data_to_process)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
skip_io:
|
|
dec_in_flight(dio);
|
|
return;
|
|
error:
|
|
dio->bi_status = errno_to_blk_status(r);
|
|
dec_in_flight(dio);
|
|
}
|
|
|
|
static inline bool dm_integrity_check_limits(struct dm_integrity_c *ic, sector_t logical_sector, struct bio *bio)
|
|
{
|
|
if (unlikely(logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
|
|
DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
|
|
logical_sector, bio_sectors(bio),
|
|
ic->provided_data_sectors);
|
|
return false;
|
|
}
|
|
if (unlikely((logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
|
|
DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
|
|
ic->sectors_per_block,
|
|
logical_sector, bio_sectors(bio));
|
|
return false;
|
|
}
|
|
if (ic->sectors_per_block > 1 && likely(bio_op(bio) != REQ_OP_DISCARD)) {
|
|
struct bvec_iter iter;
|
|
struct bio_vec bv;
|
|
|
|
bio_for_each_segment(bv, bio, iter) {
|
|
if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
|
|
DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
|
|
bv.bv_offset, bv.bv_len, ic->sectors_per_block);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
|
|
{
|
|
struct dm_integrity_c *ic = ti->private;
|
|
struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
|
|
struct bio_integrity_payload *bip;
|
|
|
|
sector_t area, offset;
|
|
|
|
dio->ic = ic;
|
|
dio->bi_status = 0;
|
|
dio->op = bio_op(bio);
|
|
|
|
if (ic->mode == 'I')
|
|
return dm_integrity_map_inline(dio);
|
|
|
|
if (unlikely(dio->op == REQ_OP_DISCARD)) {
|
|
if (ti->max_io_len) {
|
|
sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
|
|
unsigned int log2_max_io_len = __fls(ti->max_io_len);
|
|
sector_t start_boundary = sec >> log2_max_io_len;
|
|
sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
|
|
|
|
if (start_boundary < end_boundary) {
|
|
sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
|
|
|
|
dm_accept_partial_bio(bio, len);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
|
|
submit_flush_bio(ic, dio);
|
|
return DM_MAPIO_SUBMITTED;
|
|
}
|
|
|
|
dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
|
|
dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
|
|
if (unlikely(dio->fua)) {
|
|
/*
|
|
* Don't pass down the FUA flag because we have to flush
|
|
* disk cache anyway.
|
|
*/
|
|
bio->bi_opf &= ~REQ_FUA;
|
|
}
|
|
if (unlikely(!dm_integrity_check_limits(ic, dio->range.logical_sector, bio)))
|
|
return DM_MAPIO_KILL;
|
|
|
|
bip = bio_integrity(bio);
|
|
if (!ic->internal_hash) {
|
|
if (bip) {
|
|
unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
|
|
|
|
if (ic->log2_tag_size >= 0)
|
|
wanted_tag_size <<= ic->log2_tag_size;
|
|
else
|
|
wanted_tag_size *= ic->tag_size;
|
|
if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
|
|
DMERR("Invalid integrity data size %u, expected %u",
|
|
bip->bip_iter.bi_size, wanted_tag_size);
|
|
return DM_MAPIO_KILL;
|
|
}
|
|
}
|
|
} else {
|
|
if (unlikely(bip != NULL)) {
|
|
DMERR("Unexpected integrity data when using internal hash");
|
|
return DM_MAPIO_KILL;
|
|
}
|
|
}
|
|
|
|
if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
|
|
return DM_MAPIO_KILL;
|
|
|
|
get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
|
|
dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
|
|
bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
|
|
|
|
dm_integrity_map_continue(dio, true);
|
|
return DM_MAPIO_SUBMITTED;
|
|
}
|
|
|
|
static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
|
|
unsigned int journal_section, unsigned int journal_entry)
|
|
{
|
|
struct dm_integrity_c *ic = dio->ic;
|
|
sector_t logical_sector;
|
|
unsigned int n_sectors;
|
|
|
|
logical_sector = dio->range.logical_sector;
|
|
n_sectors = dio->range.n_sectors;
|
|
do {
|
|
struct bio_vec bv = bio_iovec(bio);
|
|
char *mem;
|
|
|
|
if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
|
|
bv.bv_len = n_sectors << SECTOR_SHIFT;
|
|
n_sectors -= bv.bv_len >> SECTOR_SHIFT;
|
|
bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
|
|
retry_kmap:
|
|
mem = kmap_local_page(bv.bv_page);
|
|
if (likely(dio->op == REQ_OP_WRITE))
|
|
flush_dcache_page(bv.bv_page);
|
|
|
|
do {
|
|
struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
|
|
|
|
if (unlikely(dio->op == REQ_OP_READ)) {
|
|
struct journal_sector *js;
|
|
char *mem_ptr;
|
|
unsigned int s;
|
|
|
|
if (unlikely(journal_entry_is_inprogress(je))) {
|
|
flush_dcache_page(bv.bv_page);
|
|
kunmap_local(mem);
|
|
|
|
__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
|
|
goto retry_kmap;
|
|
}
|
|
smp_rmb();
|
|
BUG_ON(journal_entry_get_sector(je) != logical_sector);
|
|
js = access_journal_data(ic, journal_section, journal_entry);
|
|
mem_ptr = mem + bv.bv_offset;
|
|
s = 0;
|
|
do {
|
|
memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
|
|
*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
|
|
js++;
|
|
mem_ptr += 1 << SECTOR_SHIFT;
|
|
} while (++s < ic->sectors_per_block);
|
|
#ifdef INTERNAL_VERIFY
|
|
if (ic->internal_hash) {
|
|
char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
|
|
|
|
integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
|
|
if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
|
|
DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
|
|
logical_sector);
|
|
dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
|
|
bio, logical_sector, 0);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (!ic->internal_hash) {
|
|
struct bio_integrity_payload *bip = bio_integrity(bio);
|
|
unsigned int tag_todo = ic->tag_size;
|
|
char *tag_ptr = journal_entry_tag(ic, je);
|
|
|
|
if (bip) {
|
|
do {
|
|
struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
|
|
unsigned int tag_now = min(biv.bv_len, tag_todo);
|
|
char *tag_addr;
|
|
|
|
BUG_ON(PageHighMem(biv.bv_page));
|
|
tag_addr = bvec_virt(&biv);
|
|
if (likely(dio->op == REQ_OP_WRITE))
|
|
memcpy(tag_ptr, tag_addr, tag_now);
|
|
else
|
|
memcpy(tag_addr, tag_ptr, tag_now);
|
|
bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
|
|
tag_ptr += tag_now;
|
|
tag_todo -= tag_now;
|
|
} while (unlikely(tag_todo));
|
|
} else if (likely(dio->op == REQ_OP_WRITE))
|
|
memset(tag_ptr, 0, tag_todo);
|
|
}
|
|
|
|
if (likely(dio->op == REQ_OP_WRITE)) {
|
|
struct journal_sector *js;
|
|
unsigned int s;
|
|
|
|
js = access_journal_data(ic, journal_section, journal_entry);
|
|
memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
|
|
|
|
s = 0;
|
|
do {
|
|
je->last_bytes[s] = js[s].commit_id;
|
|
} while (++s < ic->sectors_per_block);
|
|
|
|
if (ic->internal_hash) {
|
|
unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
|
|
|
|
if (unlikely(digest_size > ic->tag_size)) {
|
|
char checksums_onstack[HASH_MAX_DIGESTSIZE];
|
|
|
|
integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
|
|
memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
|
|
} else
|
|
integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
|
|
}
|
|
|
|
journal_entry_set_sector(je, logical_sector);
|
|
}
|
|
logical_sector += ic->sectors_per_block;
|
|
|
|
journal_entry++;
|
|
if (unlikely(journal_entry == ic->journal_section_entries)) {
|
|
journal_entry = 0;
|
|
journal_section++;
|
|
wraparound_section(ic, &journal_section);
|
|
}
|
|
|
|
bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
|
|
} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
|
|
|
|
if (unlikely(dio->op == REQ_OP_READ))
|
|
flush_dcache_page(bv.bv_page);
|
|
kunmap_local(mem);
|
|
} while (n_sectors);
|
|
|
|
if (likely(dio->op == REQ_OP_WRITE)) {
|
|
smp_mb();
|
|
if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
|
|
wake_up(&ic->copy_to_journal_wait);
|
|
if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
|
|
queue_work(ic->commit_wq, &ic->commit_work);
|
|
else
|
|
schedule_autocommit(ic);
|
|
} else
|
|
remove_range(ic, &dio->range);
|
|
|
|
if (unlikely(bio->bi_iter.bi_size)) {
|
|
sector_t area, offset;
|
|
|
|
dio->range.logical_sector = logical_sector;
|
|
get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
|
|
dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
|
|
{
|
|
struct dm_integrity_c *ic = dio->ic;
|
|
struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
|
|
unsigned int journal_section, journal_entry;
|
|
unsigned int journal_read_pos;
|
|
struct completion read_comp;
|
|
bool discard_retried = false;
|
|
bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
|
|
|
|
if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
|
|
need_sync_io = true;
|
|
|
|
if (need_sync_io && from_map) {
|
|
INIT_WORK(&dio->work, integrity_bio_wait);
|
|
queue_work(ic->offload_wq, &dio->work);
|
|
return;
|
|
}
|
|
|
|
lock_retry:
|
|
spin_lock_irq(&ic->endio_wait.lock);
|
|
retry:
|
|
if (unlikely(dm_integrity_failed(ic))) {
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
do_endio(ic, bio);
|
|
return;
|
|
}
|
|
dio->range.n_sectors = bio_sectors(bio);
|
|
journal_read_pos = NOT_FOUND;
|
|
if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
|
|
if (dio->op == REQ_OP_WRITE) {
|
|
unsigned int next_entry, i, pos;
|
|
unsigned int ws, we, range_sectors;
|
|
|
|
dio->range.n_sectors = min(dio->range.n_sectors,
|
|
(sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
|
|
if (unlikely(!dio->range.n_sectors)) {
|
|
if (from_map)
|
|
goto offload_to_thread;
|
|
sleep_on_endio_wait(ic);
|
|
goto retry;
|
|
}
|
|
range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
|
|
ic->free_sectors -= range_sectors;
|
|
journal_section = ic->free_section;
|
|
journal_entry = ic->free_section_entry;
|
|
|
|
next_entry = ic->free_section_entry + range_sectors;
|
|
ic->free_section_entry = next_entry % ic->journal_section_entries;
|
|
ic->free_section += next_entry / ic->journal_section_entries;
|
|
ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
|
|
wraparound_section(ic, &ic->free_section);
|
|
|
|
pos = journal_section * ic->journal_section_entries + journal_entry;
|
|
ws = journal_section;
|
|
we = journal_entry;
|
|
i = 0;
|
|
do {
|
|
struct journal_entry *je;
|
|
|
|
add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
|
|
pos++;
|
|
if (unlikely(pos >= ic->journal_entries))
|
|
pos = 0;
|
|
|
|
je = access_journal_entry(ic, ws, we);
|
|
BUG_ON(!journal_entry_is_unused(je));
|
|
journal_entry_set_inprogress(je);
|
|
we++;
|
|
if (unlikely(we == ic->journal_section_entries)) {
|
|
we = 0;
|
|
ws++;
|
|
wraparound_section(ic, &ws);
|
|
}
|
|
} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
|
|
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
goto journal_read_write;
|
|
} else {
|
|
sector_t next_sector;
|
|
|
|
journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
|
|
if (likely(journal_read_pos == NOT_FOUND)) {
|
|
if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
|
|
dio->range.n_sectors = next_sector - dio->range.logical_sector;
|
|
} else {
|
|
unsigned int i;
|
|
unsigned int jp = journal_read_pos + 1;
|
|
|
|
for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
|
|
if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
|
|
break;
|
|
}
|
|
dio->range.n_sectors = i;
|
|
}
|
|
}
|
|
}
|
|
if (unlikely(!add_new_range(ic, &dio->range, true))) {
|
|
/*
|
|
* We must not sleep in the request routine because it could
|
|
* stall bios on current->bio_list.
|
|
* So, we offload the bio to a workqueue if we have to sleep.
|
|
*/
|
|
if (from_map) {
|
|
offload_to_thread:
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
INIT_WORK(&dio->work, integrity_bio_wait);
|
|
queue_work(ic->wait_wq, &dio->work);
|
|
return;
|
|
}
|
|
if (journal_read_pos != NOT_FOUND)
|
|
dio->range.n_sectors = ic->sectors_per_block;
|
|
wait_and_add_new_range(ic, &dio->range);
|
|
/*
|
|
* wait_and_add_new_range drops the spinlock, so the journal
|
|
* may have been changed arbitrarily. We need to recheck.
|
|
* To simplify the code, we restrict I/O size to just one block.
|
|
*/
|
|
if (journal_read_pos != NOT_FOUND) {
|
|
sector_t next_sector;
|
|
unsigned int new_pos;
|
|
|
|
new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
|
|
if (unlikely(new_pos != journal_read_pos)) {
|
|
remove_range_unlocked(ic, &dio->range);
|
|
goto retry;
|
|
}
|
|
}
|
|
}
|
|
if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
|
|
sector_t next_sector;
|
|
unsigned int new_pos;
|
|
|
|
new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
|
|
if (unlikely(new_pos != NOT_FOUND) ||
|
|
unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
|
|
remove_range_unlocked(ic, &dio->range);
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
queue_work(ic->commit_wq, &ic->commit_work);
|
|
flush_workqueue(ic->commit_wq);
|
|
queue_work(ic->writer_wq, &ic->writer_work);
|
|
flush_workqueue(ic->writer_wq);
|
|
discard_retried = true;
|
|
goto lock_retry;
|
|
}
|
|
}
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
|
|
if (unlikely(journal_read_pos != NOT_FOUND)) {
|
|
journal_section = journal_read_pos / ic->journal_section_entries;
|
|
journal_entry = journal_read_pos % ic->journal_section_entries;
|
|
goto journal_read_write;
|
|
}
|
|
|
|
if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
|
|
if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
|
|
dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
|
|
struct bitmap_block_status *bbs;
|
|
|
|
bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
|
|
spin_lock(&bbs->bio_queue_lock);
|
|
bio_list_add(&bbs->bio_queue, bio);
|
|
spin_unlock(&bbs->bio_queue_lock);
|
|
queue_work(ic->writer_wq, &bbs->work);
|
|
return;
|
|
}
|
|
}
|
|
|
|
dio->in_flight = (atomic_t)ATOMIC_INIT(2);
|
|
|
|
if (need_sync_io) {
|
|
init_completion(&read_comp);
|
|
dio->completion = &read_comp;
|
|
} else
|
|
dio->completion = NULL;
|
|
|
|
dm_bio_record(&dio->bio_details, bio);
|
|
bio_set_dev(bio, ic->dev->bdev);
|
|
bio->bi_integrity = NULL;
|
|
bio->bi_opf &= ~REQ_INTEGRITY;
|
|
bio->bi_end_io = integrity_end_io;
|
|
bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
|
|
|
|
if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
|
|
integrity_metadata(&dio->work);
|
|
dm_integrity_flush_buffers(ic, false);
|
|
|
|
dio->in_flight = (atomic_t)ATOMIC_INIT(1);
|
|
dio->completion = NULL;
|
|
|
|
submit_bio_noacct(bio);
|
|
|
|
return;
|
|
}
|
|
|
|
submit_bio_noacct(bio);
|
|
|
|
if (need_sync_io) {
|
|
wait_for_completion_io(&read_comp);
|
|
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
|
|
dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
|
|
goto skip_check;
|
|
if (ic->mode == 'B') {
|
|
if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
|
|
dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
|
|
goto skip_check;
|
|
}
|
|
|
|
if (likely(!bio->bi_status))
|
|
integrity_metadata(&dio->work);
|
|
else
|
|
skip_check:
|
|
dec_in_flight(dio);
|
|
} else {
|
|
INIT_WORK(&dio->work, integrity_metadata);
|
|
queue_work(ic->metadata_wq, &dio->work);
|
|
}
|
|
|
|
return;
|
|
|
|
journal_read_write:
|
|
if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
|
|
goto lock_retry;
|
|
|
|
do_endio_flush(ic, dio);
|
|
}
|
|
|
|
static int dm_integrity_map_inline(struct dm_integrity_io *dio)
|
|
{
|
|
struct dm_integrity_c *ic = dio->ic;
|
|
struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
|
|
struct bio_integrity_payload *bip;
|
|
unsigned payload_len, digest_size, extra_size, ret;
|
|
|
|
dio->integrity_payload = NULL;
|
|
dio->integrity_payload_from_mempool = false;
|
|
|
|
if (unlikely(bio_integrity(bio))) {
|
|
bio->bi_status = BLK_STS_NOTSUPP;
|
|
bio_endio(bio);
|
|
return DM_MAPIO_SUBMITTED;
|
|
}
|
|
|
|
bio_set_dev(bio, ic->dev->bdev);
|
|
if (unlikely((bio->bi_opf & REQ_PREFLUSH) != 0))
|
|
return DM_MAPIO_REMAPPED;
|
|
|
|
retry:
|
|
payload_len = ic->tuple_size * (bio_sectors(bio) >> ic->sb->log2_sectors_per_block);
|
|
digest_size = crypto_shash_digestsize(ic->internal_hash);
|
|
extra_size = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
|
|
payload_len += extra_size;
|
|
dio->integrity_payload = kmalloc(payload_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
|
|
if (unlikely(!dio->integrity_payload)) {
|
|
const unsigned x_size = PAGE_SIZE << 1;
|
|
if (payload_len > x_size) {
|
|
unsigned sectors = ((x_size - extra_size) / ic->tuple_size) << ic->sb->log2_sectors_per_block;
|
|
if (WARN_ON(!sectors || sectors >= bio_sectors(bio))) {
|
|
bio->bi_status = BLK_STS_NOTSUPP;
|
|
bio_endio(bio);
|
|
return DM_MAPIO_SUBMITTED;
|
|
}
|
|
dm_accept_partial_bio(bio, sectors);
|
|
goto retry;
|
|
}
|
|
dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
|
|
dio->integrity_payload_from_mempool = true;
|
|
}
|
|
|
|
bio->bi_iter.bi_sector = dm_target_offset(ic->ti, bio->bi_iter.bi_sector);
|
|
dio->bio_details.bi_iter = bio->bi_iter;
|
|
|
|
if (unlikely(!dm_integrity_check_limits(ic, bio->bi_iter.bi_sector, bio))) {
|
|
return DM_MAPIO_KILL;
|
|
}
|
|
|
|
bio->bi_iter.bi_sector += ic->start + SB_SECTORS;
|
|
|
|
bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
|
|
if (unlikely(IS_ERR(bip))) {
|
|
bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
|
|
bio_endio(bio);
|
|
return DM_MAPIO_SUBMITTED;
|
|
}
|
|
|
|
if (dio->op == REQ_OP_WRITE) {
|
|
unsigned pos = 0;
|
|
while (dio->bio_details.bi_iter.bi_size) {
|
|
struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
|
|
const char *mem = bvec_kmap_local(&bv);
|
|
if (ic->tag_size < ic->tuple_size)
|
|
memset(dio->integrity_payload + pos + ic->tag_size, 0, ic->tuple_size - ic->tuple_size);
|
|
integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, dio->integrity_payload + pos);
|
|
kunmap_local(mem);
|
|
pos += ic->tuple_size;
|
|
bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
|
|
}
|
|
}
|
|
|
|
ret = bio_integrity_add_page(bio, virt_to_page(dio->integrity_payload),
|
|
payload_len, offset_in_page(dio->integrity_payload));
|
|
if (unlikely(ret != payload_len)) {
|
|
bio->bi_status = BLK_STS_RESOURCE;
|
|
bio_endio(bio);
|
|
return DM_MAPIO_SUBMITTED;
|
|
}
|
|
|
|
return DM_MAPIO_REMAPPED;
|
|
}
|
|
|
|
static inline void dm_integrity_free_payload(struct dm_integrity_io *dio)
|
|
{
|
|
struct dm_integrity_c *ic = dio->ic;
|
|
if (unlikely(dio->integrity_payload_from_mempool))
|
|
mempool_free(virt_to_page(dio->integrity_payload), &ic->recheck_pool);
|
|
else
|
|
kfree(dio->integrity_payload);
|
|
dio->integrity_payload = NULL;
|
|
dio->integrity_payload_from_mempool = false;
|
|
}
|
|
|
|
static void dm_integrity_inline_recheck(struct work_struct *w)
|
|
{
|
|
struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
|
|
struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
|
|
struct dm_integrity_c *ic = dio->ic;
|
|
struct bio *outgoing_bio;
|
|
void *outgoing_data;
|
|
|
|
dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
|
|
dio->integrity_payload_from_mempool = true;
|
|
|
|
outgoing_data = dio->integrity_payload + PAGE_SIZE;
|
|
|
|
while (dio->bio_details.bi_iter.bi_size) {
|
|
char digest[HASH_MAX_DIGESTSIZE];
|
|
int r;
|
|
struct bio_integrity_payload *bip;
|
|
struct bio_vec bv;
|
|
char *mem;
|
|
|
|
outgoing_bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recheck_bios);
|
|
|
|
r = bio_add_page(outgoing_bio, virt_to_page(outgoing_data), ic->sectors_per_block << SECTOR_SHIFT, 0);
|
|
if (unlikely(r != (ic->sectors_per_block << SECTOR_SHIFT))) {
|
|
bio_put(outgoing_bio);
|
|
bio->bi_status = BLK_STS_RESOURCE;
|
|
bio_endio(bio);
|
|
return;
|
|
}
|
|
|
|
bip = bio_integrity_alloc(outgoing_bio, GFP_NOIO, 1);
|
|
if (unlikely(IS_ERR(bip))) {
|
|
bio_put(outgoing_bio);
|
|
bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
|
|
bio_endio(bio);
|
|
return;
|
|
}
|
|
|
|
r = bio_integrity_add_page(outgoing_bio, virt_to_page(dio->integrity_payload), ic->tuple_size, 0);
|
|
if (unlikely(r != ic->tuple_size)) {
|
|
bio_put(outgoing_bio);
|
|
bio->bi_status = BLK_STS_RESOURCE;
|
|
bio_endio(bio);
|
|
return;
|
|
}
|
|
|
|
outgoing_bio->bi_iter.bi_sector = dio->bio_details.bi_iter.bi_sector + ic->start + SB_SECTORS;
|
|
|
|
r = submit_bio_wait(outgoing_bio);
|
|
if (unlikely(r != 0)) {
|
|
bio_put(outgoing_bio);
|
|
bio->bi_status = errno_to_blk_status(r);
|
|
bio_endio(bio);
|
|
return;
|
|
}
|
|
bio_put(outgoing_bio);
|
|
|
|
integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, outgoing_data, digest);
|
|
if (unlikely(memcmp(digest, dio->integrity_payload, min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) {
|
|
DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
|
|
ic->dev->bdev, dio->bio_details.bi_iter.bi_sector);
|
|
atomic64_inc(&ic->number_of_mismatches);
|
|
dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
|
|
bio, dio->bio_details.bi_iter.bi_sector, 0);
|
|
|
|
bio->bi_status = BLK_STS_PROTECTION;
|
|
bio_endio(bio);
|
|
return;
|
|
}
|
|
|
|
bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
|
|
mem = bvec_kmap_local(&bv);
|
|
memcpy(mem, outgoing_data, ic->sectors_per_block << SECTOR_SHIFT);
|
|
kunmap_local(mem);
|
|
|
|
bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
|
|
}
|
|
|
|
bio_endio(bio);
|
|
}
|
|
|
|
static int dm_integrity_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
|
|
{
|
|
struct dm_integrity_c *ic = ti->private;
|
|
if (ic->mode == 'I') {
|
|
struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
|
|
if (dio->op == REQ_OP_READ && likely(*status == BLK_STS_OK)) {
|
|
unsigned pos = 0;
|
|
while (dio->bio_details.bi_iter.bi_size) {
|
|
char digest[HASH_MAX_DIGESTSIZE];
|
|
struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
|
|
char *mem = bvec_kmap_local(&bv);
|
|
//memset(mem, 0xff, ic->sectors_per_block << SECTOR_SHIFT);
|
|
integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, digest);
|
|
if (unlikely(memcmp(digest, dio->integrity_payload + pos,
|
|
min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) {
|
|
kunmap_local(mem);
|
|
dm_integrity_free_payload(dio);
|
|
INIT_WORK(&dio->work, dm_integrity_inline_recheck);
|
|
queue_work(ic->offload_wq, &dio->work);
|
|
return DM_ENDIO_INCOMPLETE;
|
|
}
|
|
kunmap_local(mem);
|
|
pos += ic->tuple_size;
|
|
bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
|
|
}
|
|
}
|
|
if (likely(dio->op == REQ_OP_READ) || likely(dio->op == REQ_OP_WRITE)) {
|
|
dm_integrity_free_payload(dio);
|
|
}
|
|
}
|
|
return DM_ENDIO_DONE;
|
|
}
|
|
|
|
static void integrity_bio_wait(struct work_struct *w)
|
|
{
|
|
struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
|
|
|
|
dm_integrity_map_continue(dio, false);
|
|
}
|
|
|
|
static void pad_uncommitted(struct dm_integrity_c *ic)
|
|
{
|
|
if (ic->free_section_entry) {
|
|
ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
|
|
ic->free_section_entry = 0;
|
|
ic->free_section++;
|
|
wraparound_section(ic, &ic->free_section);
|
|
ic->n_uncommitted_sections++;
|
|
}
|
|
if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
|
|
(ic->n_uncommitted_sections + ic->n_committed_sections) *
|
|
ic->journal_section_entries + ic->free_sectors)) {
|
|
DMCRIT("journal_sections %u, journal_section_entries %u, "
|
|
"n_uncommitted_sections %u, n_committed_sections %u, "
|
|
"journal_section_entries %u, free_sectors %u",
|
|
ic->journal_sections, ic->journal_section_entries,
|
|
ic->n_uncommitted_sections, ic->n_committed_sections,
|
|
ic->journal_section_entries, ic->free_sectors);
|
|
}
|
|
}
|
|
|
|
static void integrity_commit(struct work_struct *w)
|
|
{
|
|
struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
|
|
unsigned int commit_start, commit_sections;
|
|
unsigned int i, j, n;
|
|
struct bio *flushes;
|
|
|
|
del_timer(&ic->autocommit_timer);
|
|
|
|
if (ic->mode == 'I')
|
|
return;
|
|
|
|
spin_lock_irq(&ic->endio_wait.lock);
|
|
flushes = bio_list_get(&ic->flush_bio_list);
|
|
if (unlikely(ic->mode != 'J')) {
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
dm_integrity_flush_buffers(ic, true);
|
|
goto release_flush_bios;
|
|
}
|
|
|
|
pad_uncommitted(ic);
|
|
commit_start = ic->uncommitted_section;
|
|
commit_sections = ic->n_uncommitted_sections;
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
|
|
if (!commit_sections)
|
|
goto release_flush_bios;
|
|
|
|
ic->wrote_to_journal = true;
|
|
|
|
i = commit_start;
|
|
for (n = 0; n < commit_sections; n++) {
|
|
for (j = 0; j < ic->journal_section_entries; j++) {
|
|
struct journal_entry *je;
|
|
|
|
je = access_journal_entry(ic, i, j);
|
|
io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
|
|
}
|
|
for (j = 0; j < ic->journal_section_sectors; j++) {
|
|
struct journal_sector *js;
|
|
|
|
js = access_journal(ic, i, j);
|
|
js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
|
|
}
|
|
i++;
|
|
if (unlikely(i >= ic->journal_sections))
|
|
ic->commit_seq = next_commit_seq(ic->commit_seq);
|
|
wraparound_section(ic, &i);
|
|
}
|
|
smp_rmb();
|
|
|
|
write_journal(ic, commit_start, commit_sections);
|
|
|
|
spin_lock_irq(&ic->endio_wait.lock);
|
|
ic->uncommitted_section += commit_sections;
|
|
wraparound_section(ic, &ic->uncommitted_section);
|
|
ic->n_uncommitted_sections -= commit_sections;
|
|
ic->n_committed_sections += commit_sections;
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
|
|
if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
|
|
queue_work(ic->writer_wq, &ic->writer_work);
|
|
|
|
release_flush_bios:
|
|
while (flushes) {
|
|
struct bio *next = flushes->bi_next;
|
|
|
|
flushes->bi_next = NULL;
|
|
do_endio(ic, flushes);
|
|
flushes = next;
|
|
}
|
|
}
|
|
|
|
static void complete_copy_from_journal(unsigned long error, void *context)
|
|
{
|
|
struct journal_io *io = context;
|
|
struct journal_completion *comp = io->comp;
|
|
struct dm_integrity_c *ic = comp->ic;
|
|
|
|
remove_range(ic, &io->range);
|
|
mempool_free(io, &ic->journal_io_mempool);
|
|
if (unlikely(error != 0))
|
|
dm_integrity_io_error(ic, "copying from journal", -EIO);
|
|
complete_journal_op(comp);
|
|
}
|
|
|
|
static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
|
|
struct journal_entry *je)
|
|
{
|
|
unsigned int s = 0;
|
|
|
|
do {
|
|
js->commit_id = je->last_bytes[s];
|
|
js++;
|
|
} while (++s < ic->sectors_per_block);
|
|
}
|
|
|
|
static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
|
|
unsigned int write_sections, bool from_replay)
|
|
{
|
|
unsigned int i, j, n;
|
|
struct journal_completion comp;
|
|
struct blk_plug plug;
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
comp.ic = ic;
|
|
comp.in_flight = (atomic_t)ATOMIC_INIT(1);
|
|
init_completion(&comp.comp);
|
|
|
|
i = write_start;
|
|
for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
|
|
#ifndef INTERNAL_VERIFY
|
|
if (unlikely(from_replay))
|
|
#endif
|
|
rw_section_mac(ic, i, false);
|
|
for (j = 0; j < ic->journal_section_entries; j++) {
|
|
struct journal_entry *je = access_journal_entry(ic, i, j);
|
|
sector_t sec, area, offset;
|
|
unsigned int k, l, next_loop;
|
|
sector_t metadata_block;
|
|
unsigned int metadata_offset;
|
|
struct journal_io *io;
|
|
|
|
if (journal_entry_is_unused(je))
|
|
continue;
|
|
BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
|
|
sec = journal_entry_get_sector(je);
|
|
if (unlikely(from_replay)) {
|
|
if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
|
|
dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
|
|
sec &= ~(sector_t)(ic->sectors_per_block - 1);
|
|
}
|
|
if (unlikely(sec >= ic->provided_data_sectors)) {
|
|
journal_entry_set_unused(je);
|
|
continue;
|
|
}
|
|
}
|
|
get_area_and_offset(ic, sec, &area, &offset);
|
|
restore_last_bytes(ic, access_journal_data(ic, i, j), je);
|
|
for (k = j + 1; k < ic->journal_section_entries; k++) {
|
|
struct journal_entry *je2 = access_journal_entry(ic, i, k);
|
|
sector_t sec2, area2, offset2;
|
|
|
|
if (journal_entry_is_unused(je2))
|
|
break;
|
|
BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
|
|
sec2 = journal_entry_get_sector(je2);
|
|
if (unlikely(sec2 >= ic->provided_data_sectors))
|
|
break;
|
|
get_area_and_offset(ic, sec2, &area2, &offset2);
|
|
if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
|
|
break;
|
|
restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
|
|
}
|
|
next_loop = k - 1;
|
|
|
|
io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
|
|
io->comp = ∁
|
|
io->range.logical_sector = sec;
|
|
io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
|
|
|
|
spin_lock_irq(&ic->endio_wait.lock);
|
|
add_new_range_and_wait(ic, &io->range);
|
|
|
|
if (likely(!from_replay)) {
|
|
struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
|
|
|
|
/* don't write if there is newer committed sector */
|
|
while (j < k && find_newer_committed_node(ic, §ion_node[j])) {
|
|
struct journal_entry *je2 = access_journal_entry(ic, i, j);
|
|
|
|
journal_entry_set_unused(je2);
|
|
remove_journal_node(ic, §ion_node[j]);
|
|
j++;
|
|
sec += ic->sectors_per_block;
|
|
offset += ic->sectors_per_block;
|
|
}
|
|
while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) {
|
|
struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
|
|
|
|
journal_entry_set_unused(je2);
|
|
remove_journal_node(ic, §ion_node[k - 1]);
|
|
k--;
|
|
}
|
|
if (j == k) {
|
|
remove_range_unlocked(ic, &io->range);
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
mempool_free(io, &ic->journal_io_mempool);
|
|
goto skip_io;
|
|
}
|
|
for (l = j; l < k; l++)
|
|
remove_journal_node(ic, §ion_node[l]);
|
|
}
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
|
|
metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
|
|
for (l = j; l < k; l++) {
|
|
int r;
|
|
struct journal_entry *je2 = access_journal_entry(ic, i, l);
|
|
|
|
if (
|
|
#ifndef INTERNAL_VERIFY
|
|
unlikely(from_replay) &&
|
|
#endif
|
|
ic->internal_hash) {
|
|
char test_tag[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
|
|
|
|
integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
|
|
(char *)access_journal_data(ic, i, l), test_tag);
|
|
if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
|
|
dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
|
|
dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
|
|
}
|
|
}
|
|
|
|
journal_entry_set_unused(je2);
|
|
r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
|
|
ic->tag_size, TAG_WRITE);
|
|
if (unlikely(r))
|
|
dm_integrity_io_error(ic, "reading tags", r);
|
|
}
|
|
|
|
atomic_inc(&comp.in_flight);
|
|
copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
|
|
(k - j) << ic->sb->log2_sectors_per_block,
|
|
get_data_sector(ic, area, offset),
|
|
complete_copy_from_journal, io);
|
|
skip_io:
|
|
j = next_loop;
|
|
}
|
|
}
|
|
|
|
dm_bufio_write_dirty_buffers_async(ic->bufio);
|
|
|
|
blk_finish_plug(&plug);
|
|
|
|
complete_journal_op(&comp);
|
|
wait_for_completion_io(&comp.comp);
|
|
|
|
dm_integrity_flush_buffers(ic, true);
|
|
}
|
|
|
|
static void integrity_writer(struct work_struct *w)
|
|
{
|
|
struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
|
|
unsigned int write_start, write_sections;
|
|
unsigned int prev_free_sectors;
|
|
|
|
spin_lock_irq(&ic->endio_wait.lock);
|
|
write_start = ic->committed_section;
|
|
write_sections = ic->n_committed_sections;
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
|
|
if (!write_sections)
|
|
return;
|
|
|
|
do_journal_write(ic, write_start, write_sections, false);
|
|
|
|
spin_lock_irq(&ic->endio_wait.lock);
|
|
|
|
ic->committed_section += write_sections;
|
|
wraparound_section(ic, &ic->committed_section);
|
|
ic->n_committed_sections -= write_sections;
|
|
|
|
prev_free_sectors = ic->free_sectors;
|
|
ic->free_sectors += write_sections * ic->journal_section_entries;
|
|
if (unlikely(!prev_free_sectors))
|
|
wake_up_locked(&ic->endio_wait);
|
|
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
}
|
|
|
|
static void recalc_write_super(struct dm_integrity_c *ic)
|
|
{
|
|
int r;
|
|
|
|
dm_integrity_flush_buffers(ic, false);
|
|
if (dm_integrity_failed(ic))
|
|
return;
|
|
|
|
r = sync_rw_sb(ic, REQ_OP_WRITE);
|
|
if (unlikely(r))
|
|
dm_integrity_io_error(ic, "writing superblock", r);
|
|
}
|
|
|
|
static void integrity_recalc(struct work_struct *w)
|
|
{
|
|
struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
|
|
size_t recalc_tags_size;
|
|
u8 *recalc_buffer = NULL;
|
|
u8 *recalc_tags = NULL;
|
|
struct dm_integrity_range range;
|
|
struct dm_io_request io_req;
|
|
struct dm_io_region io_loc;
|
|
sector_t area, offset;
|
|
sector_t metadata_block;
|
|
unsigned int metadata_offset;
|
|
sector_t logical_sector, n_sectors;
|
|
__u8 *t;
|
|
unsigned int i;
|
|
int r;
|
|
unsigned int super_counter = 0;
|
|
unsigned recalc_sectors = RECALC_SECTORS;
|
|
|
|
retry:
|
|
recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
|
|
if (!recalc_buffer) {
|
|
oom:
|
|
recalc_sectors >>= 1;
|
|
if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
|
|
goto retry;
|
|
DMCRIT("out of memory for recalculate buffer - recalculation disabled");
|
|
goto free_ret;
|
|
}
|
|
recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
|
|
if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
|
|
recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
|
|
recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
|
|
if (!recalc_tags) {
|
|
vfree(recalc_buffer);
|
|
recalc_buffer = NULL;
|
|
goto oom;
|
|
}
|
|
|
|
DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
|
|
|
|
spin_lock_irq(&ic->endio_wait.lock);
|
|
|
|
next_chunk:
|
|
|
|
if (unlikely(dm_post_suspending(ic->ti)))
|
|
goto unlock_ret;
|
|
|
|
range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
|
|
if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
|
|
if (ic->mode == 'B') {
|
|
block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
|
|
DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
|
|
queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
|
|
}
|
|
goto unlock_ret;
|
|
}
|
|
|
|
get_area_and_offset(ic, range.logical_sector, &area, &offset);
|
|
range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
|
|
if (!ic->meta_dev)
|
|
range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
|
|
|
|
add_new_range_and_wait(ic, &range);
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
logical_sector = range.logical_sector;
|
|
n_sectors = range.n_sectors;
|
|
|
|
if (ic->mode == 'B') {
|
|
if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
|
|
goto advance_and_next;
|
|
|
|
while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
|
|
ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
|
|
logical_sector += ic->sectors_per_block;
|
|
n_sectors -= ic->sectors_per_block;
|
|
cond_resched();
|
|
}
|
|
while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
|
|
ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
|
|
n_sectors -= ic->sectors_per_block;
|
|
cond_resched();
|
|
}
|
|
get_area_and_offset(ic, logical_sector, &area, &offset);
|
|
}
|
|
|
|
DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
|
|
|
|
if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
|
|
recalc_write_super(ic);
|
|
if (ic->mode == 'B')
|
|
queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
|
|
|
|
super_counter = 0;
|
|
}
|
|
|
|
if (unlikely(dm_integrity_failed(ic)))
|
|
goto err;
|
|
|
|
io_req.bi_opf = REQ_OP_READ;
|
|
io_req.mem.type = DM_IO_VMA;
|
|
io_req.mem.ptr.addr = recalc_buffer;
|
|
io_req.notify.fn = NULL;
|
|
io_req.client = ic->io;
|
|
io_loc.bdev = ic->dev->bdev;
|
|
io_loc.sector = get_data_sector(ic, area, offset);
|
|
io_loc.count = n_sectors;
|
|
|
|
r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
|
|
if (unlikely(r)) {
|
|
dm_integrity_io_error(ic, "reading data", r);
|
|
goto err;
|
|
}
|
|
|
|
t = recalc_tags;
|
|
for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
|
|
integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
|
|
t += ic->tag_size;
|
|
}
|
|
|
|
metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
|
|
|
|
r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
|
|
if (unlikely(r)) {
|
|
dm_integrity_io_error(ic, "writing tags", r);
|
|
goto err;
|
|
}
|
|
|
|
if (ic->mode == 'B') {
|
|
sector_t start, end;
|
|
|
|
start = (range.logical_sector >>
|
|
(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
|
|
(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
|
|
end = ((range.logical_sector + range.n_sectors) >>
|
|
(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
|
|
(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
|
|
block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
|
|
}
|
|
|
|
advance_and_next:
|
|
cond_resched();
|
|
|
|
spin_lock_irq(&ic->endio_wait.lock);
|
|
remove_range_unlocked(ic, &range);
|
|
ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
|
|
goto next_chunk;
|
|
|
|
err:
|
|
remove_range(ic, &range);
|
|
goto free_ret;
|
|
|
|
unlock_ret:
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
|
|
recalc_write_super(ic);
|
|
|
|
free_ret:
|
|
vfree(recalc_buffer);
|
|
kvfree(recalc_tags);
|
|
}
|
|
|
|
static void bitmap_block_work(struct work_struct *w)
|
|
{
|
|
struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
|
|
struct dm_integrity_c *ic = bbs->ic;
|
|
struct bio *bio;
|
|
struct bio_list bio_queue;
|
|
struct bio_list waiting;
|
|
|
|
bio_list_init(&waiting);
|
|
|
|
spin_lock(&bbs->bio_queue_lock);
|
|
bio_queue = bbs->bio_queue;
|
|
bio_list_init(&bbs->bio_queue);
|
|
spin_unlock(&bbs->bio_queue_lock);
|
|
|
|
while ((bio = bio_list_pop(&bio_queue))) {
|
|
struct dm_integrity_io *dio;
|
|
|
|
dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
|
|
|
|
if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
|
|
dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
|
|
remove_range(ic, &dio->range);
|
|
INIT_WORK(&dio->work, integrity_bio_wait);
|
|
queue_work(ic->offload_wq, &dio->work);
|
|
} else {
|
|
block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
|
|
dio->range.n_sectors, BITMAP_OP_SET);
|
|
bio_list_add(&waiting, bio);
|
|
}
|
|
}
|
|
|
|
if (bio_list_empty(&waiting))
|
|
return;
|
|
|
|
rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
|
|
bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
|
|
BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
|
|
|
|
while ((bio = bio_list_pop(&waiting))) {
|
|
struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
|
|
|
|
block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
|
|
dio->range.n_sectors, BITMAP_OP_SET);
|
|
|
|
remove_range(ic, &dio->range);
|
|
INIT_WORK(&dio->work, integrity_bio_wait);
|
|
queue_work(ic->offload_wq, &dio->work);
|
|
}
|
|
|
|
queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
|
|
}
|
|
|
|
static void bitmap_flush_work(struct work_struct *work)
|
|
{
|
|
struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
|
|
struct dm_integrity_range range;
|
|
unsigned long limit;
|
|
struct bio *bio;
|
|
|
|
dm_integrity_flush_buffers(ic, false);
|
|
|
|
range.logical_sector = 0;
|
|
range.n_sectors = ic->provided_data_sectors;
|
|
|
|
spin_lock_irq(&ic->endio_wait.lock);
|
|
add_new_range_and_wait(ic, &range);
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
|
|
dm_integrity_flush_buffers(ic, true);
|
|
|
|
limit = ic->provided_data_sectors;
|
|
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
|
|
limit = le64_to_cpu(ic->sb->recalc_sector)
|
|
>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
|
|
<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
|
|
}
|
|
/*DEBUG_print("zeroing journal\n");*/
|
|
block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
|
|
block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
|
|
|
|
rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
|
|
ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
|
|
|
|
spin_lock_irq(&ic->endio_wait.lock);
|
|
remove_range_unlocked(ic, &range);
|
|
while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
|
|
bio_endio(bio);
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
spin_lock_irq(&ic->endio_wait.lock);
|
|
}
|
|
spin_unlock_irq(&ic->endio_wait.lock);
|
|
}
|
|
|
|
|
|
static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
|
|
unsigned int n_sections, unsigned char commit_seq)
|
|
{
|
|
unsigned int i, j, n;
|
|
|
|
if (!n_sections)
|
|
return;
|
|
|
|
for (n = 0; n < n_sections; n++) {
|
|
i = start_section + n;
|
|
wraparound_section(ic, &i);
|
|
for (j = 0; j < ic->journal_section_sectors; j++) {
|
|
struct journal_sector *js = access_journal(ic, i, j);
|
|
|
|
BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
|
|
memset(&js->sectors, 0, sizeof(js->sectors));
|
|
js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
|
|
}
|
|
for (j = 0; j < ic->journal_section_entries; j++) {
|
|
struct journal_entry *je = access_journal_entry(ic, i, j);
|
|
|
|
journal_entry_set_unused(je);
|
|
}
|
|
}
|
|
|
|
write_journal(ic, start_section, n_sections);
|
|
}
|
|
|
|
static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
|
|
{
|
|
unsigned char k;
|
|
|
|
for (k = 0; k < N_COMMIT_IDS; k++) {
|
|
if (dm_integrity_commit_id(ic, i, j, k) == id)
|
|
return k;
|
|
}
|
|
dm_integrity_io_error(ic, "journal commit id", -EIO);
|
|
return -EIO;
|
|
}
|
|
|
|
static void replay_journal(struct dm_integrity_c *ic)
|
|
{
|
|
unsigned int i, j;
|
|
bool used_commit_ids[N_COMMIT_IDS];
|
|
unsigned int max_commit_id_sections[N_COMMIT_IDS];
|
|
unsigned int write_start, write_sections;
|
|
unsigned int continue_section;
|
|
bool journal_empty;
|
|
unsigned char unused, last_used, want_commit_seq;
|
|
|
|
if (ic->mode == 'R')
|
|
return;
|
|
|
|
if (ic->journal_uptodate)
|
|
return;
|
|
|
|
last_used = 0;
|
|
write_start = 0;
|
|
|
|
if (!ic->just_formatted) {
|
|
DEBUG_print("reading journal\n");
|
|
rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
|
|
if (ic->journal_io)
|
|
DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
|
|
if (ic->journal_io) {
|
|
struct journal_completion crypt_comp;
|
|
|
|
crypt_comp.ic = ic;
|
|
init_completion(&crypt_comp.comp);
|
|
crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
|
|
encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
|
|
wait_for_completion(&crypt_comp.comp);
|
|
}
|
|
DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
|
|
}
|
|
|
|
if (dm_integrity_failed(ic))
|
|
goto clear_journal;
|
|
|
|
journal_empty = true;
|
|
memset(used_commit_ids, 0, sizeof(used_commit_ids));
|
|
memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
|
|
for (i = 0; i < ic->journal_sections; i++) {
|
|
for (j = 0; j < ic->journal_section_sectors; j++) {
|
|
int k;
|
|
struct journal_sector *js = access_journal(ic, i, j);
|
|
|
|
k = find_commit_seq(ic, i, j, js->commit_id);
|
|
if (k < 0)
|
|
goto clear_journal;
|
|
used_commit_ids[k] = true;
|
|
max_commit_id_sections[k] = i;
|
|
}
|
|
if (journal_empty) {
|
|
for (j = 0; j < ic->journal_section_entries; j++) {
|
|
struct journal_entry *je = access_journal_entry(ic, i, j);
|
|
|
|
if (!journal_entry_is_unused(je)) {
|
|
journal_empty = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!used_commit_ids[N_COMMIT_IDS - 1]) {
|
|
unused = N_COMMIT_IDS - 1;
|
|
while (unused && !used_commit_ids[unused - 1])
|
|
unused--;
|
|
} else {
|
|
for (unused = 0; unused < N_COMMIT_IDS; unused++)
|
|
if (!used_commit_ids[unused])
|
|
break;
|
|
if (unused == N_COMMIT_IDS) {
|
|
dm_integrity_io_error(ic, "journal commit ids", -EIO);
|
|
goto clear_journal;
|
|
}
|
|
}
|
|
DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
|
|
unused, used_commit_ids[0], used_commit_ids[1],
|
|
used_commit_ids[2], used_commit_ids[3]);
|
|
|
|
last_used = prev_commit_seq(unused);
|
|
want_commit_seq = prev_commit_seq(last_used);
|
|
|
|
if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
|
|
journal_empty = true;
|
|
|
|
write_start = max_commit_id_sections[last_used] + 1;
|
|
if (unlikely(write_start >= ic->journal_sections))
|
|
want_commit_seq = next_commit_seq(want_commit_seq);
|
|
wraparound_section(ic, &write_start);
|
|
|
|
i = write_start;
|
|
for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
|
|
for (j = 0; j < ic->journal_section_sectors; j++) {
|
|
struct journal_sector *js = access_journal(ic, i, j);
|
|
|
|
if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
|
|
/*
|
|
* This could be caused by crash during writing.
|
|
* We won't replay the inconsistent part of the
|
|
* journal.
|
|
*/
|
|
DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
|
|
i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
|
|
goto brk;
|
|
}
|
|
}
|
|
i++;
|
|
if (unlikely(i >= ic->journal_sections))
|
|
want_commit_seq = next_commit_seq(want_commit_seq);
|
|
wraparound_section(ic, &i);
|
|
}
|
|
brk:
|
|
|
|
if (!journal_empty) {
|
|
DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
|
|
write_sections, write_start, want_commit_seq);
|
|
do_journal_write(ic, write_start, write_sections, true);
|
|
}
|
|
|
|
if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
|
|
continue_section = write_start;
|
|
ic->commit_seq = want_commit_seq;
|
|
DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
|
|
} else {
|
|
unsigned int s;
|
|
unsigned char erase_seq;
|
|
|
|
clear_journal:
|
|
DEBUG_print("clearing journal\n");
|
|
|
|
erase_seq = prev_commit_seq(prev_commit_seq(last_used));
|
|
s = write_start;
|
|
init_journal(ic, s, 1, erase_seq);
|
|
s++;
|
|
wraparound_section(ic, &s);
|
|
if (ic->journal_sections >= 2) {
|
|
init_journal(ic, s, ic->journal_sections - 2, erase_seq);
|
|
s += ic->journal_sections - 2;
|
|
wraparound_section(ic, &s);
|
|
init_journal(ic, s, 1, erase_seq);
|
|
}
|
|
|
|
continue_section = 0;
|
|
ic->commit_seq = next_commit_seq(erase_seq);
|
|
}
|
|
|
|
ic->committed_section = continue_section;
|
|
ic->n_committed_sections = 0;
|
|
|
|
ic->uncommitted_section = continue_section;
|
|
ic->n_uncommitted_sections = 0;
|
|
|
|
ic->free_section = continue_section;
|
|
ic->free_section_entry = 0;
|
|
ic->free_sectors = ic->journal_entries;
|
|
|
|
ic->journal_tree_root = RB_ROOT;
|
|
for (i = 0; i < ic->journal_entries; i++)
|
|
init_journal_node(&ic->journal_tree[i]);
|
|
}
|
|
|
|
static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
|
|
{
|
|
DEBUG_print("%s\n", __func__);
|
|
|
|
if (ic->mode == 'B') {
|
|
ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
|
|
ic->synchronous_mode = 1;
|
|
|
|
cancel_delayed_work_sync(&ic->bitmap_flush_work);
|
|
queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
|
|
flush_workqueue(ic->commit_wq);
|
|
}
|
|
}
|
|
|
|
static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
|
|
{
|
|
struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
|
|
|
|
DEBUG_print("%s\n", __func__);
|
|
|
|
dm_integrity_enter_synchronous_mode(ic);
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static void dm_integrity_postsuspend(struct dm_target *ti)
|
|
{
|
|
struct dm_integrity_c *ic = ti->private;
|
|
int r;
|
|
|
|
WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
|
|
|
|
del_timer_sync(&ic->autocommit_timer);
|
|
|
|
if (ic->recalc_wq)
|
|
drain_workqueue(ic->recalc_wq);
|
|
|
|
if (ic->mode == 'B')
|
|
cancel_delayed_work_sync(&ic->bitmap_flush_work);
|
|
|
|
queue_work(ic->commit_wq, &ic->commit_work);
|
|
drain_workqueue(ic->commit_wq);
|
|
|
|
if (ic->mode == 'J') {
|
|
queue_work(ic->writer_wq, &ic->writer_work);
|
|
drain_workqueue(ic->writer_wq);
|
|
dm_integrity_flush_buffers(ic, true);
|
|
if (ic->wrote_to_journal) {
|
|
init_journal(ic, ic->free_section,
|
|
ic->journal_sections - ic->free_section, ic->commit_seq);
|
|
if (ic->free_section) {
|
|
init_journal(ic, 0, ic->free_section,
|
|
next_commit_seq(ic->commit_seq));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ic->mode == 'B') {
|
|
dm_integrity_flush_buffers(ic, true);
|
|
#if 1
|
|
/* set to 0 to test bitmap replay code */
|
|
init_journal(ic, 0, ic->journal_sections, 0);
|
|
ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
|
|
r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
|
|
if (unlikely(r))
|
|
dm_integrity_io_error(ic, "writing superblock", r);
|
|
#endif
|
|
}
|
|
|
|
BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
|
|
|
|
ic->journal_uptodate = true;
|
|
}
|
|
|
|
static void dm_integrity_resume(struct dm_target *ti)
|
|
{
|
|
struct dm_integrity_c *ic = ti->private;
|
|
__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
|
|
int r;
|
|
|
|
DEBUG_print("resume\n");
|
|
|
|
ic->wrote_to_journal = false;
|
|
|
|
if (ic->provided_data_sectors != old_provided_data_sectors) {
|
|
if (ic->provided_data_sectors > old_provided_data_sectors &&
|
|
ic->mode == 'B' &&
|
|
ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
|
|
rw_journal_sectors(ic, REQ_OP_READ, 0,
|
|
ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
|
|
block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
|
|
ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
|
|
rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
|
|
ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
|
|
}
|
|
|
|
ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
|
|
r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
|
|
if (unlikely(r))
|
|
dm_integrity_io_error(ic, "writing superblock", r);
|
|
}
|
|
|
|
if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
|
|
DEBUG_print("resume dirty_bitmap\n");
|
|
rw_journal_sectors(ic, REQ_OP_READ, 0,
|
|
ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
|
|
if (ic->mode == 'B') {
|
|
if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
|
|
!ic->reset_recalculate_flag) {
|
|
block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
|
|
block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
|
|
if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
|
|
BITMAP_OP_TEST_ALL_CLEAR)) {
|
|
ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
|
|
ic->sb->recalc_sector = cpu_to_le64(0);
|
|
}
|
|
} else {
|
|
DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
|
|
ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
|
|
ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
|
|
block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
|
|
block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
|
|
block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
|
|
rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
|
|
ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
|
|
ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
|
|
ic->sb->recalc_sector = cpu_to_le64(0);
|
|
}
|
|
} else {
|
|
if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
|
|
block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
|
|
ic->reset_recalculate_flag) {
|
|
ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
|
|
ic->sb->recalc_sector = cpu_to_le64(0);
|
|
}
|
|
init_journal(ic, 0, ic->journal_sections, 0);
|
|
replay_journal(ic);
|
|
ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
|
|
}
|
|
r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
|
|
if (unlikely(r))
|
|
dm_integrity_io_error(ic, "writing superblock", r);
|
|
} else {
|
|
replay_journal(ic);
|
|
if (ic->reset_recalculate_flag) {
|
|
ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
|
|
ic->sb->recalc_sector = cpu_to_le64(0);
|
|
}
|
|
if (ic->mode == 'B') {
|
|
ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
|
|
ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
|
|
r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
|
|
if (unlikely(r))
|
|
dm_integrity_io_error(ic, "writing superblock", r);
|
|
|
|
block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
|
|
block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
|
|
block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
|
|
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
|
|
le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
|
|
block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
|
|
ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
|
|
block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
|
|
ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
|
|
block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
|
|
ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
|
|
}
|
|
rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
|
|
ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
|
|
}
|
|
}
|
|
|
|
DEBUG_print("testing recalc: %x\n", ic->sb->flags);
|
|
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
|
|
__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
|
|
|
|
DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
|
|
if (recalc_pos < ic->provided_data_sectors) {
|
|
queue_work(ic->recalc_wq, &ic->recalc_work);
|
|
} else if (recalc_pos > ic->provided_data_sectors) {
|
|
ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
|
|
recalc_write_super(ic);
|
|
}
|
|
}
|
|
|
|
ic->reboot_notifier.notifier_call = dm_integrity_reboot;
|
|
ic->reboot_notifier.next = NULL;
|
|
ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
|
|
WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
|
|
|
|
#if 0
|
|
/* set to 1 to stress test synchronous mode */
|
|
dm_integrity_enter_synchronous_mode(ic);
|
|
#endif
|
|
}
|
|
|
|
static void dm_integrity_status(struct dm_target *ti, status_type_t type,
|
|
unsigned int status_flags, char *result, unsigned int maxlen)
|
|
{
|
|
struct dm_integrity_c *ic = ti->private;
|
|
unsigned int arg_count;
|
|
size_t sz = 0;
|
|
|
|
switch (type) {
|
|
case STATUSTYPE_INFO:
|
|
DMEMIT("%llu %llu",
|
|
(unsigned long long)atomic64_read(&ic->number_of_mismatches),
|
|
ic->provided_data_sectors);
|
|
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
|
|
DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
|
|
else
|
|
DMEMIT(" -");
|
|
break;
|
|
|
|
case STATUSTYPE_TABLE: {
|
|
__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
|
|
|
|
watermark_percentage += ic->journal_entries / 2;
|
|
do_div(watermark_percentage, ic->journal_entries);
|
|
arg_count = 3;
|
|
arg_count += !!ic->meta_dev;
|
|
arg_count += ic->sectors_per_block != 1;
|
|
arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
|
|
arg_count += ic->reset_recalculate_flag;
|
|
arg_count += ic->discard;
|
|
arg_count += ic->mode == 'J';
|
|
arg_count += ic->mode == 'J';
|
|
arg_count += ic->mode == 'B';
|
|
arg_count += ic->mode == 'B';
|
|
arg_count += !!ic->internal_hash_alg.alg_string;
|
|
arg_count += !!ic->journal_crypt_alg.alg_string;
|
|
arg_count += !!ic->journal_mac_alg.alg_string;
|
|
arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
|
|
arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
|
|
arg_count += ic->legacy_recalculate;
|
|
DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
|
|
ic->tag_size, ic->mode, arg_count);
|
|
if (ic->meta_dev)
|
|
DMEMIT(" meta_device:%s", ic->meta_dev->name);
|
|
if (ic->sectors_per_block != 1)
|
|
DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
|
|
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
|
|
DMEMIT(" recalculate");
|
|
if (ic->reset_recalculate_flag)
|
|
DMEMIT(" reset_recalculate");
|
|
if (ic->discard)
|
|
DMEMIT(" allow_discards");
|
|
DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
|
|
DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
|
|
DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
|
|
if (ic->mode == 'J') {
|
|
DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
|
|
DMEMIT(" commit_time:%u", ic->autocommit_msec);
|
|
}
|
|
if (ic->mode == 'B') {
|
|
DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
|
|
DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
|
|
}
|
|
if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
|
|
DMEMIT(" fix_padding");
|
|
if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
|
|
DMEMIT(" fix_hmac");
|
|
if (ic->legacy_recalculate)
|
|
DMEMIT(" legacy_recalculate");
|
|
|
|
#define EMIT_ALG(a, n) \
|
|
do { \
|
|
if (ic->a.alg_string) { \
|
|
DMEMIT(" %s:%s", n, ic->a.alg_string); \
|
|
if (ic->a.key_string) \
|
|
DMEMIT(":%s", ic->a.key_string);\
|
|
} \
|
|
} while (0)
|
|
EMIT_ALG(internal_hash_alg, "internal_hash");
|
|
EMIT_ALG(journal_crypt_alg, "journal_crypt");
|
|
EMIT_ALG(journal_mac_alg, "journal_mac");
|
|
break;
|
|
}
|
|
case STATUSTYPE_IMA:
|
|
DMEMIT_TARGET_NAME_VERSION(ti->type);
|
|
DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
|
|
ic->dev->name, ic->start, ic->tag_size, ic->mode);
|
|
|
|
if (ic->meta_dev)
|
|
DMEMIT(",meta_device=%s", ic->meta_dev->name);
|
|
if (ic->sectors_per_block != 1)
|
|
DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
|
|
|
|
DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
|
|
'y' : 'n');
|
|
DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
|
|
DMEMIT(",fix_padding=%c",
|
|
((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
|
|
DMEMIT(",fix_hmac=%c",
|
|
((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
|
|
DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
|
|
|
|
DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
|
|
DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
|
|
DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
|
|
DMEMIT(";");
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int dm_integrity_iterate_devices(struct dm_target *ti,
|
|
iterate_devices_callout_fn fn, void *data)
|
|
{
|
|
struct dm_integrity_c *ic = ti->private;
|
|
|
|
if (!ic->meta_dev)
|
|
return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
|
|
else
|
|
return fn(ti, ic->dev, 0, ti->len, data);
|
|
}
|
|
|
|
static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
|
|
{
|
|
struct dm_integrity_c *ic = ti->private;
|
|
|
|
if (ic->sectors_per_block > 1) {
|
|
limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
|
|
limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
|
|
limits->io_min = ic->sectors_per_block << SECTOR_SHIFT;
|
|
limits->dma_alignment = limits->logical_block_size - 1;
|
|
limits->discard_granularity = ic->sectors_per_block << SECTOR_SHIFT;
|
|
}
|
|
|
|
if (!ic->internal_hash) {
|
|
struct blk_integrity *bi = &limits->integrity;
|
|
|
|
memset(bi, 0, sizeof(*bi));
|
|
bi->tuple_size = ic->tag_size;
|
|
bi->tag_size = bi->tuple_size;
|
|
bi->interval_exp =
|
|
ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
|
|
}
|
|
|
|
limits->max_integrity_segments = USHRT_MAX;
|
|
}
|
|
|
|
static void calculate_journal_section_size(struct dm_integrity_c *ic)
|
|
{
|
|
unsigned int sector_space = JOURNAL_SECTOR_DATA;
|
|
|
|
ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
|
|
ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
|
|
JOURNAL_ENTRY_ROUNDUP);
|
|
|
|
if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
|
|
sector_space -= JOURNAL_MAC_PER_SECTOR;
|
|
ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
|
|
ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
|
|
ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
|
|
ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
|
|
}
|
|
|
|
static int calculate_device_limits(struct dm_integrity_c *ic)
|
|
{
|
|
__u64 initial_sectors;
|
|
|
|
calculate_journal_section_size(ic);
|
|
initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
|
|
if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
|
|
return -EINVAL;
|
|
ic->initial_sectors = initial_sectors;
|
|
|
|
if (ic->mode == 'I') {
|
|
if (ic->initial_sectors + ic->provided_data_sectors > ic->meta_device_sectors)
|
|
return -EINVAL;
|
|
} else if (!ic->meta_dev) {
|
|
sector_t last_sector, last_area, last_offset;
|
|
|
|
/* we have to maintain excessive padding for compatibility with existing volumes */
|
|
__u64 metadata_run_padding =
|
|
ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
|
|
(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
|
|
(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
|
|
|
|
ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
|
|
metadata_run_padding) >> SECTOR_SHIFT;
|
|
if (!(ic->metadata_run & (ic->metadata_run - 1)))
|
|
ic->log2_metadata_run = __ffs(ic->metadata_run);
|
|
else
|
|
ic->log2_metadata_run = -1;
|
|
|
|
get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
|
|
last_sector = get_data_sector(ic, last_area, last_offset);
|
|
if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
|
|
return -EINVAL;
|
|
} else {
|
|
__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
|
|
|
|
meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
|
|
>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
|
|
meta_size <<= ic->log2_buffer_sectors;
|
|
if (ic->initial_sectors + meta_size < ic->initial_sectors ||
|
|
ic->initial_sectors + meta_size > ic->meta_device_sectors)
|
|
return -EINVAL;
|
|
ic->metadata_run = 1;
|
|
ic->log2_metadata_run = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void get_provided_data_sectors(struct dm_integrity_c *ic)
|
|
{
|
|
if (!ic->meta_dev) {
|
|
int test_bit;
|
|
|
|
ic->provided_data_sectors = 0;
|
|
for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
|
|
__u64 prev_data_sectors = ic->provided_data_sectors;
|
|
|
|
ic->provided_data_sectors |= (sector_t)1 << test_bit;
|
|
if (calculate_device_limits(ic))
|
|
ic->provided_data_sectors = prev_data_sectors;
|
|
}
|
|
} else {
|
|
ic->provided_data_sectors = ic->data_device_sectors;
|
|
ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
|
|
}
|
|
}
|
|
|
|
static int initialize_superblock(struct dm_integrity_c *ic,
|
|
unsigned int journal_sectors, unsigned int interleave_sectors)
|
|
{
|
|
unsigned int journal_sections;
|
|
int test_bit;
|
|
|
|
memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
|
|
memcpy(ic->sb->magic, SB_MAGIC, 8);
|
|
if (ic->mode == 'I')
|
|
ic->sb->flags |= cpu_to_le32(SB_FLAG_INLINE);
|
|
ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
|
|
ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
|
|
if (ic->journal_mac_alg.alg_string)
|
|
ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
|
|
|
|
calculate_journal_section_size(ic);
|
|
journal_sections = journal_sectors / ic->journal_section_sectors;
|
|
if (!journal_sections)
|
|
journal_sections = 1;
|
|
if (ic->mode == 'I')
|
|
journal_sections = 0;
|
|
|
|
if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
|
|
ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
|
|
get_random_bytes(ic->sb->salt, SALT_SIZE);
|
|
}
|
|
|
|
if (!ic->meta_dev) {
|
|
if (ic->fix_padding)
|
|
ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
|
|
ic->sb->journal_sections = cpu_to_le32(journal_sections);
|
|
if (!interleave_sectors)
|
|
interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
|
|
ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
|
|
ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
|
|
ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
|
|
|
|
get_provided_data_sectors(ic);
|
|
if (!ic->provided_data_sectors)
|
|
return -EINVAL;
|
|
} else {
|
|
ic->sb->log2_interleave_sectors = 0;
|
|
|
|
get_provided_data_sectors(ic);
|
|
if (!ic->provided_data_sectors)
|
|
return -EINVAL;
|
|
|
|
try_smaller_buffer:
|
|
ic->sb->journal_sections = cpu_to_le32(0);
|
|
for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
|
|
__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
|
|
__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
|
|
|
|
if (test_journal_sections > journal_sections)
|
|
continue;
|
|
ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
|
|
if (calculate_device_limits(ic))
|
|
ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
|
|
|
|
}
|
|
if (!le32_to_cpu(ic->sb->journal_sections)) {
|
|
if (ic->log2_buffer_sectors > 3) {
|
|
ic->log2_buffer_sectors--;
|
|
goto try_smaller_buffer;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
|
|
|
|
sb_set_version(ic);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dm_integrity_free_page_list(struct page_list *pl)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!pl)
|
|
return;
|
|
for (i = 0; pl[i].page; i++)
|
|
__free_page(pl[i].page);
|
|
kvfree(pl);
|
|
}
|
|
|
|
static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
|
|
{
|
|
struct page_list *pl;
|
|
unsigned int i;
|
|
|
|
pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
|
|
if (!pl)
|
|
return NULL;
|
|
|
|
for (i = 0; i < n_pages; i++) {
|
|
pl[i].page = alloc_page(GFP_KERNEL);
|
|
if (!pl[i].page) {
|
|
dm_integrity_free_page_list(pl);
|
|
return NULL;
|
|
}
|
|
if (i)
|
|
pl[i - 1].next = &pl[i];
|
|
}
|
|
pl[i].page = NULL;
|
|
pl[i].next = NULL;
|
|
|
|
return pl;
|
|
}
|
|
|
|
static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ic->journal_sections; i++)
|
|
kvfree(sl[i]);
|
|
kvfree(sl);
|
|
}
|
|
|
|
static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
|
|
struct page_list *pl)
|
|
{
|
|
struct scatterlist **sl;
|
|
unsigned int i;
|
|
|
|
sl = kvmalloc_array(ic->journal_sections,
|
|
sizeof(struct scatterlist *),
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (!sl)
|
|
return NULL;
|
|
|
|
for (i = 0; i < ic->journal_sections; i++) {
|
|
struct scatterlist *s;
|
|
unsigned int start_index, start_offset;
|
|
unsigned int end_index, end_offset;
|
|
unsigned int n_pages;
|
|
unsigned int idx;
|
|
|
|
page_list_location(ic, i, 0, &start_index, &start_offset);
|
|
page_list_location(ic, i, ic->journal_section_sectors - 1,
|
|
&end_index, &end_offset);
|
|
|
|
n_pages = (end_index - start_index + 1);
|
|
|
|
s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
|
|
GFP_KERNEL);
|
|
if (!s) {
|
|
dm_integrity_free_journal_scatterlist(ic, sl);
|
|
return NULL;
|
|
}
|
|
|
|
sg_init_table(s, n_pages);
|
|
for (idx = start_index; idx <= end_index; idx++) {
|
|
char *va = lowmem_page_address(pl[idx].page);
|
|
unsigned int start = 0, end = PAGE_SIZE;
|
|
|
|
if (idx == start_index)
|
|
start = start_offset;
|
|
if (idx == end_index)
|
|
end = end_offset + (1 << SECTOR_SHIFT);
|
|
sg_set_buf(&s[idx - start_index], va + start, end - start);
|
|
}
|
|
|
|
sl[i] = s;
|
|
}
|
|
|
|
return sl;
|
|
}
|
|
|
|
static void free_alg(struct alg_spec *a)
|
|
{
|
|
kfree_sensitive(a->alg_string);
|
|
kfree_sensitive(a->key);
|
|
memset(a, 0, sizeof(*a));
|
|
}
|
|
|
|
static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
|
|
{
|
|
char *k;
|
|
|
|
free_alg(a);
|
|
|
|
a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
|
|
if (!a->alg_string)
|
|
goto nomem;
|
|
|
|
k = strchr(a->alg_string, ':');
|
|
if (k) {
|
|
*k = 0;
|
|
a->key_string = k + 1;
|
|
if (strlen(a->key_string) & 1)
|
|
goto inval;
|
|
|
|
a->key_size = strlen(a->key_string) / 2;
|
|
a->key = kmalloc(a->key_size, GFP_KERNEL);
|
|
if (!a->key)
|
|
goto nomem;
|
|
if (hex2bin(a->key, a->key_string, a->key_size))
|
|
goto inval;
|
|
}
|
|
|
|
return 0;
|
|
inval:
|
|
*error = error_inval;
|
|
return -EINVAL;
|
|
nomem:
|
|
*error = "Out of memory for an argument";
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
|
|
char *error_alg, char *error_key)
|
|
{
|
|
int r;
|
|
|
|
if (a->alg_string) {
|
|
*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
|
|
if (IS_ERR(*hash)) {
|
|
*error = error_alg;
|
|
r = PTR_ERR(*hash);
|
|
*hash = NULL;
|
|
return r;
|
|
}
|
|
|
|
if (a->key) {
|
|
r = crypto_shash_setkey(*hash, a->key, a->key_size);
|
|
if (r) {
|
|
*error = error_key;
|
|
return r;
|
|
}
|
|
} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
|
|
*error = error_key;
|
|
return -ENOKEY;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int create_journal(struct dm_integrity_c *ic, char **error)
|
|
{
|
|
int r = 0;
|
|
unsigned int i;
|
|
__u64 journal_pages, journal_desc_size, journal_tree_size;
|
|
unsigned char *crypt_data = NULL, *crypt_iv = NULL;
|
|
struct skcipher_request *req = NULL;
|
|
|
|
ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
|
|
ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
|
|
ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
|
|
ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
|
|
|
|
journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
|
|
PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
|
|
journal_desc_size = journal_pages * sizeof(struct page_list);
|
|
if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
|
|
*error = "Journal doesn't fit into memory";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
ic->journal_pages = journal_pages;
|
|
|
|
ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
|
|
if (!ic->journal) {
|
|
*error = "Could not allocate memory for journal";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
if (ic->journal_crypt_alg.alg_string) {
|
|
unsigned int ivsize, blocksize;
|
|
struct journal_completion comp;
|
|
|
|
comp.ic = ic;
|
|
ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
|
|
if (IS_ERR(ic->journal_crypt)) {
|
|
*error = "Invalid journal cipher";
|
|
r = PTR_ERR(ic->journal_crypt);
|
|
ic->journal_crypt = NULL;
|
|
goto bad;
|
|
}
|
|
ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
|
|
blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
|
|
|
|
if (ic->journal_crypt_alg.key) {
|
|
r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
|
|
ic->journal_crypt_alg.key_size);
|
|
if (r) {
|
|
*error = "Error setting encryption key";
|
|
goto bad;
|
|
}
|
|
}
|
|
DEBUG_print("cipher %s, block size %u iv size %u\n",
|
|
ic->journal_crypt_alg.alg_string, blocksize, ivsize);
|
|
|
|
ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
|
|
if (!ic->journal_io) {
|
|
*error = "Could not allocate memory for journal io";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
if (blocksize == 1) {
|
|
struct scatterlist *sg;
|
|
|
|
req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
|
|
if (!req) {
|
|
*error = "Could not allocate crypt request";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
crypt_iv = kzalloc(ivsize, GFP_KERNEL);
|
|
if (!crypt_iv) {
|
|
*error = "Could not allocate iv";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
|
|
if (!ic->journal_xor) {
|
|
*error = "Could not allocate memory for journal xor";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
sg = kvmalloc_array(ic->journal_pages + 1,
|
|
sizeof(struct scatterlist),
|
|
GFP_KERNEL);
|
|
if (!sg) {
|
|
*error = "Unable to allocate sg list";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
sg_init_table(sg, ic->journal_pages + 1);
|
|
for (i = 0; i < ic->journal_pages; i++) {
|
|
char *va = lowmem_page_address(ic->journal_xor[i].page);
|
|
|
|
clear_page(va);
|
|
sg_set_buf(&sg[i], va, PAGE_SIZE);
|
|
}
|
|
sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
|
|
|
|
skcipher_request_set_crypt(req, sg, sg,
|
|
PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
|
|
init_completion(&comp.comp);
|
|
comp.in_flight = (atomic_t)ATOMIC_INIT(1);
|
|
if (do_crypt(true, req, &comp))
|
|
wait_for_completion(&comp.comp);
|
|
kvfree(sg);
|
|
r = dm_integrity_failed(ic);
|
|
if (r) {
|
|
*error = "Unable to encrypt journal";
|
|
goto bad;
|
|
}
|
|
DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
|
|
|
|
crypto_free_skcipher(ic->journal_crypt);
|
|
ic->journal_crypt = NULL;
|
|
} else {
|
|
unsigned int crypt_len = roundup(ivsize, blocksize);
|
|
|
|
req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
|
|
if (!req) {
|
|
*error = "Could not allocate crypt request";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
crypt_iv = kmalloc(ivsize, GFP_KERNEL);
|
|
if (!crypt_iv) {
|
|
*error = "Could not allocate iv";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
crypt_data = kmalloc(crypt_len, GFP_KERNEL);
|
|
if (!crypt_data) {
|
|
*error = "Unable to allocate crypt data";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
|
|
if (!ic->journal_scatterlist) {
|
|
*error = "Unable to allocate sg list";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
|
|
if (!ic->journal_io_scatterlist) {
|
|
*error = "Unable to allocate sg list";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
ic->sk_requests = kvmalloc_array(ic->journal_sections,
|
|
sizeof(struct skcipher_request *),
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (!ic->sk_requests) {
|
|
*error = "Unable to allocate sk requests";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
for (i = 0; i < ic->journal_sections; i++) {
|
|
struct scatterlist sg;
|
|
struct skcipher_request *section_req;
|
|
__le32 section_le = cpu_to_le32(i);
|
|
|
|
memset(crypt_iv, 0x00, ivsize);
|
|
memset(crypt_data, 0x00, crypt_len);
|
|
memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le)));
|
|
|
|
sg_init_one(&sg, crypt_data, crypt_len);
|
|
skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
|
|
init_completion(&comp.comp);
|
|
comp.in_flight = (atomic_t)ATOMIC_INIT(1);
|
|
if (do_crypt(true, req, &comp))
|
|
wait_for_completion(&comp.comp);
|
|
|
|
r = dm_integrity_failed(ic);
|
|
if (r) {
|
|
*error = "Unable to generate iv";
|
|
goto bad;
|
|
}
|
|
|
|
section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
|
|
if (!section_req) {
|
|
*error = "Unable to allocate crypt request";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
section_req->iv = kmalloc_array(ivsize, 2,
|
|
GFP_KERNEL);
|
|
if (!section_req->iv) {
|
|
skcipher_request_free(section_req);
|
|
*error = "Unable to allocate iv";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
memcpy(section_req->iv + ivsize, crypt_data, ivsize);
|
|
section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
|
|
ic->sk_requests[i] = section_req;
|
|
DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < N_COMMIT_IDS; i++) {
|
|
unsigned int j;
|
|
|
|
retest_commit_id:
|
|
for (j = 0; j < i; j++) {
|
|
if (ic->commit_ids[j] == ic->commit_ids[i]) {
|
|
ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
|
|
goto retest_commit_id;
|
|
}
|
|
}
|
|
DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
|
|
}
|
|
|
|
journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
|
|
if (journal_tree_size > ULONG_MAX) {
|
|
*error = "Journal doesn't fit into memory";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
|
|
if (!ic->journal_tree) {
|
|
*error = "Could not allocate memory for journal tree";
|
|
r = -ENOMEM;
|
|
}
|
|
bad:
|
|
kfree(crypt_data);
|
|
kfree(crypt_iv);
|
|
skcipher_request_free(req);
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Construct a integrity mapping
|
|
*
|
|
* Arguments:
|
|
* device
|
|
* offset from the start of the device
|
|
* tag size
|
|
* D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
|
|
* number of optional arguments
|
|
* optional arguments:
|
|
* journal_sectors
|
|
* interleave_sectors
|
|
* buffer_sectors
|
|
* journal_watermark
|
|
* commit_time
|
|
* meta_device
|
|
* block_size
|
|
* sectors_per_bit
|
|
* bitmap_flush_interval
|
|
* internal_hash
|
|
* journal_crypt
|
|
* journal_mac
|
|
* recalculate
|
|
*/
|
|
static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
|
|
{
|
|
struct dm_integrity_c *ic;
|
|
char dummy;
|
|
int r;
|
|
unsigned int extra_args;
|
|
struct dm_arg_set as;
|
|
static const struct dm_arg _args[] = {
|
|
{0, 18, "Invalid number of feature args"},
|
|
};
|
|
unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
|
|
bool should_write_sb;
|
|
__u64 threshold;
|
|
unsigned long long start;
|
|
__s8 log2_sectors_per_bitmap_bit = -1;
|
|
__s8 log2_blocks_per_bitmap_bit;
|
|
__u64 bits_in_journal;
|
|
__u64 n_bitmap_bits;
|
|
|
|
#define DIRECT_ARGUMENTS 4
|
|
|
|
if (argc <= DIRECT_ARGUMENTS) {
|
|
ti->error = "Invalid argument count";
|
|
return -EINVAL;
|
|
}
|
|
|
|
ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
|
|
if (!ic) {
|
|
ti->error = "Cannot allocate integrity context";
|
|
return -ENOMEM;
|
|
}
|
|
ti->private = ic;
|
|
ti->per_io_data_size = sizeof(struct dm_integrity_io);
|
|
ic->ti = ti;
|
|
|
|
ic->in_progress = RB_ROOT;
|
|
INIT_LIST_HEAD(&ic->wait_list);
|
|
init_waitqueue_head(&ic->endio_wait);
|
|
bio_list_init(&ic->flush_bio_list);
|
|
init_waitqueue_head(&ic->copy_to_journal_wait);
|
|
init_completion(&ic->crypto_backoff);
|
|
atomic64_set(&ic->number_of_mismatches, 0);
|
|
ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
|
|
|
|
r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
|
|
if (r) {
|
|
ti->error = "Device lookup failed";
|
|
goto bad;
|
|
}
|
|
|
|
if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
|
|
ti->error = "Invalid starting offset";
|
|
r = -EINVAL;
|
|
goto bad;
|
|
}
|
|
ic->start = start;
|
|
|
|
if (strcmp(argv[2], "-")) {
|
|
if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
|
|
ti->error = "Invalid tag size";
|
|
r = -EINVAL;
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
|
|
!strcmp(argv[3], "D") || !strcmp(argv[3], "R") ||
|
|
!strcmp(argv[3], "I")) {
|
|
ic->mode = argv[3][0];
|
|
} else {
|
|
ti->error = "Invalid mode (expecting J, B, D, R, I)";
|
|
r = -EINVAL;
|
|
goto bad;
|
|
}
|
|
|
|
journal_sectors = 0;
|
|
interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
|
|
buffer_sectors = DEFAULT_BUFFER_SECTORS;
|
|
journal_watermark = DEFAULT_JOURNAL_WATERMARK;
|
|
sync_msec = DEFAULT_SYNC_MSEC;
|
|
ic->sectors_per_block = 1;
|
|
|
|
as.argc = argc - DIRECT_ARGUMENTS;
|
|
as.argv = argv + DIRECT_ARGUMENTS;
|
|
r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
|
|
if (r)
|
|
goto bad;
|
|
|
|
while (extra_args--) {
|
|
const char *opt_string;
|
|
unsigned int val;
|
|
unsigned long long llval;
|
|
|
|
opt_string = dm_shift_arg(&as);
|
|
if (!opt_string) {
|
|
r = -EINVAL;
|
|
ti->error = "Not enough feature arguments";
|
|
goto bad;
|
|
}
|
|
if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
|
|
journal_sectors = val ? val : 1;
|
|
else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
|
|
interleave_sectors = val;
|
|
else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
|
|
buffer_sectors = val;
|
|
else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
|
|
journal_watermark = val;
|
|
else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
|
|
sync_msec = val;
|
|
else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
|
|
if (ic->meta_dev) {
|
|
dm_put_device(ti, ic->meta_dev);
|
|
ic->meta_dev = NULL;
|
|
}
|
|
r = dm_get_device(ti, strchr(opt_string, ':') + 1,
|
|
dm_table_get_mode(ti->table), &ic->meta_dev);
|
|
if (r) {
|
|
ti->error = "Device lookup failed";
|
|
goto bad;
|
|
}
|
|
} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
|
|
if (val < 1 << SECTOR_SHIFT ||
|
|
val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
|
|
(val & (val - 1))) {
|
|
r = -EINVAL;
|
|
ti->error = "Invalid block_size argument";
|
|
goto bad;
|
|
}
|
|
ic->sectors_per_block = val >> SECTOR_SHIFT;
|
|
} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
|
|
log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
|
|
} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
|
|
if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) {
|
|
r = -EINVAL;
|
|
ti->error = "Invalid bitmap_flush_interval argument";
|
|
goto bad;
|
|
}
|
|
ic->bitmap_flush_interval = msecs_to_jiffies(val);
|
|
} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
|
|
r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
|
|
"Invalid internal_hash argument");
|
|
if (r)
|
|
goto bad;
|
|
} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
|
|
r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
|
|
"Invalid journal_crypt argument");
|
|
if (r)
|
|
goto bad;
|
|
} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
|
|
r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
|
|
"Invalid journal_mac argument");
|
|
if (r)
|
|
goto bad;
|
|
} else if (!strcmp(opt_string, "recalculate")) {
|
|
ic->recalculate_flag = true;
|
|
} else if (!strcmp(opt_string, "reset_recalculate")) {
|
|
ic->recalculate_flag = true;
|
|
ic->reset_recalculate_flag = true;
|
|
} else if (!strcmp(opt_string, "allow_discards")) {
|
|
ic->discard = true;
|
|
} else if (!strcmp(opt_string, "fix_padding")) {
|
|
ic->fix_padding = true;
|
|
} else if (!strcmp(opt_string, "fix_hmac")) {
|
|
ic->fix_hmac = true;
|
|
} else if (!strcmp(opt_string, "legacy_recalculate")) {
|
|
ic->legacy_recalculate = true;
|
|
} else {
|
|
r = -EINVAL;
|
|
ti->error = "Invalid argument";
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
|
|
if (!ic->meta_dev)
|
|
ic->meta_device_sectors = ic->data_device_sectors;
|
|
else
|
|
ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
|
|
|
|
if (!journal_sectors) {
|
|
journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
|
|
ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
|
|
}
|
|
|
|
if (!buffer_sectors)
|
|
buffer_sectors = 1;
|
|
ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
|
|
|
|
r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
|
|
"Invalid internal hash", "Error setting internal hash key");
|
|
if (r)
|
|
goto bad;
|
|
|
|
r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
|
|
"Invalid journal mac", "Error setting journal mac key");
|
|
if (r)
|
|
goto bad;
|
|
|
|
if (!ic->tag_size) {
|
|
if (!ic->internal_hash) {
|
|
ti->error = "Unknown tag size";
|
|
r = -EINVAL;
|
|
goto bad;
|
|
}
|
|
ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
|
|
}
|
|
if (ic->tag_size > MAX_TAG_SIZE) {
|
|
ti->error = "Too big tag size";
|
|
r = -EINVAL;
|
|
goto bad;
|
|
}
|
|
if (!(ic->tag_size & (ic->tag_size - 1)))
|
|
ic->log2_tag_size = __ffs(ic->tag_size);
|
|
else
|
|
ic->log2_tag_size = -1;
|
|
|
|
if (ic->mode == 'I') {
|
|
struct blk_integrity *bi;
|
|
if (ic->meta_dev) {
|
|
r = -EINVAL;
|
|
ti->error = "Metadata device not supported in inline mode";
|
|
goto bad;
|
|
}
|
|
if (!ic->internal_hash_alg.alg_string) {
|
|
r = -EINVAL;
|
|
ti->error = "Internal hash not set in inline mode";
|
|
goto bad;
|
|
}
|
|
if (ic->journal_crypt_alg.alg_string || ic->journal_mac_alg.alg_string) {
|
|
r = -EINVAL;
|
|
ti->error = "Journal crypt not supported in inline mode";
|
|
goto bad;
|
|
}
|
|
if (ic->discard) {
|
|
r = -EINVAL;
|
|
ti->error = "Discards not supported in inline mode";
|
|
goto bad;
|
|
}
|
|
bi = blk_get_integrity(ic->dev->bdev->bd_disk);
|
|
if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) {
|
|
r = -EINVAL;
|
|
ti->error = "Integrity profile not supported";
|
|
goto bad;
|
|
}
|
|
/*printk("tag_size: %u, tuple_size: %u\n", bi->tag_size, bi->tuple_size);*/
|
|
if (bi->tuple_size < ic->tag_size) {
|
|
r = -EINVAL;
|
|
ti->error = "The integrity profile is smaller than tag size";
|
|
goto bad;
|
|
}
|
|
if ((unsigned long)bi->tuple_size > PAGE_SIZE / 2) {
|
|
r = -EINVAL;
|
|
ti->error = "Too big tuple size";
|
|
goto bad;
|
|
}
|
|
ic->tuple_size = bi->tuple_size;
|
|
if (1 << bi->interval_exp != ic->sectors_per_block << SECTOR_SHIFT) {
|
|
r = -EINVAL;
|
|
ti->error = "Integrity profile sector size mismatch";
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
if (ic->mode == 'B' && !ic->internal_hash) {
|
|
r = -EINVAL;
|
|
ti->error = "Bitmap mode can be only used with internal hash";
|
|
goto bad;
|
|
}
|
|
|
|
if (ic->discard && !ic->internal_hash) {
|
|
r = -EINVAL;
|
|
ti->error = "Discard can be only used with internal hash";
|
|
goto bad;
|
|
}
|
|
|
|
ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
|
|
ic->autocommit_msec = sync_msec;
|
|
timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
|
|
|
|
ic->io = dm_io_client_create();
|
|
if (IS_ERR(ic->io)) {
|
|
r = PTR_ERR(ic->io);
|
|
ic->io = NULL;
|
|
ti->error = "Cannot allocate dm io";
|
|
goto bad;
|
|
}
|
|
|
|
r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
|
|
if (r) {
|
|
ti->error = "Cannot allocate mempool";
|
|
goto bad;
|
|
}
|
|
|
|
r = mempool_init_page_pool(&ic->recheck_pool, 1, ic->mode == 'I' ? 1 : 0);
|
|
if (r) {
|
|
ti->error = "Cannot allocate mempool";
|
|
goto bad;
|
|
}
|
|
|
|
if (ic->mode == 'I') {
|
|
r = bioset_init(&ic->recheck_bios, RECHECK_POOL_SIZE, 0, BIOSET_NEED_BVECS);
|
|
if (r) {
|
|
ti->error = "Cannot allocate bio set";
|
|
goto bad;
|
|
}
|
|
r = bioset_integrity_create(&ic->recheck_bios, RECHECK_POOL_SIZE);
|
|
if (r) {
|
|
ti->error = "Cannot allocate bio integrity set";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
|
|
WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
|
|
if (!ic->metadata_wq) {
|
|
ti->error = "Cannot allocate workqueue";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* If this workqueue weren't ordered, it would cause bio reordering
|
|
* and reduced performance.
|
|
*/
|
|
ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
|
|
if (!ic->wait_wq) {
|
|
ti->error = "Cannot allocate workqueue";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
|
|
METADATA_WORKQUEUE_MAX_ACTIVE);
|
|
if (!ic->offload_wq) {
|
|
ti->error = "Cannot allocate workqueue";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
|
|
if (!ic->commit_wq) {
|
|
ti->error = "Cannot allocate workqueue";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
INIT_WORK(&ic->commit_work, integrity_commit);
|
|
|
|
if (ic->mode == 'J' || ic->mode == 'B') {
|
|
ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
|
|
if (!ic->writer_wq) {
|
|
ti->error = "Cannot allocate workqueue";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
INIT_WORK(&ic->writer_work, integrity_writer);
|
|
}
|
|
|
|
ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
|
|
if (!ic->sb) {
|
|
r = -ENOMEM;
|
|
ti->error = "Cannot allocate superblock area";
|
|
goto bad;
|
|
}
|
|
|
|
r = sync_rw_sb(ic, REQ_OP_READ);
|
|
if (r) {
|
|
ti->error = "Error reading superblock";
|
|
goto bad;
|
|
}
|
|
should_write_sb = false;
|
|
if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
|
|
if (ic->mode != 'R') {
|
|
if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
|
|
r = -EINVAL;
|
|
ti->error = "The device is not initialized";
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
r = initialize_superblock(ic, journal_sectors, interleave_sectors);
|
|
if (r) {
|
|
ti->error = "Could not initialize superblock";
|
|
goto bad;
|
|
}
|
|
if (ic->mode != 'R')
|
|
should_write_sb = true;
|
|
}
|
|
|
|
if (!ic->sb->version || ic->sb->version > SB_VERSION_6) {
|
|
r = -EINVAL;
|
|
ti->error = "Unknown version";
|
|
goto bad;
|
|
}
|
|
if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE)) != (ic->mode == 'I')) {
|
|
r = -EINVAL;
|
|
ti->error = "Inline flag mismatch";
|
|
goto bad;
|
|
}
|
|
if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
|
|
r = -EINVAL;
|
|
ti->error = "Tag size doesn't match the information in superblock";
|
|
goto bad;
|
|
}
|
|
if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
|
|
r = -EINVAL;
|
|
ti->error = "Block size doesn't match the information in superblock";
|
|
goto bad;
|
|
}
|
|
if (!le32_to_cpu(ic->sb->journal_sections) != (ic->mode == 'I')) {
|
|
r = -EINVAL;
|
|
if (ic->mode != 'I')
|
|
ti->error = "Corrupted superblock, journal_sections is 0";
|
|
else
|
|
ti->error = "Corrupted superblock, journal_sections is not 0";
|
|
goto bad;
|
|
}
|
|
/* make sure that ti->max_io_len doesn't overflow */
|
|
if (!ic->meta_dev) {
|
|
if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
|
|
ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
|
|
r = -EINVAL;
|
|
ti->error = "Invalid interleave_sectors in the superblock";
|
|
goto bad;
|
|
}
|
|
} else {
|
|
if (ic->sb->log2_interleave_sectors) {
|
|
r = -EINVAL;
|
|
ti->error = "Invalid interleave_sectors in the superblock";
|
|
goto bad;
|
|
}
|
|
}
|
|
if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
|
|
r = -EINVAL;
|
|
ti->error = "Journal mac mismatch";
|
|
goto bad;
|
|
}
|
|
|
|
get_provided_data_sectors(ic);
|
|
if (!ic->provided_data_sectors) {
|
|
r = -EINVAL;
|
|
ti->error = "The device is too small";
|
|
goto bad;
|
|
}
|
|
|
|
try_smaller_buffer:
|
|
r = calculate_device_limits(ic);
|
|
if (r) {
|
|
if (ic->meta_dev) {
|
|
if (ic->log2_buffer_sectors > 3) {
|
|
ic->log2_buffer_sectors--;
|
|
goto try_smaller_buffer;
|
|
}
|
|
}
|
|
ti->error = "The device is too small";
|
|
goto bad;
|
|
}
|
|
|
|
if (log2_sectors_per_bitmap_bit < 0)
|
|
log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
|
|
if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
|
|
log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
|
|
|
|
bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
|
|
if (bits_in_journal > UINT_MAX)
|
|
bits_in_journal = UINT_MAX;
|
|
if (bits_in_journal)
|
|
while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
|
|
log2_sectors_per_bitmap_bit++;
|
|
|
|
log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
|
|
ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
|
|
if (should_write_sb)
|
|
ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
|
|
|
|
n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
|
|
+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
|
|
ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
|
|
|
|
if (!ic->meta_dev)
|
|
ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
|
|
|
|
if (ti->len > ic->provided_data_sectors) {
|
|
r = -EINVAL;
|
|
ti->error = "Not enough provided sectors for requested mapping size";
|
|
goto bad;
|
|
}
|
|
|
|
threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
|
|
threshold += 50;
|
|
do_div(threshold, 100);
|
|
ic->free_sectors_threshold = threshold;
|
|
|
|
DEBUG_print("initialized:\n");
|
|
DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
|
|
DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
|
|
DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
|
|
DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
|
|
DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
|
|
DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
|
|
DEBUG_print(" journal_entries %u\n", ic->journal_entries);
|
|
DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
|
|
DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
|
|
DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
|
|
DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
|
|
DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
|
|
DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
|
|
DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
|
|
DEBUG_print(" bits_in_journal %llu\n", bits_in_journal);
|
|
|
|
if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
|
|
ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
|
|
ic->sb->recalc_sector = cpu_to_le64(0);
|
|
}
|
|
|
|
if (ic->internal_hash) {
|
|
ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
|
|
if (!ic->recalc_wq) {
|
|
ti->error = "Cannot allocate workqueue";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
INIT_WORK(&ic->recalc_work, integrity_recalc);
|
|
} else {
|
|
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
|
|
ti->error = "Recalculate can only be specified with internal_hash";
|
|
r = -EINVAL;
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
|
|
le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
|
|
dm_integrity_disable_recalculate(ic)) {
|
|
ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
|
|
r = -EOPNOTSUPP;
|
|
goto bad;
|
|
}
|
|
|
|
if (ic->mode != 'I') {
|
|
ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
|
|
1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
|
|
if (IS_ERR(ic->bufio)) {
|
|
r = PTR_ERR(ic->bufio);
|
|
ti->error = "Cannot initialize dm-bufio";
|
|
ic->bufio = NULL;
|
|
goto bad;
|
|
}
|
|
dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
|
|
}
|
|
|
|
if (ic->mode != 'R' && ic->mode != 'I') {
|
|
r = create_journal(ic, &ti->error);
|
|
if (r)
|
|
goto bad;
|
|
|
|
}
|
|
|
|
if (ic->mode == 'B') {
|
|
unsigned int i;
|
|
unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
|
|
|
|
ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
|
|
if (!ic->recalc_bitmap) {
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
|
|
if (!ic->may_write_bitmap) {
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
|
|
if (!ic->bbs) {
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
|
|
for (i = 0; i < ic->n_bitmap_blocks; i++) {
|
|
struct bitmap_block_status *bbs = &ic->bbs[i];
|
|
unsigned int sector, pl_index, pl_offset;
|
|
|
|
INIT_WORK(&bbs->work, bitmap_block_work);
|
|
bbs->ic = ic;
|
|
bbs->idx = i;
|
|
bio_list_init(&bbs->bio_queue);
|
|
spin_lock_init(&bbs->bio_queue_lock);
|
|
|
|
sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
|
|
pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
|
|
pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
|
|
|
|
bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
|
|
}
|
|
}
|
|
|
|
if (should_write_sb) {
|
|
init_journal(ic, 0, ic->journal_sections, 0);
|
|
r = dm_integrity_failed(ic);
|
|
if (unlikely(r)) {
|
|
ti->error = "Error initializing journal";
|
|
goto bad;
|
|
}
|
|
r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
|
|
if (r) {
|
|
ti->error = "Error initializing superblock";
|
|
goto bad;
|
|
}
|
|
ic->just_formatted = true;
|
|
}
|
|
|
|
if (!ic->meta_dev && ic->mode != 'I') {
|
|
r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
|
|
if (r)
|
|
goto bad;
|
|
}
|
|
if (ic->mode == 'B') {
|
|
unsigned int max_io_len;
|
|
|
|
max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
|
|
if (!max_io_len)
|
|
max_io_len = 1U << 31;
|
|
DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
|
|
if (!ti->max_io_len || ti->max_io_len > max_io_len) {
|
|
r = dm_set_target_max_io_len(ti, max_io_len);
|
|
if (r)
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
ti->num_flush_bios = 1;
|
|
ti->flush_supported = true;
|
|
if (ic->discard)
|
|
ti->num_discard_bios = 1;
|
|
|
|
if (ic->mode == 'I')
|
|
ti->mempool_needs_integrity = true;
|
|
|
|
dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
|
|
return 0;
|
|
|
|
bad:
|
|
dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
|
|
dm_integrity_dtr(ti);
|
|
return r;
|
|
}
|
|
|
|
static void dm_integrity_dtr(struct dm_target *ti)
|
|
{
|
|
struct dm_integrity_c *ic = ti->private;
|
|
|
|
BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
|
|
BUG_ON(!list_empty(&ic->wait_list));
|
|
|
|
if (ic->mode == 'B')
|
|
cancel_delayed_work_sync(&ic->bitmap_flush_work);
|
|
if (ic->metadata_wq)
|
|
destroy_workqueue(ic->metadata_wq);
|
|
if (ic->wait_wq)
|
|
destroy_workqueue(ic->wait_wq);
|
|
if (ic->offload_wq)
|
|
destroy_workqueue(ic->offload_wq);
|
|
if (ic->commit_wq)
|
|
destroy_workqueue(ic->commit_wq);
|
|
if (ic->writer_wq)
|
|
destroy_workqueue(ic->writer_wq);
|
|
if (ic->recalc_wq)
|
|
destroy_workqueue(ic->recalc_wq);
|
|
kvfree(ic->bbs);
|
|
if (ic->bufio)
|
|
dm_bufio_client_destroy(ic->bufio);
|
|
bioset_exit(&ic->recheck_bios);
|
|
mempool_exit(&ic->recheck_pool);
|
|
mempool_exit(&ic->journal_io_mempool);
|
|
if (ic->io)
|
|
dm_io_client_destroy(ic->io);
|
|
if (ic->dev)
|
|
dm_put_device(ti, ic->dev);
|
|
if (ic->meta_dev)
|
|
dm_put_device(ti, ic->meta_dev);
|
|
dm_integrity_free_page_list(ic->journal);
|
|
dm_integrity_free_page_list(ic->journal_io);
|
|
dm_integrity_free_page_list(ic->journal_xor);
|
|
dm_integrity_free_page_list(ic->recalc_bitmap);
|
|
dm_integrity_free_page_list(ic->may_write_bitmap);
|
|
if (ic->journal_scatterlist)
|
|
dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
|
|
if (ic->journal_io_scatterlist)
|
|
dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
|
|
if (ic->sk_requests) {
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ic->journal_sections; i++) {
|
|
struct skcipher_request *req;
|
|
|
|
req = ic->sk_requests[i];
|
|
if (req) {
|
|
kfree_sensitive(req->iv);
|
|
skcipher_request_free(req);
|
|
}
|
|
}
|
|
kvfree(ic->sk_requests);
|
|
}
|
|
kvfree(ic->journal_tree);
|
|
if (ic->sb)
|
|
free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
|
|
|
|
if (ic->internal_hash)
|
|
crypto_free_shash(ic->internal_hash);
|
|
free_alg(&ic->internal_hash_alg);
|
|
|
|
if (ic->journal_crypt)
|
|
crypto_free_skcipher(ic->journal_crypt);
|
|
free_alg(&ic->journal_crypt_alg);
|
|
|
|
if (ic->journal_mac)
|
|
crypto_free_shash(ic->journal_mac);
|
|
free_alg(&ic->journal_mac_alg);
|
|
|
|
kfree(ic);
|
|
dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
|
|
}
|
|
|
|
static struct target_type integrity_target = {
|
|
.name = "integrity",
|
|
.version = {1, 12, 0},
|
|
.module = THIS_MODULE,
|
|
.features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
|
|
.ctr = dm_integrity_ctr,
|
|
.dtr = dm_integrity_dtr,
|
|
.map = dm_integrity_map,
|
|
.end_io = dm_integrity_end_io,
|
|
.postsuspend = dm_integrity_postsuspend,
|
|
.resume = dm_integrity_resume,
|
|
.status = dm_integrity_status,
|
|
.iterate_devices = dm_integrity_iterate_devices,
|
|
.io_hints = dm_integrity_io_hints,
|
|
};
|
|
|
|
static int __init dm_integrity_init(void)
|
|
{
|
|
int r;
|
|
|
|
journal_io_cache = kmem_cache_create("integrity_journal_io",
|
|
sizeof(struct journal_io), 0, 0, NULL);
|
|
if (!journal_io_cache) {
|
|
DMERR("can't allocate journal io cache");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
r = dm_register_target(&integrity_target);
|
|
if (r < 0) {
|
|
kmem_cache_destroy(journal_io_cache);
|
|
return r;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __exit dm_integrity_exit(void)
|
|
{
|
|
dm_unregister_target(&integrity_target);
|
|
kmem_cache_destroy(journal_io_cache);
|
|
}
|
|
|
|
module_init(dm_integrity_init);
|
|
module_exit(dm_integrity_exit);
|
|
|
|
MODULE_AUTHOR("Milan Broz");
|
|
MODULE_AUTHOR("Mikulas Patocka");
|
|
MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
|
|
MODULE_LICENSE("GPL");
|