mirror of
https://github.com/torvalds/linux.git
synced 2024-12-12 14:12:51 +00:00
c01e3f66cd
Today we handle split real mode by mapping both instruction and data faults into a special virtual address space that only exists during the split mode phase. This is good enough to catch 32bit Linux guests that use split real mode for copy_from/to_user. In this case we're always prefixed with 0xc0000000 for our instruction pointer and can map the user space process freely below there. However, that approach fails when we're running KVM inside of KVM. Here the 1st level last_inst reader may well be in the same virtual page as a 2nd level interrupt handler. It also fails when running Mac OS X guests. Here we have a 4G/4G split, so a kernel copy_from/to_user implementation can easily overlap with user space addresses. The architecturally correct way to fix this would be to implement an instruction interpreter in KVM that kicks in whenever we go into split real mode. This interpreter however would not receive a great amount of testing and be a lot of bloat for a reasonably isolated corner case. So I went back to the drawing board and tried to come up with a way to make split real mode work with a single flat address space. And then I realized that we could get away with the same trick that makes it work for Linux: Whenever we see an instruction address during split real mode that may collide, we just move it higher up the virtual address space to a place that hopefully does not collide (keep your fingers crossed!). That approach does work surprisingly well. I am able to successfully run Mac OS X guests with KVM and QEMU (no split real mode hacks like MOL) when I apply a tiny timing probe hack to QEMU. I'd say this is a win over even more broken split real mode :). Signed-off-by: Alexander Graf <agraf@suse.de>
1760 lines
45 KiB
C
1760 lines
45 KiB
C
/*
|
|
* Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
|
|
*
|
|
* Authors:
|
|
* Alexander Graf <agraf@suse.de>
|
|
* Kevin Wolf <mail@kevin-wolf.de>
|
|
* Paul Mackerras <paulus@samba.org>
|
|
*
|
|
* Description:
|
|
* Functions relating to running KVM on Book 3S processors where
|
|
* we don't have access to hypervisor mode, and we run the guest
|
|
* in problem state (user mode).
|
|
*
|
|
* This file is derived from arch/powerpc/kvm/44x.c,
|
|
* by Hollis Blanchard <hollisb@us.ibm.com>.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/export.h>
|
|
#include <linux/err.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/reg.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/kvm_book3s.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/hvcall.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/module.h>
|
|
#include <linux/miscdevice.h>
|
|
|
|
#include "book3s.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include "trace_pr.h"
|
|
|
|
/* #define EXIT_DEBUG */
|
|
/* #define DEBUG_EXT */
|
|
|
|
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
|
|
ulong msr);
|
|
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac);
|
|
|
|
/* Some compatibility defines */
|
|
#ifdef CONFIG_PPC_BOOK3S_32
|
|
#define MSR_USER32 MSR_USER
|
|
#define MSR_USER64 MSR_USER
|
|
#define HW_PAGE_SIZE PAGE_SIZE
|
|
#endif
|
|
|
|
static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
|
|
{
|
|
ulong msr = kvmppc_get_msr(vcpu);
|
|
return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
|
|
}
|
|
|
|
static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
|
|
{
|
|
ulong msr = kvmppc_get_msr(vcpu);
|
|
ulong pc = kvmppc_get_pc(vcpu);
|
|
|
|
/* We are in DR only split real mode */
|
|
if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
|
|
return;
|
|
|
|
/* We have not fixed up the guest already */
|
|
if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
|
|
return;
|
|
|
|
/* The code is in fixupable address space */
|
|
if (pc & SPLIT_HACK_MASK)
|
|
return;
|
|
|
|
vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
|
|
kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
|
|
}
|
|
|
|
void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu);
|
|
|
|
static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
|
memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
|
|
svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
|
|
svcpu->in_use = 0;
|
|
svcpu_put(svcpu);
|
|
#endif
|
|
|
|
/* Disable AIL if supported */
|
|
if (cpu_has_feature(CPU_FTR_HVMODE) &&
|
|
cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
|
|
|
|
vcpu->cpu = smp_processor_id();
|
|
#ifdef CONFIG_PPC_BOOK3S_32
|
|
current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
|
|
#endif
|
|
|
|
if (kvmppc_is_split_real(vcpu))
|
|
kvmppc_fixup_split_real(vcpu);
|
|
}
|
|
|
|
static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
|
|
{
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
|
if (svcpu->in_use) {
|
|
kvmppc_copy_from_svcpu(vcpu, svcpu);
|
|
}
|
|
memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
|
|
to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
|
|
svcpu_put(svcpu);
|
|
#endif
|
|
|
|
if (kvmppc_is_split_real(vcpu))
|
|
kvmppc_unfixup_split_real(vcpu);
|
|
|
|
kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
|
|
kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
|
|
|
|
/* Enable AIL if supported */
|
|
if (cpu_has_feature(CPU_FTR_HVMODE) &&
|
|
cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
|
|
|
|
vcpu->cpu = -1;
|
|
}
|
|
|
|
/* Copy data needed by real-mode code from vcpu to shadow vcpu */
|
|
void kvmppc_copy_to_svcpu(struct kvmppc_book3s_shadow_vcpu *svcpu,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
svcpu->gpr[0] = vcpu->arch.gpr[0];
|
|
svcpu->gpr[1] = vcpu->arch.gpr[1];
|
|
svcpu->gpr[2] = vcpu->arch.gpr[2];
|
|
svcpu->gpr[3] = vcpu->arch.gpr[3];
|
|
svcpu->gpr[4] = vcpu->arch.gpr[4];
|
|
svcpu->gpr[5] = vcpu->arch.gpr[5];
|
|
svcpu->gpr[6] = vcpu->arch.gpr[6];
|
|
svcpu->gpr[7] = vcpu->arch.gpr[7];
|
|
svcpu->gpr[8] = vcpu->arch.gpr[8];
|
|
svcpu->gpr[9] = vcpu->arch.gpr[9];
|
|
svcpu->gpr[10] = vcpu->arch.gpr[10];
|
|
svcpu->gpr[11] = vcpu->arch.gpr[11];
|
|
svcpu->gpr[12] = vcpu->arch.gpr[12];
|
|
svcpu->gpr[13] = vcpu->arch.gpr[13];
|
|
svcpu->cr = vcpu->arch.cr;
|
|
svcpu->xer = vcpu->arch.xer;
|
|
svcpu->ctr = vcpu->arch.ctr;
|
|
svcpu->lr = vcpu->arch.lr;
|
|
svcpu->pc = vcpu->arch.pc;
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
|
|
#endif
|
|
/*
|
|
* Now also save the current time base value. We use this
|
|
* to find the guest purr and spurr value.
|
|
*/
|
|
vcpu->arch.entry_tb = get_tb();
|
|
vcpu->arch.entry_vtb = get_vtb();
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
vcpu->arch.entry_ic = mfspr(SPRN_IC);
|
|
svcpu->in_use = true;
|
|
}
|
|
|
|
/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
|
|
void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu,
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu)
|
|
{
|
|
/*
|
|
* vcpu_put would just call us again because in_use hasn't
|
|
* been updated yet.
|
|
*/
|
|
preempt_disable();
|
|
|
|
/*
|
|
* Maybe we were already preempted and synced the svcpu from
|
|
* our preempt notifiers. Don't bother touching this svcpu then.
|
|
*/
|
|
if (!svcpu->in_use)
|
|
goto out;
|
|
|
|
vcpu->arch.gpr[0] = svcpu->gpr[0];
|
|
vcpu->arch.gpr[1] = svcpu->gpr[1];
|
|
vcpu->arch.gpr[2] = svcpu->gpr[2];
|
|
vcpu->arch.gpr[3] = svcpu->gpr[3];
|
|
vcpu->arch.gpr[4] = svcpu->gpr[4];
|
|
vcpu->arch.gpr[5] = svcpu->gpr[5];
|
|
vcpu->arch.gpr[6] = svcpu->gpr[6];
|
|
vcpu->arch.gpr[7] = svcpu->gpr[7];
|
|
vcpu->arch.gpr[8] = svcpu->gpr[8];
|
|
vcpu->arch.gpr[9] = svcpu->gpr[9];
|
|
vcpu->arch.gpr[10] = svcpu->gpr[10];
|
|
vcpu->arch.gpr[11] = svcpu->gpr[11];
|
|
vcpu->arch.gpr[12] = svcpu->gpr[12];
|
|
vcpu->arch.gpr[13] = svcpu->gpr[13];
|
|
vcpu->arch.cr = svcpu->cr;
|
|
vcpu->arch.xer = svcpu->xer;
|
|
vcpu->arch.ctr = svcpu->ctr;
|
|
vcpu->arch.lr = svcpu->lr;
|
|
vcpu->arch.pc = svcpu->pc;
|
|
vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
|
|
vcpu->arch.fault_dar = svcpu->fault_dar;
|
|
vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
|
|
vcpu->arch.last_inst = svcpu->last_inst;
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
|
|
#endif
|
|
/*
|
|
* Update purr and spurr using time base on exit.
|
|
*/
|
|
vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
|
|
vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
|
|
vcpu->arch.vtb += get_vtb() - vcpu->arch.entry_vtb;
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
|
|
svcpu->in_use = false;
|
|
|
|
out:
|
|
preempt_enable();
|
|
}
|
|
|
|
static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r = 1; /* Indicate we want to get back into the guest */
|
|
|
|
/* We misuse TLB_FLUSH to indicate that we want to clear
|
|
all shadow cache entries */
|
|
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
|
|
kvmppc_mmu_pte_flush(vcpu, 0, 0);
|
|
|
|
return r;
|
|
}
|
|
|
|
/************* MMU Notifiers *************/
|
|
static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
long i;
|
|
struct kvm_vcpu *vcpu;
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
slots = kvm_memslots(kvm);
|
|
kvm_for_each_memslot(memslot, slots) {
|
|
unsigned long hva_start, hva_end;
|
|
gfn_t gfn, gfn_end;
|
|
|
|
hva_start = max(start, memslot->userspace_addr);
|
|
hva_end = min(end, memslot->userspace_addr +
|
|
(memslot->npages << PAGE_SHIFT));
|
|
if (hva_start >= hva_end)
|
|
continue;
|
|
/*
|
|
* {gfn(page) | page intersects with [hva_start, hva_end)} =
|
|
* {gfn, gfn+1, ..., gfn_end-1}.
|
|
*/
|
|
gfn = hva_to_gfn_memslot(hva_start, memslot);
|
|
gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
|
|
gfn_end << PAGE_SHIFT);
|
|
}
|
|
}
|
|
|
|
static int kvm_unmap_hva_pr(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
trace_kvm_unmap_hva(hva);
|
|
|
|
do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
do_kvm_unmap_hva(kvm, start, end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_age_hva_pr(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
/* XXX could be more clever ;) */
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
/* XXX could be more clever ;) */
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
|
|
{
|
|
/* The page will get remapped properly on its next fault */
|
|
do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
|
|
}
|
|
|
|
/*****************************************/
|
|
|
|
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
|
|
{
|
|
ulong guest_msr = kvmppc_get_msr(vcpu);
|
|
ulong smsr = guest_msr;
|
|
|
|
/* Guest MSR values */
|
|
smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
|
|
/* Process MSR values */
|
|
smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
|
|
/* External providers the guest reserved */
|
|
smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
|
|
/* 64-bit Process MSR values */
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
smsr |= MSR_ISF | MSR_HV;
|
|
#endif
|
|
vcpu->arch.shadow_msr = smsr;
|
|
}
|
|
|
|
static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
|
|
{
|
|
ulong old_msr = kvmppc_get_msr(vcpu);
|
|
|
|
#ifdef EXIT_DEBUG
|
|
printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
|
|
#endif
|
|
|
|
msr &= to_book3s(vcpu)->msr_mask;
|
|
kvmppc_set_msr_fast(vcpu, msr);
|
|
kvmppc_recalc_shadow_msr(vcpu);
|
|
|
|
if (msr & MSR_POW) {
|
|
if (!vcpu->arch.pending_exceptions) {
|
|
kvm_vcpu_block(vcpu);
|
|
clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
|
|
vcpu->stat.halt_wakeup++;
|
|
|
|
/* Unset POW bit after we woke up */
|
|
msr &= ~MSR_POW;
|
|
kvmppc_set_msr_fast(vcpu, msr);
|
|
}
|
|
}
|
|
|
|
if (kvmppc_is_split_real(vcpu))
|
|
kvmppc_fixup_split_real(vcpu);
|
|
else
|
|
kvmppc_unfixup_split_real(vcpu);
|
|
|
|
if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
|
|
(old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
|
|
kvmppc_mmu_flush_segments(vcpu);
|
|
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
|
|
|
|
/* Preload magic page segment when in kernel mode */
|
|
if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
|
|
struct kvm_vcpu_arch *a = &vcpu->arch;
|
|
|
|
if (msr & MSR_DR)
|
|
kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
|
|
else
|
|
kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When switching from 32 to 64-bit, we may have a stale 32-bit
|
|
* magic page around, we need to flush it. Typically 32-bit magic
|
|
* page will be instanciated when calling into RTAS. Note: We
|
|
* assume that such transition only happens while in kernel mode,
|
|
* ie, we never transition from user 32-bit to kernel 64-bit with
|
|
* a 32-bit magic page around.
|
|
*/
|
|
if (vcpu->arch.magic_page_pa &&
|
|
!(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
|
|
/* going from RTAS to normal kernel code */
|
|
kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
|
|
~0xFFFUL);
|
|
}
|
|
|
|
/* Preload FPU if it's enabled */
|
|
if (kvmppc_get_msr(vcpu) & MSR_FP)
|
|
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
|
|
}
|
|
|
|
void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
|
|
{
|
|
u32 host_pvr;
|
|
|
|
vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
|
|
vcpu->arch.pvr = pvr;
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
|
|
kvmppc_mmu_book3s_64_init(vcpu);
|
|
if (!to_book3s(vcpu)->hior_explicit)
|
|
to_book3s(vcpu)->hior = 0xfff00000;
|
|
to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
|
|
vcpu->arch.cpu_type = KVM_CPU_3S_64;
|
|
} else
|
|
#endif
|
|
{
|
|
kvmppc_mmu_book3s_32_init(vcpu);
|
|
if (!to_book3s(vcpu)->hior_explicit)
|
|
to_book3s(vcpu)->hior = 0;
|
|
to_book3s(vcpu)->msr_mask = 0xffffffffULL;
|
|
vcpu->arch.cpu_type = KVM_CPU_3S_32;
|
|
}
|
|
|
|
kvmppc_sanity_check(vcpu);
|
|
|
|
/* If we are in hypervisor level on 970, we can tell the CPU to
|
|
* treat DCBZ as 32 bytes store */
|
|
vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
|
|
if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
|
|
!strcmp(cur_cpu_spec->platform, "ppc970"))
|
|
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
|
|
|
|
/* Cell performs badly if MSR_FEx are set. So let's hope nobody
|
|
really needs them in a VM on Cell and force disable them. */
|
|
if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
|
|
to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
|
|
|
|
/*
|
|
* If they're asking for POWER6 or later, set the flag
|
|
* indicating that we can do multiple large page sizes
|
|
* and 1TB segments.
|
|
* Also set the flag that indicates that tlbie has the large
|
|
* page bit in the RB operand instead of the instruction.
|
|
*/
|
|
switch (PVR_VER(pvr)) {
|
|
case PVR_POWER6:
|
|
case PVR_POWER7:
|
|
case PVR_POWER7p:
|
|
case PVR_POWER8:
|
|
vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
|
|
BOOK3S_HFLAG_NEW_TLBIE;
|
|
break;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_32
|
|
/* 32 bit Book3S always has 32 byte dcbz */
|
|
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
|
|
#endif
|
|
|
|
/* On some CPUs we can execute paired single operations natively */
|
|
asm ( "mfpvr %0" : "=r"(host_pvr));
|
|
switch (host_pvr) {
|
|
case 0x00080200: /* lonestar 2.0 */
|
|
case 0x00088202: /* lonestar 2.2 */
|
|
case 0x70000100: /* gekko 1.0 */
|
|
case 0x00080100: /* gekko 2.0 */
|
|
case 0x00083203: /* gekko 2.3a */
|
|
case 0x00083213: /* gekko 2.3b */
|
|
case 0x00083204: /* gekko 2.4 */
|
|
case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
|
|
case 0x00087200: /* broadway */
|
|
vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
|
|
/* Enable HID2.PSE - in case we need it later */
|
|
mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
|
|
}
|
|
}
|
|
|
|
/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
|
|
* make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
|
|
* emulate 32 bytes dcbz length.
|
|
*
|
|
* The Book3s_64 inventors also realized this case and implemented a special bit
|
|
* in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
|
|
*
|
|
* My approach here is to patch the dcbz instruction on executing pages.
|
|
*/
|
|
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
|
|
{
|
|
struct page *hpage;
|
|
u64 hpage_offset;
|
|
u32 *page;
|
|
int i;
|
|
|
|
hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
|
|
if (is_error_page(hpage))
|
|
return;
|
|
|
|
hpage_offset = pte->raddr & ~PAGE_MASK;
|
|
hpage_offset &= ~0xFFFULL;
|
|
hpage_offset /= 4;
|
|
|
|
get_page(hpage);
|
|
page = kmap_atomic(hpage);
|
|
|
|
/* patch dcbz into reserved instruction, so we trap */
|
|
for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
|
|
if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
|
|
page[i] &= cpu_to_be32(0xfffffff7);
|
|
|
|
kunmap_atomic(page);
|
|
put_page(hpage);
|
|
}
|
|
|
|
static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
ulong mp_pa = vcpu->arch.magic_page_pa;
|
|
|
|
if (!(kvmppc_get_msr(vcpu) & MSR_SF))
|
|
mp_pa = (uint32_t)mp_pa;
|
|
|
|
if (unlikely(mp_pa) &&
|
|
unlikely((mp_pa & KVM_PAM) >> PAGE_SHIFT == gfn)) {
|
|
return 1;
|
|
}
|
|
|
|
return kvm_is_visible_gfn(vcpu->kvm, gfn);
|
|
}
|
|
|
|
int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
|
ulong eaddr, int vec)
|
|
{
|
|
bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
|
|
bool iswrite = false;
|
|
int r = RESUME_GUEST;
|
|
int relocated;
|
|
int page_found = 0;
|
|
struct kvmppc_pte pte;
|
|
bool is_mmio = false;
|
|
bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
|
|
bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
|
|
u64 vsid;
|
|
|
|
relocated = data ? dr : ir;
|
|
if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
|
|
iswrite = true;
|
|
|
|
/* Resolve real address if translation turned on */
|
|
if (relocated) {
|
|
page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
|
|
} else {
|
|
pte.may_execute = true;
|
|
pte.may_read = true;
|
|
pte.may_write = true;
|
|
pte.raddr = eaddr & KVM_PAM;
|
|
pte.eaddr = eaddr;
|
|
pte.vpage = eaddr >> 12;
|
|
pte.page_size = MMU_PAGE_64K;
|
|
}
|
|
|
|
switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
|
|
case 0:
|
|
pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
|
|
break;
|
|
case MSR_DR:
|
|
if (!data &&
|
|
(vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
|
|
((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
|
|
pte.raddr &= ~SPLIT_HACK_MASK;
|
|
/* fall through */
|
|
case MSR_IR:
|
|
vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
|
|
|
|
if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
|
|
pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
|
|
else
|
|
pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
|
|
pte.vpage |= vsid;
|
|
|
|
if (vsid == -1)
|
|
page_found = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
|
|
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
|
|
/*
|
|
* If we do the dcbz hack, we have to NX on every execution,
|
|
* so we can patch the executing code. This renders our guest
|
|
* NX-less.
|
|
*/
|
|
pte.may_execute = !data;
|
|
}
|
|
|
|
if (page_found == -ENOENT) {
|
|
/* Page not found in guest PTE entries */
|
|
u64 ssrr1 = vcpu->arch.shadow_srr1;
|
|
u64 msr = kvmppc_get_msr(vcpu);
|
|
kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
|
|
kvmppc_set_dsisr(vcpu, vcpu->arch.fault_dsisr);
|
|
kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
|
|
kvmppc_book3s_queue_irqprio(vcpu, vec);
|
|
} else if (page_found == -EPERM) {
|
|
/* Storage protection */
|
|
u32 dsisr = vcpu->arch.fault_dsisr;
|
|
u64 ssrr1 = vcpu->arch.shadow_srr1;
|
|
u64 msr = kvmppc_get_msr(vcpu);
|
|
kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
|
|
dsisr = (dsisr & ~DSISR_NOHPTE) | DSISR_PROTFAULT;
|
|
kvmppc_set_dsisr(vcpu, dsisr);
|
|
kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
|
|
kvmppc_book3s_queue_irqprio(vcpu, vec);
|
|
} else if (page_found == -EINVAL) {
|
|
/* Page not found in guest SLB */
|
|
kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
|
|
kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
|
|
} else if (!is_mmio &&
|
|
kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
|
|
if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
|
|
/*
|
|
* There is already a host HPTE there, presumably
|
|
* a read-only one for a page the guest thinks
|
|
* is writable, so get rid of it first.
|
|
*/
|
|
kvmppc_mmu_unmap_page(vcpu, &pte);
|
|
}
|
|
/* The guest's PTE is not mapped yet. Map on the host */
|
|
kvmppc_mmu_map_page(vcpu, &pte, iswrite);
|
|
if (data)
|
|
vcpu->stat.sp_storage++;
|
|
else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
|
|
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
|
|
kvmppc_patch_dcbz(vcpu, &pte);
|
|
} else {
|
|
/* MMIO */
|
|
vcpu->stat.mmio_exits++;
|
|
vcpu->arch.paddr_accessed = pte.raddr;
|
|
vcpu->arch.vaddr_accessed = pte.eaddr;
|
|
r = kvmppc_emulate_mmio(run, vcpu);
|
|
if ( r == RESUME_HOST_NV )
|
|
r = RESUME_HOST;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static inline int get_fpr_index(int i)
|
|
{
|
|
return i * TS_FPRWIDTH;
|
|
}
|
|
|
|
/* Give up external provider (FPU, Altivec, VSX) */
|
|
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
|
|
{
|
|
struct thread_struct *t = ¤t->thread;
|
|
|
|
/*
|
|
* VSX instructions can access FP and vector registers, so if
|
|
* we are giving up VSX, make sure we give up FP and VMX as well.
|
|
*/
|
|
if (msr & MSR_VSX)
|
|
msr |= MSR_FP | MSR_VEC;
|
|
|
|
msr &= vcpu->arch.guest_owned_ext;
|
|
if (!msr)
|
|
return;
|
|
|
|
#ifdef DEBUG_EXT
|
|
printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
|
|
#endif
|
|
|
|
if (msr & MSR_FP) {
|
|
/*
|
|
* Note that on CPUs with VSX, giveup_fpu stores
|
|
* both the traditional FP registers and the added VSX
|
|
* registers into thread.fp_state.fpr[].
|
|
*/
|
|
if (t->regs->msr & MSR_FP)
|
|
giveup_fpu(current);
|
|
t->fp_save_area = NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (msr & MSR_VEC) {
|
|
if (current->thread.regs->msr & MSR_VEC)
|
|
giveup_altivec(current);
|
|
t->vr_save_area = NULL;
|
|
}
|
|
#endif
|
|
|
|
vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
|
|
kvmppc_recalc_shadow_msr(vcpu);
|
|
}
|
|
|
|
/* Give up facility (TAR / EBB / DSCR) */
|
|
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
|
|
{
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
|
|
/* Facility not available to the guest, ignore giveup request*/
|
|
return;
|
|
}
|
|
|
|
switch (fac) {
|
|
case FSCR_TAR_LG:
|
|
vcpu->arch.tar = mfspr(SPRN_TAR);
|
|
mtspr(SPRN_TAR, current->thread.tar);
|
|
vcpu->arch.shadow_fscr &= ~FSCR_TAR;
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int kvmppc_read_inst(struct kvm_vcpu *vcpu)
|
|
{
|
|
ulong srr0 = kvmppc_get_pc(vcpu);
|
|
u32 last_inst = kvmppc_get_last_inst(vcpu);
|
|
int ret;
|
|
|
|
ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
|
|
if (ret == -ENOENT) {
|
|
ulong msr = kvmppc_get_msr(vcpu);
|
|
|
|
msr = kvmppc_set_field(msr, 33, 33, 1);
|
|
msr = kvmppc_set_field(msr, 34, 36, 0);
|
|
msr = kvmppc_set_field(msr, 42, 47, 0);
|
|
kvmppc_set_msr_fast(vcpu, msr);
|
|
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE);
|
|
return EMULATE_AGAIN;
|
|
}
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr)
|
|
{
|
|
|
|
/* Need to do paired single emulation? */
|
|
if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
|
|
return EMULATE_DONE;
|
|
|
|
/* Read out the instruction */
|
|
if (kvmppc_read_inst(vcpu) == EMULATE_DONE)
|
|
/* Need to emulate */
|
|
return EMULATE_FAIL;
|
|
|
|
return EMULATE_AGAIN;
|
|
}
|
|
|
|
/* Handle external providers (FPU, Altivec, VSX) */
|
|
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
|
|
ulong msr)
|
|
{
|
|
struct thread_struct *t = ¤t->thread;
|
|
|
|
/* When we have paired singles, we emulate in software */
|
|
if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
|
|
return RESUME_GUEST;
|
|
|
|
if (!(kvmppc_get_msr(vcpu) & msr)) {
|
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
if (msr == MSR_VSX) {
|
|
/* No VSX? Give an illegal instruction interrupt */
|
|
#ifdef CONFIG_VSX
|
|
if (!cpu_has_feature(CPU_FTR_VSX))
|
|
#endif
|
|
{
|
|
kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
/*
|
|
* We have to load up all the FP and VMX registers before
|
|
* we can let the guest use VSX instructions.
|
|
*/
|
|
msr = MSR_FP | MSR_VEC | MSR_VSX;
|
|
}
|
|
|
|
/* See if we already own all the ext(s) needed */
|
|
msr &= ~vcpu->arch.guest_owned_ext;
|
|
if (!msr)
|
|
return RESUME_GUEST;
|
|
|
|
#ifdef DEBUG_EXT
|
|
printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
|
|
#endif
|
|
|
|
if (msr & MSR_FP) {
|
|
preempt_disable();
|
|
enable_kernel_fp();
|
|
load_fp_state(&vcpu->arch.fp);
|
|
t->fp_save_area = &vcpu->arch.fp;
|
|
preempt_enable();
|
|
}
|
|
|
|
if (msr & MSR_VEC) {
|
|
#ifdef CONFIG_ALTIVEC
|
|
preempt_disable();
|
|
enable_kernel_altivec();
|
|
load_vr_state(&vcpu->arch.vr);
|
|
t->vr_save_area = &vcpu->arch.vr;
|
|
preempt_enable();
|
|
#endif
|
|
}
|
|
|
|
t->regs->msr |= msr;
|
|
vcpu->arch.guest_owned_ext |= msr;
|
|
kvmppc_recalc_shadow_msr(vcpu);
|
|
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
/*
|
|
* Kernel code using FP or VMX could have flushed guest state to
|
|
* the thread_struct; if so, get it back now.
|
|
*/
|
|
static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long lost_ext;
|
|
|
|
lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
|
|
if (!lost_ext)
|
|
return;
|
|
|
|
if (lost_ext & MSR_FP) {
|
|
preempt_disable();
|
|
enable_kernel_fp();
|
|
load_fp_state(&vcpu->arch.fp);
|
|
preempt_enable();
|
|
}
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (lost_ext & MSR_VEC) {
|
|
preempt_disable();
|
|
enable_kernel_altivec();
|
|
load_vr_state(&vcpu->arch.vr);
|
|
preempt_enable();
|
|
}
|
|
#endif
|
|
current->thread.regs->msr |= lost_ext;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
|
|
static void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
|
|
{
|
|
/* Inject the Interrupt Cause field and trigger a guest interrupt */
|
|
vcpu->arch.fscr &= ~(0xffULL << 56);
|
|
vcpu->arch.fscr |= (fac << 56);
|
|
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
|
|
}
|
|
|
|
static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
|
|
{
|
|
enum emulation_result er = EMULATE_FAIL;
|
|
|
|
if (!(kvmppc_get_msr(vcpu) & MSR_PR))
|
|
er = kvmppc_emulate_instruction(vcpu->run, vcpu);
|
|
|
|
if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
|
|
/* Couldn't emulate, trigger interrupt in guest */
|
|
kvmppc_trigger_fac_interrupt(vcpu, fac);
|
|
}
|
|
}
|
|
|
|
/* Enable facilities (TAR, EBB, DSCR) for the guest */
|
|
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
|
|
{
|
|
bool guest_fac_enabled;
|
|
BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
|
|
|
|
/*
|
|
* Not every facility is enabled by FSCR bits, check whether the
|
|
* guest has this facility enabled at all.
|
|
*/
|
|
switch (fac) {
|
|
case FSCR_TAR_LG:
|
|
case FSCR_EBB_LG:
|
|
guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
|
|
break;
|
|
case FSCR_TM_LG:
|
|
guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
|
|
break;
|
|
default:
|
|
guest_fac_enabled = false;
|
|
break;
|
|
}
|
|
|
|
if (!guest_fac_enabled) {
|
|
/* Facility not enabled by the guest */
|
|
kvmppc_trigger_fac_interrupt(vcpu, fac);
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
switch (fac) {
|
|
case FSCR_TAR_LG:
|
|
/* TAR switching isn't lazy in Linux yet */
|
|
current->thread.tar = mfspr(SPRN_TAR);
|
|
mtspr(SPRN_TAR, vcpu->arch.tar);
|
|
vcpu->arch.shadow_fscr |= FSCR_TAR;
|
|
break;
|
|
default:
|
|
kvmppc_emulate_fac(vcpu, fac);
|
|
break;
|
|
}
|
|
|
|
return RESUME_GUEST;
|
|
}
|
|
#endif
|
|
|
|
int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
|
unsigned int exit_nr)
|
|
{
|
|
int r = RESUME_HOST;
|
|
int s;
|
|
|
|
vcpu->stat.sum_exits++;
|
|
|
|
run->exit_reason = KVM_EXIT_UNKNOWN;
|
|
run->ready_for_interrupt_injection = 1;
|
|
|
|
/* We get here with MSR.EE=1 */
|
|
|
|
trace_kvm_exit(exit_nr, vcpu);
|
|
kvm_guest_exit();
|
|
|
|
switch (exit_nr) {
|
|
case BOOK3S_INTERRUPT_INST_STORAGE:
|
|
{
|
|
ulong shadow_srr1 = vcpu->arch.shadow_srr1;
|
|
vcpu->stat.pf_instruc++;
|
|
|
|
if (kvmppc_is_split_real(vcpu))
|
|
kvmppc_fixup_split_real(vcpu);
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_32
|
|
/* We set segments as unused segments when invalidating them. So
|
|
* treat the respective fault as segment fault. */
|
|
{
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu;
|
|
u32 sr;
|
|
|
|
svcpu = svcpu_get(vcpu);
|
|
sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
|
|
svcpu_put(svcpu);
|
|
if (sr == SR_INVALID) {
|
|
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* only care about PTEG not found errors, but leave NX alone */
|
|
if (shadow_srr1 & 0x40000000) {
|
|
int idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
vcpu->stat.sp_instruc++;
|
|
} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
|
|
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
|
|
/*
|
|
* XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
|
|
* so we can't use the NX bit inside the guest. Let's cross our fingers,
|
|
* that no guest that needs the dcbz hack does NX.
|
|
*/
|
|
kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
|
|
r = RESUME_GUEST;
|
|
} else {
|
|
u64 msr = kvmppc_get_msr(vcpu);
|
|
msr |= shadow_srr1 & 0x58000000;
|
|
kvmppc_set_msr_fast(vcpu, msr);
|
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
|
r = RESUME_GUEST;
|
|
}
|
|
break;
|
|
}
|
|
case BOOK3S_INTERRUPT_DATA_STORAGE:
|
|
{
|
|
ulong dar = kvmppc_get_fault_dar(vcpu);
|
|
u32 fault_dsisr = vcpu->arch.fault_dsisr;
|
|
vcpu->stat.pf_storage++;
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_32
|
|
/* We set segments as unused segments when invalidating them. So
|
|
* treat the respective fault as segment fault. */
|
|
{
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu;
|
|
u32 sr;
|
|
|
|
svcpu = svcpu_get(vcpu);
|
|
sr = svcpu->sr[dar >> SID_SHIFT];
|
|
svcpu_put(svcpu);
|
|
if (sr == SR_INVALID) {
|
|
kvmppc_mmu_map_segment(vcpu, dar);
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* We need to handle missing shadow PTEs, and
|
|
* protection faults due to us mapping a page read-only
|
|
* when the guest thinks it is writable.
|
|
*/
|
|
if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
|
|
int idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
} else {
|
|
kvmppc_set_dar(vcpu, dar);
|
|
kvmppc_set_dsisr(vcpu, fault_dsisr);
|
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
|
r = RESUME_GUEST;
|
|
}
|
|
break;
|
|
}
|
|
case BOOK3S_INTERRUPT_DATA_SEGMENT:
|
|
if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
|
|
kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
|
|
kvmppc_book3s_queue_irqprio(vcpu,
|
|
BOOK3S_INTERRUPT_DATA_SEGMENT);
|
|
}
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_INST_SEGMENT:
|
|
if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
|
|
kvmppc_book3s_queue_irqprio(vcpu,
|
|
BOOK3S_INTERRUPT_INST_SEGMENT);
|
|
}
|
|
r = RESUME_GUEST;
|
|
break;
|
|
/* We're good on these - the host merely wanted to get our attention */
|
|
case BOOK3S_INTERRUPT_DECREMENTER:
|
|
case BOOK3S_INTERRUPT_HV_DECREMENTER:
|
|
case BOOK3S_INTERRUPT_DOORBELL:
|
|
case BOOK3S_INTERRUPT_H_DOORBELL:
|
|
vcpu->stat.dec_exits++;
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_EXTERNAL:
|
|
case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
|
|
case BOOK3S_INTERRUPT_EXTERNAL_HV:
|
|
vcpu->stat.ext_intr_exits++;
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_PERFMON:
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_PROGRAM:
|
|
case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
|
|
{
|
|
enum emulation_result er;
|
|
ulong flags;
|
|
|
|
program_interrupt:
|
|
flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
|
|
|
|
if (kvmppc_get_msr(vcpu) & MSR_PR) {
|
|
#ifdef EXIT_DEBUG
|
|
printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
|
|
#endif
|
|
if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) !=
|
|
(INS_DCBZ & 0xfffffff7)) {
|
|
kvmppc_core_queue_program(vcpu, flags);
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
}
|
|
|
|
vcpu->stat.emulated_inst_exits++;
|
|
er = kvmppc_emulate_instruction(run, vcpu);
|
|
switch (er) {
|
|
case EMULATE_DONE:
|
|
r = RESUME_GUEST_NV;
|
|
break;
|
|
case EMULATE_AGAIN:
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case EMULATE_FAIL:
|
|
printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
|
|
__func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
|
|
kvmppc_core_queue_program(vcpu, flags);
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case EMULATE_DO_MMIO:
|
|
run->exit_reason = KVM_EXIT_MMIO;
|
|
r = RESUME_HOST_NV;
|
|
break;
|
|
case EMULATE_EXIT_USER:
|
|
r = RESUME_HOST_NV;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
break;
|
|
}
|
|
case BOOK3S_INTERRUPT_SYSCALL:
|
|
if (vcpu->arch.papr_enabled &&
|
|
(kvmppc_get_last_sc(vcpu) == 0x44000022) &&
|
|
!(kvmppc_get_msr(vcpu) & MSR_PR)) {
|
|
/* SC 1 papr hypercalls */
|
|
ulong cmd = kvmppc_get_gpr(vcpu, 3);
|
|
int i;
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
run->papr_hcall.nr = cmd;
|
|
for (i = 0; i < 9; ++i) {
|
|
ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
|
|
run->papr_hcall.args[i] = gpr;
|
|
}
|
|
run->exit_reason = KVM_EXIT_PAPR_HCALL;
|
|
vcpu->arch.hcall_needed = 1;
|
|
r = RESUME_HOST;
|
|
} else if (vcpu->arch.osi_enabled &&
|
|
(((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
|
|
(((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
|
|
/* MOL hypercalls */
|
|
u64 *gprs = run->osi.gprs;
|
|
int i;
|
|
|
|
run->exit_reason = KVM_EXIT_OSI;
|
|
for (i = 0; i < 32; i++)
|
|
gprs[i] = kvmppc_get_gpr(vcpu, i);
|
|
vcpu->arch.osi_needed = 1;
|
|
r = RESUME_HOST_NV;
|
|
} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
|
|
(((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
|
|
/* KVM PV hypercalls */
|
|
kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
|
|
r = RESUME_GUEST;
|
|
} else {
|
|
/* Guest syscalls */
|
|
vcpu->stat.syscall_exits++;
|
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
|
r = RESUME_GUEST;
|
|
}
|
|
break;
|
|
case BOOK3S_INTERRUPT_FP_UNAVAIL:
|
|
case BOOK3S_INTERRUPT_ALTIVEC:
|
|
case BOOK3S_INTERRUPT_VSX:
|
|
{
|
|
int ext_msr = 0;
|
|
|
|
switch (exit_nr) {
|
|
case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP; break;
|
|
case BOOK3S_INTERRUPT_ALTIVEC: ext_msr = MSR_VEC; break;
|
|
case BOOK3S_INTERRUPT_VSX: ext_msr = MSR_VSX; break;
|
|
}
|
|
|
|
switch (kvmppc_check_ext(vcpu, exit_nr)) {
|
|
case EMULATE_DONE:
|
|
/* everything ok - let's enable the ext */
|
|
r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
|
|
break;
|
|
case EMULATE_FAIL:
|
|
/* we need to emulate this instruction */
|
|
goto program_interrupt;
|
|
break;
|
|
default:
|
|
/* nothing to worry about - go again */
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case BOOK3S_INTERRUPT_ALIGNMENT:
|
|
if (kvmppc_read_inst(vcpu) == EMULATE_DONE) {
|
|
u32 last_inst = kvmppc_get_last_inst(vcpu);
|
|
u32 dsisr;
|
|
u64 dar;
|
|
|
|
dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
|
|
dar = kvmppc_alignment_dar(vcpu, last_inst);
|
|
|
|
kvmppc_set_dsisr(vcpu, dsisr);
|
|
kvmppc_set_dar(vcpu, dar);
|
|
|
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
|
}
|
|
r = RESUME_GUEST;
|
|
break;
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
case BOOK3S_INTERRUPT_FAC_UNAVAIL:
|
|
kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
|
|
r = RESUME_GUEST;
|
|
break;
|
|
#endif
|
|
case BOOK3S_INTERRUPT_MACHINE_CHECK:
|
|
case BOOK3S_INTERRUPT_TRACE:
|
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
|
r = RESUME_GUEST;
|
|
break;
|
|
default:
|
|
{
|
|
ulong shadow_srr1 = vcpu->arch.shadow_srr1;
|
|
/* Ugh - bork here! What did we get? */
|
|
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
|
|
exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
|
|
r = RESUME_HOST;
|
|
BUG();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!(r & RESUME_HOST)) {
|
|
/* To avoid clobbering exit_reason, only check for signals if
|
|
* we aren't already exiting to userspace for some other
|
|
* reason. */
|
|
|
|
/*
|
|
* Interrupts could be timers for the guest which we have to
|
|
* inject again, so let's postpone them until we're in the guest
|
|
* and if we really did time things so badly, then we just exit
|
|
* again due to a host external interrupt.
|
|
*/
|
|
s = kvmppc_prepare_to_enter(vcpu);
|
|
if (s <= 0)
|
|
r = s;
|
|
else {
|
|
/* interrupts now hard-disabled */
|
|
kvmppc_fix_ee_before_entry();
|
|
}
|
|
|
|
kvmppc_handle_lost_ext(vcpu);
|
|
}
|
|
|
|
trace_kvm_book3s_reenter(r, vcpu);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
|
|
int i;
|
|
|
|
sregs->pvr = vcpu->arch.pvr;
|
|
|
|
sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
|
|
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
|
|
for (i = 0; i < 64; i++) {
|
|
sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
|
|
sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
|
|
}
|
|
} else {
|
|
for (i = 0; i < 16; i++)
|
|
sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
|
|
sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
|
|
int i;
|
|
|
|
kvmppc_set_pvr_pr(vcpu, sregs->pvr);
|
|
|
|
vcpu3s->sdr1 = sregs->u.s.sdr1;
|
|
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
|
|
for (i = 0; i < 64; i++) {
|
|
vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
|
|
sregs->u.s.ppc64.slb[i].slbe);
|
|
}
|
|
} else {
|
|
for (i = 0; i < 16; i++) {
|
|
vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
|
|
}
|
|
for (i = 0; i < 8; i++) {
|
|
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
|
|
(u32)sregs->u.s.ppc32.ibat[i]);
|
|
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
|
|
(u32)(sregs->u.s.ppc32.ibat[i] >> 32));
|
|
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
|
|
(u32)sregs->u.s.ppc32.dbat[i]);
|
|
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
|
|
(u32)(sregs->u.s.ppc32.dbat[i] >> 32));
|
|
}
|
|
}
|
|
|
|
/* Flush the MMU after messing with the segments */
|
|
kvmppc_mmu_pte_flush(vcpu, 0, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
|
|
union kvmppc_one_reg *val)
|
|
{
|
|
int r = 0;
|
|
|
|
switch (id) {
|
|
case KVM_REG_PPC_HIOR:
|
|
*val = get_reg_val(id, to_book3s(vcpu)->hior);
|
|
break;
|
|
case KVM_REG_PPC_LPCR:
|
|
/*
|
|
* We are only interested in the LPCR_ILE bit
|
|
*/
|
|
if (vcpu->arch.intr_msr & MSR_LE)
|
|
*val = get_reg_val(id, LPCR_ILE);
|
|
else
|
|
*val = get_reg_val(id, 0);
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
|
|
{
|
|
if (new_lpcr & LPCR_ILE)
|
|
vcpu->arch.intr_msr |= MSR_LE;
|
|
else
|
|
vcpu->arch.intr_msr &= ~MSR_LE;
|
|
}
|
|
|
|
static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
|
|
union kvmppc_one_reg *val)
|
|
{
|
|
int r = 0;
|
|
|
|
switch (id) {
|
|
case KVM_REG_PPC_HIOR:
|
|
to_book3s(vcpu)->hior = set_reg_val(id, *val);
|
|
to_book3s(vcpu)->hior_explicit = true;
|
|
break;
|
|
case KVM_REG_PPC_LPCR:
|
|
kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
|
|
unsigned int id)
|
|
{
|
|
struct kvmppc_vcpu_book3s *vcpu_book3s;
|
|
struct kvm_vcpu *vcpu;
|
|
int err = -ENOMEM;
|
|
unsigned long p;
|
|
|
|
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
|
|
if (!vcpu)
|
|
goto out;
|
|
|
|
vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
|
|
if (!vcpu_book3s)
|
|
goto free_vcpu;
|
|
vcpu->arch.book3s = vcpu_book3s;
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
|
|
vcpu->arch.shadow_vcpu =
|
|
kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
|
|
if (!vcpu->arch.shadow_vcpu)
|
|
goto free_vcpu3s;
|
|
#endif
|
|
|
|
err = kvm_vcpu_init(vcpu, kvm, id);
|
|
if (err)
|
|
goto free_shadow_vcpu;
|
|
|
|
err = -ENOMEM;
|
|
p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
|
|
if (!p)
|
|
goto uninit_vcpu;
|
|
/* the real shared page fills the last 4k of our page */
|
|
vcpu->arch.shared = (void *)(p + PAGE_SIZE - 4096);
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
/* Always start the shared struct in native endian mode */
|
|
#ifdef __BIG_ENDIAN__
|
|
vcpu->arch.shared_big_endian = true;
|
|
#else
|
|
vcpu->arch.shared_big_endian = false;
|
|
#endif
|
|
|
|
/*
|
|
* Default to the same as the host if we're on sufficiently
|
|
* recent machine that we have 1TB segments;
|
|
* otherwise default to PPC970FX.
|
|
*/
|
|
vcpu->arch.pvr = 0x3C0301;
|
|
if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
|
|
vcpu->arch.pvr = mfspr(SPRN_PVR);
|
|
vcpu->arch.intr_msr = MSR_SF;
|
|
#else
|
|
/* default to book3s_32 (750) */
|
|
vcpu->arch.pvr = 0x84202;
|
|
#endif
|
|
kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
|
|
vcpu->arch.slb_nr = 64;
|
|
|
|
vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
|
|
|
|
err = kvmppc_mmu_init(vcpu);
|
|
if (err < 0)
|
|
goto uninit_vcpu;
|
|
|
|
return vcpu;
|
|
|
|
uninit_vcpu:
|
|
kvm_vcpu_uninit(vcpu);
|
|
free_shadow_vcpu:
|
|
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
|
|
kfree(vcpu->arch.shadow_vcpu);
|
|
free_vcpu3s:
|
|
#endif
|
|
vfree(vcpu_book3s);
|
|
free_vcpu:
|
|
kmem_cache_free(kvm_vcpu_cache, vcpu);
|
|
out:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
|
|
|
|
free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
|
|
kvm_vcpu_uninit(vcpu);
|
|
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
|
|
kfree(vcpu->arch.shadow_vcpu);
|
|
#endif
|
|
vfree(vcpu_book3s);
|
|
kmem_cache_free(kvm_vcpu_cache, vcpu);
|
|
}
|
|
|
|
static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
|
|
{
|
|
int ret;
|
|
#ifdef CONFIG_ALTIVEC
|
|
unsigned long uninitialized_var(vrsave);
|
|
#endif
|
|
|
|
/* Check if we can run the vcpu at all */
|
|
if (!vcpu->arch.sane) {
|
|
kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Interrupts could be timers for the guest which we have to inject
|
|
* again, so let's postpone them until we're in the guest and if we
|
|
* really did time things so badly, then we just exit again due to
|
|
* a host external interrupt.
|
|
*/
|
|
ret = kvmppc_prepare_to_enter(vcpu);
|
|
if (ret <= 0)
|
|
goto out;
|
|
/* interrupts now hard-disabled */
|
|
|
|
/* Save FPU state in thread_struct */
|
|
if (current->thread.regs->msr & MSR_FP)
|
|
giveup_fpu(current);
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
/* Save Altivec state in thread_struct */
|
|
if (current->thread.regs->msr & MSR_VEC)
|
|
giveup_altivec(current);
|
|
#endif
|
|
|
|
#ifdef CONFIG_VSX
|
|
/* Save VSX state in thread_struct */
|
|
if (current->thread.regs->msr & MSR_VSX)
|
|
__giveup_vsx(current);
|
|
#endif
|
|
|
|
/* Preload FPU if it's enabled */
|
|
if (kvmppc_get_msr(vcpu) & MSR_FP)
|
|
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
|
|
|
|
kvmppc_fix_ee_before_entry();
|
|
|
|
ret = __kvmppc_vcpu_run(kvm_run, vcpu);
|
|
|
|
/* No need for kvm_guest_exit. It's done in handle_exit.
|
|
We also get here with interrupts enabled. */
|
|
|
|
/* Make sure we save the guest FPU/Altivec/VSX state */
|
|
kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
|
|
|
|
/* Make sure we save the guest TAR/EBB/DSCR state */
|
|
kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
|
|
|
|
out:
|
|
vcpu->mode = OUTSIDE_GUEST_MODE;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Get (and clear) the dirty memory log for a memory slot.
|
|
*/
|
|
static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
|
|
struct kvm_dirty_log *log)
|
|
{
|
|
struct kvm_memory_slot *memslot;
|
|
struct kvm_vcpu *vcpu;
|
|
ulong ga, ga_end;
|
|
int is_dirty = 0;
|
|
int r;
|
|
unsigned long n;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
r = kvm_get_dirty_log(kvm, log, &is_dirty);
|
|
if (r)
|
|
goto out;
|
|
|
|
/* If nothing is dirty, don't bother messing with page tables. */
|
|
if (is_dirty) {
|
|
memslot = id_to_memslot(kvm->memslots, log->slot);
|
|
|
|
ga = memslot->base_gfn << PAGE_SHIFT;
|
|
ga_end = ga + (memslot->npages << PAGE_SHIFT);
|
|
|
|
kvm_for_each_vcpu(n, vcpu, kvm)
|
|
kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
|
|
|
|
n = kvm_dirty_bitmap_bytes(memslot);
|
|
memset(memslot->dirty_bitmap, 0, n);
|
|
}
|
|
|
|
r = 0;
|
|
out:
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
|
|
static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot,
|
|
struct kvm_userspace_memory_region *mem)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
|
|
struct kvm_userspace_memory_region *mem,
|
|
const struct kvm_memory_slot *old)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
|
|
struct kvm_memory_slot *dont)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
|
|
unsigned long npages)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_PPC64
|
|
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
|
|
struct kvm_ppc_smmu_info *info)
|
|
{
|
|
long int i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
info->flags = 0;
|
|
|
|
/* SLB is always 64 entries */
|
|
info->slb_size = 64;
|
|
|
|
/* Standard 4k base page size segment */
|
|
info->sps[0].page_shift = 12;
|
|
info->sps[0].slb_enc = 0;
|
|
info->sps[0].enc[0].page_shift = 12;
|
|
info->sps[0].enc[0].pte_enc = 0;
|
|
|
|
/*
|
|
* 64k large page size.
|
|
* We only want to put this in if the CPUs we're emulating
|
|
* support it, but unfortunately we don't have a vcpu easily
|
|
* to hand here to test. Just pick the first vcpu, and if
|
|
* that doesn't exist yet, report the minimum capability,
|
|
* i.e., no 64k pages.
|
|
* 1T segment support goes along with 64k pages.
|
|
*/
|
|
i = 1;
|
|
vcpu = kvm_get_vcpu(kvm, 0);
|
|
if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
|
|
info->flags = KVM_PPC_1T_SEGMENTS;
|
|
info->sps[i].page_shift = 16;
|
|
info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
|
|
info->sps[i].enc[0].page_shift = 16;
|
|
info->sps[i].enc[0].pte_enc = 1;
|
|
++i;
|
|
}
|
|
|
|
/* Standard 16M large page size segment */
|
|
info->sps[i].page_shift = 24;
|
|
info->sps[i].slb_enc = SLB_VSID_L;
|
|
info->sps[i].enc[0].page_shift = 24;
|
|
info->sps[i].enc[0].pte_enc = 0;
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
|
|
struct kvm_ppc_smmu_info *info)
|
|
{
|
|
/* We should not get called */
|
|
BUG();
|
|
}
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
static unsigned int kvm_global_user_count = 0;
|
|
static DEFINE_SPINLOCK(kvm_global_user_count_lock);
|
|
|
|
static int kvmppc_core_init_vm_pr(struct kvm *kvm)
|
|
{
|
|
mutex_init(&kvm->arch.hpt_mutex);
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
/* Start out with the default set of hcalls enabled */
|
|
kvmppc_pr_init_default_hcalls(kvm);
|
|
#endif
|
|
|
|
if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
|
|
spin_lock(&kvm_global_user_count_lock);
|
|
if (++kvm_global_user_count == 1)
|
|
pSeries_disable_reloc_on_exc();
|
|
spin_unlock(&kvm_global_user_count_lock);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
|
|
{
|
|
#ifdef CONFIG_PPC64
|
|
WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
|
|
#endif
|
|
|
|
if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
|
|
spin_lock(&kvm_global_user_count_lock);
|
|
BUG_ON(kvm_global_user_count == 0);
|
|
if (--kvm_global_user_count == 0)
|
|
pSeries_enable_reloc_on_exc();
|
|
spin_unlock(&kvm_global_user_count_lock);
|
|
}
|
|
}
|
|
|
|
static int kvmppc_core_check_processor_compat_pr(void)
|
|
{
|
|
/* we are always compatible */
|
|
return 0;
|
|
}
|
|
|
|
static long kvm_arch_vm_ioctl_pr(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
return -ENOTTY;
|
|
}
|
|
|
|
static struct kvmppc_ops kvm_ops_pr = {
|
|
.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
|
|
.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
|
|
.get_one_reg = kvmppc_get_one_reg_pr,
|
|
.set_one_reg = kvmppc_set_one_reg_pr,
|
|
.vcpu_load = kvmppc_core_vcpu_load_pr,
|
|
.vcpu_put = kvmppc_core_vcpu_put_pr,
|
|
.set_msr = kvmppc_set_msr_pr,
|
|
.vcpu_run = kvmppc_vcpu_run_pr,
|
|
.vcpu_create = kvmppc_core_vcpu_create_pr,
|
|
.vcpu_free = kvmppc_core_vcpu_free_pr,
|
|
.check_requests = kvmppc_core_check_requests_pr,
|
|
.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
|
|
.flush_memslot = kvmppc_core_flush_memslot_pr,
|
|
.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
|
|
.commit_memory_region = kvmppc_core_commit_memory_region_pr,
|
|
.unmap_hva = kvm_unmap_hva_pr,
|
|
.unmap_hva_range = kvm_unmap_hva_range_pr,
|
|
.age_hva = kvm_age_hva_pr,
|
|
.test_age_hva = kvm_test_age_hva_pr,
|
|
.set_spte_hva = kvm_set_spte_hva_pr,
|
|
.mmu_destroy = kvmppc_mmu_destroy_pr,
|
|
.free_memslot = kvmppc_core_free_memslot_pr,
|
|
.create_memslot = kvmppc_core_create_memslot_pr,
|
|
.init_vm = kvmppc_core_init_vm_pr,
|
|
.destroy_vm = kvmppc_core_destroy_vm_pr,
|
|
.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
|
|
.emulate_op = kvmppc_core_emulate_op_pr,
|
|
.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
|
|
.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
|
|
.fast_vcpu_kick = kvm_vcpu_kick,
|
|
.arch_vm_ioctl = kvm_arch_vm_ioctl_pr,
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
.hcall_implemented = kvmppc_hcall_impl_pr,
|
|
#endif
|
|
};
|
|
|
|
|
|
int kvmppc_book3s_init_pr(void)
|
|
{
|
|
int r;
|
|
|
|
r = kvmppc_core_check_processor_compat_pr();
|
|
if (r < 0)
|
|
return r;
|
|
|
|
kvm_ops_pr.owner = THIS_MODULE;
|
|
kvmppc_pr_ops = &kvm_ops_pr;
|
|
|
|
r = kvmppc_mmu_hpte_sysinit();
|
|
return r;
|
|
}
|
|
|
|
void kvmppc_book3s_exit_pr(void)
|
|
{
|
|
kvmppc_pr_ops = NULL;
|
|
kvmppc_mmu_hpte_sysexit();
|
|
}
|
|
|
|
/*
|
|
* We only support separate modules for book3s 64
|
|
*/
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
|
|
module_init(kvmppc_book3s_init_pr);
|
|
module_exit(kvmppc_book3s_exit_pr);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS_MISCDEV(KVM_MINOR);
|
|
MODULE_ALIAS("devname:kvm");
|
|
#endif
|