mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 12:11:40 +00:00
c0bff412e6
PageAnonExclusive() used to forbid tail pages for hugetlbfs, as that used
to be called mostly in hugetlb specific paths and the head page was
guaranteed.
As we move forward towards merging hugetlb paths into generic mm, we may
start to pass in tail hugetlb pages (when with cont-pte/cont-pmd huge
pages) for such check. Allow it to properly fetch the head, in which case
the anon-exclusiveness of the head will always represents the tail page.
There's already a sign of it when we look at the GUP-fast which already
contain the hugetlb processing altogether: we used to have a specific
commit 5805192c7b
("mm/gup: handle cont-PTE hugetlb pages correctly in
gup_must_unshare() via GUP-fast") covering that area. Now with this more
generic change, that can also go away.
[akpm@linux-foundation.org: simplify PageAnonExclusive(), per Matthew]
Link: https://lkml.kernel.org/r/Zg3u5Sh9EbbYPhaI@casper.infradead.org
Link: https://lkml.kernel.org/r/20240403013249.1418299-2-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: WANG Xuerui <kernel@xen0n.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
1411 lines
43 KiB
C
1411 lines
43 KiB
C
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
/* internal.h: mm/ internal definitions
|
|
*
|
|
* Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
#ifndef __MM_INTERNAL_H
|
|
#define __MM_INTERNAL_H
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/tracepoint-defs.h>
|
|
|
|
struct folio_batch;
|
|
|
|
/*
|
|
* The set of flags that only affect watermark checking and reclaim
|
|
* behaviour. This is used by the MM to obey the caller constraints
|
|
* about IO, FS and watermark checking while ignoring placement
|
|
* hints such as HIGHMEM usage.
|
|
*/
|
|
#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
|
|
__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
|
|
__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
|
|
__GFP_NOLOCKDEP)
|
|
|
|
/* The GFP flags allowed during early boot */
|
|
#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
|
|
|
|
/* Control allocation cpuset and node placement constraints */
|
|
#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
|
|
|
|
/* Do not use these with a slab allocator */
|
|
#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
|
|
|
|
/*
|
|
* Different from WARN_ON_ONCE(), no warning will be issued
|
|
* when we specify __GFP_NOWARN.
|
|
*/
|
|
#define WARN_ON_ONCE_GFP(cond, gfp) ({ \
|
|
static bool __section(".data.once") __warned; \
|
|
int __ret_warn_once = !!(cond); \
|
|
\
|
|
if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
|
|
__warned = true; \
|
|
WARN_ON(1); \
|
|
} \
|
|
unlikely(__ret_warn_once); \
|
|
})
|
|
|
|
void page_writeback_init(void);
|
|
|
|
/*
|
|
* If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
|
|
* its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
|
|
* above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
|
|
* leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
|
|
*/
|
|
#define ENTIRELY_MAPPED 0x800000
|
|
#define FOLIO_PAGES_MAPPED (ENTIRELY_MAPPED - 1)
|
|
|
|
/*
|
|
* Flags passed to __show_mem() and show_free_areas() to suppress output in
|
|
* various contexts.
|
|
*/
|
|
#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
|
|
|
|
/*
|
|
* How many individual pages have an elevated _mapcount. Excludes
|
|
* the folio's entire_mapcount.
|
|
*/
|
|
static inline int folio_nr_pages_mapped(const struct folio *folio)
|
|
{
|
|
return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
|
|
}
|
|
|
|
/*
|
|
* Retrieve the first entry of a folio based on a provided entry within the
|
|
* folio. We cannot rely on folio->swap as there is no guarantee that it has
|
|
* been initialized. Used for calling arch_swap_restore()
|
|
*/
|
|
static inline swp_entry_t folio_swap(swp_entry_t entry,
|
|
const struct folio *folio)
|
|
{
|
|
swp_entry_t swap = {
|
|
.val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)),
|
|
};
|
|
|
|
return swap;
|
|
}
|
|
|
|
static inline void *folio_raw_mapping(const struct folio *folio)
|
|
{
|
|
unsigned long mapping = (unsigned long)folio->mapping;
|
|
|
|
return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
|
|
}
|
|
|
|
#ifdef CONFIG_MMU
|
|
|
|
/* Flags for folio_pte_batch(). */
|
|
typedef int __bitwise fpb_t;
|
|
|
|
/* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */
|
|
#define FPB_IGNORE_DIRTY ((__force fpb_t)BIT(0))
|
|
|
|
/* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */
|
|
#define FPB_IGNORE_SOFT_DIRTY ((__force fpb_t)BIT(1))
|
|
|
|
static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
|
|
{
|
|
if (flags & FPB_IGNORE_DIRTY)
|
|
pte = pte_mkclean(pte);
|
|
if (likely(flags & FPB_IGNORE_SOFT_DIRTY))
|
|
pte = pte_clear_soft_dirty(pte);
|
|
return pte_wrprotect(pte_mkold(pte));
|
|
}
|
|
|
|
/**
|
|
* folio_pte_batch - detect a PTE batch for a large folio
|
|
* @folio: The large folio to detect a PTE batch for.
|
|
* @addr: The user virtual address the first page is mapped at.
|
|
* @start_ptep: Page table pointer for the first entry.
|
|
* @pte: Page table entry for the first page.
|
|
* @max_nr: The maximum number of table entries to consider.
|
|
* @flags: Flags to modify the PTE batch semantics.
|
|
* @any_writable: Optional pointer to indicate whether any entry except the
|
|
* first one is writable.
|
|
*
|
|
* Detect a PTE batch: consecutive (present) PTEs that map consecutive
|
|
* pages of the same large folio.
|
|
*
|
|
* All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
|
|
* the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and
|
|
* soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY).
|
|
*
|
|
* start_ptep must map any page of the folio. max_nr must be at least one and
|
|
* must be limited by the caller so scanning cannot exceed a single page table.
|
|
*
|
|
* Return: the number of table entries in the batch.
|
|
*/
|
|
static inline int folio_pte_batch(struct folio *folio, unsigned long addr,
|
|
pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags,
|
|
bool *any_writable)
|
|
{
|
|
unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio);
|
|
const pte_t *end_ptep = start_ptep + max_nr;
|
|
pte_t expected_pte, *ptep;
|
|
bool writable;
|
|
int nr;
|
|
|
|
if (any_writable)
|
|
*any_writable = false;
|
|
|
|
VM_WARN_ON_FOLIO(!pte_present(pte), folio);
|
|
VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
|
|
VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
|
|
|
|
nr = pte_batch_hint(start_ptep, pte);
|
|
expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
|
|
ptep = start_ptep + nr;
|
|
|
|
while (ptep < end_ptep) {
|
|
pte = ptep_get(ptep);
|
|
if (any_writable)
|
|
writable = !!pte_write(pte);
|
|
pte = __pte_batch_clear_ignored(pte, flags);
|
|
|
|
if (!pte_same(pte, expected_pte))
|
|
break;
|
|
|
|
/*
|
|
* Stop immediately once we reached the end of the folio. In
|
|
* corner cases the next PFN might fall into a different
|
|
* folio.
|
|
*/
|
|
if (pte_pfn(pte) >= folio_end_pfn)
|
|
break;
|
|
|
|
if (any_writable)
|
|
*any_writable |= writable;
|
|
|
|
nr = pte_batch_hint(ptep, pte);
|
|
expected_pte = pte_advance_pfn(expected_pte, nr);
|
|
ptep += nr;
|
|
}
|
|
|
|
return min(ptep - start_ptep, max_nr);
|
|
}
|
|
#endif /* CONFIG_MMU */
|
|
|
|
void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
|
|
int nr_throttled);
|
|
static inline void acct_reclaim_writeback(struct folio *folio)
|
|
{
|
|
pg_data_t *pgdat = folio_pgdat(folio);
|
|
int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
|
|
|
|
if (nr_throttled)
|
|
__acct_reclaim_writeback(pgdat, folio, nr_throttled);
|
|
}
|
|
|
|
static inline void wake_throttle_isolated(pg_data_t *pgdat)
|
|
{
|
|
wait_queue_head_t *wqh;
|
|
|
|
wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
|
|
if (waitqueue_active(wqh))
|
|
wake_up(wqh);
|
|
}
|
|
|
|
vm_fault_t vmf_anon_prepare(struct vm_fault *vmf);
|
|
vm_fault_t do_swap_page(struct vm_fault *vmf);
|
|
void folio_rotate_reclaimable(struct folio *folio);
|
|
bool __folio_end_writeback(struct folio *folio);
|
|
void deactivate_file_folio(struct folio *folio);
|
|
void folio_activate(struct folio *folio);
|
|
|
|
void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
|
|
struct vm_area_struct *start_vma, unsigned long floor,
|
|
unsigned long ceiling, bool mm_wr_locked);
|
|
void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
|
|
|
|
struct zap_details;
|
|
void unmap_page_range(struct mmu_gather *tlb,
|
|
struct vm_area_struct *vma,
|
|
unsigned long addr, unsigned long end,
|
|
struct zap_details *details);
|
|
|
|
void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
|
|
unsigned int order);
|
|
void force_page_cache_ra(struct readahead_control *, unsigned long nr);
|
|
static inline void force_page_cache_readahead(struct address_space *mapping,
|
|
struct file *file, pgoff_t index, unsigned long nr_to_read)
|
|
{
|
|
DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
|
|
force_page_cache_ra(&ractl, nr_to_read);
|
|
}
|
|
|
|
unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
|
|
pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
|
|
unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
|
|
pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
|
|
void filemap_free_folio(struct address_space *mapping, struct folio *folio);
|
|
int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
|
|
bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
|
|
loff_t end);
|
|
long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
|
|
unsigned long mapping_try_invalidate(struct address_space *mapping,
|
|
pgoff_t start, pgoff_t end, unsigned long *nr_failed);
|
|
|
|
/**
|
|
* folio_evictable - Test whether a folio is evictable.
|
|
* @folio: The folio to test.
|
|
*
|
|
* Test whether @folio is evictable -- i.e., should be placed on
|
|
* active/inactive lists vs unevictable list.
|
|
*
|
|
* Reasons folio might not be evictable:
|
|
* 1. folio's mapping marked unevictable
|
|
* 2. One of the pages in the folio is part of an mlocked VMA
|
|
*/
|
|
static inline bool folio_evictable(struct folio *folio)
|
|
{
|
|
bool ret;
|
|
|
|
/* Prevent address_space of inode and swap cache from being freed */
|
|
rcu_read_lock();
|
|
ret = !mapping_unevictable(folio_mapping(folio)) &&
|
|
!folio_test_mlocked(folio);
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Turn a non-refcounted page (->_refcount == 0) into refcounted with
|
|
* a count of one.
|
|
*/
|
|
static inline void set_page_refcounted(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(PageTail(page), page);
|
|
VM_BUG_ON_PAGE(page_ref_count(page), page);
|
|
set_page_count(page, 1);
|
|
}
|
|
|
|
/*
|
|
* Return true if a folio needs ->release_folio() calling upon it.
|
|
*/
|
|
static inline bool folio_needs_release(struct folio *folio)
|
|
{
|
|
struct address_space *mapping = folio_mapping(folio);
|
|
|
|
return folio_has_private(folio) ||
|
|
(mapping && mapping_release_always(mapping));
|
|
}
|
|
|
|
extern unsigned long highest_memmap_pfn;
|
|
|
|
/*
|
|
* Maximum number of reclaim retries without progress before the OOM
|
|
* killer is consider the only way forward.
|
|
*/
|
|
#define MAX_RECLAIM_RETRIES 16
|
|
|
|
/*
|
|
* in mm/vmscan.c:
|
|
*/
|
|
bool isolate_lru_page(struct page *page);
|
|
bool folio_isolate_lru(struct folio *folio);
|
|
void putback_lru_page(struct page *page);
|
|
void folio_putback_lru(struct folio *folio);
|
|
extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
|
|
|
|
/*
|
|
* in mm/rmap.c:
|
|
*/
|
|
pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
|
|
|
|
/*
|
|
* in mm/page_alloc.c
|
|
*/
|
|
#define K(x) ((x) << (PAGE_SHIFT-10))
|
|
|
|
extern char * const zone_names[MAX_NR_ZONES];
|
|
|
|
/* perform sanity checks on struct pages being allocated or freed */
|
|
DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
|
|
|
|
extern int min_free_kbytes;
|
|
|
|
void setup_per_zone_wmarks(void);
|
|
void calculate_min_free_kbytes(void);
|
|
int __meminit init_per_zone_wmark_min(void);
|
|
void page_alloc_sysctl_init(void);
|
|
|
|
/*
|
|
* Structure for holding the mostly immutable allocation parameters passed
|
|
* between functions involved in allocations, including the alloc_pages*
|
|
* family of functions.
|
|
*
|
|
* nodemask, migratetype and highest_zoneidx are initialized only once in
|
|
* __alloc_pages() and then never change.
|
|
*
|
|
* zonelist, preferred_zone and highest_zoneidx are set first in
|
|
* __alloc_pages() for the fast path, and might be later changed
|
|
* in __alloc_pages_slowpath(). All other functions pass the whole structure
|
|
* by a const pointer.
|
|
*/
|
|
struct alloc_context {
|
|
struct zonelist *zonelist;
|
|
nodemask_t *nodemask;
|
|
struct zoneref *preferred_zoneref;
|
|
int migratetype;
|
|
|
|
/*
|
|
* highest_zoneidx represents highest usable zone index of
|
|
* the allocation request. Due to the nature of the zone,
|
|
* memory on lower zone than the highest_zoneidx will be
|
|
* protected by lowmem_reserve[highest_zoneidx].
|
|
*
|
|
* highest_zoneidx is also used by reclaim/compaction to limit
|
|
* the target zone since higher zone than this index cannot be
|
|
* usable for this allocation request.
|
|
*/
|
|
enum zone_type highest_zoneidx;
|
|
bool spread_dirty_pages;
|
|
};
|
|
|
|
/*
|
|
* This function returns the order of a free page in the buddy system. In
|
|
* general, page_zone(page)->lock must be held by the caller to prevent the
|
|
* page from being allocated in parallel and returning garbage as the order.
|
|
* If a caller does not hold page_zone(page)->lock, it must guarantee that the
|
|
* page cannot be allocated or merged in parallel. Alternatively, it must
|
|
* handle invalid values gracefully, and use buddy_order_unsafe() below.
|
|
*/
|
|
static inline unsigned int buddy_order(struct page *page)
|
|
{
|
|
/* PageBuddy() must be checked by the caller */
|
|
return page_private(page);
|
|
}
|
|
|
|
/*
|
|
* Like buddy_order(), but for callers who cannot afford to hold the zone lock.
|
|
* PageBuddy() should be checked first by the caller to minimize race window,
|
|
* and invalid values must be handled gracefully.
|
|
*
|
|
* READ_ONCE is used so that if the caller assigns the result into a local
|
|
* variable and e.g. tests it for valid range before using, the compiler cannot
|
|
* decide to remove the variable and inline the page_private(page) multiple
|
|
* times, potentially observing different values in the tests and the actual
|
|
* use of the result.
|
|
*/
|
|
#define buddy_order_unsafe(page) READ_ONCE(page_private(page))
|
|
|
|
/*
|
|
* This function checks whether a page is free && is the buddy
|
|
* we can coalesce a page and its buddy if
|
|
* (a) the buddy is not in a hole (check before calling!) &&
|
|
* (b) the buddy is in the buddy system &&
|
|
* (c) a page and its buddy have the same order &&
|
|
* (d) a page and its buddy are in the same zone.
|
|
*
|
|
* For recording whether a page is in the buddy system, we set PageBuddy.
|
|
* Setting, clearing, and testing PageBuddy is serialized by zone->lock.
|
|
*
|
|
* For recording page's order, we use page_private(page).
|
|
*/
|
|
static inline bool page_is_buddy(struct page *page, struct page *buddy,
|
|
unsigned int order)
|
|
{
|
|
if (!page_is_guard(buddy) && !PageBuddy(buddy))
|
|
return false;
|
|
|
|
if (buddy_order(buddy) != order)
|
|
return false;
|
|
|
|
/*
|
|
* zone check is done late to avoid uselessly calculating
|
|
* zone/node ids for pages that could never merge.
|
|
*/
|
|
if (page_zone_id(page) != page_zone_id(buddy))
|
|
return false;
|
|
|
|
VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Locate the struct page for both the matching buddy in our
|
|
* pair (buddy1) and the combined O(n+1) page they form (page).
|
|
*
|
|
* 1) Any buddy B1 will have an order O twin B2 which satisfies
|
|
* the following equation:
|
|
* B2 = B1 ^ (1 << O)
|
|
* For example, if the starting buddy (buddy2) is #8 its order
|
|
* 1 buddy is #10:
|
|
* B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
|
|
*
|
|
* 2) Any buddy B will have an order O+1 parent P which
|
|
* satisfies the following equation:
|
|
* P = B & ~(1 << O)
|
|
*
|
|
* Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
|
|
*/
|
|
static inline unsigned long
|
|
__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
|
|
{
|
|
return page_pfn ^ (1 << order);
|
|
}
|
|
|
|
/*
|
|
* Find the buddy of @page and validate it.
|
|
* @page: The input page
|
|
* @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
|
|
* function is used in the performance-critical __free_one_page().
|
|
* @order: The order of the page
|
|
* @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
|
|
* page_to_pfn().
|
|
*
|
|
* The found buddy can be a non PageBuddy, out of @page's zone, or its order is
|
|
* not the same as @page. The validation is necessary before use it.
|
|
*
|
|
* Return: the found buddy page or NULL if not found.
|
|
*/
|
|
static inline struct page *find_buddy_page_pfn(struct page *page,
|
|
unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
|
|
{
|
|
unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
|
|
struct page *buddy;
|
|
|
|
buddy = page + (__buddy_pfn - pfn);
|
|
if (buddy_pfn)
|
|
*buddy_pfn = __buddy_pfn;
|
|
|
|
if (page_is_buddy(page, buddy, order))
|
|
return buddy;
|
|
return NULL;
|
|
}
|
|
|
|
extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
|
|
unsigned long end_pfn, struct zone *zone);
|
|
|
|
static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
|
|
unsigned long end_pfn, struct zone *zone)
|
|
{
|
|
if (zone->contiguous)
|
|
return pfn_to_page(start_pfn);
|
|
|
|
return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
|
|
}
|
|
|
|
void set_zone_contiguous(struct zone *zone);
|
|
|
|
static inline void clear_zone_contiguous(struct zone *zone)
|
|
{
|
|
zone->contiguous = false;
|
|
}
|
|
|
|
extern int __isolate_free_page(struct page *page, unsigned int order);
|
|
extern void __putback_isolated_page(struct page *page, unsigned int order,
|
|
int mt);
|
|
extern void memblock_free_pages(struct page *page, unsigned long pfn,
|
|
unsigned int order);
|
|
extern void __free_pages_core(struct page *page, unsigned int order);
|
|
|
|
/*
|
|
* This will have no effect, other than possibly generating a warning, if the
|
|
* caller passes in a non-large folio.
|
|
*/
|
|
static inline void folio_set_order(struct folio *folio, unsigned int order)
|
|
{
|
|
if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
|
|
return;
|
|
|
|
folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
|
|
#ifdef CONFIG_64BIT
|
|
folio->_folio_nr_pages = 1U << order;
|
|
#endif
|
|
}
|
|
|
|
void folio_undo_large_rmappable(struct folio *folio);
|
|
|
|
static inline struct folio *page_rmappable_folio(struct page *page)
|
|
{
|
|
struct folio *folio = (struct folio *)page;
|
|
|
|
if (folio && folio_test_large(folio))
|
|
folio_set_large_rmappable(folio);
|
|
return folio;
|
|
}
|
|
|
|
static inline void prep_compound_head(struct page *page, unsigned int order)
|
|
{
|
|
struct folio *folio = (struct folio *)page;
|
|
|
|
folio_set_order(folio, order);
|
|
atomic_set(&folio->_entire_mapcount, -1);
|
|
atomic_set(&folio->_nr_pages_mapped, 0);
|
|
atomic_set(&folio->_pincount, 0);
|
|
if (order > 1)
|
|
INIT_LIST_HEAD(&folio->_deferred_list);
|
|
}
|
|
|
|
static inline void prep_compound_tail(struct page *head, int tail_idx)
|
|
{
|
|
struct page *p = head + tail_idx;
|
|
|
|
p->mapping = TAIL_MAPPING;
|
|
set_compound_head(p, head);
|
|
set_page_private(p, 0);
|
|
}
|
|
|
|
extern void prep_compound_page(struct page *page, unsigned int order);
|
|
|
|
extern void post_alloc_hook(struct page *page, unsigned int order,
|
|
gfp_t gfp_flags);
|
|
extern bool free_pages_prepare(struct page *page, unsigned int order);
|
|
|
|
extern int user_min_free_kbytes;
|
|
|
|
void free_unref_page(struct page *page, unsigned int order);
|
|
void free_unref_folios(struct folio_batch *fbatch);
|
|
|
|
extern void zone_pcp_reset(struct zone *zone);
|
|
extern void zone_pcp_disable(struct zone *zone);
|
|
extern void zone_pcp_enable(struct zone *zone);
|
|
extern void zone_pcp_init(struct zone *zone);
|
|
|
|
extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
|
|
phys_addr_t min_addr,
|
|
int nid, bool exact_nid);
|
|
|
|
void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
|
|
unsigned long, enum meminit_context, struct vmem_altmap *, int);
|
|
|
|
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
|
|
|
|
/*
|
|
* in mm/compaction.c
|
|
*/
|
|
/*
|
|
* compact_control is used to track pages being migrated and the free pages
|
|
* they are being migrated to during memory compaction. The free_pfn starts
|
|
* at the end of a zone and migrate_pfn begins at the start. Movable pages
|
|
* are moved to the end of a zone during a compaction run and the run
|
|
* completes when free_pfn <= migrate_pfn
|
|
*/
|
|
struct compact_control {
|
|
struct list_head freepages[NR_PAGE_ORDERS]; /* List of free pages to migrate to */
|
|
struct list_head migratepages; /* List of pages being migrated */
|
|
unsigned int nr_freepages; /* Number of isolated free pages */
|
|
unsigned int nr_migratepages; /* Number of pages to migrate */
|
|
unsigned long free_pfn; /* isolate_freepages search base */
|
|
/*
|
|
* Acts as an in/out parameter to page isolation for migration.
|
|
* isolate_migratepages uses it as a search base.
|
|
* isolate_migratepages_block will update the value to the next pfn
|
|
* after the last isolated one.
|
|
*/
|
|
unsigned long migrate_pfn;
|
|
unsigned long fast_start_pfn; /* a pfn to start linear scan from */
|
|
struct zone *zone;
|
|
unsigned long total_migrate_scanned;
|
|
unsigned long total_free_scanned;
|
|
unsigned short fast_search_fail;/* failures to use free list searches */
|
|
short search_order; /* order to start a fast search at */
|
|
const gfp_t gfp_mask; /* gfp mask of a direct compactor */
|
|
int order; /* order a direct compactor needs */
|
|
int migratetype; /* migratetype of direct compactor */
|
|
const unsigned int alloc_flags; /* alloc flags of a direct compactor */
|
|
const int highest_zoneidx; /* zone index of a direct compactor */
|
|
enum migrate_mode mode; /* Async or sync migration mode */
|
|
bool ignore_skip_hint; /* Scan blocks even if marked skip */
|
|
bool no_set_skip_hint; /* Don't mark blocks for skipping */
|
|
bool ignore_block_suitable; /* Scan blocks considered unsuitable */
|
|
bool direct_compaction; /* False from kcompactd or /proc/... */
|
|
bool proactive_compaction; /* kcompactd proactive compaction */
|
|
bool whole_zone; /* Whole zone should/has been scanned */
|
|
bool contended; /* Signal lock contention */
|
|
bool finish_pageblock; /* Scan the remainder of a pageblock. Used
|
|
* when there are potentially transient
|
|
* isolation or migration failures to
|
|
* ensure forward progress.
|
|
*/
|
|
bool alloc_contig; /* alloc_contig_range allocation */
|
|
};
|
|
|
|
/*
|
|
* Used in direct compaction when a page should be taken from the freelists
|
|
* immediately when one is created during the free path.
|
|
*/
|
|
struct capture_control {
|
|
struct compact_control *cc;
|
|
struct page *page;
|
|
};
|
|
|
|
unsigned long
|
|
isolate_freepages_range(struct compact_control *cc,
|
|
unsigned long start_pfn, unsigned long end_pfn);
|
|
int
|
|
isolate_migratepages_range(struct compact_control *cc,
|
|
unsigned long low_pfn, unsigned long end_pfn);
|
|
|
|
int __alloc_contig_migrate_range(struct compact_control *cc,
|
|
unsigned long start, unsigned long end,
|
|
int migratetype);
|
|
|
|
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
|
|
void init_cma_reserved_pageblock(struct page *page);
|
|
|
|
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
|
|
|
|
int find_suitable_fallback(struct free_area *area, unsigned int order,
|
|
int migratetype, bool only_stealable, bool *can_steal);
|
|
|
|
static inline bool free_area_empty(struct free_area *area, int migratetype)
|
|
{
|
|
return list_empty(&area->free_list[migratetype]);
|
|
}
|
|
|
|
/*
|
|
* These three helpers classifies VMAs for virtual memory accounting.
|
|
*/
|
|
|
|
/*
|
|
* Executable code area - executable, not writable, not stack
|
|
*/
|
|
static inline bool is_exec_mapping(vm_flags_t flags)
|
|
{
|
|
return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
|
|
}
|
|
|
|
/*
|
|
* Stack area (including shadow stacks)
|
|
*
|
|
* VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
|
|
* do_mmap() forbids all other combinations.
|
|
*/
|
|
static inline bool is_stack_mapping(vm_flags_t flags)
|
|
{
|
|
return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
|
|
}
|
|
|
|
/*
|
|
* Data area - private, writable, not stack
|
|
*/
|
|
static inline bool is_data_mapping(vm_flags_t flags)
|
|
{
|
|
return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
|
|
}
|
|
|
|
/* mm/util.c */
|
|
struct anon_vma *folio_anon_vma(struct folio *folio);
|
|
|
|
#ifdef CONFIG_MMU
|
|
void unmap_mapping_folio(struct folio *folio);
|
|
extern long populate_vma_page_range(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end, int *locked);
|
|
extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
|
|
unsigned long end, bool write, int *locked);
|
|
extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
|
|
unsigned long bytes);
|
|
|
|
/*
|
|
* NOTE: This function can't tell whether the folio is "fully mapped" in the
|
|
* range.
|
|
* "fully mapped" means all the pages of folio is associated with the page
|
|
* table of range while this function just check whether the folio range is
|
|
* within the range [start, end). Function caller needs to do page table
|
|
* check if it cares about the page table association.
|
|
*
|
|
* Typical usage (like mlock or madvise) is:
|
|
* Caller knows at least 1 page of folio is associated with page table of VMA
|
|
* and the range [start, end) is intersect with the VMA range. Caller wants
|
|
* to know whether the folio is fully associated with the range. It calls
|
|
* this function to check whether the folio is in the range first. Then checks
|
|
* the page table to know whether the folio is fully mapped to the range.
|
|
*/
|
|
static inline bool
|
|
folio_within_range(struct folio *folio, struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
pgoff_t pgoff, addr;
|
|
unsigned long vma_pglen = vma_pages(vma);
|
|
|
|
VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
|
|
if (start > end)
|
|
return false;
|
|
|
|
if (start < vma->vm_start)
|
|
start = vma->vm_start;
|
|
|
|
if (end > vma->vm_end)
|
|
end = vma->vm_end;
|
|
|
|
pgoff = folio_pgoff(folio);
|
|
|
|
/* if folio start address is not in vma range */
|
|
if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
|
|
return false;
|
|
|
|
addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
|
|
|
|
return !(addr < start || end - addr < folio_size(folio));
|
|
}
|
|
|
|
static inline bool
|
|
folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
|
|
{
|
|
return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
|
|
}
|
|
|
|
/*
|
|
* mlock_vma_folio() and munlock_vma_folio():
|
|
* should be called with vma's mmap_lock held for read or write,
|
|
* under page table lock for the pte/pmd being added or removed.
|
|
*
|
|
* mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
|
|
* the end of folio_remove_rmap_*(); but new anon folios are managed by
|
|
* folio_add_lru_vma() calling mlock_new_folio().
|
|
*/
|
|
void mlock_folio(struct folio *folio);
|
|
static inline void mlock_vma_folio(struct folio *folio,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* The VM_SPECIAL check here serves two purposes.
|
|
* 1) VM_IO check prevents migration from double-counting during mlock.
|
|
* 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
|
|
* is never left set on a VM_SPECIAL vma, there is an interval while
|
|
* file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
|
|
* still be set while VM_SPECIAL bits are added: so ignore it then.
|
|
*/
|
|
if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
|
|
mlock_folio(folio);
|
|
}
|
|
|
|
void munlock_folio(struct folio *folio);
|
|
static inline void munlock_vma_folio(struct folio *folio,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* munlock if the function is called. Ideally, we should only
|
|
* do munlock if any page of folio is unmapped from VMA and
|
|
* cause folio not fully mapped to VMA.
|
|
*
|
|
* But it's not easy to confirm that's the situation. So we
|
|
* always munlock the folio and page reclaim will correct it
|
|
* if it's wrong.
|
|
*/
|
|
if (unlikely(vma->vm_flags & VM_LOCKED))
|
|
munlock_folio(folio);
|
|
}
|
|
|
|
void mlock_new_folio(struct folio *folio);
|
|
bool need_mlock_drain(int cpu);
|
|
void mlock_drain_local(void);
|
|
void mlock_drain_remote(int cpu);
|
|
|
|
extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
|
|
|
|
/*
|
|
* Return the start of user virtual address at the specific offset within
|
|
* a vma.
|
|
*/
|
|
static inline unsigned long
|
|
vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
unsigned long address;
|
|
|
|
if (pgoff >= vma->vm_pgoff) {
|
|
address = vma->vm_start +
|
|
((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
|
|
/* Check for address beyond vma (or wrapped through 0?) */
|
|
if (address < vma->vm_start || address >= vma->vm_end)
|
|
address = -EFAULT;
|
|
} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
|
|
/* Test above avoids possibility of wrap to 0 on 32-bit */
|
|
address = vma->vm_start;
|
|
} else {
|
|
address = -EFAULT;
|
|
}
|
|
return address;
|
|
}
|
|
|
|
/*
|
|
* Return the start of user virtual address of a page within a vma.
|
|
* Returns -EFAULT if all of the page is outside the range of vma.
|
|
* If page is a compound head, the entire compound page is considered.
|
|
*/
|
|
static inline unsigned long
|
|
vma_address(struct page *page, struct vm_area_struct *vma)
|
|
{
|
|
VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
|
|
return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
|
|
}
|
|
|
|
/*
|
|
* Then at what user virtual address will none of the range be found in vma?
|
|
* Assumes that vma_address() already returned a good starting address.
|
|
*/
|
|
static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
|
|
{
|
|
struct vm_area_struct *vma = pvmw->vma;
|
|
pgoff_t pgoff;
|
|
unsigned long address;
|
|
|
|
/* Common case, plus ->pgoff is invalid for KSM */
|
|
if (pvmw->nr_pages == 1)
|
|
return pvmw->address + PAGE_SIZE;
|
|
|
|
pgoff = pvmw->pgoff + pvmw->nr_pages;
|
|
address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
|
|
/* Check for address beyond vma (or wrapped through 0?) */
|
|
if (address < vma->vm_start || address > vma->vm_end)
|
|
address = vma->vm_end;
|
|
return address;
|
|
}
|
|
|
|
static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
|
|
struct file *fpin)
|
|
{
|
|
int flags = vmf->flags;
|
|
|
|
if (fpin)
|
|
return fpin;
|
|
|
|
/*
|
|
* FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
|
|
* anything, so we only pin the file and drop the mmap_lock if only
|
|
* FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
|
|
*/
|
|
if (fault_flag_allow_retry_first(flags) &&
|
|
!(flags & FAULT_FLAG_RETRY_NOWAIT)) {
|
|
fpin = get_file(vmf->vma->vm_file);
|
|
release_fault_lock(vmf);
|
|
}
|
|
return fpin;
|
|
}
|
|
#else /* !CONFIG_MMU */
|
|
static inline void unmap_mapping_folio(struct folio *folio) { }
|
|
static inline void mlock_new_folio(struct folio *folio) { }
|
|
static inline bool need_mlock_drain(int cpu) { return false; }
|
|
static inline void mlock_drain_local(void) { }
|
|
static inline void mlock_drain_remote(int cpu) { }
|
|
static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
|
|
{
|
|
}
|
|
#endif /* !CONFIG_MMU */
|
|
|
|
/* Memory initialisation debug and verification */
|
|
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
|
|
DECLARE_STATIC_KEY_TRUE(deferred_pages);
|
|
|
|
bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
|
|
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
|
|
|
|
enum mminit_level {
|
|
MMINIT_WARNING,
|
|
MMINIT_VERIFY,
|
|
MMINIT_TRACE
|
|
};
|
|
|
|
#ifdef CONFIG_DEBUG_MEMORY_INIT
|
|
|
|
extern int mminit_loglevel;
|
|
|
|
#define mminit_dprintk(level, prefix, fmt, arg...) \
|
|
do { \
|
|
if (level < mminit_loglevel) { \
|
|
if (level <= MMINIT_WARNING) \
|
|
pr_warn("mminit::" prefix " " fmt, ##arg); \
|
|
else \
|
|
printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
|
|
} \
|
|
} while (0)
|
|
|
|
extern void mminit_verify_pageflags_layout(void);
|
|
extern void mminit_verify_zonelist(void);
|
|
#else
|
|
|
|
static inline void mminit_dprintk(enum mminit_level level,
|
|
const char *prefix, const char *fmt, ...)
|
|
{
|
|
}
|
|
|
|
static inline void mminit_verify_pageflags_layout(void)
|
|
{
|
|
}
|
|
|
|
static inline void mminit_verify_zonelist(void)
|
|
{
|
|
}
|
|
#endif /* CONFIG_DEBUG_MEMORY_INIT */
|
|
|
|
#define NODE_RECLAIM_NOSCAN -2
|
|
#define NODE_RECLAIM_FULL -1
|
|
#define NODE_RECLAIM_SOME 0
|
|
#define NODE_RECLAIM_SUCCESS 1
|
|
|
|
#ifdef CONFIG_NUMA
|
|
extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
|
|
extern int find_next_best_node(int node, nodemask_t *used_node_mask);
|
|
#else
|
|
static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
|
|
unsigned int order)
|
|
{
|
|
return NODE_RECLAIM_NOSCAN;
|
|
}
|
|
static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
|
|
{
|
|
return NUMA_NO_NODE;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* mm/memory-failure.c
|
|
*/
|
|
extern int hwpoison_filter(struct page *p);
|
|
|
|
extern u32 hwpoison_filter_dev_major;
|
|
extern u32 hwpoison_filter_dev_minor;
|
|
extern u64 hwpoison_filter_flags_mask;
|
|
extern u64 hwpoison_filter_flags_value;
|
|
extern u64 hwpoison_filter_memcg;
|
|
extern u32 hwpoison_filter_enable;
|
|
|
|
extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
|
|
unsigned long, unsigned long,
|
|
unsigned long, unsigned long);
|
|
|
|
extern void set_pageblock_order(void);
|
|
unsigned long reclaim_pages(struct list_head *folio_list, bool ignore_references);
|
|
unsigned int reclaim_clean_pages_from_list(struct zone *zone,
|
|
struct list_head *folio_list);
|
|
/* The ALLOC_WMARK bits are used as an index to zone->watermark */
|
|
#define ALLOC_WMARK_MIN WMARK_MIN
|
|
#define ALLOC_WMARK_LOW WMARK_LOW
|
|
#define ALLOC_WMARK_HIGH WMARK_HIGH
|
|
#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
|
|
|
|
/* Mask to get the watermark bits */
|
|
#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
|
|
|
|
/*
|
|
* Only MMU archs have async oom victim reclaim - aka oom_reaper so we
|
|
* cannot assume a reduced access to memory reserves is sufficient for
|
|
* !MMU
|
|
*/
|
|
#ifdef CONFIG_MMU
|
|
#define ALLOC_OOM 0x08
|
|
#else
|
|
#define ALLOC_OOM ALLOC_NO_WATERMARKS
|
|
#endif
|
|
|
|
#define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access
|
|
* to 25% of the min watermark or
|
|
* 62.5% if __GFP_HIGH is set.
|
|
*/
|
|
#define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50%
|
|
* of the min watermark.
|
|
*/
|
|
#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
|
|
#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
#define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
|
|
#else
|
|
#define ALLOC_NOFRAGMENT 0x0
|
|
#endif
|
|
#define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */
|
|
#define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
|
|
|
|
/* Flags that allow allocations below the min watermark. */
|
|
#define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
|
|
|
|
enum ttu_flags;
|
|
struct tlbflush_unmap_batch;
|
|
|
|
|
|
/*
|
|
* only for MM internal work items which do not depend on
|
|
* any allocations or locks which might depend on allocations
|
|
*/
|
|
extern struct workqueue_struct *mm_percpu_wq;
|
|
|
|
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
|
|
void try_to_unmap_flush(void);
|
|
void try_to_unmap_flush_dirty(void);
|
|
void flush_tlb_batched_pending(struct mm_struct *mm);
|
|
#else
|
|
static inline void try_to_unmap_flush(void)
|
|
{
|
|
}
|
|
static inline void try_to_unmap_flush_dirty(void)
|
|
{
|
|
}
|
|
static inline void flush_tlb_batched_pending(struct mm_struct *mm)
|
|
{
|
|
}
|
|
#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
|
|
|
|
extern const struct trace_print_flags pageflag_names[];
|
|
extern const struct trace_print_flags pagetype_names[];
|
|
extern const struct trace_print_flags vmaflag_names[];
|
|
extern const struct trace_print_flags gfpflag_names[];
|
|
|
|
static inline bool is_migrate_highatomic(enum migratetype migratetype)
|
|
{
|
|
return migratetype == MIGRATE_HIGHATOMIC;
|
|
}
|
|
|
|
void setup_zone_pageset(struct zone *zone);
|
|
|
|
struct migration_target_control {
|
|
int nid; /* preferred node id */
|
|
nodemask_t *nmask;
|
|
gfp_t gfp_mask;
|
|
enum migrate_reason reason;
|
|
};
|
|
|
|
/*
|
|
* mm/filemap.c
|
|
*/
|
|
size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
|
|
struct folio *folio, loff_t fpos, size_t size);
|
|
|
|
/*
|
|
* mm/vmalloc.c
|
|
*/
|
|
#ifdef CONFIG_MMU
|
|
void __init vmalloc_init(void);
|
|
int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
|
|
pgprot_t prot, struct page **pages, unsigned int page_shift);
|
|
#else
|
|
static inline void vmalloc_init(void)
|
|
{
|
|
}
|
|
|
|
static inline
|
|
int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
|
|
pgprot_t prot, struct page **pages, unsigned int page_shift)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
int __must_check __vmap_pages_range_noflush(unsigned long addr,
|
|
unsigned long end, pgprot_t prot,
|
|
struct page **pages, unsigned int page_shift);
|
|
|
|
void vunmap_range_noflush(unsigned long start, unsigned long end);
|
|
|
|
void __vunmap_range_noflush(unsigned long start, unsigned long end);
|
|
|
|
int numa_migrate_prep(struct folio *folio, struct vm_fault *vmf,
|
|
unsigned long addr, int page_nid, int *flags);
|
|
|
|
void free_zone_device_page(struct page *page);
|
|
int migrate_device_coherent_page(struct page *page);
|
|
|
|
/*
|
|
* mm/gup.c
|
|
*/
|
|
struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
|
|
int __must_check try_grab_page(struct page *page, unsigned int flags);
|
|
|
|
/*
|
|
* mm/huge_memory.c
|
|
*/
|
|
void touch_pud(struct vm_area_struct *vma, unsigned long addr,
|
|
pud_t *pud, bool write);
|
|
void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmd, bool write);
|
|
|
|
/*
|
|
* mm/mmap.c
|
|
*/
|
|
struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
|
|
struct vm_area_struct *vma,
|
|
unsigned long delta);
|
|
|
|
enum {
|
|
/* mark page accessed */
|
|
FOLL_TOUCH = 1 << 16,
|
|
/* a retry, previous pass started an IO */
|
|
FOLL_TRIED = 1 << 17,
|
|
/* we are working on non-current tsk/mm */
|
|
FOLL_REMOTE = 1 << 18,
|
|
/* pages must be released via unpin_user_page */
|
|
FOLL_PIN = 1 << 19,
|
|
/* gup_fast: prevent fall-back to slow gup */
|
|
FOLL_FAST_ONLY = 1 << 20,
|
|
/* allow unlocking the mmap lock */
|
|
FOLL_UNLOCKABLE = 1 << 21,
|
|
/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
|
|
FOLL_MADV_POPULATE = 1 << 22,
|
|
};
|
|
|
|
#define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
|
|
FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
|
|
FOLL_MADV_POPULATE)
|
|
|
|
/*
|
|
* Indicates for which pages that are write-protected in the page table,
|
|
* whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
|
|
* GUP pin will remain consistent with the pages mapped into the page tables
|
|
* of the MM.
|
|
*
|
|
* Temporary unmapping of PageAnonExclusive() pages or clearing of
|
|
* PageAnonExclusive() has to protect against concurrent GUP:
|
|
* * Ordinary GUP: Using the PT lock
|
|
* * GUP-fast and fork(): mm->write_protect_seq
|
|
* * GUP-fast and KSM or temporary unmapping (swap, migration): see
|
|
* folio_try_share_anon_rmap_*()
|
|
*
|
|
* Must be called with the (sub)page that's actually referenced via the
|
|
* page table entry, which might not necessarily be the head page for a
|
|
* PTE-mapped THP.
|
|
*
|
|
* If the vma is NULL, we're coming from the GUP-fast path and might have
|
|
* to fallback to the slow path just to lookup the vma.
|
|
*/
|
|
static inline bool gup_must_unshare(struct vm_area_struct *vma,
|
|
unsigned int flags, struct page *page)
|
|
{
|
|
/*
|
|
* FOLL_WRITE is implicitly handled correctly as the page table entry
|
|
* has to be writable -- and if it references (part of) an anonymous
|
|
* folio, that part is required to be marked exclusive.
|
|
*/
|
|
if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
|
|
return false;
|
|
/*
|
|
* Note: PageAnon(page) is stable until the page is actually getting
|
|
* freed.
|
|
*/
|
|
if (!PageAnon(page)) {
|
|
/*
|
|
* We only care about R/O long-term pining: R/O short-term
|
|
* pinning does not have the semantics to observe successive
|
|
* changes through the process page tables.
|
|
*/
|
|
if (!(flags & FOLL_LONGTERM))
|
|
return false;
|
|
|
|
/* We really need the vma ... */
|
|
if (!vma)
|
|
return true;
|
|
|
|
/*
|
|
* ... because we only care about writable private ("COW")
|
|
* mappings where we have to break COW early.
|
|
*/
|
|
return is_cow_mapping(vma->vm_flags);
|
|
}
|
|
|
|
/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
|
|
if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
|
|
smp_rmb();
|
|
|
|
/*
|
|
* Note that PageKsm() pages cannot be exclusive, and consequently,
|
|
* cannot get pinned.
|
|
*/
|
|
return !PageAnonExclusive(page);
|
|
}
|
|
|
|
extern bool mirrored_kernelcore;
|
|
extern bool memblock_has_mirror(void);
|
|
|
|
static __always_inline void vma_set_range(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end,
|
|
pgoff_t pgoff)
|
|
{
|
|
vma->vm_start = start;
|
|
vma->vm_end = end;
|
|
vma->vm_pgoff = pgoff;
|
|
}
|
|
|
|
static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
|
|
* enablements, because when without soft-dirty being compiled in,
|
|
* VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
|
|
* will be constantly true.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
|
|
return false;
|
|
|
|
/*
|
|
* Soft-dirty is kind of special: its tracking is enabled when the
|
|
* vma flags not set.
|
|
*/
|
|
return !(vma->vm_flags & VM_SOFTDIRTY);
|
|
}
|
|
|
|
static inline void vma_iter_config(struct vma_iterator *vmi,
|
|
unsigned long index, unsigned long last)
|
|
{
|
|
__mas_set_range(&vmi->mas, index, last - 1);
|
|
}
|
|
|
|
static inline void vma_iter_reset(struct vma_iterator *vmi)
|
|
{
|
|
mas_reset(&vmi->mas);
|
|
}
|
|
|
|
static inline
|
|
struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min)
|
|
{
|
|
return mas_prev_range(&vmi->mas, min);
|
|
}
|
|
|
|
static inline
|
|
struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max)
|
|
{
|
|
return mas_next_range(&vmi->mas, max);
|
|
}
|
|
|
|
static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min,
|
|
unsigned long max, unsigned long size)
|
|
{
|
|
return mas_empty_area(&vmi->mas, min, max - 1, size);
|
|
}
|
|
|
|
static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min,
|
|
unsigned long max, unsigned long size)
|
|
{
|
|
return mas_empty_area_rev(&vmi->mas, min, max - 1, size);
|
|
}
|
|
|
|
/*
|
|
* VMA Iterator functions shared between nommu and mmap
|
|
*/
|
|
static inline int vma_iter_prealloc(struct vma_iterator *vmi,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
|
|
}
|
|
|
|
static inline void vma_iter_clear(struct vma_iterator *vmi)
|
|
{
|
|
mas_store_prealloc(&vmi->mas, NULL);
|
|
}
|
|
|
|
static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
|
|
{
|
|
return mas_walk(&vmi->mas);
|
|
}
|
|
|
|
/* Store a VMA with preallocated memory */
|
|
static inline void vma_iter_store(struct vma_iterator *vmi,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
|
|
#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
|
|
if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
|
|
vmi->mas.index > vma->vm_start)) {
|
|
pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
|
|
vmi->mas.index, vma->vm_start, vma->vm_start,
|
|
vma->vm_end, vmi->mas.index, vmi->mas.last);
|
|
}
|
|
if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
|
|
vmi->mas.last < vma->vm_start)) {
|
|
pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
|
|
vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
|
|
vmi->mas.index, vmi->mas.last);
|
|
}
|
|
#endif
|
|
|
|
if (vmi->mas.status != ma_start &&
|
|
((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
|
|
vma_iter_invalidate(vmi);
|
|
|
|
__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
|
|
mas_store_prealloc(&vmi->mas, vma);
|
|
}
|
|
|
|
static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
|
|
struct vm_area_struct *vma, gfp_t gfp)
|
|
{
|
|
if (vmi->mas.status != ma_start &&
|
|
((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
|
|
vma_iter_invalidate(vmi);
|
|
|
|
__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
|
|
mas_store_gfp(&vmi->mas, vma, gfp);
|
|
if (unlikely(mas_is_err(&vmi->mas)))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* VMA lock generalization
|
|
*/
|
|
struct vma_prepare {
|
|
struct vm_area_struct *vma;
|
|
struct vm_area_struct *adj_next;
|
|
struct file *file;
|
|
struct address_space *mapping;
|
|
struct anon_vma *anon_vma;
|
|
struct vm_area_struct *insert;
|
|
struct vm_area_struct *remove;
|
|
struct vm_area_struct *remove2;
|
|
};
|
|
|
|
void __meminit __init_single_page(struct page *page, unsigned long pfn,
|
|
unsigned long zone, int nid);
|
|
|
|
/* shrinker related functions */
|
|
unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
|
|
int priority);
|
|
|
|
#ifdef CONFIG_SHRINKER_DEBUG
|
|
static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
|
|
struct shrinker *shrinker, const char *fmt, va_list ap)
|
|
{
|
|
shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
|
|
|
|
return shrinker->name ? 0 : -ENOMEM;
|
|
}
|
|
|
|
static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
|
|
{
|
|
kfree_const(shrinker->name);
|
|
shrinker->name = NULL;
|
|
}
|
|
|
|
extern int shrinker_debugfs_add(struct shrinker *shrinker);
|
|
extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
|
|
int *debugfs_id);
|
|
extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
|
|
int debugfs_id);
|
|
#else /* CONFIG_SHRINKER_DEBUG */
|
|
static inline int shrinker_debugfs_add(struct shrinker *shrinker)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
|
|
const char *fmt, va_list ap)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
|
|
{
|
|
}
|
|
static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
|
|
int *debugfs_id)
|
|
{
|
|
*debugfs_id = -1;
|
|
return NULL;
|
|
}
|
|
static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
|
|
int debugfs_id)
|
|
{
|
|
}
|
|
#endif /* CONFIG_SHRINKER_DEBUG */
|
|
|
|
/* Only track the nodes of mappings with shadow entries */
|
|
void workingset_update_node(struct xa_node *node);
|
|
extern struct list_lru shadow_nodes;
|
|
|
|
#endif /* __MM_INTERNAL_H */
|