linux/arch/x86/kernel/irq.c
Chen Yu c0edbd4a16 x86/irq: Optimize free vector check in the CPU offline path
Before offlining a CPU its required to check whether there are enough free
irq vectors available so interrupts can be migrated away from the CPU.

This check is executed whether its required or not and neither stops
searching when the number of required free vectors are reached.

Bypass the free vector check if the current CPU has no irq to migrate and
leave the for_each_online_cpu() loop when the free vector count reaches the
number of required vectors.

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Len Brown <lenb@kernel.orq>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Link: http://lkml.kernel.org/r/1492357410-510-1-git-send-email-yu.c.chen@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-04-20 15:25:09 +02:00

554 lines
15 KiB
C

/*
* Common interrupt code for 32 and 64 bit
*/
#include <linux/cpu.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/of.h>
#include <linux/seq_file.h>
#include <linux/smp.h>
#include <linux/ftrace.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <asm/apic.h>
#include <asm/io_apic.h>
#include <asm/irq.h>
#include <asm/mce.h>
#include <asm/hw_irq.h>
#include <asm/desc.h>
#define CREATE_TRACE_POINTS
#include <asm/trace/irq_vectors.h>
DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
EXPORT_PER_CPU_SYMBOL(irq_stat);
DEFINE_PER_CPU(struct pt_regs *, irq_regs);
EXPORT_PER_CPU_SYMBOL(irq_regs);
atomic_t irq_err_count;
/* Function pointer for generic interrupt vector handling */
void (*x86_platform_ipi_callback)(void) = NULL;
/*
* 'what should we do if we get a hw irq event on an illegal vector'.
* each architecture has to answer this themselves.
*/
void ack_bad_irq(unsigned int irq)
{
if (printk_ratelimit())
pr_err("unexpected IRQ trap at vector %02x\n", irq);
/*
* Currently unexpected vectors happen only on SMP and APIC.
* We _must_ ack these because every local APIC has only N
* irq slots per priority level, and a 'hanging, unacked' IRQ
* holds up an irq slot - in excessive cases (when multiple
* unexpected vectors occur) that might lock up the APIC
* completely.
* But only ack when the APIC is enabled -AK
*/
ack_APIC_irq();
}
#define irq_stats(x) (&per_cpu(irq_stat, x))
/*
* /proc/interrupts printing for arch specific interrupts
*/
int arch_show_interrupts(struct seq_file *p, int prec)
{
int j;
seq_printf(p, "%*s: ", prec, "NMI");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
seq_puts(p, " Non-maskable interrupts\n");
#ifdef CONFIG_X86_LOCAL_APIC
seq_printf(p, "%*s: ", prec, "LOC");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
seq_puts(p, " Local timer interrupts\n");
seq_printf(p, "%*s: ", prec, "SPU");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
seq_puts(p, " Spurious interrupts\n");
seq_printf(p, "%*s: ", prec, "PMI");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
seq_puts(p, " Performance monitoring interrupts\n");
seq_printf(p, "%*s: ", prec, "IWI");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
seq_puts(p, " IRQ work interrupts\n");
seq_printf(p, "%*s: ", prec, "RTR");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
seq_puts(p, " APIC ICR read retries\n");
#endif
if (x86_platform_ipi_callback) {
seq_printf(p, "%*s: ", prec, "PLT");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
seq_puts(p, " Platform interrupts\n");
}
#ifdef CONFIG_SMP
seq_printf(p, "%*s: ", prec, "RES");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
seq_puts(p, " Rescheduling interrupts\n");
seq_printf(p, "%*s: ", prec, "CAL");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
seq_puts(p, " Function call interrupts\n");
seq_printf(p, "%*s: ", prec, "TLB");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
seq_puts(p, " TLB shootdowns\n");
#endif
#ifdef CONFIG_X86_THERMAL_VECTOR
seq_printf(p, "%*s: ", prec, "TRM");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
seq_puts(p, " Thermal event interrupts\n");
#endif
#ifdef CONFIG_X86_MCE_THRESHOLD
seq_printf(p, "%*s: ", prec, "THR");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
seq_puts(p, " Threshold APIC interrupts\n");
#endif
#ifdef CONFIG_X86_MCE_AMD
seq_printf(p, "%*s: ", prec, "DFR");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
seq_puts(p, " Deferred Error APIC interrupts\n");
#endif
#ifdef CONFIG_X86_MCE
seq_printf(p, "%*s: ", prec, "MCE");
for_each_online_cpu(j)
seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
seq_puts(p, " Machine check exceptions\n");
seq_printf(p, "%*s: ", prec, "MCP");
for_each_online_cpu(j)
seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
seq_puts(p, " Machine check polls\n");
#endif
#if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) {
seq_printf(p, "%*s: ", prec, "HYP");
for_each_online_cpu(j)
seq_printf(p, "%10u ",
irq_stats(j)->irq_hv_callback_count);
seq_puts(p, " Hypervisor callback interrupts\n");
}
#endif
seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
#if defined(CONFIG_X86_IO_APIC)
seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
#endif
#ifdef CONFIG_HAVE_KVM
seq_printf(p, "%*s: ", prec, "PIN");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
seq_puts(p, " Posted-interrupt notification event\n");
seq_printf(p, "%*s: ", prec, "PIW");
for_each_online_cpu(j)
seq_printf(p, "%10u ",
irq_stats(j)->kvm_posted_intr_wakeup_ipis);
seq_puts(p, " Posted-interrupt wakeup event\n");
#endif
return 0;
}
/*
* /proc/stat helpers
*/
u64 arch_irq_stat_cpu(unsigned int cpu)
{
u64 sum = irq_stats(cpu)->__nmi_count;
#ifdef CONFIG_X86_LOCAL_APIC
sum += irq_stats(cpu)->apic_timer_irqs;
sum += irq_stats(cpu)->irq_spurious_count;
sum += irq_stats(cpu)->apic_perf_irqs;
sum += irq_stats(cpu)->apic_irq_work_irqs;
sum += irq_stats(cpu)->icr_read_retry_count;
#endif
if (x86_platform_ipi_callback)
sum += irq_stats(cpu)->x86_platform_ipis;
#ifdef CONFIG_SMP
sum += irq_stats(cpu)->irq_resched_count;
sum += irq_stats(cpu)->irq_call_count;
#endif
#ifdef CONFIG_X86_THERMAL_VECTOR
sum += irq_stats(cpu)->irq_thermal_count;
#endif
#ifdef CONFIG_X86_MCE_THRESHOLD
sum += irq_stats(cpu)->irq_threshold_count;
#endif
#ifdef CONFIG_X86_MCE
sum += per_cpu(mce_exception_count, cpu);
sum += per_cpu(mce_poll_count, cpu);
#endif
return sum;
}
u64 arch_irq_stat(void)
{
u64 sum = atomic_read(&irq_err_count);
return sum;
}
/*
* do_IRQ handles all normal device IRQ's (the special
* SMP cross-CPU interrupts have their own specific
* handlers).
*/
__visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
{
struct pt_regs *old_regs = set_irq_regs(regs);
struct irq_desc * desc;
/* high bit used in ret_from_ code */
unsigned vector = ~regs->orig_ax;
/*
* NB: Unlike exception entries, IRQ entries do not reliably
* handle context tracking in the low-level entry code. This is
* because syscall entries execute briefly with IRQs on before
* updating context tracking state, so we can take an IRQ from
* kernel mode with CONTEXT_USER. The low-level entry code only
* updates the context if we came from user mode, so we won't
* switch to CONTEXT_KERNEL. We'll fix that once the syscall
* code is cleaned up enough that we can cleanly defer enabling
* IRQs.
*/
entering_irq();
/* entering_irq() tells RCU that we're not quiescent. Check it. */
RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
desc = __this_cpu_read(vector_irq[vector]);
if (!handle_irq(desc, regs)) {
ack_APIC_irq();
if (desc != VECTOR_RETRIGGERED) {
pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
__func__, smp_processor_id(),
vector);
} else {
__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
}
}
exiting_irq();
set_irq_regs(old_regs);
return 1;
}
/*
* Handler for X86_PLATFORM_IPI_VECTOR.
*/
void __smp_x86_platform_ipi(void)
{
inc_irq_stat(x86_platform_ipis);
if (x86_platform_ipi_callback)
x86_platform_ipi_callback();
}
__visible void __irq_entry smp_x86_platform_ipi(struct pt_regs *regs)
{
struct pt_regs *old_regs = set_irq_regs(regs);
entering_ack_irq();
__smp_x86_platform_ipi();
exiting_irq();
set_irq_regs(old_regs);
}
#ifdef CONFIG_HAVE_KVM
static void dummy_handler(void) {}
static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
{
if (handler)
kvm_posted_intr_wakeup_handler = handler;
else
kvm_posted_intr_wakeup_handler = dummy_handler;
}
EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
/*
* Handler for POSTED_INTERRUPT_VECTOR.
*/
__visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
{
struct pt_regs *old_regs = set_irq_regs(regs);
entering_ack_irq();
inc_irq_stat(kvm_posted_intr_ipis);
exiting_irq();
set_irq_regs(old_regs);
}
/*
* Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
*/
__visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
{
struct pt_regs *old_regs = set_irq_regs(regs);
entering_ack_irq();
inc_irq_stat(kvm_posted_intr_wakeup_ipis);
kvm_posted_intr_wakeup_handler();
exiting_irq();
set_irq_regs(old_regs);
}
#endif
__visible void __irq_entry smp_trace_x86_platform_ipi(struct pt_regs *regs)
{
struct pt_regs *old_regs = set_irq_regs(regs);
entering_ack_irq();
trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
__smp_x86_platform_ipi();
trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
exiting_irq();
set_irq_regs(old_regs);
}
EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
#ifdef CONFIG_HOTPLUG_CPU
/* These two declarations are only used in check_irq_vectors_for_cpu_disable()
* below, which is protected by stop_machine(). Putting them on the stack
* results in a stack frame overflow. Dynamically allocating could result in a
* failure so declare these two cpumasks as global.
*/
static struct cpumask affinity_new, online_new;
/*
* This cpu is going to be removed and its vectors migrated to the remaining
* online cpus. Check to see if there are enough vectors in the remaining cpus.
* This function is protected by stop_machine().
*/
int check_irq_vectors_for_cpu_disable(void)
{
unsigned int this_cpu, vector, this_count, count;
struct irq_desc *desc;
struct irq_data *data;
int cpu;
this_cpu = smp_processor_id();
cpumask_copy(&online_new, cpu_online_mask);
cpumask_clear_cpu(this_cpu, &online_new);
this_count = 0;
for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
desc = __this_cpu_read(vector_irq[vector]);
if (IS_ERR_OR_NULL(desc))
continue;
/*
* Protect against concurrent action removal, affinity
* changes etc.
*/
raw_spin_lock(&desc->lock);
data = irq_desc_get_irq_data(desc);
cpumask_copy(&affinity_new,
irq_data_get_affinity_mask(data));
cpumask_clear_cpu(this_cpu, &affinity_new);
/* Do not count inactive or per-cpu irqs. */
if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) {
raw_spin_unlock(&desc->lock);
continue;
}
raw_spin_unlock(&desc->lock);
/*
* A single irq may be mapped to multiple cpu's
* vector_irq[] (for example IOAPIC cluster mode). In
* this case we have two possibilities:
*
* 1) the resulting affinity mask is empty; that is
* this the down'd cpu is the last cpu in the irq's
* affinity mask, or
*
* 2) the resulting affinity mask is no longer a
* subset of the online cpus but the affinity mask is
* not zero; that is the down'd cpu is the last online
* cpu in a user set affinity mask.
*/
if (cpumask_empty(&affinity_new) ||
!cpumask_subset(&affinity_new, &online_new))
this_count++;
}
/* No need to check any further. */
if (!this_count)
return 0;
count = 0;
for_each_online_cpu(cpu) {
if (cpu == this_cpu)
continue;
/*
* We scan from FIRST_EXTERNAL_VECTOR to first system
* vector. If the vector is marked in the used vectors
* bitmap or an irq is assigned to it, we don't count
* it as available.
*
* As this is an inaccurate snapshot anyway, we can do
* this w/o holding vector_lock.
*/
for (vector = FIRST_EXTERNAL_VECTOR;
vector < first_system_vector; vector++) {
if (!test_bit(vector, used_vectors) &&
IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector])) {
if (++count == this_count)
return 0;
}
}
}
if (count < this_count) {
pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
this_cpu, this_count, count);
return -ERANGE;
}
return 0;
}
/* A cpu has been removed from cpu_online_mask. Reset irq affinities. */
void fixup_irqs(void)
{
unsigned int irq, vector;
static int warned;
struct irq_desc *desc;
struct irq_data *data;
struct irq_chip *chip;
int ret;
for_each_irq_desc(irq, desc) {
int break_affinity = 0;
int set_affinity = 1;
const struct cpumask *affinity;
if (!desc)
continue;
if (irq == 2)
continue;
/* interrupt's are disabled at this point */
raw_spin_lock(&desc->lock);
data = irq_desc_get_irq_data(desc);
affinity = irq_data_get_affinity_mask(data);
if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
cpumask_subset(affinity, cpu_online_mask)) {
raw_spin_unlock(&desc->lock);
continue;
}
/*
* Complete the irq move. This cpu is going down and for
* non intr-remapping case, we can't wait till this interrupt
* arrives at this cpu before completing the irq move.
*/
irq_force_complete_move(desc);
if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
break_affinity = 1;
affinity = cpu_online_mask;
}
chip = irq_data_get_irq_chip(data);
/*
* The interrupt descriptor might have been cleaned up
* already, but it is not yet removed from the radix tree
*/
if (!chip) {
raw_spin_unlock(&desc->lock);
continue;
}
if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
chip->irq_mask(data);
if (chip->irq_set_affinity) {
ret = chip->irq_set_affinity(data, affinity, true);
if (ret == -ENOSPC)
pr_crit("IRQ %d set affinity failed because there are no available vectors. The device assigned to this IRQ is unstable.\n", irq);
} else {
if (!(warned++))
set_affinity = 0;
}
/*
* We unmask if the irq was not marked masked by the
* core code. That respects the lazy irq disable
* behaviour.
*/
if (!irqd_can_move_in_process_context(data) &&
!irqd_irq_masked(data) && chip->irq_unmask)
chip->irq_unmask(data);
raw_spin_unlock(&desc->lock);
if (break_affinity && set_affinity)
pr_notice("Broke affinity for irq %i\n", irq);
else if (!set_affinity)
pr_notice("Cannot set affinity for irq %i\n", irq);
}
/*
* We can remove mdelay() and then send spuriuous interrupts to
* new cpu targets for all the irqs that were handled previously by
* this cpu. While it works, I have seen spurious interrupt messages
* (nothing wrong but still...).
*
* So for now, retain mdelay(1) and check the IRR and then send those
* interrupts to new targets as this cpu is already offlined...
*/
mdelay(1);
/*
* We can walk the vector array of this cpu without holding
* vector_lock because the cpu is already marked !online, so
* nothing else will touch it.
*/
for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
unsigned int irr;
if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
continue;
irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
if (irr & (1 << (vector % 32))) {
desc = __this_cpu_read(vector_irq[vector]);
raw_spin_lock(&desc->lock);
data = irq_desc_get_irq_data(desc);
chip = irq_data_get_irq_chip(data);
if (chip->irq_retrigger) {
chip->irq_retrigger(data);
__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
}
raw_spin_unlock(&desc->lock);
}
if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
}
}
#endif