mirror of
https://github.com/torvalds/linux.git
synced 2024-12-03 09:31:26 +00:00
18daae5b0c
This driver has been implicitly relying on kmalloc alignment to be sufficient for DMA. This may no longer be the case with upcoming arm64 changes. This patch changes it to explicitly request DMA alignment from the Crypto API. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
596 lines
16 KiB
C
596 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
|
|
*/
|
|
|
|
#include <crypto/internal/hash.h>
|
|
#include <linux/err.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/types.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <crypto/sha1.h>
|
|
#include <crypto/sha2.h>
|
|
|
|
#include "cipher.h"
|
|
#include "common.h"
|
|
#include "core.h"
|
|
#include "regs-v5.h"
|
|
#include "sha.h"
|
|
#include "aead.h"
|
|
|
|
static inline u32 qce_read(struct qce_device *qce, u32 offset)
|
|
{
|
|
return readl(qce->base + offset);
|
|
}
|
|
|
|
static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
|
|
{
|
|
writel(val, qce->base + offset);
|
|
}
|
|
|
|
static inline void qce_write_array(struct qce_device *qce, u32 offset,
|
|
const u32 *val, unsigned int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
qce_write(qce, offset + i * sizeof(u32), val[i]);
|
|
}
|
|
|
|
static inline void
|
|
qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
qce_write(qce, offset + i * sizeof(u32), 0);
|
|
}
|
|
|
|
static u32 qce_config_reg(struct qce_device *qce, int little)
|
|
{
|
|
u32 beats = (qce->burst_size >> 3) - 1;
|
|
u32 pipe_pair = qce->pipe_pair_id;
|
|
u32 config;
|
|
|
|
config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
|
|
config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
|
|
BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
|
|
config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
|
|
config &= ~HIGH_SPD_EN_N_SHIFT;
|
|
|
|
if (little)
|
|
config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
|
|
|
|
return config;
|
|
}
|
|
|
|
void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
|
|
{
|
|
__be32 *d = dst;
|
|
const u8 *s = src;
|
|
unsigned int n;
|
|
|
|
n = len / sizeof(u32);
|
|
for (; n > 0; n--) {
|
|
*d = cpu_to_be32p((const __u32 *) s);
|
|
s += sizeof(__u32);
|
|
d++;
|
|
}
|
|
}
|
|
|
|
static void qce_setup_config(struct qce_device *qce)
|
|
{
|
|
u32 config;
|
|
|
|
/* get big endianness */
|
|
config = qce_config_reg(qce, 0);
|
|
|
|
/* clear status */
|
|
qce_write(qce, REG_STATUS, 0);
|
|
qce_write(qce, REG_CONFIG, config);
|
|
}
|
|
|
|
static inline void qce_crypto_go(struct qce_device *qce, bool result_dump)
|
|
{
|
|
if (result_dump)
|
|
qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
|
|
else
|
|
qce_write(qce, REG_GOPROC, BIT(GO_SHIFT));
|
|
}
|
|
|
|
#if defined(CONFIG_CRYPTO_DEV_QCE_SHA) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD)
|
|
static u32 qce_auth_cfg(unsigned long flags, u32 key_size, u32 auth_size)
|
|
{
|
|
u32 cfg = 0;
|
|
|
|
if (IS_CCM(flags) || IS_CMAC(flags))
|
|
cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
|
|
else
|
|
cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
|
|
|
|
if (IS_CCM(flags) || IS_CMAC(flags)) {
|
|
if (key_size == AES_KEYSIZE_128)
|
|
cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
|
|
else if (key_size == AES_KEYSIZE_256)
|
|
cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
|
|
}
|
|
|
|
if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
|
|
cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
|
|
else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
|
|
cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
|
|
else if (IS_CMAC(flags))
|
|
cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
|
|
else if (IS_CCM(flags))
|
|
cfg |= (auth_size - 1) << AUTH_SIZE_SHIFT;
|
|
|
|
if (IS_SHA1(flags) || IS_SHA256(flags))
|
|
cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
|
|
else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags))
|
|
cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
|
|
else if (IS_CCM(flags))
|
|
cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
|
|
else if (IS_CMAC(flags))
|
|
cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
|
|
|
|
if (IS_SHA(flags) || IS_SHA_HMAC(flags))
|
|
cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
|
|
|
|
if (IS_CCM(flags))
|
|
cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
|
|
|
|
return cfg;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_CRYPTO_DEV_QCE_SHA
|
|
static int qce_setup_regs_ahash(struct crypto_async_request *async_req)
|
|
{
|
|
struct ahash_request *req = ahash_request_cast(async_req);
|
|
struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
|
|
struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
|
|
struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
|
|
struct qce_device *qce = tmpl->qce;
|
|
unsigned int digestsize = crypto_ahash_digestsize(ahash);
|
|
unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
|
|
__be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
|
|
__be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
|
|
u32 auth_cfg = 0, config;
|
|
unsigned int iv_words;
|
|
|
|
/* if not the last, the size has to be on the block boundary */
|
|
if (!rctx->last_blk && req->nbytes % blocksize)
|
|
return -EINVAL;
|
|
|
|
qce_setup_config(qce);
|
|
|
|
if (IS_CMAC(rctx->flags)) {
|
|
qce_write(qce, REG_AUTH_SEG_CFG, 0);
|
|
qce_write(qce, REG_ENCR_SEG_CFG, 0);
|
|
qce_write(qce, REG_ENCR_SEG_SIZE, 0);
|
|
qce_clear_array(qce, REG_AUTH_IV0, 16);
|
|
qce_clear_array(qce, REG_AUTH_KEY0, 16);
|
|
qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
|
|
|
|
auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen, digestsize);
|
|
}
|
|
|
|
if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
|
|
u32 authkey_words = rctx->authklen / sizeof(u32);
|
|
|
|
qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
|
|
qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
|
|
authkey_words);
|
|
}
|
|
|
|
if (IS_CMAC(rctx->flags))
|
|
goto go_proc;
|
|
|
|
if (rctx->first_blk)
|
|
memcpy(auth, rctx->digest, digestsize);
|
|
else
|
|
qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
|
|
|
|
iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
|
|
qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
|
|
|
|
if (rctx->first_blk)
|
|
qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
|
|
else
|
|
qce_write_array(qce, REG_AUTH_BYTECNT0,
|
|
(u32 *)rctx->byte_count, 2);
|
|
|
|
auth_cfg = qce_auth_cfg(rctx->flags, 0, digestsize);
|
|
|
|
if (rctx->last_blk)
|
|
auth_cfg |= BIT(AUTH_LAST_SHIFT);
|
|
else
|
|
auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
|
|
|
|
if (rctx->first_blk)
|
|
auth_cfg |= BIT(AUTH_FIRST_SHIFT);
|
|
else
|
|
auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
|
|
|
|
go_proc:
|
|
qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
|
|
qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
|
|
qce_write(qce, REG_AUTH_SEG_START, 0);
|
|
qce_write(qce, REG_ENCR_SEG_CFG, 0);
|
|
qce_write(qce, REG_SEG_SIZE, req->nbytes);
|
|
|
|
/* get little endianness */
|
|
config = qce_config_reg(qce, 1);
|
|
qce_write(qce, REG_CONFIG, config);
|
|
|
|
qce_crypto_go(qce, true);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_CRYPTO_DEV_QCE_SKCIPHER) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD)
|
|
static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
|
|
{
|
|
u32 cfg = 0;
|
|
|
|
if (IS_AES(flags)) {
|
|
if (aes_key_size == AES_KEYSIZE_128)
|
|
cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
|
|
else if (aes_key_size == AES_KEYSIZE_256)
|
|
cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
|
|
}
|
|
|
|
if (IS_AES(flags))
|
|
cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
|
|
else if (IS_DES(flags) || IS_3DES(flags))
|
|
cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
|
|
|
|
if (IS_DES(flags))
|
|
cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
|
|
|
|
if (IS_3DES(flags))
|
|
cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
|
|
|
|
switch (flags & QCE_MODE_MASK) {
|
|
case QCE_MODE_ECB:
|
|
cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
|
|
break;
|
|
case QCE_MODE_CBC:
|
|
cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
|
|
break;
|
|
case QCE_MODE_CTR:
|
|
cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
|
|
break;
|
|
case QCE_MODE_XTS:
|
|
cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
|
|
break;
|
|
case QCE_MODE_CCM:
|
|
cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
|
|
cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
|
|
break;
|
|
default:
|
|
return ~0;
|
|
}
|
|
|
|
return cfg;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
|
|
static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
|
|
{
|
|
u8 swap[QCE_AES_IV_LENGTH];
|
|
u32 i, j;
|
|
|
|
if (ivsize > QCE_AES_IV_LENGTH)
|
|
return;
|
|
|
|
memset(swap, 0, QCE_AES_IV_LENGTH);
|
|
|
|
for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
|
|
i < QCE_AES_IV_LENGTH; i++, j--)
|
|
swap[i] = src[j];
|
|
|
|
qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
|
|
}
|
|
|
|
static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
|
|
unsigned int enckeylen, unsigned int cryptlen)
|
|
{
|
|
u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
|
|
unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
|
|
|
|
qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
|
|
enckeylen / 2);
|
|
qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
|
|
|
|
/* Set data unit size to cryptlen. Anything else causes
|
|
* crypto engine to return back incorrect results.
|
|
*/
|
|
qce_write(qce, REG_ENCR_XTS_DU_SIZE, cryptlen);
|
|
}
|
|
|
|
static int qce_setup_regs_skcipher(struct crypto_async_request *async_req)
|
|
{
|
|
struct skcipher_request *req = skcipher_request_cast(async_req);
|
|
struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req);
|
|
struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
|
|
struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req));
|
|
struct qce_device *qce = tmpl->qce;
|
|
__be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
|
|
__be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
|
|
unsigned int enckey_words, enciv_words;
|
|
unsigned int keylen;
|
|
u32 encr_cfg = 0, auth_cfg = 0, config;
|
|
unsigned int ivsize = rctx->ivsize;
|
|
unsigned long flags = rctx->flags;
|
|
|
|
qce_setup_config(qce);
|
|
|
|
if (IS_XTS(flags))
|
|
keylen = ctx->enc_keylen / 2;
|
|
else
|
|
keylen = ctx->enc_keylen;
|
|
|
|
qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
|
|
enckey_words = keylen / sizeof(u32);
|
|
|
|
qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
|
|
|
|
encr_cfg = qce_encr_cfg(flags, keylen);
|
|
|
|
if (IS_DES(flags)) {
|
|
enciv_words = 2;
|
|
enckey_words = 2;
|
|
} else if (IS_3DES(flags)) {
|
|
enciv_words = 2;
|
|
enckey_words = 6;
|
|
} else if (IS_AES(flags)) {
|
|
if (IS_XTS(flags))
|
|
qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
|
|
rctx->cryptlen);
|
|
enciv_words = 4;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
|
|
|
|
if (!IS_ECB(flags)) {
|
|
if (IS_XTS(flags))
|
|
qce_xts_swapiv(enciv, rctx->iv, ivsize);
|
|
else
|
|
qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
|
|
|
|
qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
|
|
}
|
|
|
|
if (IS_ENCRYPT(flags))
|
|
encr_cfg |= BIT(ENCODE_SHIFT);
|
|
|
|
qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
|
|
qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
|
|
qce_write(qce, REG_ENCR_SEG_START, 0);
|
|
|
|
if (IS_CTR(flags)) {
|
|
qce_write(qce, REG_CNTR_MASK, ~0);
|
|
qce_write(qce, REG_CNTR_MASK0, ~0);
|
|
qce_write(qce, REG_CNTR_MASK1, ~0);
|
|
qce_write(qce, REG_CNTR_MASK2, ~0);
|
|
}
|
|
|
|
qce_write(qce, REG_SEG_SIZE, rctx->cryptlen);
|
|
|
|
/* get little endianness */
|
|
config = qce_config_reg(qce, 1);
|
|
qce_write(qce, REG_CONFIG, config);
|
|
|
|
qce_crypto_go(qce, true);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_CRYPTO_DEV_QCE_AEAD
|
|
static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
|
|
SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
|
|
};
|
|
|
|
static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
|
|
SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
|
|
SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
|
|
};
|
|
|
|
static unsigned int qce_be32_to_cpu_array(u32 *dst, const u8 *src, unsigned int len)
|
|
{
|
|
u32 *d = dst;
|
|
const u8 *s = src;
|
|
unsigned int n;
|
|
|
|
n = len / sizeof(u32);
|
|
for (; n > 0; n--) {
|
|
*d = be32_to_cpup((const __be32 *)s);
|
|
s += sizeof(u32);
|
|
d++;
|
|
}
|
|
return DIV_ROUND_UP(len, sizeof(u32));
|
|
}
|
|
|
|
static int qce_setup_regs_aead(struct crypto_async_request *async_req)
|
|
{
|
|
struct aead_request *req = aead_request_cast(async_req);
|
|
struct qce_aead_reqctx *rctx = aead_request_ctx_dma(req);
|
|
struct qce_aead_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
|
|
struct qce_alg_template *tmpl = to_aead_tmpl(crypto_aead_reqtfm(req));
|
|
struct qce_device *qce = tmpl->qce;
|
|
u32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
|
|
u32 enciv[QCE_MAX_IV_SIZE / sizeof(u32)] = {0};
|
|
u32 authkey[QCE_SHA_HMAC_KEY_SIZE / sizeof(u32)] = {0};
|
|
u32 authiv[SHA256_DIGEST_SIZE / sizeof(u32)] = {0};
|
|
u32 authnonce[QCE_MAX_NONCE / sizeof(u32)] = {0};
|
|
unsigned int enc_keylen = ctx->enc_keylen;
|
|
unsigned int auth_keylen = ctx->auth_keylen;
|
|
unsigned int enc_ivsize = rctx->ivsize;
|
|
unsigned int auth_ivsize = 0;
|
|
unsigned int enckey_words, enciv_words;
|
|
unsigned int authkey_words, authiv_words, authnonce_words;
|
|
unsigned long flags = rctx->flags;
|
|
u32 encr_cfg, auth_cfg, config, totallen;
|
|
u32 iv_last_word;
|
|
|
|
qce_setup_config(qce);
|
|
|
|
/* Write encryption key */
|
|
enckey_words = qce_be32_to_cpu_array(enckey, ctx->enc_key, enc_keylen);
|
|
qce_write_array(qce, REG_ENCR_KEY0, enckey, enckey_words);
|
|
|
|
/* Write encryption iv */
|
|
enciv_words = qce_be32_to_cpu_array(enciv, rctx->iv, enc_ivsize);
|
|
qce_write_array(qce, REG_CNTR0_IV0, enciv, enciv_words);
|
|
|
|
if (IS_CCM(rctx->flags)) {
|
|
iv_last_word = enciv[enciv_words - 1];
|
|
qce_write(qce, REG_CNTR3_IV3, iv_last_word + 1);
|
|
qce_write_array(qce, REG_ENCR_CCM_INT_CNTR0, (u32 *)enciv, enciv_words);
|
|
qce_write(qce, REG_CNTR_MASK, ~0);
|
|
qce_write(qce, REG_CNTR_MASK0, ~0);
|
|
qce_write(qce, REG_CNTR_MASK1, ~0);
|
|
qce_write(qce, REG_CNTR_MASK2, ~0);
|
|
}
|
|
|
|
/* Clear authentication IV and KEY registers of previous values */
|
|
qce_clear_array(qce, REG_AUTH_IV0, 16);
|
|
qce_clear_array(qce, REG_AUTH_KEY0, 16);
|
|
|
|
/* Clear byte count */
|
|
qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
|
|
|
|
/* Write authentication key */
|
|
authkey_words = qce_be32_to_cpu_array(authkey, ctx->auth_key, auth_keylen);
|
|
qce_write_array(qce, REG_AUTH_KEY0, (u32 *)authkey, authkey_words);
|
|
|
|
/* Write initial authentication IV only for HMAC algorithms */
|
|
if (IS_SHA_HMAC(rctx->flags)) {
|
|
/* Write default authentication iv */
|
|
if (IS_SHA1_HMAC(rctx->flags)) {
|
|
auth_ivsize = SHA1_DIGEST_SIZE;
|
|
memcpy(authiv, std_iv_sha1, auth_ivsize);
|
|
} else if (IS_SHA256_HMAC(rctx->flags)) {
|
|
auth_ivsize = SHA256_DIGEST_SIZE;
|
|
memcpy(authiv, std_iv_sha256, auth_ivsize);
|
|
}
|
|
authiv_words = auth_ivsize / sizeof(u32);
|
|
qce_write_array(qce, REG_AUTH_IV0, (u32 *)authiv, authiv_words);
|
|
} else if (IS_CCM(rctx->flags)) {
|
|
/* Write nonce for CCM algorithms */
|
|
authnonce_words = qce_be32_to_cpu_array(authnonce, rctx->ccm_nonce, QCE_MAX_NONCE);
|
|
qce_write_array(qce, REG_AUTH_INFO_NONCE0, authnonce, authnonce_words);
|
|
}
|
|
|
|
/* Set up ENCR_SEG_CFG */
|
|
encr_cfg = qce_encr_cfg(flags, enc_keylen);
|
|
if (IS_ENCRYPT(flags))
|
|
encr_cfg |= BIT(ENCODE_SHIFT);
|
|
qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
|
|
|
|
/* Set up AUTH_SEG_CFG */
|
|
auth_cfg = qce_auth_cfg(rctx->flags, auth_keylen, ctx->authsize);
|
|
auth_cfg |= BIT(AUTH_LAST_SHIFT);
|
|
auth_cfg |= BIT(AUTH_FIRST_SHIFT);
|
|
if (IS_ENCRYPT(flags)) {
|
|
if (IS_CCM(rctx->flags))
|
|
auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
|
|
else
|
|
auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT;
|
|
} else {
|
|
if (IS_CCM(rctx->flags))
|
|
auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT;
|
|
else
|
|
auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
|
|
}
|
|
qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
|
|
|
|
totallen = rctx->cryptlen + rctx->assoclen;
|
|
|
|
/* Set the encryption size and start offset */
|
|
if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags))
|
|
qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen + ctx->authsize);
|
|
else
|
|
qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
|
|
qce_write(qce, REG_ENCR_SEG_START, rctx->assoclen & 0xffff);
|
|
|
|
/* Set the authentication size and start offset */
|
|
qce_write(qce, REG_AUTH_SEG_SIZE, totallen);
|
|
qce_write(qce, REG_AUTH_SEG_START, 0);
|
|
|
|
/* Write total length */
|
|
if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags))
|
|
qce_write(qce, REG_SEG_SIZE, totallen + ctx->authsize);
|
|
else
|
|
qce_write(qce, REG_SEG_SIZE, totallen);
|
|
|
|
/* get little endianness */
|
|
config = qce_config_reg(qce, 1);
|
|
qce_write(qce, REG_CONFIG, config);
|
|
|
|
/* Start the process */
|
|
qce_crypto_go(qce, !IS_CCM(flags));
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
int qce_start(struct crypto_async_request *async_req, u32 type)
|
|
{
|
|
switch (type) {
|
|
#ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
|
|
case CRYPTO_ALG_TYPE_SKCIPHER:
|
|
return qce_setup_regs_skcipher(async_req);
|
|
#endif
|
|
#ifdef CONFIG_CRYPTO_DEV_QCE_SHA
|
|
case CRYPTO_ALG_TYPE_AHASH:
|
|
return qce_setup_regs_ahash(async_req);
|
|
#endif
|
|
#ifdef CONFIG_CRYPTO_DEV_QCE_AEAD
|
|
case CRYPTO_ALG_TYPE_AEAD:
|
|
return qce_setup_regs_aead(async_req);
|
|
#endif
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
#define STATUS_ERRORS \
|
|
(BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
|
|
|
|
int qce_check_status(struct qce_device *qce, u32 *status)
|
|
{
|
|
int ret = 0;
|
|
|
|
*status = qce_read(qce, REG_STATUS);
|
|
|
|
/*
|
|
* Don't use result dump status. The operation may not be complete.
|
|
* Instead, use the status we just read from device. In case, we need to
|
|
* use result_status from result dump the result_status needs to be byte
|
|
* swapped, since we set the device to little endian.
|
|
*/
|
|
if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
|
|
ret = -ENXIO;
|
|
else if (*status & BIT(MAC_FAILED_SHIFT))
|
|
ret = -EBADMSG;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
|
|
{
|
|
u32 val;
|
|
|
|
val = qce_read(qce, REG_VERSION);
|
|
*major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
|
|
*minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
|
|
*step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
|
|
}
|