mirror of
https://github.com/torvalds/linux.git
synced 2024-12-08 03:52:16 +00:00
f38a032b16
Yup, the VFS hoist broke it, and nobody noticed. Bulkstat workloads
make it clear that it doesn't work as it should.
Fixes: dae2f8ed79
("fs: Lift XFS_IDONTCACHE to the VFS layer")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2227 lines
55 KiB
C
2227 lines
55 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_icache.h"
|
|
#include "xfs_bmap_util.h"
|
|
#include "xfs_dquot_item.h"
|
|
#include "xfs_dquot.h"
|
|
#include "xfs_reflink.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_ag.h"
|
|
|
|
#include <linux/iversion.h>
|
|
|
|
/* Radix tree tags for incore inode tree. */
|
|
|
|
/* inode is to be reclaimed */
|
|
#define XFS_ICI_RECLAIM_TAG 0
|
|
/* Inode has speculative preallocations (posteof or cow) to clean. */
|
|
#define XFS_ICI_BLOCKGC_TAG 1
|
|
|
|
/*
|
|
* The goal for walking incore inodes. These can correspond with incore inode
|
|
* radix tree tags when convenient. Avoid existing XFS_IWALK namespace.
|
|
*/
|
|
enum xfs_icwalk_goal {
|
|
/* Goals directly associated with tagged inodes. */
|
|
XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG,
|
|
XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG,
|
|
};
|
|
|
|
static int xfs_icwalk(struct xfs_mount *mp,
|
|
enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
|
|
static int xfs_icwalk_ag(struct xfs_perag *pag,
|
|
enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
|
|
|
|
/*
|
|
* Private inode cache walk flags for struct xfs_icwalk. Must not
|
|
* coincide with XFS_ICWALK_FLAGS_VALID.
|
|
*/
|
|
|
|
/* Stop scanning after icw_scan_limit inodes. */
|
|
#define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28)
|
|
|
|
#define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27)
|
|
#define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */
|
|
|
|
#define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \
|
|
XFS_ICWALK_FLAG_RECLAIM_SICK | \
|
|
XFS_ICWALK_FLAG_UNION)
|
|
|
|
/*
|
|
* Allocate and initialise an xfs_inode.
|
|
*/
|
|
struct xfs_inode *
|
|
xfs_inode_alloc(
|
|
struct xfs_mount *mp,
|
|
xfs_ino_t ino)
|
|
{
|
|
struct xfs_inode *ip;
|
|
|
|
/*
|
|
* XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
|
|
* and return NULL here on ENOMEM.
|
|
*/
|
|
ip = kmem_cache_alloc(xfs_inode_zone, GFP_KERNEL | __GFP_NOFAIL);
|
|
|
|
if (inode_init_always(mp->m_super, VFS_I(ip))) {
|
|
kmem_cache_free(xfs_inode_zone, ip);
|
|
return NULL;
|
|
}
|
|
|
|
/* VFS doesn't initialise i_mode or i_state! */
|
|
VFS_I(ip)->i_mode = 0;
|
|
VFS_I(ip)->i_state = 0;
|
|
|
|
XFS_STATS_INC(mp, vn_active);
|
|
ASSERT(atomic_read(&ip->i_pincount) == 0);
|
|
ASSERT(ip->i_ino == 0);
|
|
|
|
/* initialise the xfs inode */
|
|
ip->i_ino = ino;
|
|
ip->i_mount = mp;
|
|
memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
|
|
ip->i_afp = NULL;
|
|
ip->i_cowfp = NULL;
|
|
memset(&ip->i_df, 0, sizeof(ip->i_df));
|
|
ip->i_flags = 0;
|
|
ip->i_delayed_blks = 0;
|
|
ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
|
|
ip->i_nblocks = 0;
|
|
ip->i_forkoff = 0;
|
|
ip->i_sick = 0;
|
|
ip->i_checked = 0;
|
|
INIT_WORK(&ip->i_ioend_work, xfs_end_io);
|
|
INIT_LIST_HEAD(&ip->i_ioend_list);
|
|
spin_lock_init(&ip->i_ioend_lock);
|
|
|
|
return ip;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_free_callback(
|
|
struct rcu_head *head)
|
|
{
|
|
struct inode *inode = container_of(head, struct inode, i_rcu);
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
|
|
switch (VFS_I(ip)->i_mode & S_IFMT) {
|
|
case S_IFREG:
|
|
case S_IFDIR:
|
|
case S_IFLNK:
|
|
xfs_idestroy_fork(&ip->i_df);
|
|
break;
|
|
}
|
|
|
|
if (ip->i_afp) {
|
|
xfs_idestroy_fork(ip->i_afp);
|
|
kmem_cache_free(xfs_ifork_zone, ip->i_afp);
|
|
}
|
|
if (ip->i_cowfp) {
|
|
xfs_idestroy_fork(ip->i_cowfp);
|
|
kmem_cache_free(xfs_ifork_zone, ip->i_cowfp);
|
|
}
|
|
if (ip->i_itemp) {
|
|
ASSERT(!test_bit(XFS_LI_IN_AIL,
|
|
&ip->i_itemp->ili_item.li_flags));
|
|
xfs_inode_item_destroy(ip);
|
|
ip->i_itemp = NULL;
|
|
}
|
|
|
|
kmem_cache_free(xfs_inode_zone, ip);
|
|
}
|
|
|
|
static void
|
|
__xfs_inode_free(
|
|
struct xfs_inode *ip)
|
|
{
|
|
/* asserts to verify all state is correct here */
|
|
ASSERT(atomic_read(&ip->i_pincount) == 0);
|
|
ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
|
|
XFS_STATS_DEC(ip->i_mount, vn_active);
|
|
|
|
call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
|
|
}
|
|
|
|
void
|
|
xfs_inode_free(
|
|
struct xfs_inode *ip)
|
|
{
|
|
ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
|
|
|
|
/*
|
|
* Because we use RCU freeing we need to ensure the inode always
|
|
* appears to be reclaimed with an invalid inode number when in the
|
|
* free state. The ip->i_flags_lock provides the barrier against lookup
|
|
* races.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
ip->i_flags = XFS_IRECLAIM;
|
|
ip->i_ino = 0;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
__xfs_inode_free(ip);
|
|
}
|
|
|
|
/*
|
|
* Queue background inode reclaim work if there are reclaimable inodes and there
|
|
* isn't reclaim work already scheduled or in progress.
|
|
*/
|
|
static void
|
|
xfs_reclaim_work_queue(
|
|
struct xfs_mount *mp)
|
|
{
|
|
|
|
rcu_read_lock();
|
|
if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
|
|
queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
|
|
msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*
|
|
* Background scanning to trim preallocated space. This is queued based on the
|
|
* 'speculative_prealloc_lifetime' tunable (5m by default).
|
|
*/
|
|
static inline void
|
|
xfs_blockgc_queue(
|
|
struct xfs_perag *pag)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
|
|
if (!xfs_is_blockgc_enabled(mp))
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
|
|
queue_delayed_work(pag->pag_mount->m_blockgc_wq,
|
|
&pag->pag_blockgc_work,
|
|
msecs_to_jiffies(xfs_blockgc_secs * 1000));
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* Set a tag on both the AG incore inode tree and the AG radix tree. */
|
|
static void
|
|
xfs_perag_set_inode_tag(
|
|
struct xfs_perag *pag,
|
|
xfs_agino_t agino,
|
|
unsigned int tag)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
bool was_tagged;
|
|
|
|
lockdep_assert_held(&pag->pag_ici_lock);
|
|
|
|
was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
|
|
radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
|
|
|
|
if (tag == XFS_ICI_RECLAIM_TAG)
|
|
pag->pag_ici_reclaimable++;
|
|
|
|
if (was_tagged)
|
|
return;
|
|
|
|
/* propagate the tag up into the perag radix tree */
|
|
spin_lock(&mp->m_perag_lock);
|
|
radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
|
|
spin_unlock(&mp->m_perag_lock);
|
|
|
|
/* start background work */
|
|
switch (tag) {
|
|
case XFS_ICI_RECLAIM_TAG:
|
|
xfs_reclaim_work_queue(mp);
|
|
break;
|
|
case XFS_ICI_BLOCKGC_TAG:
|
|
xfs_blockgc_queue(pag);
|
|
break;
|
|
}
|
|
|
|
trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
|
|
}
|
|
|
|
/* Clear a tag on both the AG incore inode tree and the AG radix tree. */
|
|
static void
|
|
xfs_perag_clear_inode_tag(
|
|
struct xfs_perag *pag,
|
|
xfs_agino_t agino,
|
|
unsigned int tag)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
|
|
lockdep_assert_held(&pag->pag_ici_lock);
|
|
|
|
/*
|
|
* Reclaim can signal (with a null agino) that it cleared its own tag
|
|
* by removing the inode from the radix tree.
|
|
*/
|
|
if (agino != NULLAGINO)
|
|
radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
|
|
else
|
|
ASSERT(tag == XFS_ICI_RECLAIM_TAG);
|
|
|
|
if (tag == XFS_ICI_RECLAIM_TAG)
|
|
pag->pag_ici_reclaimable--;
|
|
|
|
if (radix_tree_tagged(&pag->pag_ici_root, tag))
|
|
return;
|
|
|
|
/* clear the tag from the perag radix tree */
|
|
spin_lock(&mp->m_perag_lock);
|
|
radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
|
|
spin_unlock(&mp->m_perag_lock);
|
|
|
|
trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
|
|
}
|
|
|
|
static inline void
|
|
xfs_inew_wait(
|
|
struct xfs_inode *ip)
|
|
{
|
|
wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
|
|
DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
|
|
|
|
do {
|
|
prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
|
|
if (!xfs_iflags_test(ip, XFS_INEW))
|
|
break;
|
|
schedule();
|
|
} while (true);
|
|
finish_wait(wq, &wait.wq_entry);
|
|
}
|
|
|
|
/*
|
|
* When we recycle a reclaimable inode, we need to re-initialise the VFS inode
|
|
* part of the structure. This is made more complex by the fact we store
|
|
* information about the on-disk values in the VFS inode and so we can't just
|
|
* overwrite the values unconditionally. Hence we save the parameters we
|
|
* need to retain across reinitialisation, and rewrite them into the VFS inode
|
|
* after reinitialisation even if it fails.
|
|
*/
|
|
static int
|
|
xfs_reinit_inode(
|
|
struct xfs_mount *mp,
|
|
struct inode *inode)
|
|
{
|
|
int error;
|
|
uint32_t nlink = inode->i_nlink;
|
|
uint32_t generation = inode->i_generation;
|
|
uint64_t version = inode_peek_iversion(inode);
|
|
umode_t mode = inode->i_mode;
|
|
dev_t dev = inode->i_rdev;
|
|
kuid_t uid = inode->i_uid;
|
|
kgid_t gid = inode->i_gid;
|
|
|
|
error = inode_init_always(mp->m_super, inode);
|
|
|
|
set_nlink(inode, nlink);
|
|
inode->i_generation = generation;
|
|
inode_set_iversion_queried(inode, version);
|
|
inode->i_mode = mode;
|
|
inode->i_rdev = dev;
|
|
inode->i_uid = uid;
|
|
inode->i_gid = gid;
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Carefully nudge an inode whose VFS state has been torn down back into a
|
|
* usable state. Drops the i_flags_lock and the rcu read lock.
|
|
*/
|
|
static int
|
|
xfs_iget_recycle(
|
|
struct xfs_perag *pag,
|
|
struct xfs_inode *ip) __releases(&ip->i_flags_lock)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct inode *inode = VFS_I(ip);
|
|
int error;
|
|
|
|
trace_xfs_iget_recycle(ip);
|
|
|
|
/*
|
|
* We need to make it look like the inode is being reclaimed to prevent
|
|
* the actual reclaim workers from stomping over us while we recycle
|
|
* the inode. We can't clear the radix tree tag yet as it requires
|
|
* pag_ici_lock to be held exclusive.
|
|
*/
|
|
ip->i_flags |= XFS_IRECLAIM;
|
|
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
|
|
ASSERT(!rwsem_is_locked(&inode->i_rwsem));
|
|
error = xfs_reinit_inode(mp, inode);
|
|
if (error) {
|
|
bool wake;
|
|
|
|
/*
|
|
* Re-initializing the inode failed, and we are in deep
|
|
* trouble. Try to re-add it to the reclaim list.
|
|
*/
|
|
rcu_read_lock();
|
|
spin_lock(&ip->i_flags_lock);
|
|
wake = !!__xfs_iflags_test(ip, XFS_INEW);
|
|
ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
|
|
if (wake)
|
|
wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
|
|
ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
|
|
trace_xfs_iget_recycle_fail(ip);
|
|
return error;
|
|
}
|
|
|
|
spin_lock(&pag->pag_ici_lock);
|
|
spin_lock(&ip->i_flags_lock);
|
|
|
|
/*
|
|
* Clear the per-lifetime state in the inode as we are now effectively
|
|
* a new inode and need to return to the initial state before reuse
|
|
* occurs.
|
|
*/
|
|
ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
|
|
ip->i_flags |= XFS_INEW;
|
|
xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
|
|
XFS_ICI_RECLAIM_TAG);
|
|
inode->i_state = I_NEW;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we are allocating a new inode, then check what was returned is
|
|
* actually a free, empty inode. If we are not allocating an inode,
|
|
* then check we didn't find a free inode.
|
|
*
|
|
* Returns:
|
|
* 0 if the inode free state matches the lookup context
|
|
* -ENOENT if the inode is free and we are not allocating
|
|
* -EFSCORRUPTED if there is any state mismatch at all
|
|
*/
|
|
static int
|
|
xfs_iget_check_free_state(
|
|
struct xfs_inode *ip,
|
|
int flags)
|
|
{
|
|
if (flags & XFS_IGET_CREATE) {
|
|
/* should be a free inode */
|
|
if (VFS_I(ip)->i_mode != 0) {
|
|
xfs_warn(ip->i_mount,
|
|
"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
|
|
ip->i_ino, VFS_I(ip)->i_mode);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
if (ip->i_nblocks != 0) {
|
|
xfs_warn(ip->i_mount,
|
|
"Corruption detected! Free inode 0x%llx has blocks allocated!",
|
|
ip->i_ino);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* should be an allocated inode */
|
|
if (VFS_I(ip)->i_mode == 0)
|
|
return -ENOENT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Make all pending inactivation work start immediately. */
|
|
static void
|
|
xfs_inodegc_queue_all(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_inodegc *gc;
|
|
int cpu;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
gc = per_cpu_ptr(mp->m_inodegc, cpu);
|
|
if (!llist_empty(&gc->list))
|
|
queue_work_on(cpu, mp->m_inodegc_wq, &gc->work);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check the validity of the inode we just found it the cache
|
|
*/
|
|
static int
|
|
xfs_iget_cache_hit(
|
|
struct xfs_perag *pag,
|
|
struct xfs_inode *ip,
|
|
xfs_ino_t ino,
|
|
int flags,
|
|
int lock_flags) __releases(RCU)
|
|
{
|
|
struct inode *inode = VFS_I(ip);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
int error;
|
|
|
|
/*
|
|
* check for re-use of an inode within an RCU grace period due to the
|
|
* radix tree nodes not being updated yet. We monitor for this by
|
|
* setting the inode number to zero before freeing the inode structure.
|
|
* If the inode has been reallocated and set up, then the inode number
|
|
* will not match, so check for that, too.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
if (ip->i_ino != ino)
|
|
goto out_skip;
|
|
|
|
/*
|
|
* If we are racing with another cache hit that is currently
|
|
* instantiating this inode or currently recycling it out of
|
|
* reclaimable state, wait for the initialisation to complete
|
|
* before continuing.
|
|
*
|
|
* If we're racing with the inactivation worker we also want to wait.
|
|
* If we're creating a new file, it's possible that the worker
|
|
* previously marked the inode as free on disk but hasn't finished
|
|
* updating the incore state yet. The AGI buffer will be dirty and
|
|
* locked to the icreate transaction, so a synchronous push of the
|
|
* inodegc workers would result in deadlock. For a regular iget, the
|
|
* worker is running already, so we might as well wait.
|
|
*
|
|
* XXX(hch): eventually we should do something equivalent to
|
|
* wait_on_inode to wait for these flags to be cleared
|
|
* instead of polling for it.
|
|
*/
|
|
if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
|
|
goto out_skip;
|
|
|
|
if (ip->i_flags & XFS_NEED_INACTIVE) {
|
|
/* Unlinked inodes cannot be re-grabbed. */
|
|
if (VFS_I(ip)->i_nlink == 0) {
|
|
error = -ENOENT;
|
|
goto out_error;
|
|
}
|
|
goto out_inodegc_flush;
|
|
}
|
|
|
|
/*
|
|
* Check the inode free state is valid. This also detects lookup
|
|
* racing with unlinks.
|
|
*/
|
|
error = xfs_iget_check_free_state(ip, flags);
|
|
if (error)
|
|
goto out_error;
|
|
|
|
/* Skip inodes that have no vfs state. */
|
|
if ((flags & XFS_IGET_INCORE) &&
|
|
(ip->i_flags & XFS_IRECLAIMABLE))
|
|
goto out_skip;
|
|
|
|
/* The inode fits the selection criteria; process it. */
|
|
if (ip->i_flags & XFS_IRECLAIMABLE) {
|
|
/* Drops i_flags_lock and RCU read lock. */
|
|
error = xfs_iget_recycle(pag, ip);
|
|
if (error)
|
|
return error;
|
|
} else {
|
|
/* If the VFS inode is being torn down, pause and try again. */
|
|
if (!igrab(inode))
|
|
goto out_skip;
|
|
|
|
/* We've got a live one. */
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
trace_xfs_iget_hit(ip);
|
|
}
|
|
|
|
if (lock_flags != 0)
|
|
xfs_ilock(ip, lock_flags);
|
|
|
|
if (!(flags & XFS_IGET_INCORE))
|
|
xfs_iflags_clear(ip, XFS_ISTALE);
|
|
XFS_STATS_INC(mp, xs_ig_found);
|
|
|
|
return 0;
|
|
|
|
out_skip:
|
|
trace_xfs_iget_skip(ip);
|
|
XFS_STATS_INC(mp, xs_ig_frecycle);
|
|
error = -EAGAIN;
|
|
out_error:
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
return error;
|
|
|
|
out_inodegc_flush:
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
/*
|
|
* Do not wait for the workers, because the caller could hold an AGI
|
|
* buffer lock. We're just going to sleep in a loop anyway.
|
|
*/
|
|
if (xfs_is_inodegc_enabled(mp))
|
|
xfs_inodegc_queue_all(mp);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static int
|
|
xfs_iget_cache_miss(
|
|
struct xfs_mount *mp,
|
|
struct xfs_perag *pag,
|
|
xfs_trans_t *tp,
|
|
xfs_ino_t ino,
|
|
struct xfs_inode **ipp,
|
|
int flags,
|
|
int lock_flags)
|
|
{
|
|
struct xfs_inode *ip;
|
|
int error;
|
|
xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
|
|
int iflags;
|
|
|
|
ip = xfs_inode_alloc(mp, ino);
|
|
if (!ip)
|
|
return -ENOMEM;
|
|
|
|
error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
|
|
if (error)
|
|
goto out_destroy;
|
|
|
|
/*
|
|
* For version 5 superblocks, if we are initialising a new inode and we
|
|
* are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
|
|
* simply build the new inode core with a random generation number.
|
|
*
|
|
* For version 4 (and older) superblocks, log recovery is dependent on
|
|
* the i_flushiter field being initialised from the current on-disk
|
|
* value and hence we must also read the inode off disk even when
|
|
* initializing new inodes.
|
|
*/
|
|
if (xfs_has_v3inodes(mp) &&
|
|
(flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
|
|
VFS_I(ip)->i_generation = prandom_u32();
|
|
} else {
|
|
struct xfs_buf *bp;
|
|
|
|
error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
|
|
if (error)
|
|
goto out_destroy;
|
|
|
|
error = xfs_inode_from_disk(ip,
|
|
xfs_buf_offset(bp, ip->i_imap.im_boffset));
|
|
if (!error)
|
|
xfs_buf_set_ref(bp, XFS_INO_REF);
|
|
xfs_trans_brelse(tp, bp);
|
|
|
|
if (error)
|
|
goto out_destroy;
|
|
}
|
|
|
|
trace_xfs_iget_miss(ip);
|
|
|
|
/*
|
|
* Check the inode free state is valid. This also detects lookup
|
|
* racing with unlinks.
|
|
*/
|
|
error = xfs_iget_check_free_state(ip, flags);
|
|
if (error)
|
|
goto out_destroy;
|
|
|
|
/*
|
|
* Preload the radix tree so we can insert safely under the
|
|
* write spinlock. Note that we cannot sleep inside the preload
|
|
* region. Since we can be called from transaction context, don't
|
|
* recurse into the file system.
|
|
*/
|
|
if (radix_tree_preload(GFP_NOFS)) {
|
|
error = -EAGAIN;
|
|
goto out_destroy;
|
|
}
|
|
|
|
/*
|
|
* Because the inode hasn't been added to the radix-tree yet it can't
|
|
* be found by another thread, so we can do the non-sleeping lock here.
|
|
*/
|
|
if (lock_flags) {
|
|
if (!xfs_ilock_nowait(ip, lock_flags))
|
|
BUG();
|
|
}
|
|
|
|
/*
|
|
* These values must be set before inserting the inode into the radix
|
|
* tree as the moment it is inserted a concurrent lookup (allowed by the
|
|
* RCU locking mechanism) can find it and that lookup must see that this
|
|
* is an inode currently under construction (i.e. that XFS_INEW is set).
|
|
* The ip->i_flags_lock that protects the XFS_INEW flag forms the
|
|
* memory barrier that ensures this detection works correctly at lookup
|
|
* time.
|
|
*/
|
|
iflags = XFS_INEW;
|
|
if (flags & XFS_IGET_DONTCACHE)
|
|
d_mark_dontcache(VFS_I(ip));
|
|
ip->i_udquot = NULL;
|
|
ip->i_gdquot = NULL;
|
|
ip->i_pdquot = NULL;
|
|
xfs_iflags_set(ip, iflags);
|
|
|
|
/* insert the new inode */
|
|
spin_lock(&pag->pag_ici_lock);
|
|
error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
|
|
if (unlikely(error)) {
|
|
WARN_ON(error != -EEXIST);
|
|
XFS_STATS_INC(mp, xs_ig_dup);
|
|
error = -EAGAIN;
|
|
goto out_preload_end;
|
|
}
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
radix_tree_preload_end();
|
|
|
|
*ipp = ip;
|
|
return 0;
|
|
|
|
out_preload_end:
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
radix_tree_preload_end();
|
|
if (lock_flags)
|
|
xfs_iunlock(ip, lock_flags);
|
|
out_destroy:
|
|
__destroy_inode(VFS_I(ip));
|
|
xfs_inode_free(ip);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Look up an inode by number in the given file system. The inode is looked up
|
|
* in the cache held in each AG. If the inode is found in the cache, initialise
|
|
* the vfs inode if necessary.
|
|
*
|
|
* If it is not in core, read it in from the file system's device, add it to the
|
|
* cache and initialise the vfs inode.
|
|
*
|
|
* The inode is locked according to the value of the lock_flags parameter.
|
|
* Inode lookup is only done during metadata operations and not as part of the
|
|
* data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
|
|
*/
|
|
int
|
|
xfs_iget(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
xfs_ino_t ino,
|
|
uint flags,
|
|
uint lock_flags,
|
|
struct xfs_inode **ipp)
|
|
{
|
|
struct xfs_inode *ip;
|
|
struct xfs_perag *pag;
|
|
xfs_agino_t agino;
|
|
int error;
|
|
|
|
ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
|
|
|
|
/* reject inode numbers outside existing AGs */
|
|
if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
|
|
return -EINVAL;
|
|
|
|
XFS_STATS_INC(mp, xs_ig_attempts);
|
|
|
|
/* get the perag structure and ensure that it's inode capable */
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
|
|
agino = XFS_INO_TO_AGINO(mp, ino);
|
|
|
|
again:
|
|
error = 0;
|
|
rcu_read_lock();
|
|
ip = radix_tree_lookup(&pag->pag_ici_root, agino);
|
|
|
|
if (ip) {
|
|
error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
|
|
if (error)
|
|
goto out_error_or_again;
|
|
} else {
|
|
rcu_read_unlock();
|
|
if (flags & XFS_IGET_INCORE) {
|
|
error = -ENODATA;
|
|
goto out_error_or_again;
|
|
}
|
|
XFS_STATS_INC(mp, xs_ig_missed);
|
|
|
|
error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
|
|
flags, lock_flags);
|
|
if (error)
|
|
goto out_error_or_again;
|
|
}
|
|
xfs_perag_put(pag);
|
|
|
|
*ipp = ip;
|
|
|
|
/*
|
|
* If we have a real type for an on-disk inode, we can setup the inode
|
|
* now. If it's a new inode being created, xfs_ialloc will handle it.
|
|
*/
|
|
if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
|
|
xfs_setup_existing_inode(ip);
|
|
return 0;
|
|
|
|
out_error_or_again:
|
|
if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
|
|
delay(1);
|
|
goto again;
|
|
}
|
|
xfs_perag_put(pag);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* "Is this a cached inode that's also allocated?"
|
|
*
|
|
* Look up an inode by number in the given file system. If the inode is
|
|
* in cache and isn't in purgatory, return 1 if the inode is allocated
|
|
* and 0 if it is not. For all other cases (not in cache, being torn
|
|
* down, etc.), return a negative error code.
|
|
*
|
|
* The caller has to prevent inode allocation and freeing activity,
|
|
* presumably by locking the AGI buffer. This is to ensure that an
|
|
* inode cannot transition from allocated to freed until the caller is
|
|
* ready to allow that. If the inode is in an intermediate state (new,
|
|
* reclaimable, or being reclaimed), -EAGAIN will be returned; if the
|
|
* inode is not in the cache, -ENOENT will be returned. The caller must
|
|
* deal with these scenarios appropriately.
|
|
*
|
|
* This is a specialized use case for the online scrubber; if you're
|
|
* reading this, you probably want xfs_iget.
|
|
*/
|
|
int
|
|
xfs_icache_inode_is_allocated(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
xfs_ino_t ino,
|
|
bool *inuse)
|
|
{
|
|
struct xfs_inode *ip;
|
|
int error;
|
|
|
|
error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
|
|
if (error)
|
|
return error;
|
|
|
|
*inuse = !!(VFS_I(ip)->i_mode);
|
|
xfs_irele(ip);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Grab the inode for reclaim exclusively.
|
|
*
|
|
* We have found this inode via a lookup under RCU, so the inode may have
|
|
* already been freed, or it may be in the process of being recycled by
|
|
* xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
|
|
* has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
|
|
* will not be set. Hence we need to check for both these flag conditions to
|
|
* avoid inodes that are no longer reclaim candidates.
|
|
*
|
|
* Note: checking for other state flags here, under the i_flags_lock or not, is
|
|
* racy and should be avoided. Those races should be resolved only after we have
|
|
* ensured that we are able to reclaim this inode and the world can see that we
|
|
* are going to reclaim it.
|
|
*
|
|
* Return true if we grabbed it, false otherwise.
|
|
*/
|
|
static bool
|
|
xfs_reclaim_igrab(
|
|
struct xfs_inode *ip,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
ASSERT(rcu_read_lock_held());
|
|
|
|
spin_lock(&ip->i_flags_lock);
|
|
if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
|
|
__xfs_iflags_test(ip, XFS_IRECLAIM)) {
|
|
/* not a reclaim candidate. */
|
|
spin_unlock(&ip->i_flags_lock);
|
|
return false;
|
|
}
|
|
|
|
/* Don't reclaim a sick inode unless the caller asked for it. */
|
|
if (ip->i_sick &&
|
|
(!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
|
|
spin_unlock(&ip->i_flags_lock);
|
|
return false;
|
|
}
|
|
|
|
__xfs_iflags_set(ip, XFS_IRECLAIM);
|
|
spin_unlock(&ip->i_flags_lock);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Inode reclaim is non-blocking, so the default action if progress cannot be
|
|
* made is to "requeue" the inode for reclaim by unlocking it and clearing the
|
|
* XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
|
|
* blocking anymore and hence we can wait for the inode to be able to reclaim
|
|
* it.
|
|
*
|
|
* We do no IO here - if callers require inodes to be cleaned they must push the
|
|
* AIL first to trigger writeback of dirty inodes. This enables writeback to be
|
|
* done in the background in a non-blocking manner, and enables memory reclaim
|
|
* to make progress without blocking.
|
|
*/
|
|
static void
|
|
xfs_reclaim_inode(
|
|
struct xfs_inode *ip,
|
|
struct xfs_perag *pag)
|
|
{
|
|
xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
|
|
|
|
if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
|
|
goto out;
|
|
if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
|
|
goto out_iunlock;
|
|
|
|
if (xfs_is_shutdown(ip->i_mount)) {
|
|
xfs_iunpin_wait(ip);
|
|
xfs_iflush_abort(ip);
|
|
goto reclaim;
|
|
}
|
|
if (xfs_ipincount(ip))
|
|
goto out_clear_flush;
|
|
if (!xfs_inode_clean(ip))
|
|
goto out_clear_flush;
|
|
|
|
xfs_iflags_clear(ip, XFS_IFLUSHING);
|
|
reclaim:
|
|
trace_xfs_inode_reclaiming(ip);
|
|
|
|
/*
|
|
* Because we use RCU freeing we need to ensure the inode always appears
|
|
* to be reclaimed with an invalid inode number when in the free state.
|
|
* We do this as early as possible under the ILOCK so that
|
|
* xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
|
|
* detect races with us here. By doing this, we guarantee that once
|
|
* xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
|
|
* it will see either a valid inode that will serialise correctly, or it
|
|
* will see an invalid inode that it can skip.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
ip->i_flags = XFS_IRECLAIM;
|
|
ip->i_ino = 0;
|
|
ip->i_sick = 0;
|
|
ip->i_checked = 0;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
|
|
XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
|
|
/*
|
|
* Remove the inode from the per-AG radix tree.
|
|
*
|
|
* Because radix_tree_delete won't complain even if the item was never
|
|
* added to the tree assert that it's been there before to catch
|
|
* problems with the inode life time early on.
|
|
*/
|
|
spin_lock(&pag->pag_ici_lock);
|
|
if (!radix_tree_delete(&pag->pag_ici_root,
|
|
XFS_INO_TO_AGINO(ip->i_mount, ino)))
|
|
ASSERT(0);
|
|
xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
|
|
/*
|
|
* Here we do an (almost) spurious inode lock in order to coordinate
|
|
* with inode cache radix tree lookups. This is because the lookup
|
|
* can reference the inodes in the cache without taking references.
|
|
*
|
|
* We make that OK here by ensuring that we wait until the inode is
|
|
* unlocked after the lookup before we go ahead and free it.
|
|
*/
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
ASSERT(xfs_inode_clean(ip));
|
|
|
|
__xfs_inode_free(ip);
|
|
return;
|
|
|
|
out_clear_flush:
|
|
xfs_iflags_clear(ip, XFS_IFLUSHING);
|
|
out_iunlock:
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
out:
|
|
xfs_iflags_clear(ip, XFS_IRECLAIM);
|
|
}
|
|
|
|
/* Reclaim sick inodes if we're unmounting or the fs went down. */
|
|
static inline bool
|
|
xfs_want_reclaim_sick(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
|
|
xfs_is_shutdown(mp);
|
|
}
|
|
|
|
void
|
|
xfs_reclaim_inodes(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_icwalk icw = {
|
|
.icw_flags = 0,
|
|
};
|
|
|
|
if (xfs_want_reclaim_sick(mp))
|
|
icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
|
|
|
|
while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
|
|
xfs_ail_push_all_sync(mp->m_ail);
|
|
xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The shrinker infrastructure determines how many inodes we should scan for
|
|
* reclaim. We want as many clean inodes ready to reclaim as possible, so we
|
|
* push the AIL here. We also want to proactively free up memory if we can to
|
|
* minimise the amount of work memory reclaim has to do so we kick the
|
|
* background reclaim if it isn't already scheduled.
|
|
*/
|
|
long
|
|
xfs_reclaim_inodes_nr(
|
|
struct xfs_mount *mp,
|
|
unsigned long nr_to_scan)
|
|
{
|
|
struct xfs_icwalk icw = {
|
|
.icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT,
|
|
.icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan),
|
|
};
|
|
|
|
if (xfs_want_reclaim_sick(mp))
|
|
icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
|
|
|
|
/* kick background reclaimer and push the AIL */
|
|
xfs_reclaim_work_queue(mp);
|
|
xfs_ail_push_all(mp->m_ail);
|
|
|
|
xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the number of reclaimable inodes in the filesystem for
|
|
* the shrinker to determine how much to reclaim.
|
|
*/
|
|
long
|
|
xfs_reclaim_inodes_count(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_perag *pag;
|
|
xfs_agnumber_t ag = 0;
|
|
long reclaimable = 0;
|
|
|
|
while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
|
|
ag = pag->pag_agno + 1;
|
|
reclaimable += pag->pag_ici_reclaimable;
|
|
xfs_perag_put(pag);
|
|
}
|
|
return reclaimable;
|
|
}
|
|
|
|
STATIC bool
|
|
xfs_icwalk_match_id(
|
|
struct xfs_inode *ip,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
|
|
!uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
|
|
return false;
|
|
|
|
if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
|
|
!gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
|
|
return false;
|
|
|
|
if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
|
|
ip->i_projid != icw->icw_prid)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* A union-based inode filtering algorithm. Process the inode if any of the
|
|
* criteria match. This is for global/internal scans only.
|
|
*/
|
|
STATIC bool
|
|
xfs_icwalk_match_id_union(
|
|
struct xfs_inode *ip,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
|
|
uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
|
|
return true;
|
|
|
|
if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
|
|
gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
|
|
return true;
|
|
|
|
if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
|
|
ip->i_projid == icw->icw_prid)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Is this inode @ip eligible for eof/cow block reclamation, given some
|
|
* filtering parameters @icw? The inode is eligible if @icw is null or
|
|
* if the predicate functions match.
|
|
*/
|
|
static bool
|
|
xfs_icwalk_match(
|
|
struct xfs_inode *ip,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
bool match;
|
|
|
|
if (!icw)
|
|
return true;
|
|
|
|
if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
|
|
match = xfs_icwalk_match_id_union(ip, icw);
|
|
else
|
|
match = xfs_icwalk_match_id(ip, icw);
|
|
if (!match)
|
|
return false;
|
|
|
|
/* skip the inode if the file size is too small */
|
|
if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
|
|
XFS_ISIZE(ip) < icw->icw_min_file_size)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* This is a fast pass over the inode cache to try to get reclaim moving on as
|
|
* many inodes as possible in a short period of time. It kicks itself every few
|
|
* seconds, as well as being kicked by the inode cache shrinker when memory
|
|
* goes low.
|
|
*/
|
|
void
|
|
xfs_reclaim_worker(
|
|
struct work_struct *work)
|
|
{
|
|
struct xfs_mount *mp = container_of(to_delayed_work(work),
|
|
struct xfs_mount, m_reclaim_work);
|
|
|
|
xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
|
|
xfs_reclaim_work_queue(mp);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_inode_free_eofblocks(
|
|
struct xfs_inode *ip,
|
|
struct xfs_icwalk *icw,
|
|
unsigned int *lockflags)
|
|
{
|
|
bool wait;
|
|
|
|
wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
|
|
|
|
if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
|
|
return 0;
|
|
|
|
/*
|
|
* If the mapping is dirty the operation can block and wait for some
|
|
* time. Unless we are waiting, skip it.
|
|
*/
|
|
if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
|
|
return 0;
|
|
|
|
if (!xfs_icwalk_match(ip, icw))
|
|
return 0;
|
|
|
|
/*
|
|
* If the caller is waiting, return -EAGAIN to keep the background
|
|
* scanner moving and revisit the inode in a subsequent pass.
|
|
*/
|
|
if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
|
|
if (wait)
|
|
return -EAGAIN;
|
|
return 0;
|
|
}
|
|
*lockflags |= XFS_IOLOCK_EXCL;
|
|
|
|
if (xfs_can_free_eofblocks(ip, false))
|
|
return xfs_free_eofblocks(ip);
|
|
|
|
/* inode could be preallocated or append-only */
|
|
trace_xfs_inode_free_eofblocks_invalid(ip);
|
|
xfs_inode_clear_eofblocks_tag(ip);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
xfs_blockgc_set_iflag(
|
|
struct xfs_inode *ip,
|
|
unsigned long iflag)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_perag *pag;
|
|
|
|
ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
|
|
|
|
/*
|
|
* Don't bother locking the AG and looking up in the radix trees
|
|
* if we already know that we have the tag set.
|
|
*/
|
|
if (ip->i_flags & iflag)
|
|
return;
|
|
spin_lock(&ip->i_flags_lock);
|
|
ip->i_flags |= iflag;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
|
spin_lock(&pag->pag_ici_lock);
|
|
|
|
xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
|
|
XFS_ICI_BLOCKGC_TAG);
|
|
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
xfs_perag_put(pag);
|
|
}
|
|
|
|
void
|
|
xfs_inode_set_eofblocks_tag(
|
|
xfs_inode_t *ip)
|
|
{
|
|
trace_xfs_inode_set_eofblocks_tag(ip);
|
|
return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
|
|
}
|
|
|
|
static void
|
|
xfs_blockgc_clear_iflag(
|
|
struct xfs_inode *ip,
|
|
unsigned long iflag)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_perag *pag;
|
|
bool clear_tag;
|
|
|
|
ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
|
|
|
|
spin_lock(&ip->i_flags_lock);
|
|
ip->i_flags &= ~iflag;
|
|
clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
if (!clear_tag)
|
|
return;
|
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
|
spin_lock(&pag->pag_ici_lock);
|
|
|
|
xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
|
|
XFS_ICI_BLOCKGC_TAG);
|
|
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
xfs_perag_put(pag);
|
|
}
|
|
|
|
void
|
|
xfs_inode_clear_eofblocks_tag(
|
|
xfs_inode_t *ip)
|
|
{
|
|
trace_xfs_inode_clear_eofblocks_tag(ip);
|
|
return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
|
|
}
|
|
|
|
/*
|
|
* Set ourselves up to free CoW blocks from this file. If it's already clean
|
|
* then we can bail out quickly, but otherwise we must back off if the file
|
|
* is undergoing some kind of write.
|
|
*/
|
|
static bool
|
|
xfs_prep_free_cowblocks(
|
|
struct xfs_inode *ip)
|
|
{
|
|
/*
|
|
* Just clear the tag if we have an empty cow fork or none at all. It's
|
|
* possible the inode was fully unshared since it was originally tagged.
|
|
*/
|
|
if (!xfs_inode_has_cow_data(ip)) {
|
|
trace_xfs_inode_free_cowblocks_invalid(ip);
|
|
xfs_inode_clear_cowblocks_tag(ip);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* If the mapping is dirty or under writeback we cannot touch the
|
|
* CoW fork. Leave it alone if we're in the midst of a directio.
|
|
*/
|
|
if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
|
|
mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
|
|
mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
|
|
atomic_read(&VFS_I(ip)->i_dio_count))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Automatic CoW Reservation Freeing
|
|
*
|
|
* These functions automatically garbage collect leftover CoW reservations
|
|
* that were made on behalf of a cowextsize hint when we start to run out
|
|
* of quota or when the reservations sit around for too long. If the file
|
|
* has dirty pages or is undergoing writeback, its CoW reservations will
|
|
* be retained.
|
|
*
|
|
* The actual garbage collection piggybacks off the same code that runs
|
|
* the speculative EOF preallocation garbage collector.
|
|
*/
|
|
STATIC int
|
|
xfs_inode_free_cowblocks(
|
|
struct xfs_inode *ip,
|
|
struct xfs_icwalk *icw,
|
|
unsigned int *lockflags)
|
|
{
|
|
bool wait;
|
|
int ret = 0;
|
|
|
|
wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
|
|
|
|
if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
|
|
return 0;
|
|
|
|
if (!xfs_prep_free_cowblocks(ip))
|
|
return 0;
|
|
|
|
if (!xfs_icwalk_match(ip, icw))
|
|
return 0;
|
|
|
|
/*
|
|
* If the caller is waiting, return -EAGAIN to keep the background
|
|
* scanner moving and revisit the inode in a subsequent pass.
|
|
*/
|
|
if (!(*lockflags & XFS_IOLOCK_EXCL) &&
|
|
!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
|
|
if (wait)
|
|
return -EAGAIN;
|
|
return 0;
|
|
}
|
|
*lockflags |= XFS_IOLOCK_EXCL;
|
|
|
|
if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
|
|
if (wait)
|
|
return -EAGAIN;
|
|
return 0;
|
|
}
|
|
*lockflags |= XFS_MMAPLOCK_EXCL;
|
|
|
|
/*
|
|
* Check again, nobody else should be able to dirty blocks or change
|
|
* the reflink iflag now that we have the first two locks held.
|
|
*/
|
|
if (xfs_prep_free_cowblocks(ip))
|
|
ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
xfs_inode_set_cowblocks_tag(
|
|
xfs_inode_t *ip)
|
|
{
|
|
trace_xfs_inode_set_cowblocks_tag(ip);
|
|
return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
|
|
}
|
|
|
|
void
|
|
xfs_inode_clear_cowblocks_tag(
|
|
xfs_inode_t *ip)
|
|
{
|
|
trace_xfs_inode_clear_cowblocks_tag(ip);
|
|
return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
|
|
}
|
|
|
|
/* Disable post-EOF and CoW block auto-reclamation. */
|
|
void
|
|
xfs_blockgc_stop(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_perag *pag;
|
|
xfs_agnumber_t agno;
|
|
|
|
if (!xfs_clear_blockgc_enabled(mp))
|
|
return;
|
|
|
|
for_each_perag(mp, agno, pag)
|
|
cancel_delayed_work_sync(&pag->pag_blockgc_work);
|
|
trace_xfs_blockgc_stop(mp, __return_address);
|
|
}
|
|
|
|
/* Enable post-EOF and CoW block auto-reclamation. */
|
|
void
|
|
xfs_blockgc_start(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_perag *pag;
|
|
xfs_agnumber_t agno;
|
|
|
|
if (xfs_set_blockgc_enabled(mp))
|
|
return;
|
|
|
|
trace_xfs_blockgc_start(mp, __return_address);
|
|
for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
|
|
xfs_blockgc_queue(pag);
|
|
}
|
|
|
|
/* Don't try to run block gc on an inode that's in any of these states. */
|
|
#define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \
|
|
XFS_NEED_INACTIVE | \
|
|
XFS_INACTIVATING | \
|
|
XFS_IRECLAIMABLE | \
|
|
XFS_IRECLAIM)
|
|
/*
|
|
* Decide if the given @ip is eligible for garbage collection of speculative
|
|
* preallocations, and grab it if so. Returns true if it's ready to go or
|
|
* false if we should just ignore it.
|
|
*/
|
|
static bool
|
|
xfs_blockgc_igrab(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct inode *inode = VFS_I(ip);
|
|
|
|
ASSERT(rcu_read_lock_held());
|
|
|
|
/* Check for stale RCU freed inode */
|
|
spin_lock(&ip->i_flags_lock);
|
|
if (!ip->i_ino)
|
|
goto out_unlock_noent;
|
|
|
|
if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
|
|
goto out_unlock_noent;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
/* nothing to sync during shutdown */
|
|
if (xfs_is_shutdown(ip->i_mount))
|
|
return false;
|
|
|
|
/* If we can't grab the inode, it must on it's way to reclaim. */
|
|
if (!igrab(inode))
|
|
return false;
|
|
|
|
/* inode is valid */
|
|
return true;
|
|
|
|
out_unlock_noent:
|
|
spin_unlock(&ip->i_flags_lock);
|
|
return false;
|
|
}
|
|
|
|
/* Scan one incore inode for block preallocations that we can remove. */
|
|
static int
|
|
xfs_blockgc_scan_inode(
|
|
struct xfs_inode *ip,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
unsigned int lockflags = 0;
|
|
int error;
|
|
|
|
error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
|
|
if (error)
|
|
goto unlock;
|
|
|
|
error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
|
|
unlock:
|
|
if (lockflags)
|
|
xfs_iunlock(ip, lockflags);
|
|
xfs_irele(ip);
|
|
return error;
|
|
}
|
|
|
|
/* Background worker that trims preallocated space. */
|
|
void
|
|
xfs_blockgc_worker(
|
|
struct work_struct *work)
|
|
{
|
|
struct xfs_perag *pag = container_of(to_delayed_work(work),
|
|
struct xfs_perag, pag_blockgc_work);
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
int error;
|
|
|
|
trace_xfs_blockgc_worker(mp, __return_address);
|
|
|
|
error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
|
|
if (error)
|
|
xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
|
|
pag->pag_agno, error);
|
|
xfs_blockgc_queue(pag);
|
|
}
|
|
|
|
/*
|
|
* Try to free space in the filesystem by purging inactive inodes, eofblocks
|
|
* and cowblocks.
|
|
*/
|
|
int
|
|
xfs_blockgc_free_space(
|
|
struct xfs_mount *mp,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
int error;
|
|
|
|
trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
|
|
|
|
error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
|
|
if (error)
|
|
return error;
|
|
|
|
xfs_inodegc_flush(mp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reclaim all the free space that we can by scheduling the background blockgc
|
|
* and inodegc workers immediately and waiting for them all to clear.
|
|
*/
|
|
void
|
|
xfs_blockgc_flush_all(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_perag *pag;
|
|
xfs_agnumber_t agno;
|
|
|
|
trace_xfs_blockgc_flush_all(mp, __return_address);
|
|
|
|
/*
|
|
* For each blockgc worker, move its queue time up to now. If it
|
|
* wasn't queued, it will not be requeued. Then flush whatever's
|
|
* left.
|
|
*/
|
|
for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
|
|
mod_delayed_work(pag->pag_mount->m_blockgc_wq,
|
|
&pag->pag_blockgc_work, 0);
|
|
|
|
for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
|
|
flush_delayed_work(&pag->pag_blockgc_work);
|
|
|
|
xfs_inodegc_flush(mp);
|
|
}
|
|
|
|
/*
|
|
* Run cow/eofblocks scans on the supplied dquots. We don't know exactly which
|
|
* quota caused an allocation failure, so we make a best effort by including
|
|
* each quota under low free space conditions (less than 1% free space) in the
|
|
* scan.
|
|
*
|
|
* Callers must not hold any inode's ILOCK. If requesting a synchronous scan
|
|
* (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
|
|
* MMAPLOCK.
|
|
*/
|
|
int
|
|
xfs_blockgc_free_dquots(
|
|
struct xfs_mount *mp,
|
|
struct xfs_dquot *udqp,
|
|
struct xfs_dquot *gdqp,
|
|
struct xfs_dquot *pdqp,
|
|
unsigned int iwalk_flags)
|
|
{
|
|
struct xfs_icwalk icw = {0};
|
|
bool do_work = false;
|
|
|
|
if (!udqp && !gdqp && !pdqp)
|
|
return 0;
|
|
|
|
/*
|
|
* Run a scan to free blocks using the union filter to cover all
|
|
* applicable quotas in a single scan.
|
|
*/
|
|
icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
|
|
|
|
if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
|
|
icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
|
|
icw.icw_flags |= XFS_ICWALK_FLAG_UID;
|
|
do_work = true;
|
|
}
|
|
|
|
if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
|
|
icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
|
|
icw.icw_flags |= XFS_ICWALK_FLAG_GID;
|
|
do_work = true;
|
|
}
|
|
|
|
if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
|
|
icw.icw_prid = pdqp->q_id;
|
|
icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
|
|
do_work = true;
|
|
}
|
|
|
|
if (!do_work)
|
|
return 0;
|
|
|
|
return xfs_blockgc_free_space(mp, &icw);
|
|
}
|
|
|
|
/* Run cow/eofblocks scans on the quotas attached to the inode. */
|
|
int
|
|
xfs_blockgc_free_quota(
|
|
struct xfs_inode *ip,
|
|
unsigned int iwalk_flags)
|
|
{
|
|
return xfs_blockgc_free_dquots(ip->i_mount,
|
|
xfs_inode_dquot(ip, XFS_DQTYPE_USER),
|
|
xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
|
|
xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
|
|
}
|
|
|
|
/* XFS Inode Cache Walking Code */
|
|
|
|
/*
|
|
* The inode lookup is done in batches to keep the amount of lock traffic and
|
|
* radix tree lookups to a minimum. The batch size is a trade off between
|
|
* lookup reduction and stack usage. This is in the reclaim path, so we can't
|
|
* be too greedy.
|
|
*/
|
|
#define XFS_LOOKUP_BATCH 32
|
|
|
|
|
|
/*
|
|
* Decide if we want to grab this inode in anticipation of doing work towards
|
|
* the goal.
|
|
*/
|
|
static inline bool
|
|
xfs_icwalk_igrab(
|
|
enum xfs_icwalk_goal goal,
|
|
struct xfs_inode *ip,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
switch (goal) {
|
|
case XFS_ICWALK_BLOCKGC:
|
|
return xfs_blockgc_igrab(ip);
|
|
case XFS_ICWALK_RECLAIM:
|
|
return xfs_reclaim_igrab(ip, icw);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process an inode. Each processing function must handle any state changes
|
|
* made by the icwalk igrab function. Return -EAGAIN to skip an inode.
|
|
*/
|
|
static inline int
|
|
xfs_icwalk_process_inode(
|
|
enum xfs_icwalk_goal goal,
|
|
struct xfs_inode *ip,
|
|
struct xfs_perag *pag,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
int error = 0;
|
|
|
|
switch (goal) {
|
|
case XFS_ICWALK_BLOCKGC:
|
|
error = xfs_blockgc_scan_inode(ip, icw);
|
|
break;
|
|
case XFS_ICWALK_RECLAIM:
|
|
xfs_reclaim_inode(ip, pag);
|
|
break;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* For a given per-AG structure @pag and a goal, grab qualifying inodes and
|
|
* process them in some manner.
|
|
*/
|
|
static int
|
|
xfs_icwalk_ag(
|
|
struct xfs_perag *pag,
|
|
enum xfs_icwalk_goal goal,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
uint32_t first_index;
|
|
int last_error = 0;
|
|
int skipped;
|
|
bool done;
|
|
int nr_found;
|
|
|
|
restart:
|
|
done = false;
|
|
skipped = 0;
|
|
if (goal == XFS_ICWALK_RECLAIM)
|
|
first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
|
|
else
|
|
first_index = 0;
|
|
nr_found = 0;
|
|
do {
|
|
struct xfs_inode *batch[XFS_LOOKUP_BATCH];
|
|
int error = 0;
|
|
int i;
|
|
|
|
rcu_read_lock();
|
|
|
|
nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
|
|
(void **) batch, first_index,
|
|
XFS_LOOKUP_BATCH, goal);
|
|
if (!nr_found) {
|
|
done = true;
|
|
rcu_read_unlock();
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Grab the inodes before we drop the lock. if we found
|
|
* nothing, nr == 0 and the loop will be skipped.
|
|
*/
|
|
for (i = 0; i < nr_found; i++) {
|
|
struct xfs_inode *ip = batch[i];
|
|
|
|
if (done || !xfs_icwalk_igrab(goal, ip, icw))
|
|
batch[i] = NULL;
|
|
|
|
/*
|
|
* Update the index for the next lookup. Catch
|
|
* overflows into the next AG range which can occur if
|
|
* we have inodes in the last block of the AG and we
|
|
* are currently pointing to the last inode.
|
|
*
|
|
* Because we may see inodes that are from the wrong AG
|
|
* due to RCU freeing and reallocation, only update the
|
|
* index if it lies in this AG. It was a race that lead
|
|
* us to see this inode, so another lookup from the
|
|
* same index will not find it again.
|
|
*/
|
|
if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
|
|
continue;
|
|
first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
|
|
if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
|
|
done = true;
|
|
}
|
|
|
|
/* unlock now we've grabbed the inodes. */
|
|
rcu_read_unlock();
|
|
|
|
for (i = 0; i < nr_found; i++) {
|
|
if (!batch[i])
|
|
continue;
|
|
error = xfs_icwalk_process_inode(goal, batch[i], pag,
|
|
icw);
|
|
if (error == -EAGAIN) {
|
|
skipped++;
|
|
continue;
|
|
}
|
|
if (error && last_error != -EFSCORRUPTED)
|
|
last_error = error;
|
|
}
|
|
|
|
/* bail out if the filesystem is corrupted. */
|
|
if (error == -EFSCORRUPTED)
|
|
break;
|
|
|
|
cond_resched();
|
|
|
|
if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
|
|
icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
|
|
if (icw->icw_scan_limit <= 0)
|
|
break;
|
|
}
|
|
} while (nr_found && !done);
|
|
|
|
if (goal == XFS_ICWALK_RECLAIM) {
|
|
if (done)
|
|
first_index = 0;
|
|
WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
|
|
}
|
|
|
|
if (skipped) {
|
|
delay(1);
|
|
goto restart;
|
|
}
|
|
return last_error;
|
|
}
|
|
|
|
/* Walk all incore inodes to achieve a given goal. */
|
|
static int
|
|
xfs_icwalk(
|
|
struct xfs_mount *mp,
|
|
enum xfs_icwalk_goal goal,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
struct xfs_perag *pag;
|
|
int error = 0;
|
|
int last_error = 0;
|
|
xfs_agnumber_t agno;
|
|
|
|
for_each_perag_tag(mp, agno, pag, goal) {
|
|
error = xfs_icwalk_ag(pag, goal, icw);
|
|
if (error) {
|
|
last_error = error;
|
|
if (error == -EFSCORRUPTED) {
|
|
xfs_perag_put(pag);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return last_error;
|
|
BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
static void
|
|
xfs_check_delalloc(
|
|
struct xfs_inode *ip,
|
|
int whichfork)
|
|
{
|
|
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
|
|
struct xfs_bmbt_irec got;
|
|
struct xfs_iext_cursor icur;
|
|
|
|
if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
|
|
return;
|
|
do {
|
|
if (isnullstartblock(got.br_startblock)) {
|
|
xfs_warn(ip->i_mount,
|
|
"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
|
|
ip->i_ino,
|
|
whichfork == XFS_DATA_FORK ? "data" : "cow",
|
|
got.br_startoff, got.br_blockcount);
|
|
}
|
|
} while (xfs_iext_next_extent(ifp, &icur, &got));
|
|
}
|
|
#else
|
|
#define xfs_check_delalloc(ip, whichfork) do { } while (0)
|
|
#endif
|
|
|
|
/* Schedule the inode for reclaim. */
|
|
static void
|
|
xfs_inodegc_set_reclaimable(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_perag *pag;
|
|
|
|
if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
|
|
xfs_check_delalloc(ip, XFS_DATA_FORK);
|
|
xfs_check_delalloc(ip, XFS_COW_FORK);
|
|
ASSERT(0);
|
|
}
|
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
|
spin_lock(&pag->pag_ici_lock);
|
|
spin_lock(&ip->i_flags_lock);
|
|
|
|
trace_xfs_inode_set_reclaimable(ip);
|
|
ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
|
|
ip->i_flags |= XFS_IRECLAIMABLE;
|
|
xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
|
|
XFS_ICI_RECLAIM_TAG);
|
|
|
|
spin_unlock(&ip->i_flags_lock);
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
xfs_perag_put(pag);
|
|
}
|
|
|
|
/*
|
|
* Free all speculative preallocations and possibly even the inode itself.
|
|
* This is the last chance to make changes to an otherwise unreferenced file
|
|
* before incore reclamation happens.
|
|
*/
|
|
static void
|
|
xfs_inodegc_inactivate(
|
|
struct xfs_inode *ip)
|
|
{
|
|
trace_xfs_inode_inactivating(ip);
|
|
xfs_inactive(ip);
|
|
xfs_inodegc_set_reclaimable(ip);
|
|
}
|
|
|
|
void
|
|
xfs_inodegc_worker(
|
|
struct work_struct *work)
|
|
{
|
|
struct xfs_inodegc *gc = container_of(work, struct xfs_inodegc,
|
|
work);
|
|
struct llist_node *node = llist_del_all(&gc->list);
|
|
struct xfs_inode *ip, *n;
|
|
|
|
WRITE_ONCE(gc->items, 0);
|
|
|
|
if (!node)
|
|
return;
|
|
|
|
ip = llist_entry(node, struct xfs_inode, i_gclist);
|
|
trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits));
|
|
|
|
WRITE_ONCE(gc->shrinker_hits, 0);
|
|
llist_for_each_entry_safe(ip, n, node, i_gclist) {
|
|
xfs_iflags_set(ip, XFS_INACTIVATING);
|
|
xfs_inodegc_inactivate(ip);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Force all currently queued inode inactivation work to run immediately, and
|
|
* wait for the work to finish. Two pass - queue all the work first pass, wait
|
|
* for it in a second pass.
|
|
*/
|
|
void
|
|
xfs_inodegc_flush(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_inodegc *gc;
|
|
int cpu;
|
|
|
|
if (!xfs_is_inodegc_enabled(mp))
|
|
return;
|
|
|
|
trace_xfs_inodegc_flush(mp, __return_address);
|
|
|
|
xfs_inodegc_queue_all(mp);
|
|
|
|
for_each_online_cpu(cpu) {
|
|
gc = per_cpu_ptr(mp->m_inodegc, cpu);
|
|
flush_work(&gc->work);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Flush all the pending work and then disable the inode inactivation background
|
|
* workers and wait for them to stop.
|
|
*/
|
|
void
|
|
xfs_inodegc_stop(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_inodegc *gc;
|
|
int cpu;
|
|
|
|
if (!xfs_clear_inodegc_enabled(mp))
|
|
return;
|
|
|
|
xfs_inodegc_queue_all(mp);
|
|
|
|
for_each_online_cpu(cpu) {
|
|
gc = per_cpu_ptr(mp->m_inodegc, cpu);
|
|
cancel_work_sync(&gc->work);
|
|
}
|
|
trace_xfs_inodegc_stop(mp, __return_address);
|
|
}
|
|
|
|
/*
|
|
* Enable the inode inactivation background workers and schedule deferred inode
|
|
* inactivation work if there is any.
|
|
*/
|
|
void
|
|
xfs_inodegc_start(
|
|
struct xfs_mount *mp)
|
|
{
|
|
if (xfs_set_inodegc_enabled(mp))
|
|
return;
|
|
|
|
trace_xfs_inodegc_start(mp, __return_address);
|
|
xfs_inodegc_queue_all(mp);
|
|
}
|
|
|
|
#ifdef CONFIG_XFS_RT
|
|
static inline bool
|
|
xfs_inodegc_want_queue_rt_file(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
uint64_t freertx;
|
|
|
|
if (!XFS_IS_REALTIME_INODE(ip))
|
|
return false;
|
|
|
|
freertx = READ_ONCE(mp->m_sb.sb_frextents);
|
|
return freertx < mp->m_low_rtexts[XFS_LOWSP_5_PCNT];
|
|
}
|
|
#else
|
|
# define xfs_inodegc_want_queue_rt_file(ip) (false)
|
|
#endif /* CONFIG_XFS_RT */
|
|
|
|
/*
|
|
* Schedule the inactivation worker when:
|
|
*
|
|
* - We've accumulated more than one inode cluster buffer's worth of inodes.
|
|
* - There is less than 5% free space left.
|
|
* - Any of the quotas for this inode are near an enforcement limit.
|
|
*/
|
|
static inline bool
|
|
xfs_inodegc_want_queue_work(
|
|
struct xfs_inode *ip,
|
|
unsigned int items)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
|
|
if (items > mp->m_ino_geo.inodes_per_cluster)
|
|
return true;
|
|
|
|
if (__percpu_counter_compare(&mp->m_fdblocks,
|
|
mp->m_low_space[XFS_LOWSP_5_PCNT],
|
|
XFS_FDBLOCKS_BATCH) < 0)
|
|
return true;
|
|
|
|
if (xfs_inodegc_want_queue_rt_file(ip))
|
|
return true;
|
|
|
|
if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
|
|
return true;
|
|
|
|
if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
|
|
return true;
|
|
|
|
if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Upper bound on the number of inodes in each AG that can be queued for
|
|
* inactivation at any given time, to avoid monopolizing the workqueue.
|
|
*/
|
|
#define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK)
|
|
|
|
/*
|
|
* Make the frontend wait for inactivations when:
|
|
*
|
|
* - Memory shrinkers queued the inactivation worker and it hasn't finished.
|
|
* - The queue depth exceeds the maximum allowable percpu backlog.
|
|
*
|
|
* Note: If the current thread is running a transaction, we don't ever want to
|
|
* wait for other transactions because that could introduce a deadlock.
|
|
*/
|
|
static inline bool
|
|
xfs_inodegc_want_flush_work(
|
|
struct xfs_inode *ip,
|
|
unsigned int items,
|
|
unsigned int shrinker_hits)
|
|
{
|
|
if (current->journal_info)
|
|
return false;
|
|
|
|
if (shrinker_hits > 0)
|
|
return true;
|
|
|
|
if (items > XFS_INODEGC_MAX_BACKLOG)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Queue a background inactivation worker if there are inodes that need to be
|
|
* inactivated and higher level xfs code hasn't disabled the background
|
|
* workers.
|
|
*/
|
|
static void
|
|
xfs_inodegc_queue(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_inodegc *gc;
|
|
int items;
|
|
unsigned int shrinker_hits;
|
|
|
|
trace_xfs_inode_set_need_inactive(ip);
|
|
spin_lock(&ip->i_flags_lock);
|
|
ip->i_flags |= XFS_NEED_INACTIVE;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
gc = get_cpu_ptr(mp->m_inodegc);
|
|
llist_add(&ip->i_gclist, &gc->list);
|
|
items = READ_ONCE(gc->items);
|
|
WRITE_ONCE(gc->items, items + 1);
|
|
shrinker_hits = READ_ONCE(gc->shrinker_hits);
|
|
put_cpu_ptr(gc);
|
|
|
|
if (!xfs_is_inodegc_enabled(mp))
|
|
return;
|
|
|
|
if (xfs_inodegc_want_queue_work(ip, items)) {
|
|
trace_xfs_inodegc_queue(mp, __return_address);
|
|
queue_work(mp->m_inodegc_wq, &gc->work);
|
|
}
|
|
|
|
if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
|
|
trace_xfs_inodegc_throttle(mp, __return_address);
|
|
flush_work(&gc->work);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fold the dead CPU inodegc queue into the current CPUs queue.
|
|
*/
|
|
void
|
|
xfs_inodegc_cpu_dead(
|
|
struct xfs_mount *mp,
|
|
unsigned int dead_cpu)
|
|
{
|
|
struct xfs_inodegc *dead_gc, *gc;
|
|
struct llist_node *first, *last;
|
|
unsigned int count = 0;
|
|
|
|
dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu);
|
|
cancel_work_sync(&dead_gc->work);
|
|
|
|
if (llist_empty(&dead_gc->list))
|
|
return;
|
|
|
|
first = dead_gc->list.first;
|
|
last = first;
|
|
while (last->next) {
|
|
last = last->next;
|
|
count++;
|
|
}
|
|
dead_gc->list.first = NULL;
|
|
dead_gc->items = 0;
|
|
|
|
/* Add pending work to current CPU */
|
|
gc = get_cpu_ptr(mp->m_inodegc);
|
|
llist_add_batch(first, last, &gc->list);
|
|
count += READ_ONCE(gc->items);
|
|
WRITE_ONCE(gc->items, count);
|
|
put_cpu_ptr(gc);
|
|
|
|
if (xfs_is_inodegc_enabled(mp)) {
|
|
trace_xfs_inodegc_queue(mp, __return_address);
|
|
queue_work(mp->m_inodegc_wq, &gc->work);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We set the inode flag atomically with the radix tree tag. Once we get tag
|
|
* lookups on the radix tree, this inode flag can go away.
|
|
*
|
|
* We always use background reclaim here because even if the inode is clean, it
|
|
* still may be under IO and hence we have wait for IO completion to occur
|
|
* before we can reclaim the inode. The background reclaim path handles this
|
|
* more efficiently than we can here, so simply let background reclaim tear down
|
|
* all inodes.
|
|
*/
|
|
void
|
|
xfs_inode_mark_reclaimable(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
bool need_inactive;
|
|
|
|
XFS_STATS_INC(mp, vn_reclaim);
|
|
|
|
/*
|
|
* We should never get here with any of the reclaim flags already set.
|
|
*/
|
|
ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
|
|
|
|
need_inactive = xfs_inode_needs_inactive(ip);
|
|
if (need_inactive) {
|
|
xfs_inodegc_queue(ip);
|
|
return;
|
|
}
|
|
|
|
/* Going straight to reclaim, so drop the dquots. */
|
|
xfs_qm_dqdetach(ip);
|
|
xfs_inodegc_set_reclaimable(ip);
|
|
}
|
|
|
|
/*
|
|
* Register a phony shrinker so that we can run background inodegc sooner when
|
|
* there's memory pressure. Inactivation does not itself free any memory but
|
|
* it does make inodes reclaimable, which eventually frees memory.
|
|
*
|
|
* The count function, seek value, and batch value are crafted to trigger the
|
|
* scan function during the second round of scanning. Hopefully this means
|
|
* that we reclaimed enough memory that initiating metadata transactions won't
|
|
* make things worse.
|
|
*/
|
|
#define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY)
|
|
#define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
|
|
|
|
static unsigned long
|
|
xfs_inodegc_shrinker_count(
|
|
struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct xfs_mount *mp = container_of(shrink, struct xfs_mount,
|
|
m_inodegc_shrinker);
|
|
struct xfs_inodegc *gc;
|
|
int cpu;
|
|
|
|
if (!xfs_is_inodegc_enabled(mp))
|
|
return 0;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
gc = per_cpu_ptr(mp->m_inodegc, cpu);
|
|
if (!llist_empty(&gc->list))
|
|
return XFS_INODEGC_SHRINKER_COUNT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long
|
|
xfs_inodegc_shrinker_scan(
|
|
struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct xfs_mount *mp = container_of(shrink, struct xfs_mount,
|
|
m_inodegc_shrinker);
|
|
struct xfs_inodegc *gc;
|
|
int cpu;
|
|
bool no_items = true;
|
|
|
|
if (!xfs_is_inodegc_enabled(mp))
|
|
return SHRINK_STOP;
|
|
|
|
trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
|
|
|
|
for_each_online_cpu(cpu) {
|
|
gc = per_cpu_ptr(mp->m_inodegc, cpu);
|
|
if (!llist_empty(&gc->list)) {
|
|
unsigned int h = READ_ONCE(gc->shrinker_hits);
|
|
|
|
WRITE_ONCE(gc->shrinker_hits, h + 1);
|
|
queue_work_on(cpu, mp->m_inodegc_wq, &gc->work);
|
|
no_items = false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there are no inodes to inactivate, we don't want the shrinker
|
|
* to think there's deferred work to call us back about.
|
|
*/
|
|
if (no_items)
|
|
return LONG_MAX;
|
|
|
|
return SHRINK_STOP;
|
|
}
|
|
|
|
/* Register a shrinker so we can accelerate inodegc and throttle queuing. */
|
|
int
|
|
xfs_inodegc_register_shrinker(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct shrinker *shrink = &mp->m_inodegc_shrinker;
|
|
|
|
shrink->count_objects = xfs_inodegc_shrinker_count;
|
|
shrink->scan_objects = xfs_inodegc_shrinker_scan;
|
|
shrink->seeks = 0;
|
|
shrink->flags = SHRINKER_NONSLAB;
|
|
shrink->batch = XFS_INODEGC_SHRINKER_BATCH;
|
|
|
|
return register_shrinker(shrink);
|
|
}
|