linux/net/mac80211/util.c
Shaul Triebitz c0058df733 mac80211: parse also the RSNXE IE
Parse also the RSN Extension IE when parsing the rest of the IEs.
It will be used in a later patch.

Signed-off-by: Shaul Triebitz <shaul.triebitz@intel.com>
Signed-off-by: Luca Coelho <luciano.coelho@intel.com>
Link: https://lore.kernel.org/r/20200131111300.891737-21-luca@coelho.fi
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2020-02-07 12:55:21 +01:00

4017 lines
104 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2013-2014 Intel Mobile Communications GmbH
* Copyright (C) 2015-2017 Intel Deutschland GmbH
* Copyright (C) 2018-2020 Intel Corporation
*
* utilities for mac80211
*/
#include <net/mac80211.h>
#include <linux/netdevice.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/if_arp.h>
#include <linux/bitmap.h>
#include <linux/crc32.h>
#include <net/net_namespace.h>
#include <net/cfg80211.h>
#include <net/rtnetlink.h>
#include "ieee80211_i.h"
#include "driver-ops.h"
#include "rate.h"
#include "mesh.h"
#include "wme.h"
#include "led.h"
#include "wep.h"
/* privid for wiphys to determine whether they belong to us or not */
const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid;
struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
{
struct ieee80211_local *local;
local = wiphy_priv(wiphy);
return &local->hw;
}
EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
{
struct sk_buff *skb;
struct ieee80211_hdr *hdr;
skb_queue_walk(&tx->skbs, skb) {
hdr = (struct ieee80211_hdr *) skb->data;
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
}
}
int ieee80211_frame_duration(enum nl80211_band band, size_t len,
int rate, int erp, int short_preamble,
int shift)
{
int dur;
/* calculate duration (in microseconds, rounded up to next higher
* integer if it includes a fractional microsecond) to send frame of
* len bytes (does not include FCS) at the given rate. Duration will
* also include SIFS.
*
* rate is in 100 kbps, so divident is multiplied by 10 in the
* DIV_ROUND_UP() operations.
*
* shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and
* is assumed to be 0 otherwise.
*/
if (band == NL80211_BAND_5GHZ || erp) {
/*
* OFDM:
*
* N_DBPS = DATARATE x 4
* N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
* (16 = SIGNAL time, 6 = tail bits)
* TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
*
* T_SYM = 4 usec
* 802.11a - 18.5.2: aSIFSTime = 16 usec
* 802.11g - 19.8.4: aSIFSTime = 10 usec +
* signal ext = 6 usec
*/
dur = 16; /* SIFS + signal ext */
dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */
dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */
/* IEEE 802.11-2012 18.3.2.4: all values above are:
* * times 4 for 5 MHz
* * times 2 for 10 MHz
*/
dur *= 1 << shift;
/* rates should already consider the channel bandwidth,
* don't apply divisor again.
*/
dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
4 * rate); /* T_SYM x N_SYM */
} else {
/*
* 802.11b or 802.11g with 802.11b compatibility:
* 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
* Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
*
* 802.11 (DS): 15.3.3, 802.11b: 18.3.4
* aSIFSTime = 10 usec
* aPreambleLength = 144 usec or 72 usec with short preamble
* aPLCPHeaderLength = 48 usec or 24 usec with short preamble
*/
dur = 10; /* aSIFSTime = 10 usec */
dur += short_preamble ? (72 + 24) : (144 + 48);
dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
}
return dur;
}
/* Exported duration function for driver use */
__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum nl80211_band band,
size_t frame_len,
struct ieee80211_rate *rate)
{
struct ieee80211_sub_if_data *sdata;
u16 dur;
int erp, shift = 0;
bool short_preamble = false;
erp = 0;
if (vif) {
sdata = vif_to_sdata(vif);
short_preamble = sdata->vif.bss_conf.use_short_preamble;
if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
erp = rate->flags & IEEE80211_RATE_ERP_G;
shift = ieee80211_vif_get_shift(vif);
}
dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
short_preamble, shift);
return cpu_to_le16(dur);
}
EXPORT_SYMBOL(ieee80211_generic_frame_duration);
__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, size_t frame_len,
const struct ieee80211_tx_info *frame_txctl)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_rate *rate;
struct ieee80211_sub_if_data *sdata;
bool short_preamble;
int erp, shift = 0, bitrate;
u16 dur;
struct ieee80211_supported_band *sband;
sband = local->hw.wiphy->bands[frame_txctl->band];
short_preamble = false;
rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
erp = 0;
if (vif) {
sdata = vif_to_sdata(vif);
short_preamble = sdata->vif.bss_conf.use_short_preamble;
if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
erp = rate->flags & IEEE80211_RATE_ERP_G;
shift = ieee80211_vif_get_shift(vif);
}
bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift);
/* CTS duration */
dur = ieee80211_frame_duration(sband->band, 10, bitrate,
erp, short_preamble, shift);
/* Data frame duration */
dur += ieee80211_frame_duration(sband->band, frame_len, bitrate,
erp, short_preamble, shift);
/* ACK duration */
dur += ieee80211_frame_duration(sband->band, 10, bitrate,
erp, short_preamble, shift);
return cpu_to_le16(dur);
}
EXPORT_SYMBOL(ieee80211_rts_duration);
__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
size_t frame_len,
const struct ieee80211_tx_info *frame_txctl)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_rate *rate;
struct ieee80211_sub_if_data *sdata;
bool short_preamble;
int erp, shift = 0, bitrate;
u16 dur;
struct ieee80211_supported_band *sband;
sband = local->hw.wiphy->bands[frame_txctl->band];
short_preamble = false;
rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
erp = 0;
if (vif) {
sdata = vif_to_sdata(vif);
short_preamble = sdata->vif.bss_conf.use_short_preamble;
if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
erp = rate->flags & IEEE80211_RATE_ERP_G;
shift = ieee80211_vif_get_shift(vif);
}
bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift);
/* Data frame duration */
dur = ieee80211_frame_duration(sband->band, frame_len, bitrate,
erp, short_preamble, shift);
if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
/* ACK duration */
dur += ieee80211_frame_duration(sband->band, 10, bitrate,
erp, short_preamble, shift);
}
return cpu_to_le16(dur);
}
EXPORT_SYMBOL(ieee80211_ctstoself_duration);
static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_vif *vif = &sdata->vif;
struct fq *fq = &local->fq;
struct ps_data *ps = NULL;
struct txq_info *txqi;
struct sta_info *sta;
int i;
local_bh_disable();
spin_lock(&fq->lock);
if (sdata->vif.type == NL80211_IFTYPE_AP)
ps = &sdata->bss->ps;
sdata->vif.txqs_stopped[ac] = false;
list_for_each_entry_rcu(sta, &local->sta_list, list) {
if (sdata != sta->sdata)
continue;
for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
struct ieee80211_txq *txq = sta->sta.txq[i];
if (!txq)
continue;
txqi = to_txq_info(txq);
if (ac != txq->ac)
continue;
if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX,
&txqi->flags))
continue;
spin_unlock(&fq->lock);
drv_wake_tx_queue(local, txqi);
spin_lock(&fq->lock);
}
}
if (!vif->txq)
goto out;
txqi = to_txq_info(vif->txq);
if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) ||
(ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac)
goto out;
spin_unlock(&fq->lock);
drv_wake_tx_queue(local, txqi);
local_bh_enable();
return;
out:
spin_unlock(&fq->lock);
local_bh_enable();
}
static void
__releases(&local->queue_stop_reason_lock)
__acquires(&local->queue_stop_reason_lock)
_ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags)
{
struct ieee80211_sub_if_data *sdata;
int n_acs = IEEE80211_NUM_ACS;
int i;
rcu_read_lock();
if (local->hw.queues < IEEE80211_NUM_ACS)
n_acs = 1;
for (i = 0; i < local->hw.queues; i++) {
if (local->queue_stop_reasons[i])
continue;
spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags);
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
int ac;
for (ac = 0; ac < n_acs; ac++) {
int ac_queue = sdata->vif.hw_queue[ac];
if (ac_queue == i ||
sdata->vif.cab_queue == i)
__ieee80211_wake_txqs(sdata, ac);
}
}
spin_lock_irqsave(&local->queue_stop_reason_lock, *flags);
}
rcu_read_unlock();
}
void ieee80211_wake_txqs(unsigned long data)
{
struct ieee80211_local *local = (struct ieee80211_local *)data;
unsigned long flags;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
_ieee80211_wake_txqs(local, &flags);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue)
{
struct ieee80211_sub_if_data *sdata;
int n_acs = IEEE80211_NUM_ACS;
if (local->ops->wake_tx_queue)
return;
if (local->hw.queues < IEEE80211_NUM_ACS)
n_acs = 1;
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
int ac;
if (!sdata->dev)
continue;
if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE &&
local->queue_stop_reasons[sdata->vif.cab_queue] != 0)
continue;
for (ac = 0; ac < n_acs; ac++) {
int ac_queue = sdata->vif.hw_queue[ac];
if (ac_queue == queue ||
(sdata->vif.cab_queue == queue &&
local->queue_stop_reasons[ac_queue] == 0 &&
skb_queue_empty(&local->pending[ac_queue])))
netif_wake_subqueue(sdata->dev, ac);
}
}
}
static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
enum queue_stop_reason reason,
bool refcounted,
unsigned long *flags)
{
struct ieee80211_local *local = hw_to_local(hw);
trace_wake_queue(local, queue, reason);
if (WARN_ON(queue >= hw->queues))
return;
if (!test_bit(reason, &local->queue_stop_reasons[queue]))
return;
if (!refcounted) {
local->q_stop_reasons[queue][reason] = 0;
} else {
local->q_stop_reasons[queue][reason]--;
if (WARN_ON(local->q_stop_reasons[queue][reason] < 0))
local->q_stop_reasons[queue][reason] = 0;
}
if (local->q_stop_reasons[queue][reason] == 0)
__clear_bit(reason, &local->queue_stop_reasons[queue]);
if (local->queue_stop_reasons[queue] != 0)
/* someone still has this queue stopped */
return;
if (skb_queue_empty(&local->pending[queue])) {
rcu_read_lock();
ieee80211_propagate_queue_wake(local, queue);
rcu_read_unlock();
} else
tasklet_schedule(&local->tx_pending_tasklet);
/*
* Calling _ieee80211_wake_txqs here can be a problem because it may
* release queue_stop_reason_lock which has been taken by
* __ieee80211_wake_queue's caller. It is certainly not very nice to
* release someone's lock, but it is fine because all the callers of
* __ieee80211_wake_queue call it right before releasing the lock.
*/
if (local->ops->wake_tx_queue) {
if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER)
tasklet_schedule(&local->wake_txqs_tasklet);
else
_ieee80211_wake_txqs(local, flags);
}
}
void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
enum queue_stop_reason reason,
bool refcounted)
{
struct ieee80211_local *local = hw_to_local(hw);
unsigned long flags;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
__ieee80211_wake_queue(hw, queue, reason, refcounted, &flags);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
{
ieee80211_wake_queue_by_reason(hw, queue,
IEEE80211_QUEUE_STOP_REASON_DRIVER,
false);
}
EXPORT_SYMBOL(ieee80211_wake_queue);
static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
enum queue_stop_reason reason,
bool refcounted)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_sub_if_data *sdata;
int n_acs = IEEE80211_NUM_ACS;
trace_stop_queue(local, queue, reason);
if (WARN_ON(queue >= hw->queues))
return;
if (!refcounted)
local->q_stop_reasons[queue][reason] = 1;
else
local->q_stop_reasons[queue][reason]++;
if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue]))
return;
if (local->hw.queues < IEEE80211_NUM_ACS)
n_acs = 1;
rcu_read_lock();
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
int ac;
if (!sdata->dev)
continue;
for (ac = 0; ac < n_acs; ac++) {
if (sdata->vif.hw_queue[ac] == queue ||
sdata->vif.cab_queue == queue) {
if (!local->ops->wake_tx_queue) {
netif_stop_subqueue(sdata->dev, ac);
continue;
}
spin_lock(&local->fq.lock);
sdata->vif.txqs_stopped[ac] = true;
spin_unlock(&local->fq.lock);
}
}
}
rcu_read_unlock();
}
void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
enum queue_stop_reason reason,
bool refcounted)
{
struct ieee80211_local *local = hw_to_local(hw);
unsigned long flags;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
__ieee80211_stop_queue(hw, queue, reason, refcounted);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
{
ieee80211_stop_queue_by_reason(hw, queue,
IEEE80211_QUEUE_STOP_REASON_DRIVER,
false);
}
EXPORT_SYMBOL(ieee80211_stop_queue);
void ieee80211_add_pending_skb(struct ieee80211_local *local,
struct sk_buff *skb)
{
struct ieee80211_hw *hw = &local->hw;
unsigned long flags;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
int queue = info->hw_queue;
if (WARN_ON(!info->control.vif)) {
ieee80211_free_txskb(&local->hw, skb);
return;
}
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
__ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
false);
__skb_queue_tail(&local->pending[queue], skb);
__ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
false, &flags);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_add_pending_skbs(struct ieee80211_local *local,
struct sk_buff_head *skbs)
{
struct ieee80211_hw *hw = &local->hw;
struct sk_buff *skb;
unsigned long flags;
int queue, i;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
while ((skb = skb_dequeue(skbs))) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
if (WARN_ON(!info->control.vif)) {
ieee80211_free_txskb(&local->hw, skb);
continue;
}
queue = info->hw_queue;
__ieee80211_stop_queue(hw, queue,
IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
false);
__skb_queue_tail(&local->pending[queue], skb);
}
for (i = 0; i < hw->queues; i++)
__ieee80211_wake_queue(hw, i,
IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
false, &flags);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
unsigned long queues,
enum queue_stop_reason reason,
bool refcounted)
{
struct ieee80211_local *local = hw_to_local(hw);
unsigned long flags;
int i;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
for_each_set_bit(i, &queues, hw->queues)
__ieee80211_stop_queue(hw, i, reason, refcounted);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_stop_queues(struct ieee80211_hw *hw)
{
ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
IEEE80211_QUEUE_STOP_REASON_DRIVER,
false);
}
EXPORT_SYMBOL(ieee80211_stop_queues);
int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
{
struct ieee80211_local *local = hw_to_local(hw);
unsigned long flags;
int ret;
if (WARN_ON(queue >= hw->queues))
return true;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER,
&local->queue_stop_reasons[queue]);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
return ret;
}
EXPORT_SYMBOL(ieee80211_queue_stopped);
void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
unsigned long queues,
enum queue_stop_reason reason,
bool refcounted)
{
struct ieee80211_local *local = hw_to_local(hw);
unsigned long flags;
int i;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
for_each_set_bit(i, &queues, hw->queues)
__ieee80211_wake_queue(hw, i, reason, refcounted, &flags);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_wake_queues(struct ieee80211_hw *hw)
{
ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
IEEE80211_QUEUE_STOP_REASON_DRIVER,
false);
}
EXPORT_SYMBOL(ieee80211_wake_queues);
static unsigned int
ieee80211_get_vif_queues(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata)
{
unsigned int queues;
if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) {
int ac;
queues = 0;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
queues |= BIT(sdata->vif.hw_queue[ac]);
if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE)
queues |= BIT(sdata->vif.cab_queue);
} else {
/* all queues */
queues = BIT(local->hw.queues) - 1;
}
return queues;
}
void __ieee80211_flush_queues(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
unsigned int queues, bool drop)
{
if (!local->ops->flush)
return;
/*
* If no queue was set, or if the HW doesn't support
* IEEE80211_HW_QUEUE_CONTROL - flush all queues
*/
if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
queues = ieee80211_get_vif_queues(local, sdata);
ieee80211_stop_queues_by_reason(&local->hw, queues,
IEEE80211_QUEUE_STOP_REASON_FLUSH,
false);
drv_flush(local, sdata, queues, drop);
ieee80211_wake_queues_by_reason(&local->hw, queues,
IEEE80211_QUEUE_STOP_REASON_FLUSH,
false);
}
void ieee80211_flush_queues(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata, bool drop)
{
__ieee80211_flush_queues(local, sdata, 0, drop);
}
void ieee80211_stop_vif_queues(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
enum queue_stop_reason reason)
{
ieee80211_stop_queues_by_reason(&local->hw,
ieee80211_get_vif_queues(local, sdata),
reason, true);
}
void ieee80211_wake_vif_queues(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
enum queue_stop_reason reason)
{
ieee80211_wake_queues_by_reason(&local->hw,
ieee80211_get_vif_queues(local, sdata),
reason, true);
}
static void __iterate_interfaces(struct ieee80211_local *local,
u32 iter_flags,
void (*iterator)(void *data, u8 *mac,
struct ieee80211_vif *vif),
void *data)
{
struct ieee80211_sub_if_data *sdata;
bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE;
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
switch (sdata->vif.type) {
case NL80211_IFTYPE_MONITOR:
if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE))
continue;
break;
case NL80211_IFTYPE_AP_VLAN:
continue;
default:
break;
}
if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
continue;
if (ieee80211_sdata_running(sdata) || !active_only)
iterator(data, sdata->vif.addr,
&sdata->vif);
}
sdata = rcu_dereference_check(local->monitor_sdata,
lockdep_is_held(&local->iflist_mtx) ||
lockdep_rtnl_is_held());
if (sdata &&
(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only ||
sdata->flags & IEEE80211_SDATA_IN_DRIVER))
iterator(data, sdata->vif.addr, &sdata->vif);
}
void ieee80211_iterate_interfaces(
struct ieee80211_hw *hw, u32 iter_flags,
void (*iterator)(void *data, u8 *mac,
struct ieee80211_vif *vif),
void *data)
{
struct ieee80211_local *local = hw_to_local(hw);
mutex_lock(&local->iflist_mtx);
__iterate_interfaces(local, iter_flags, iterator, data);
mutex_unlock(&local->iflist_mtx);
}
EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces);
void ieee80211_iterate_active_interfaces_atomic(
struct ieee80211_hw *hw, u32 iter_flags,
void (*iterator)(void *data, u8 *mac,
struct ieee80211_vif *vif),
void *data)
{
struct ieee80211_local *local = hw_to_local(hw);
rcu_read_lock();
__iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
iterator, data);
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
void ieee80211_iterate_active_interfaces_rtnl(
struct ieee80211_hw *hw, u32 iter_flags,
void (*iterator)(void *data, u8 *mac,
struct ieee80211_vif *vif),
void *data)
{
struct ieee80211_local *local = hw_to_local(hw);
ASSERT_RTNL();
__iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
iterator, data);
}
EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_rtnl);
static void __iterate_stations(struct ieee80211_local *local,
void (*iterator)(void *data,
struct ieee80211_sta *sta),
void *data)
{
struct sta_info *sta;
list_for_each_entry_rcu(sta, &local->sta_list, list) {
if (!sta->uploaded)
continue;
iterator(data, &sta->sta);
}
}
void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw,
void (*iterator)(void *data,
struct ieee80211_sta *sta),
void *data)
{
struct ieee80211_local *local = hw_to_local(hw);
rcu_read_lock();
__iterate_stations(local, iterator, data);
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic);
struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
if (!ieee80211_sdata_running(sdata) ||
!(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
return NULL;
return &sdata->vif;
}
EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif);
struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif)
{
struct ieee80211_sub_if_data *sdata;
if (!vif)
return NULL;
sdata = vif_to_sdata(vif);
if (!ieee80211_sdata_running(sdata) ||
!(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
return NULL;
return &sdata->wdev;
}
EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev);
/*
* Nothing should have been stuffed into the workqueue during
* the suspend->resume cycle. Since we can't check each caller
* of this function if we are already quiescing / suspended,
* check here and don't WARN since this can actually happen when
* the rx path (for example) is racing against __ieee80211_suspend
* and suspending / quiescing was set after the rx path checked
* them.
*/
static bool ieee80211_can_queue_work(struct ieee80211_local *local)
{
if (local->quiescing || (local->suspended && !local->resuming)) {
pr_warn("queueing ieee80211 work while going to suspend\n");
return false;
}
return true;
}
void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
{
struct ieee80211_local *local = hw_to_local(hw);
if (!ieee80211_can_queue_work(local))
return;
queue_work(local->workqueue, work);
}
EXPORT_SYMBOL(ieee80211_queue_work);
void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
struct delayed_work *dwork,
unsigned long delay)
{
struct ieee80211_local *local = hw_to_local(hw);
if (!ieee80211_can_queue_work(local))
return;
queue_delayed_work(local->workqueue, dwork, delay);
}
EXPORT_SYMBOL(ieee80211_queue_delayed_work);
static void ieee80211_parse_extension_element(u32 *crc,
const struct element *elem,
struct ieee802_11_elems *elems)
{
const void *data = elem->data + 1;
u8 len = elem->datalen - 1;
switch (elem->data[0]) {
case WLAN_EID_EXT_HE_MU_EDCA:
if (len == sizeof(*elems->mu_edca_param_set)) {
elems->mu_edca_param_set = data;
if (crc)
*crc = crc32_be(*crc, (void *)elem,
elem->datalen + 2);
}
break;
case WLAN_EID_EXT_HE_CAPABILITY:
elems->he_cap = data;
elems->he_cap_len = len;
break;
case WLAN_EID_EXT_HE_OPERATION:
if (len >= sizeof(*elems->he_operation) &&
len == ieee80211_he_oper_size(data) - 1)
elems->he_operation = data;
break;
case WLAN_EID_EXT_UORA:
if (len == 1)
elems->uora_element = data;
break;
case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME:
if (len == 3)
elems->max_channel_switch_time = data;
break;
case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION:
if (len == sizeof(*elems->mbssid_config_ie))
elems->mbssid_config_ie = data;
break;
case WLAN_EID_EXT_HE_SPR:
if (len >= sizeof(*elems->he_spr) &&
len >= ieee80211_he_spr_size(data))
elems->he_spr = data;
break;
}
}
static u32
_ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action,
struct ieee802_11_elems *elems,
u64 filter, u32 crc,
const struct element *check_inherit)
{
const struct element *elem;
bool calc_crc = filter != 0;
DECLARE_BITMAP(seen_elems, 256);
const u8 *ie;
bitmap_zero(seen_elems, 256);
for_each_element(elem, start, len) {
bool elem_parse_failed;
u8 id = elem->id;
u8 elen = elem->datalen;
const u8 *pos = elem->data;
if (check_inherit &&
!cfg80211_is_element_inherited(elem,
check_inherit))
continue;
switch (id) {
case WLAN_EID_SSID:
case WLAN_EID_SUPP_RATES:
case WLAN_EID_FH_PARAMS:
case WLAN_EID_DS_PARAMS:
case WLAN_EID_CF_PARAMS:
case WLAN_EID_TIM:
case WLAN_EID_IBSS_PARAMS:
case WLAN_EID_CHALLENGE:
case WLAN_EID_RSN:
case WLAN_EID_ERP_INFO:
case WLAN_EID_EXT_SUPP_RATES:
case WLAN_EID_HT_CAPABILITY:
case WLAN_EID_HT_OPERATION:
case WLAN_EID_VHT_CAPABILITY:
case WLAN_EID_VHT_OPERATION:
case WLAN_EID_MESH_ID:
case WLAN_EID_MESH_CONFIG:
case WLAN_EID_PEER_MGMT:
case WLAN_EID_PREQ:
case WLAN_EID_PREP:
case WLAN_EID_PERR:
case WLAN_EID_RANN:
case WLAN_EID_CHANNEL_SWITCH:
case WLAN_EID_EXT_CHANSWITCH_ANN:
case WLAN_EID_COUNTRY:
case WLAN_EID_PWR_CONSTRAINT:
case WLAN_EID_TIMEOUT_INTERVAL:
case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
case WLAN_EID_CHAN_SWITCH_PARAM:
case WLAN_EID_EXT_CAPABILITY:
case WLAN_EID_CHAN_SWITCH_TIMING:
case WLAN_EID_LINK_ID:
case WLAN_EID_BSS_MAX_IDLE_PERIOD:
case WLAN_EID_RSNX:
/*
* not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible
* that if the content gets bigger it might be needed more than once
*/
if (test_bit(id, seen_elems)) {
elems->parse_error = true;
continue;
}
break;
}
if (calc_crc && id < 64 && (filter & (1ULL << id)))
crc = crc32_be(crc, pos - 2, elen + 2);
elem_parse_failed = false;
switch (id) {
case WLAN_EID_LINK_ID:
if (elen + 2 != sizeof(struct ieee80211_tdls_lnkie)) {
elem_parse_failed = true;
break;
}
elems->lnk_id = (void *)(pos - 2);
break;
case WLAN_EID_CHAN_SWITCH_TIMING:
if (elen != sizeof(struct ieee80211_ch_switch_timing)) {
elem_parse_failed = true;
break;
}
elems->ch_sw_timing = (void *)pos;
break;
case WLAN_EID_EXT_CAPABILITY:
elems->ext_capab = pos;
elems->ext_capab_len = elen;
break;
case WLAN_EID_SSID:
elems->ssid = pos;
elems->ssid_len = elen;
break;
case WLAN_EID_SUPP_RATES:
elems->supp_rates = pos;
elems->supp_rates_len = elen;
break;
case WLAN_EID_DS_PARAMS:
if (elen >= 1)
elems->ds_params = pos;
else
elem_parse_failed = true;
break;
case WLAN_EID_TIM:
if (elen >= sizeof(struct ieee80211_tim_ie)) {
elems->tim = (void *)pos;
elems->tim_len = elen;
} else
elem_parse_failed = true;
break;
case WLAN_EID_CHALLENGE:
elems->challenge = pos;
elems->challenge_len = elen;
break;
case WLAN_EID_VENDOR_SPECIFIC:
if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
pos[2] == 0xf2) {
/* Microsoft OUI (00:50:F2) */
if (calc_crc)
crc = crc32_be(crc, pos - 2, elen + 2);
if (elen >= 5 && pos[3] == 2) {
/* OUI Type 2 - WMM IE */
if (pos[4] == 0) {
elems->wmm_info = pos;
elems->wmm_info_len = elen;
} else if (pos[4] == 1) {
elems->wmm_param = pos;
elems->wmm_param_len = elen;
}
}
}
break;
case WLAN_EID_RSN:
elems->rsn = pos;
elems->rsn_len = elen;
break;
case WLAN_EID_ERP_INFO:
if (elen >= 1)
elems->erp_info = pos;
else
elem_parse_failed = true;
break;
case WLAN_EID_EXT_SUPP_RATES:
elems->ext_supp_rates = pos;
elems->ext_supp_rates_len = elen;
break;
case WLAN_EID_HT_CAPABILITY:
if (elen >= sizeof(struct ieee80211_ht_cap))
elems->ht_cap_elem = (void *)pos;
else
elem_parse_failed = true;
break;
case WLAN_EID_HT_OPERATION:
if (elen >= sizeof(struct ieee80211_ht_operation))
elems->ht_operation = (void *)pos;
else
elem_parse_failed = true;
break;
case WLAN_EID_VHT_CAPABILITY:
if (elen >= sizeof(struct ieee80211_vht_cap))
elems->vht_cap_elem = (void *)pos;
else
elem_parse_failed = true;
break;
case WLAN_EID_VHT_OPERATION:
if (elen >= sizeof(struct ieee80211_vht_operation))
elems->vht_operation = (void *)pos;
else
elem_parse_failed = true;
break;
case WLAN_EID_OPMODE_NOTIF:
if (elen > 0)
elems->opmode_notif = pos;
else
elem_parse_failed = true;
break;
case WLAN_EID_MESH_ID:
elems->mesh_id = pos;
elems->mesh_id_len = elen;
break;
case WLAN_EID_MESH_CONFIG:
if (elen >= sizeof(struct ieee80211_meshconf_ie))
elems->mesh_config = (void *)pos;
else
elem_parse_failed = true;
break;
case WLAN_EID_PEER_MGMT:
elems->peering = pos;
elems->peering_len = elen;
break;
case WLAN_EID_MESH_AWAKE_WINDOW:
if (elen >= 2)
elems->awake_window = (void *)pos;
break;
case WLAN_EID_PREQ:
elems->preq = pos;
elems->preq_len = elen;
break;
case WLAN_EID_PREP:
elems->prep = pos;
elems->prep_len = elen;
break;
case WLAN_EID_PERR:
elems->perr = pos;
elems->perr_len = elen;
break;
case WLAN_EID_RANN:
if (elen >= sizeof(struct ieee80211_rann_ie))
elems->rann = (void *)pos;
else
elem_parse_failed = true;
break;
case WLAN_EID_CHANNEL_SWITCH:
if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
elem_parse_failed = true;
break;
}
elems->ch_switch_ie = (void *)pos;
break;
case WLAN_EID_EXT_CHANSWITCH_ANN:
if (elen != sizeof(struct ieee80211_ext_chansw_ie)) {
elem_parse_failed = true;
break;
}
elems->ext_chansw_ie = (void *)pos;
break;
case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) {
elem_parse_failed = true;
break;
}
elems->sec_chan_offs = (void *)pos;
break;
case WLAN_EID_CHAN_SWITCH_PARAM:
if (elen !=
sizeof(*elems->mesh_chansw_params_ie)) {
elem_parse_failed = true;
break;
}
elems->mesh_chansw_params_ie = (void *)pos;
break;
case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
if (!action ||
elen != sizeof(*elems->wide_bw_chansw_ie)) {
elem_parse_failed = true;
break;
}
elems->wide_bw_chansw_ie = (void *)pos;
break;
case WLAN_EID_CHANNEL_SWITCH_WRAPPER:
if (action) {
elem_parse_failed = true;
break;
}
/*
* This is a bit tricky, but as we only care about
* the wide bandwidth channel switch element, so
* just parse it out manually.
*/
ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH,
pos, elen);
if (ie) {
if (ie[1] == sizeof(*elems->wide_bw_chansw_ie))
elems->wide_bw_chansw_ie =
(void *)(ie + 2);
else
elem_parse_failed = true;
}
break;
case WLAN_EID_COUNTRY:
elems->country_elem = pos;
elems->country_elem_len = elen;
break;
case WLAN_EID_PWR_CONSTRAINT:
if (elen != 1) {
elem_parse_failed = true;
break;
}
elems->pwr_constr_elem = pos;
break;
case WLAN_EID_CISCO_VENDOR_SPECIFIC:
/* Lots of different options exist, but we only care
* about the Dynamic Transmit Power Control element.
* First check for the Cisco OUI, then for the DTPC
* tag (0x00).
*/
if (elen < 4) {
elem_parse_failed = true;
break;
}
if (pos[0] != 0x00 || pos[1] != 0x40 ||
pos[2] != 0x96 || pos[3] != 0x00)
break;
if (elen != 6) {
elem_parse_failed = true;
break;
}
if (calc_crc)
crc = crc32_be(crc, pos - 2, elen + 2);
elems->cisco_dtpc_elem = pos;
break;
case WLAN_EID_ADDBA_EXT:
if (elen != sizeof(struct ieee80211_addba_ext_ie)) {
elem_parse_failed = true;
break;
}
elems->addba_ext_ie = (void *)pos;
break;
case WLAN_EID_TIMEOUT_INTERVAL:
if (elen >= sizeof(struct ieee80211_timeout_interval_ie))
elems->timeout_int = (void *)pos;
else
elem_parse_failed = true;
break;
case WLAN_EID_BSS_MAX_IDLE_PERIOD:
if (elen >= sizeof(*elems->max_idle_period_ie))
elems->max_idle_period_ie = (void *)pos;
break;
case WLAN_EID_RSNX:
elems->rsnx = pos;
elems->rsnx_len = elen;
break;
case WLAN_EID_EXTENSION:
ieee80211_parse_extension_element(calc_crc ?
&crc : NULL,
elem, elems);
break;
default:
break;
}
if (elem_parse_failed)
elems->parse_error = true;
else
__set_bit(id, seen_elems);
}
if (!for_each_element_completed(elem, start, len))
elems->parse_error = true;
return crc;
}
static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len,
struct ieee802_11_elems *elems,
u8 *transmitter_bssid,
u8 *bss_bssid,
u8 *nontransmitted_profile)
{
const struct element *elem, *sub;
size_t profile_len = 0;
bool found = false;
if (!bss_bssid || !transmitter_bssid)
return profile_len;
for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) {
if (elem->datalen < 2)
continue;
for_each_element(sub, elem->data + 1, elem->datalen - 1) {
u8 new_bssid[ETH_ALEN];
const u8 *index;
if (sub->id != 0 || sub->datalen < 4) {
/* not a valid BSS profile */
continue;
}
if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
sub->data[1] != 2) {
/* The first element of the
* Nontransmitted BSSID Profile is not
* the Nontransmitted BSSID Capability
* element.
*/
continue;
}
memset(nontransmitted_profile, 0, len);
profile_len = cfg80211_merge_profile(start, len,
elem,
sub,
nontransmitted_profile,
len);
/* found a Nontransmitted BSSID Profile */
index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX,
nontransmitted_profile,
profile_len);
if (!index || index[1] < 1 || index[2] == 0) {
/* Invalid MBSSID Index element */
continue;
}
cfg80211_gen_new_bssid(transmitter_bssid,
elem->data[0],
index[2],
new_bssid);
if (ether_addr_equal(new_bssid, bss_bssid)) {
found = true;
elems->bssid_index_len = index[1];
elems->bssid_index = (void *)&index[2];
break;
}
}
}
return found ? profile_len : 0;
}
u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action,
struct ieee802_11_elems *elems,
u64 filter, u32 crc, u8 *transmitter_bssid,
u8 *bss_bssid)
{
const struct element *non_inherit = NULL;
u8 *nontransmitted_profile;
int nontransmitted_profile_len = 0;
memset(elems, 0, sizeof(*elems));
elems->ie_start = start;
elems->total_len = len;
nontransmitted_profile = kmalloc(len, GFP_ATOMIC);
if (nontransmitted_profile) {
nontransmitted_profile_len =
ieee802_11_find_bssid_profile(start, len, elems,
transmitter_bssid,
bss_bssid,
nontransmitted_profile);
non_inherit =
cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
nontransmitted_profile,
nontransmitted_profile_len);
}
crc = _ieee802_11_parse_elems_crc(start, len, action, elems, filter,
crc, non_inherit);
/* Override with nontransmitted profile, if found */
if (nontransmitted_profile_len)
_ieee802_11_parse_elems_crc(nontransmitted_profile,
nontransmitted_profile_len,
action, elems, 0, 0, NULL);
if (elems->tim && !elems->parse_error) {
const struct ieee80211_tim_ie *tim_ie = elems->tim;
elems->dtim_period = tim_ie->dtim_period;
elems->dtim_count = tim_ie->dtim_count;
}
/* Override DTIM period and count if needed */
if (elems->bssid_index &&
elems->bssid_index_len >=
offsetofend(struct ieee80211_bssid_index, dtim_period))
elems->dtim_period = elems->bssid_index->dtim_period;
if (elems->bssid_index &&
elems->bssid_index_len >=
offsetofend(struct ieee80211_bssid_index, dtim_count))
elems->dtim_count = elems->bssid_index->dtim_count;
kfree(nontransmitted_profile);
return crc;
}
void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata,
struct ieee80211_tx_queue_params
*qparam, int ac)
{
struct ieee80211_chanctx_conf *chanctx_conf;
const struct ieee80211_reg_rule *rrule;
const struct ieee80211_wmm_ac *wmm_ac;
u16 center_freq = 0;
if (sdata->vif.type != NL80211_IFTYPE_AP &&
sdata->vif.type != NL80211_IFTYPE_STATION)
return;
rcu_read_lock();
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (chanctx_conf)
center_freq = chanctx_conf->def.chan->center_freq;
if (!center_freq) {
rcu_read_unlock();
return;
}
rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq));
if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) {
rcu_read_unlock();
return;
}
if (sdata->vif.type == NL80211_IFTYPE_AP)
wmm_ac = &rrule->wmm_rule.ap[ac];
else
wmm_ac = &rrule->wmm_rule.client[ac];
qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min);
qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max);
qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn);
qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32);
rcu_read_unlock();
}
void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
bool bss_notify, bool enable_qos)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_tx_queue_params qparam;
struct ieee80211_chanctx_conf *chanctx_conf;
int ac;
bool use_11b;
bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */
int aCWmin, aCWmax;
if (!local->ops->conf_tx)
return;
if (local->hw.queues < IEEE80211_NUM_ACS)
return;
memset(&qparam, 0, sizeof(qparam));
rcu_read_lock();
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
use_11b = (chanctx_conf &&
chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) &&
!(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
rcu_read_unlock();
is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB);
/* Set defaults according to 802.11-2007 Table 7-37 */
aCWmax = 1023;
if (use_11b)
aCWmin = 31;
else
aCWmin = 15;
/* Confiure old 802.11b/g medium access rules. */
qparam.cw_max = aCWmax;
qparam.cw_min = aCWmin;
qparam.txop = 0;
qparam.aifs = 2;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
/* Update if QoS is enabled. */
if (enable_qos) {
switch (ac) {
case IEEE80211_AC_BK:
qparam.cw_max = aCWmax;
qparam.cw_min = aCWmin;
qparam.txop = 0;
if (is_ocb)
qparam.aifs = 9;
else
qparam.aifs = 7;
break;
/* never happens but let's not leave undefined */
default:
case IEEE80211_AC_BE:
qparam.cw_max = aCWmax;
qparam.cw_min = aCWmin;
qparam.txop = 0;
if (is_ocb)
qparam.aifs = 6;
else
qparam.aifs = 3;
break;
case IEEE80211_AC_VI:
qparam.cw_max = aCWmin;
qparam.cw_min = (aCWmin + 1) / 2 - 1;
if (is_ocb)
qparam.txop = 0;
else if (use_11b)
qparam.txop = 6016/32;
else
qparam.txop = 3008/32;
if (is_ocb)
qparam.aifs = 3;
else
qparam.aifs = 2;
break;
case IEEE80211_AC_VO:
qparam.cw_max = (aCWmin + 1) / 2 - 1;
qparam.cw_min = (aCWmin + 1) / 4 - 1;
if (is_ocb)
qparam.txop = 0;
else if (use_11b)
qparam.txop = 3264/32;
else
qparam.txop = 1504/32;
qparam.aifs = 2;
break;
}
}
ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac);
qparam.uapsd = false;
sdata->tx_conf[ac] = qparam;
drv_conf_tx(local, sdata, ac, &qparam);
}
if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE &&
sdata->vif.type != NL80211_IFTYPE_NAN) {
sdata->vif.bss_conf.qos = enable_qos;
if (bss_notify)
ieee80211_bss_info_change_notify(sdata,
BSS_CHANGED_QOS);
}
}
void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
u16 transaction, u16 auth_alg, u16 status,
const u8 *extra, size_t extra_len, const u8 *da,
const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx,
u32 tx_flags)
{
struct ieee80211_local *local = sdata->local;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
int err;
/* 24 + 6 = header + auth_algo + auth_transaction + status_code */
skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN +
24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN);
if (!skb)
return;
skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN);
mgmt = skb_put_zero(skb, 24 + 6);
mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_AUTH);
memcpy(mgmt->da, da, ETH_ALEN);
memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
memcpy(mgmt->bssid, bssid, ETH_ALEN);
mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
mgmt->u.auth.status_code = cpu_to_le16(status);
if (extra)
skb_put_data(skb, extra, extra_len);
if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
WARN_ON(err);
}
IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT |
tx_flags;
ieee80211_tx_skb(sdata, skb);
}
void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
const u8 *da, const u8 *bssid,
u16 stype, u16 reason,
bool send_frame, u8 *frame_buf)
{
struct ieee80211_local *local = sdata->local;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt = (void *)frame_buf;
/* build frame */
mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
mgmt->duration = 0; /* initialize only */
mgmt->seq_ctrl = 0; /* initialize only */
memcpy(mgmt->da, da, ETH_ALEN);
memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
memcpy(mgmt->bssid, bssid, ETH_ALEN);
/* u.deauth.reason_code == u.disassoc.reason_code */
mgmt->u.deauth.reason_code = cpu_to_le16(reason);
if (send_frame) {
skb = dev_alloc_skb(local->hw.extra_tx_headroom +
IEEE80211_DEAUTH_FRAME_LEN);
if (!skb)
return;
skb_reserve(skb, local->hw.extra_tx_headroom);
/* copy in frame */
skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN);
if (sdata->vif.type != NL80211_IFTYPE_STATION ||
!(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
IEEE80211_SKB_CB(skb)->flags |=
IEEE80211_TX_INTFL_DONT_ENCRYPT;
ieee80211_tx_skb(sdata, skb);
}
}
static int ieee80211_build_preq_ies_band(struct ieee80211_local *local,
u8 *buffer, size_t buffer_len,
const u8 *ie, size_t ie_len,
enum nl80211_band band,
u32 rate_mask,
struct cfg80211_chan_def *chandef,
size_t *offset, u32 flags)
{
struct ieee80211_supported_band *sband;
const struct ieee80211_sta_he_cap *he_cap;
u8 *pos = buffer, *end = buffer + buffer_len;
size_t noffset;
int supp_rates_len, i;
u8 rates[32];
int num_rates;
int ext_rates_len;
int shift;
u32 rate_flags;
bool have_80mhz = false;
*offset = 0;
sband = local->hw.wiphy->bands[band];
if (WARN_ON_ONCE(!sband))
return 0;
rate_flags = ieee80211_chandef_rate_flags(chandef);
shift = ieee80211_chandef_get_shift(chandef);
num_rates = 0;
for (i = 0; i < sband->n_bitrates; i++) {
if ((BIT(i) & rate_mask) == 0)
continue; /* skip rate */
if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
continue;
rates[num_rates++] =
(u8) DIV_ROUND_UP(sband->bitrates[i].bitrate,
(1 << shift) * 5);
}
supp_rates_len = min_t(int, num_rates, 8);
if (end - pos < 2 + supp_rates_len)
goto out_err;
*pos++ = WLAN_EID_SUPP_RATES;
*pos++ = supp_rates_len;
memcpy(pos, rates, supp_rates_len);
pos += supp_rates_len;
/* insert "request information" if in custom IEs */
if (ie && ie_len) {
static const u8 before_extrates[] = {
WLAN_EID_SSID,
WLAN_EID_SUPP_RATES,
WLAN_EID_REQUEST,
};
noffset = ieee80211_ie_split(ie, ie_len,
before_extrates,
ARRAY_SIZE(before_extrates),
*offset);
if (end - pos < noffset - *offset)
goto out_err;
memcpy(pos, ie + *offset, noffset - *offset);
pos += noffset - *offset;
*offset = noffset;
}
ext_rates_len = num_rates - supp_rates_len;
if (ext_rates_len > 0) {
if (end - pos < 2 + ext_rates_len)
goto out_err;
*pos++ = WLAN_EID_EXT_SUPP_RATES;
*pos++ = ext_rates_len;
memcpy(pos, rates + supp_rates_len, ext_rates_len);
pos += ext_rates_len;
}
if (chandef->chan && sband->band == NL80211_BAND_2GHZ) {
if (end - pos < 3)
goto out_err;
*pos++ = WLAN_EID_DS_PARAMS;
*pos++ = 1;
*pos++ = ieee80211_frequency_to_channel(
chandef->chan->center_freq);
}
if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT)
goto done;
/* insert custom IEs that go before HT */
if (ie && ie_len) {
static const u8 before_ht[] = {
/*
* no need to list the ones split off already
* (or generated here)
*/
WLAN_EID_DS_PARAMS,
WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
};
noffset = ieee80211_ie_split(ie, ie_len,
before_ht, ARRAY_SIZE(before_ht),
*offset);
if (end - pos < noffset - *offset)
goto out_err;
memcpy(pos, ie + *offset, noffset - *offset);
pos += noffset - *offset;
*offset = noffset;
}
if (sband->ht_cap.ht_supported) {
if (end - pos < 2 + sizeof(struct ieee80211_ht_cap))
goto out_err;
pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
sband->ht_cap.cap);
}
/* insert custom IEs that go before VHT */
if (ie && ie_len) {
static const u8 before_vht[] = {
/*
* no need to list the ones split off already
* (or generated here)
*/
WLAN_EID_BSS_COEX_2040,
WLAN_EID_EXT_CAPABILITY,
WLAN_EID_SSID_LIST,
WLAN_EID_CHANNEL_USAGE,
WLAN_EID_INTERWORKING,
WLAN_EID_MESH_ID,
/* 60 GHz (Multi-band, DMG, MMS) can't happen */
};
noffset = ieee80211_ie_split(ie, ie_len,
before_vht, ARRAY_SIZE(before_vht),
*offset);
if (end - pos < noffset - *offset)
goto out_err;
memcpy(pos, ie + *offset, noffset - *offset);
pos += noffset - *offset;
*offset = noffset;
}
/* Check if any channel in this sband supports at least 80 MHz */
for (i = 0; i < sband->n_channels; i++) {
if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED |
IEEE80211_CHAN_NO_80MHZ))
continue;
have_80mhz = true;
break;
}
if (sband->vht_cap.vht_supported && have_80mhz) {
if (end - pos < 2 + sizeof(struct ieee80211_vht_cap))
goto out_err;
pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
sband->vht_cap.cap);
}
/* insert custom IEs that go before HE */
if (ie && ie_len) {
static const u8 before_he[] = {
/*
* no need to list the ones split off before VHT
* or generated here
*/
WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS,
WLAN_EID_AP_CSN,
/* TODO: add 11ah/11aj/11ak elements */
};
noffset = ieee80211_ie_split(ie, ie_len,
before_he, ARRAY_SIZE(before_he),
*offset);
if (end - pos < noffset - *offset)
goto out_err;
memcpy(pos, ie + *offset, noffset - *offset);
pos += noffset - *offset;
*offset = noffset;
}
he_cap = ieee80211_get_he_sta_cap(sband);
if (he_cap) {
pos = ieee80211_ie_build_he_cap(pos, he_cap, end);
if (!pos)
goto out_err;
}
/*
* If adding more here, adjust code in main.c
* that calculates local->scan_ies_len.
*/
return pos - buffer;
out_err:
WARN_ONCE(1, "not enough space for preq IEs\n");
done:
return pos - buffer;
}
int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer,
size_t buffer_len,
struct ieee80211_scan_ies *ie_desc,
const u8 *ie, size_t ie_len,
u8 bands_used, u32 *rate_masks,
struct cfg80211_chan_def *chandef,
u32 flags)
{
size_t pos = 0, old_pos = 0, custom_ie_offset = 0;
int i;
memset(ie_desc, 0, sizeof(*ie_desc));
for (i = 0; i < NUM_NL80211_BANDS; i++) {
if (bands_used & BIT(i)) {
pos += ieee80211_build_preq_ies_band(local,
buffer + pos,
buffer_len - pos,
ie, ie_len, i,
rate_masks[i],
chandef,
&custom_ie_offset,
flags);
ie_desc->ies[i] = buffer + old_pos;
ie_desc->len[i] = pos - old_pos;
old_pos = pos;
}
}
/* add any remaining custom IEs */
if (ie && ie_len) {
if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset,
"not enough space for preq custom IEs\n"))
return pos;
memcpy(buffer + pos, ie + custom_ie_offset,
ie_len - custom_ie_offset);
ie_desc->common_ies = buffer + pos;
ie_desc->common_ie_len = ie_len - custom_ie_offset;
pos += ie_len - custom_ie_offset;
}
return pos;
};
struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
const u8 *src, const u8 *dst,
u32 ratemask,
struct ieee80211_channel *chan,
const u8 *ssid, size_t ssid_len,
const u8 *ie, size_t ie_len,
u32 flags)
{
struct ieee80211_local *local = sdata->local;
struct cfg80211_chan_def chandef;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
int ies_len;
u32 rate_masks[NUM_NL80211_BANDS] = {};
struct ieee80211_scan_ies dummy_ie_desc;
/*
* Do not send DS Channel parameter for directed probe requests
* in order to maximize the chance that we get a response. Some
* badly-behaved APs don't respond when this parameter is included.
*/
chandef.width = sdata->vif.bss_conf.chandef.width;
if (flags & IEEE80211_PROBE_FLAG_DIRECTED)
chandef.chan = NULL;
else
chandef.chan = chan;
skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len,
100 + ie_len);
if (!skb)
return NULL;
rate_masks[chan->band] = ratemask;
ies_len = ieee80211_build_preq_ies(local, skb_tail_pointer(skb),
skb_tailroom(skb), &dummy_ie_desc,
ie, ie_len, BIT(chan->band),
rate_masks, &chandef, flags);
skb_put(skb, ies_len);
if (dst) {
mgmt = (struct ieee80211_mgmt *) skb->data;
memcpy(mgmt->da, dst, ETH_ALEN);
memcpy(mgmt->bssid, dst, ETH_ALEN);
}
IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
return skb;
}
u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata,
struct ieee802_11_elems *elems,
enum nl80211_band band, u32 *basic_rates)
{
struct ieee80211_supported_band *sband;
size_t num_rates;
u32 supp_rates, rate_flags;
int i, j, shift;
sband = sdata->local->hw.wiphy->bands[band];
if (WARN_ON(!sband))
return 1;
rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
shift = ieee80211_vif_get_shift(&sdata->vif);
num_rates = sband->n_bitrates;
supp_rates = 0;
for (i = 0; i < elems->supp_rates_len +
elems->ext_supp_rates_len; i++) {
u8 rate = 0;
int own_rate;
bool is_basic;
if (i < elems->supp_rates_len)
rate = elems->supp_rates[i];
else if (elems->ext_supp_rates)
rate = elems->ext_supp_rates
[i - elems->supp_rates_len];
own_rate = 5 * (rate & 0x7f);
is_basic = !!(rate & 0x80);
if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
continue;
for (j = 0; j < num_rates; j++) {
int brate;
if ((rate_flags & sband->bitrates[j].flags)
!= rate_flags)
continue;
brate = DIV_ROUND_UP(sband->bitrates[j].bitrate,
1 << shift);
if (brate == own_rate) {
supp_rates |= BIT(j);
if (basic_rates && is_basic)
*basic_rates |= BIT(j);
}
}
}
return supp_rates;
}
void ieee80211_stop_device(struct ieee80211_local *local)
{
ieee80211_led_radio(local, false);
ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
cancel_work_sync(&local->reconfig_filter);
flush_workqueue(local->workqueue);
drv_stop(local);
}
static void ieee80211_flush_completed_scan(struct ieee80211_local *local,
bool aborted)
{
/* It's possible that we don't handle the scan completion in
* time during suspend, so if it's still marked as completed
* here, queue the work and flush it to clean things up.
* Instead of calling the worker function directly here, we
* really queue it to avoid potential races with other flows
* scheduling the same work.
*/
if (test_bit(SCAN_COMPLETED, &local->scanning)) {
/* If coming from reconfiguration failure, abort the scan so
* we don't attempt to continue a partial HW scan - which is
* possible otherwise if (e.g.) the 2.4 GHz portion was the
* completed scan, and a 5 GHz portion is still pending.
*/
if (aborted)
set_bit(SCAN_ABORTED, &local->scanning);
ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0);
flush_delayed_work(&local->scan_work);
}
}
static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_chanctx *ctx;
/*
* We get here if during resume the device can't be restarted properly.
* We might also get here if this happens during HW reset, which is a
* slightly different situation and we need to drop all connections in
* the latter case.
*
* Ask cfg80211 to turn off all interfaces, this will result in more
* warnings but at least we'll then get into a clean stopped state.
*/
local->resuming = false;
local->suspended = false;
local->in_reconfig = false;
ieee80211_flush_completed_scan(local, true);
/* scheduled scan clearly can't be running any more, but tell
* cfg80211 and clear local state
*/
ieee80211_sched_scan_end(local);
list_for_each_entry(sdata, &local->interfaces, list)
sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER;
/* Mark channel contexts as not being in the driver any more to avoid
* removing them from the driver during the shutdown process...
*/
mutex_lock(&local->chanctx_mtx);
list_for_each_entry(ctx, &local->chanctx_list, list)
ctx->driver_present = false;
mutex_unlock(&local->chanctx_mtx);
cfg80211_shutdown_all_interfaces(local->hw.wiphy);
}
static void ieee80211_assign_chanctx(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_chanctx_conf *conf;
struct ieee80211_chanctx *ctx;
if (!local->use_chanctx)
return;
mutex_lock(&local->chanctx_mtx);
conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
lockdep_is_held(&local->chanctx_mtx));
if (conf) {
ctx = container_of(conf, struct ieee80211_chanctx, conf);
drv_assign_vif_chanctx(local, sdata, ctx);
}
mutex_unlock(&local->chanctx_mtx);
}
static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
struct sta_info *sta;
/* add STAs back */
mutex_lock(&local->sta_mtx);
list_for_each_entry(sta, &local->sta_list, list) {
enum ieee80211_sta_state state;
if (!sta->uploaded || sta->sdata != sdata)
continue;
for (state = IEEE80211_STA_NOTEXIST;
state < sta->sta_state; state++)
WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
state + 1));
}
mutex_unlock(&local->sta_mtx);
}
static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata)
{
struct cfg80211_nan_func *func, **funcs;
int res, id, i = 0;
res = drv_start_nan(sdata->local, sdata,
&sdata->u.nan.conf);
if (WARN_ON(res))
return res;
funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1,
sizeof(*funcs),
GFP_KERNEL);
if (!funcs)
return -ENOMEM;
/* Add all the functions:
* This is a little bit ugly. We need to call a potentially sleeping
* callback for each NAN function, so we can't hold the spinlock.
*/
spin_lock_bh(&sdata->u.nan.func_lock);
idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id)
funcs[i++] = func;
spin_unlock_bh(&sdata->u.nan.func_lock);
for (i = 0; funcs[i]; i++) {
res = drv_add_nan_func(sdata->local, sdata, funcs[i]);
if (WARN_ON(res))
ieee80211_nan_func_terminated(&sdata->vif,
funcs[i]->instance_id,
NL80211_NAN_FUNC_TERM_REASON_ERROR,
GFP_KERNEL);
}
kfree(funcs);
return 0;
}
int ieee80211_reconfig(struct ieee80211_local *local)
{
struct ieee80211_hw *hw = &local->hw;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_chanctx *ctx;
struct sta_info *sta;
int res, i;
bool reconfig_due_to_wowlan = false;
struct ieee80211_sub_if_data *sched_scan_sdata;
struct cfg80211_sched_scan_request *sched_scan_req;
bool sched_scan_stopped = false;
bool suspended = local->suspended;
/* nothing to do if HW shouldn't run */
if (!local->open_count)
goto wake_up;
#ifdef CONFIG_PM
if (suspended)
local->resuming = true;
if (local->wowlan) {
/*
* In the wowlan case, both mac80211 and the device
* are functional when the resume op is called, so
* clear local->suspended so the device could operate
* normally (e.g. pass rx frames).
*/
local->suspended = false;
res = drv_resume(local);
local->wowlan = false;
if (res < 0) {
local->resuming = false;
return res;
}
if (res == 0)
goto wake_up;
WARN_ON(res > 1);
/*
* res is 1, which means the driver requested
* to go through a regular reset on wakeup.
* restore local->suspended in this case.
*/
reconfig_due_to_wowlan = true;
local->suspended = true;
}
#endif
/*
* In case of hw_restart during suspend (without wowlan),
* cancel restart work, as we are reconfiguring the device
* anyway.
* Note that restart_work is scheduled on a frozen workqueue,
* so we can't deadlock in this case.
*/
if (suspended && local->in_reconfig && !reconfig_due_to_wowlan)
cancel_work_sync(&local->restart_work);
local->started = false;
/*
* Upon resume hardware can sometimes be goofy due to
* various platform / driver / bus issues, so restarting
* the device may at times not work immediately. Propagate
* the error.
*/
res = drv_start(local);
if (res) {
if (suspended)
WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n");
else
WARN(1, "Hardware became unavailable during restart.\n");
ieee80211_handle_reconfig_failure(local);
return res;
}
/* setup fragmentation threshold */
drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
/* setup RTS threshold */
drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
/* reset coverage class */
drv_set_coverage_class(local, hw->wiphy->coverage_class);
ieee80211_led_radio(local, true);
ieee80211_mod_tpt_led_trig(local,
IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
/* add interfaces */
sdata = rtnl_dereference(local->monitor_sdata);
if (sdata) {
/* in HW restart it exists already */
WARN_ON(local->resuming);
res = drv_add_interface(local, sdata);
if (WARN_ON(res)) {
RCU_INIT_POINTER(local->monitor_sdata, NULL);
synchronize_net();
kfree(sdata);
}
}
list_for_each_entry(sdata, &local->interfaces, list) {
if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
sdata->vif.type != NL80211_IFTYPE_MONITOR &&
ieee80211_sdata_running(sdata)) {
res = drv_add_interface(local, sdata);
if (WARN_ON(res))
break;
}
}
/* If adding any of the interfaces failed above, roll back and
* report failure.
*/
if (res) {
list_for_each_entry_continue_reverse(sdata, &local->interfaces,
list)
if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
sdata->vif.type != NL80211_IFTYPE_MONITOR &&
ieee80211_sdata_running(sdata))
drv_remove_interface(local, sdata);
ieee80211_handle_reconfig_failure(local);
return res;
}
/* add channel contexts */
if (local->use_chanctx) {
mutex_lock(&local->chanctx_mtx);
list_for_each_entry(ctx, &local->chanctx_list, list)
if (ctx->replace_state !=
IEEE80211_CHANCTX_REPLACES_OTHER)
WARN_ON(drv_add_chanctx(local, ctx));
mutex_unlock(&local->chanctx_mtx);
sdata = rtnl_dereference(local->monitor_sdata);
if (sdata && ieee80211_sdata_running(sdata))
ieee80211_assign_chanctx(local, sdata);
}
/* reconfigure hardware */
ieee80211_hw_config(local, ~0);
ieee80211_configure_filter(local);
/* Finally also reconfigure all the BSS information */
list_for_each_entry(sdata, &local->interfaces, list) {
u32 changed;
if (!ieee80211_sdata_running(sdata))
continue;
ieee80211_assign_chanctx(local, sdata);
switch (sdata->vif.type) {
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_MONITOR:
break;
case NL80211_IFTYPE_ADHOC:
if (sdata->vif.bss_conf.ibss_joined)
WARN_ON(drv_join_ibss(local, sdata));
/* fall through */
default:
ieee80211_reconfig_stations(sdata);
/* fall through */
case NL80211_IFTYPE_AP: /* AP stations are handled later */
for (i = 0; i < IEEE80211_NUM_ACS; i++)
drv_conf_tx(local, sdata, i,
&sdata->tx_conf[i]);
break;
}
/* common change flags for all interface types */
changed = BSS_CHANGED_ERP_CTS_PROT |
BSS_CHANGED_ERP_PREAMBLE |
BSS_CHANGED_ERP_SLOT |
BSS_CHANGED_HT |
BSS_CHANGED_BASIC_RATES |
BSS_CHANGED_BEACON_INT |
BSS_CHANGED_BSSID |
BSS_CHANGED_CQM |
BSS_CHANGED_QOS |
BSS_CHANGED_IDLE |
BSS_CHANGED_TXPOWER |
BSS_CHANGED_MCAST_RATE;
if (sdata->vif.mu_mimo_owner)
changed |= BSS_CHANGED_MU_GROUPS;
switch (sdata->vif.type) {
case NL80211_IFTYPE_STATION:
changed |= BSS_CHANGED_ASSOC |
BSS_CHANGED_ARP_FILTER |
BSS_CHANGED_PS;
/* Re-send beacon info report to the driver */
if (sdata->u.mgd.have_beacon)
changed |= BSS_CHANGED_BEACON_INFO;
if (sdata->vif.bss_conf.max_idle_period ||
sdata->vif.bss_conf.protected_keep_alive)
changed |= BSS_CHANGED_KEEP_ALIVE;
sdata_lock(sdata);
ieee80211_bss_info_change_notify(sdata, changed);
sdata_unlock(sdata);
break;
case NL80211_IFTYPE_OCB:
changed |= BSS_CHANGED_OCB;
ieee80211_bss_info_change_notify(sdata, changed);
break;
case NL80211_IFTYPE_ADHOC:
changed |= BSS_CHANGED_IBSS;
/* fall through */
case NL80211_IFTYPE_AP:
changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS;
if (sdata->vif.bss_conf.ftm_responder == 1 &&
wiphy_ext_feature_isset(sdata->local->hw.wiphy,
NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER))
changed |= BSS_CHANGED_FTM_RESPONDER;
if (sdata->vif.type == NL80211_IFTYPE_AP) {
changed |= BSS_CHANGED_AP_PROBE_RESP;
if (rcu_access_pointer(sdata->u.ap.beacon))
drv_start_ap(local, sdata);
}
/* fall through */
case NL80211_IFTYPE_MESH_POINT:
if (sdata->vif.bss_conf.enable_beacon) {
changed |= BSS_CHANGED_BEACON |
BSS_CHANGED_BEACON_ENABLED;
ieee80211_bss_info_change_notify(sdata, changed);
}
break;
case NL80211_IFTYPE_NAN:
res = ieee80211_reconfig_nan(sdata);
if (res < 0) {
ieee80211_handle_reconfig_failure(local);
return res;
}
break;
case NL80211_IFTYPE_WDS:
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_P2P_DEVICE:
/* nothing to do */
break;
case NL80211_IFTYPE_UNSPECIFIED:
case NUM_NL80211_IFTYPES:
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_P2P_GO:
WARN_ON(1);
break;
}
}
ieee80211_recalc_ps(local);
/*
* The sta might be in psm against the ap (e.g. because
* this was the state before a hw restart), so we
* explicitly send a null packet in order to make sure
* it'll sync against the ap (and get out of psm).
*/
if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
list_for_each_entry(sdata, &local->interfaces, list) {
if (sdata->vif.type != NL80211_IFTYPE_STATION)
continue;
if (!sdata->u.mgd.associated)
continue;
ieee80211_send_nullfunc(local, sdata, false);
}
}
/* APs are now beaconing, add back stations */
mutex_lock(&local->sta_mtx);
list_for_each_entry(sta, &local->sta_list, list) {
enum ieee80211_sta_state state;
if (!sta->uploaded)
continue;
if (sta->sdata->vif.type != NL80211_IFTYPE_AP &&
sta->sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
continue;
for (state = IEEE80211_STA_NOTEXIST;
state < sta->sta_state; state++)
WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
state + 1));
}
mutex_unlock(&local->sta_mtx);
/* add back keys */
list_for_each_entry(sdata, &local->interfaces, list)
ieee80211_reenable_keys(sdata);
/* Reconfigure sched scan if it was interrupted by FW restart */
mutex_lock(&local->mtx);
sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata,
lockdep_is_held(&local->mtx));
sched_scan_req = rcu_dereference_protected(local->sched_scan_req,
lockdep_is_held(&local->mtx));
if (sched_scan_sdata && sched_scan_req)
/*
* Sched scan stopped, but we don't want to report it. Instead,
* we're trying to reschedule. However, if more than one scan
* plan was set, we cannot reschedule since we don't know which
* scan plan was currently running (and some scan plans may have
* already finished).
*/
if (sched_scan_req->n_scan_plans > 1 ||
__ieee80211_request_sched_scan_start(sched_scan_sdata,
sched_scan_req)) {
RCU_INIT_POINTER(local->sched_scan_sdata, NULL);
RCU_INIT_POINTER(local->sched_scan_req, NULL);
sched_scan_stopped = true;
}
mutex_unlock(&local->mtx);
if (sched_scan_stopped)
cfg80211_sched_scan_stopped_rtnl(local->hw.wiphy, 0);
wake_up:
if (local->monitors == local->open_count && local->monitors > 0)
ieee80211_add_virtual_monitor(local);
/*
* Clear the WLAN_STA_BLOCK_BA flag so new aggregation
* sessions can be established after a resume.
*
* Also tear down aggregation sessions since reconfiguring
* them in a hardware restart scenario is not easily done
* right now, and the hardware will have lost information
* about the sessions, but we and the AP still think they
* are active. This is really a workaround though.
*/
if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) {
mutex_lock(&local->sta_mtx);
list_for_each_entry(sta, &local->sta_list, list) {
if (!local->resuming)
ieee80211_sta_tear_down_BA_sessions(
sta, AGG_STOP_LOCAL_REQUEST);
clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
}
mutex_unlock(&local->sta_mtx);
}
if (local->in_reconfig) {
local->in_reconfig = false;
barrier();
/* Restart deferred ROCs */
mutex_lock(&local->mtx);
ieee80211_start_next_roc(local);
mutex_unlock(&local->mtx);
/* Requeue all works */
list_for_each_entry(sdata, &local->interfaces, list)
ieee80211_queue_work(&local->hw, &sdata->work);
}
ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
IEEE80211_QUEUE_STOP_REASON_SUSPEND,
false);
/*
* If this is for hw restart things are still running.
* We may want to change that later, however.
*/
if (local->open_count && (!suspended || reconfig_due_to_wowlan))
drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART);
if (!suspended)
return 0;
#ifdef CONFIG_PM
/* first set suspended false, then resuming */
local->suspended = false;
mb();
local->resuming = false;
ieee80211_flush_completed_scan(local, false);
if (local->open_count && !reconfig_due_to_wowlan)
drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND);
list_for_each_entry(sdata, &local->interfaces, list) {
if (!ieee80211_sdata_running(sdata))
continue;
if (sdata->vif.type == NL80211_IFTYPE_STATION)
ieee80211_sta_restart(sdata);
}
mod_timer(&local->sta_cleanup, jiffies + 1);
#else
WARN_ON(1);
#endif
return 0;
}
void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_local *local;
struct ieee80211_key *key;
if (WARN_ON(!vif))
return;
sdata = vif_to_sdata(vif);
local = sdata->local;
if (WARN_ON(!local->resuming))
return;
if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
return;
sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME;
mutex_lock(&local->key_mtx);
list_for_each_entry(key, &sdata->key_list, list)
key->flags |= KEY_FLAG_TAINTED;
mutex_unlock(&local->key_mtx);
}
EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_chanctx_conf *chanctx_conf;
struct ieee80211_chanctx *chanctx;
mutex_lock(&local->chanctx_mtx);
chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
lockdep_is_held(&local->chanctx_mtx));
/*
* This function can be called from a work, thus it may be possible
* that the chanctx_conf is removed (due to a disconnection, for
* example).
* So nothing should be done in such case.
*/
if (!chanctx_conf)
goto unlock;
chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
ieee80211_recalc_smps_chanctx(local, chanctx);
unlock:
mutex_unlock(&local->chanctx_mtx);
}
void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_chanctx_conf *chanctx_conf;
struct ieee80211_chanctx *chanctx;
mutex_lock(&local->chanctx_mtx);
chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
lockdep_is_held(&local->chanctx_mtx));
if (WARN_ON_ONCE(!chanctx_conf))
goto unlock;
chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
ieee80211_recalc_chanctx_min_def(local, chanctx);
unlock:
mutex_unlock(&local->chanctx_mtx);
}
size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
{
size_t pos = offset;
while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
pos += 2 + ies[pos + 1];
return pos;
}
static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
int rssi_min_thold,
int rssi_max_thold)
{
trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
return;
/*
* Scale up threshold values before storing it, as the RSSI averaging
* algorithm uses a scaled up value as well. Change this scaling
* factor if the RSSI averaging algorithm changes.
*/
sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
}
void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
int rssi_min_thold,
int rssi_max_thold)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
WARN_ON(rssi_min_thold == rssi_max_thold ||
rssi_min_thold > rssi_max_thold);
_ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
rssi_max_thold);
}
EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
_ieee80211_enable_rssi_reports(sdata, 0, 0);
}
EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
u16 cap)
{
__le16 tmp;
*pos++ = WLAN_EID_HT_CAPABILITY;
*pos++ = sizeof(struct ieee80211_ht_cap);
memset(pos, 0, sizeof(struct ieee80211_ht_cap));
/* capability flags */
tmp = cpu_to_le16(cap);
memcpy(pos, &tmp, sizeof(u16));
pos += sizeof(u16);
/* AMPDU parameters */
*pos++ = ht_cap->ampdu_factor |
(ht_cap->ampdu_density <<
IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
/* MCS set */
memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
pos += sizeof(ht_cap->mcs);
/* extended capabilities */
pos += sizeof(__le16);
/* BF capabilities */
pos += sizeof(__le32);
/* antenna selection */
pos += sizeof(u8);
return pos;
}
u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
u32 cap)
{
__le32 tmp;
*pos++ = WLAN_EID_VHT_CAPABILITY;
*pos++ = sizeof(struct ieee80211_vht_cap);
memset(pos, 0, sizeof(struct ieee80211_vht_cap));
/* capability flags */
tmp = cpu_to_le32(cap);
memcpy(pos, &tmp, sizeof(u32));
pos += sizeof(u32);
/* VHT MCS set */
memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
pos += sizeof(vht_cap->vht_mcs);
return pos;
}
u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype)
{
const struct ieee80211_sta_he_cap *he_cap;
struct ieee80211_supported_band *sband;
u8 n;
sband = ieee80211_get_sband(sdata);
if (!sband)
return 0;
he_cap = ieee80211_get_he_iftype_cap(sband, iftype);
if (!he_cap)
return 0;
n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem);
return 2 + 1 +
sizeof(he_cap->he_cap_elem) + n +
ieee80211_he_ppe_size(he_cap->ppe_thres[0],
he_cap->he_cap_elem.phy_cap_info);
}
u8 *ieee80211_ie_build_he_cap(u8 *pos,
const struct ieee80211_sta_he_cap *he_cap,
u8 *end)
{
u8 n;
u8 ie_len;
u8 *orig_pos = pos;
/* Make sure we have place for the IE */
/*
* TODO: the 1 added is because this temporarily is under the EXTENSION
* IE. Get rid of it when it moves.
*/
if (!he_cap)
return orig_pos;
n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem);
ie_len = 2 + 1 +
sizeof(he_cap->he_cap_elem) + n +
ieee80211_he_ppe_size(he_cap->ppe_thres[0],
he_cap->he_cap_elem.phy_cap_info);
if ((end - pos) < ie_len)
return orig_pos;
*pos++ = WLAN_EID_EXTENSION;
pos++; /* We'll set the size later below */
*pos++ = WLAN_EID_EXT_HE_CAPABILITY;
/* Fixed data */
memcpy(pos, &he_cap->he_cap_elem, sizeof(he_cap->he_cap_elem));
pos += sizeof(he_cap->he_cap_elem);
memcpy(pos, &he_cap->he_mcs_nss_supp, n);
pos += n;
/* Check if PPE Threshold should be present */
if ((he_cap->he_cap_elem.phy_cap_info[6] &
IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
goto end;
/*
* Calculate how many PPET16/PPET8 pairs are to come. Algorithm:
* (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK)
*/
n = hweight8(he_cap->ppe_thres[0] &
IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >>
IEEE80211_PPE_THRES_NSS_POS));
/*
* Each pair is 6 bits, and we need to add the 7 "header" bits to the
* total size.
*/
n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
n = DIV_ROUND_UP(n, 8);
/* Copy PPE Thresholds */
memcpy(pos, &he_cap->ppe_thres, n);
pos += n;
end:
orig_pos[1] = (pos - orig_pos) - 2;
return pos;
}
u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
const struct cfg80211_chan_def *chandef,
u16 prot_mode, bool rifs_mode)
{
struct ieee80211_ht_operation *ht_oper;
/* Build HT Information */
*pos++ = WLAN_EID_HT_OPERATION;
*pos++ = sizeof(struct ieee80211_ht_operation);
ht_oper = (struct ieee80211_ht_operation *)pos;
ht_oper->primary_chan = ieee80211_frequency_to_channel(
chandef->chan->center_freq);
switch (chandef->width) {
case NL80211_CHAN_WIDTH_160:
case NL80211_CHAN_WIDTH_80P80:
case NL80211_CHAN_WIDTH_80:
case NL80211_CHAN_WIDTH_40:
if (chandef->center_freq1 > chandef->chan->center_freq)
ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
else
ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
break;
default:
ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
break;
}
if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
chandef->width != NL80211_CHAN_WIDTH_20_NOHT &&
chandef->width != NL80211_CHAN_WIDTH_20)
ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
if (rifs_mode)
ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE;
ht_oper->operation_mode = cpu_to_le16(prot_mode);
ht_oper->stbc_param = 0x0000;
/* It seems that Basic MCS set and Supported MCS set
are identical for the first 10 bytes */
memset(&ht_oper->basic_set, 0, 16);
memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
return pos + sizeof(struct ieee80211_ht_operation);
}
void ieee80211_ie_build_wide_bw_cs(u8 *pos,
const struct cfg80211_chan_def *chandef)
{
*pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */
*pos++ = 3; /* IE length */
/* New channel width */
switch (chandef->width) {
case NL80211_CHAN_WIDTH_80:
*pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ;
break;
case NL80211_CHAN_WIDTH_160:
*pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ;
break;
case NL80211_CHAN_WIDTH_80P80:
*pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ;
break;
default:
*pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT;
}
/* new center frequency segment 0 */
*pos++ = ieee80211_frequency_to_channel(chandef->center_freq1);
/* new center frequency segment 1 */
if (chandef->center_freq2)
*pos++ = ieee80211_frequency_to_channel(chandef->center_freq2);
else
*pos++ = 0;
}
u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
const struct cfg80211_chan_def *chandef)
{
struct ieee80211_vht_operation *vht_oper;
*pos++ = WLAN_EID_VHT_OPERATION;
*pos++ = sizeof(struct ieee80211_vht_operation);
vht_oper = (struct ieee80211_vht_operation *)pos;
vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel(
chandef->center_freq1);
if (chandef->center_freq2)
vht_oper->center_freq_seg1_idx =
ieee80211_frequency_to_channel(chandef->center_freq2);
else
vht_oper->center_freq_seg1_idx = 0x00;
switch (chandef->width) {
case NL80211_CHAN_WIDTH_160:
/*
* Convert 160 MHz channel width to new style as interop
* workaround.
*/
vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx;
if (chandef->chan->center_freq < chandef->center_freq1)
vht_oper->center_freq_seg0_idx -= 8;
else
vht_oper->center_freq_seg0_idx += 8;
break;
case NL80211_CHAN_WIDTH_80P80:
/*
* Convert 80+80 MHz channel width to new style as interop
* workaround.
*/
vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
break;
case NL80211_CHAN_WIDTH_80:
vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
break;
default:
vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT;
break;
}
/* don't require special VHT peer rates */
vht_oper->basic_mcs_set = cpu_to_le16(0xffff);
return pos + sizeof(struct ieee80211_vht_operation);
}
u8 *ieee80211_ie_build_he_oper(u8 *pos)
{
struct ieee80211_he_operation *he_oper;
u32 he_oper_params;
*pos++ = WLAN_EID_EXTENSION;
*pos++ = 1 + sizeof(struct ieee80211_he_operation);
*pos++ = WLAN_EID_EXT_HE_OPERATION;
he_oper_params = 0;
he_oper_params |= u32_encode_bits(1023, /* disabled */
IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK);
he_oper_params |= u32_encode_bits(1,
IEEE80211_HE_OPERATION_ER_SU_DISABLE);
he_oper_params |= u32_encode_bits(1,
IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED);
he_oper = (struct ieee80211_he_operation *)pos;
he_oper->he_oper_params = cpu_to_le32(he_oper_params);
/* don't require special HE peer rates */
he_oper->he_mcs_nss_set = cpu_to_le16(0xffff);
/* TODO add VHT operational and 6GHz operational subelement? */
return pos + sizeof(struct ieee80211_vht_operation);
}
bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper,
struct cfg80211_chan_def *chandef)
{
enum nl80211_channel_type channel_type;
if (!ht_oper)
return false;
switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
case IEEE80211_HT_PARAM_CHA_SEC_NONE:
channel_type = NL80211_CHAN_HT20;
break;
case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
channel_type = NL80211_CHAN_HT40PLUS;
break;
case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
channel_type = NL80211_CHAN_HT40MINUS;
break;
default:
channel_type = NL80211_CHAN_NO_HT;
return false;
}
cfg80211_chandef_create(chandef, chandef->chan, channel_type);
return true;
}
bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw,
const struct ieee80211_vht_operation *oper,
const struct ieee80211_ht_operation *htop,
struct cfg80211_chan_def *chandef)
{
struct cfg80211_chan_def new = *chandef;
int cf0, cf1;
int ccfs0, ccfs1, ccfs2;
int ccf0, ccf1;
if (!oper || !htop)
return false;
ccfs0 = oper->center_freq_seg0_idx;
ccfs1 = oper->center_freq_seg1_idx;
ccfs2 = (le16_to_cpu(htop->operation_mode) &
IEEE80211_HT_OP_MODE_CCFS2_MASK)
>> IEEE80211_HT_OP_MODE_CCFS2_SHIFT;
/* when parsing (and we know how to) CCFS1 and CCFS2 are equivalent */
ccf0 = ccfs0;
ccf1 = ccfs1;
if (!ccfs1 && ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW))
ccf1 = ccfs2;
cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band);
cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band);
switch (oper->chan_width) {
case IEEE80211_VHT_CHANWIDTH_USE_HT:
/* just use HT information directly */
break;
case IEEE80211_VHT_CHANWIDTH_80MHZ:
new.width = NL80211_CHAN_WIDTH_80;
new.center_freq1 = cf0;
/* If needed, adjust based on the newer interop workaround. */
if (ccf1) {
unsigned int diff;
diff = abs(ccf1 - ccf0);
if (diff == 8) {
new.width = NL80211_CHAN_WIDTH_160;
new.center_freq1 = cf1;
} else if (diff > 8) {
new.width = NL80211_CHAN_WIDTH_80P80;
new.center_freq2 = cf1;
}
}
break;
case IEEE80211_VHT_CHANWIDTH_160MHZ:
/* deprecated encoding */
new.width = NL80211_CHAN_WIDTH_160;
new.center_freq1 = cf0;
break;
case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
/* deprecated encoding */
new.width = NL80211_CHAN_WIDTH_80P80;
new.center_freq1 = cf0;
new.center_freq2 = cf1;
break;
default:
return false;
}
if (!cfg80211_chandef_valid(&new))
return false;
*chandef = new;
return true;
}
int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef,
const struct ieee80211_supported_band *sband,
const u8 *srates, int srates_len, u32 *rates)
{
u32 rate_flags = ieee80211_chandef_rate_flags(chandef);
int shift = ieee80211_chandef_get_shift(chandef);
struct ieee80211_rate *br;
int brate, rate, i, j, count = 0;
*rates = 0;
for (i = 0; i < srates_len; i++) {
rate = srates[i] & 0x7f;
for (j = 0; j < sband->n_bitrates; j++) {
br = &sband->bitrates[j];
if ((rate_flags & br->flags) != rate_flags)
continue;
brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5);
if (brate == rate) {
*rates |= BIT(j);
count++;
break;
}
}
}
return count;
}
int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb, bool need_basic,
enum nl80211_band band)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_supported_band *sband;
int rate, shift;
u8 i, rates, *pos;
u32 basic_rates = sdata->vif.bss_conf.basic_rates;
u32 rate_flags;
shift = ieee80211_vif_get_shift(&sdata->vif);
rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
sband = local->hw.wiphy->bands[band];
rates = 0;
for (i = 0; i < sband->n_bitrates; i++) {
if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
continue;
rates++;
}
if (rates > 8)
rates = 8;
if (skb_tailroom(skb) < rates + 2)
return -ENOMEM;
pos = skb_put(skb, rates + 2);
*pos++ = WLAN_EID_SUPP_RATES;
*pos++ = rates;
for (i = 0; i < rates; i++) {
u8 basic = 0;
if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
continue;
if (need_basic && basic_rates & BIT(i))
basic = 0x80;
rate = DIV_ROUND_UP(sband->bitrates[i].bitrate,
5 * (1 << shift));
*pos++ = basic | (u8) rate;
}
return 0;
}
int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb, bool need_basic,
enum nl80211_band band)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_supported_band *sband;
int rate, shift;
u8 i, exrates, *pos;
u32 basic_rates = sdata->vif.bss_conf.basic_rates;
u32 rate_flags;
rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
shift = ieee80211_vif_get_shift(&sdata->vif);
sband = local->hw.wiphy->bands[band];
exrates = 0;
for (i = 0; i < sband->n_bitrates; i++) {
if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
continue;
exrates++;
}
if (exrates > 8)
exrates -= 8;
else
exrates = 0;
if (skb_tailroom(skb) < exrates + 2)
return -ENOMEM;
if (exrates) {
pos = skb_put(skb, exrates + 2);
*pos++ = WLAN_EID_EXT_SUPP_RATES;
*pos++ = exrates;
for (i = 8; i < sband->n_bitrates; i++) {
u8 basic = 0;
if ((rate_flags & sband->bitrates[i].flags)
!= rate_flags)
continue;
if (need_basic && basic_rates & BIT(i))
basic = 0x80;
rate = DIV_ROUND_UP(sband->bitrates[i].bitrate,
5 * (1 << shift));
*pos++ = basic | (u8) rate;
}
}
return 0;
}
int ieee80211_ave_rssi(struct ieee80211_vif *vif)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) {
/* non-managed type inferfaces */
return 0;
}
return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal);
}
EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs)
{
if (!mcs)
return 1;
/* TODO: consider rx_highest */
if (mcs->rx_mask[3])
return 4;
if (mcs->rx_mask[2])
return 3;
if (mcs->rx_mask[1])
return 2;
return 1;
}
/**
* ieee80211_calculate_rx_timestamp - calculate timestamp in frame
* @local: mac80211 hw info struct
* @status: RX status
* @mpdu_len: total MPDU length (including FCS)
* @mpdu_offset: offset into MPDU to calculate timestamp at
*
* This function calculates the RX timestamp at the given MPDU offset, taking
* into account what the RX timestamp was. An offset of 0 will just normalize
* the timestamp to TSF at beginning of MPDU reception.
*/
u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local,
struct ieee80211_rx_status *status,
unsigned int mpdu_len,
unsigned int mpdu_offset)
{
u64 ts = status->mactime;
struct rate_info ri;
u16 rate;
if (WARN_ON(!ieee80211_have_rx_timestamp(status)))
return 0;
memset(&ri, 0, sizeof(ri));
ri.bw = status->bw;
/* Fill cfg80211 rate info */
switch (status->encoding) {
case RX_ENC_HT:
ri.mcs = status->rate_idx;
ri.flags |= RATE_INFO_FLAGS_MCS;
if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
break;
case RX_ENC_VHT:
ri.flags |= RATE_INFO_FLAGS_VHT_MCS;
ri.mcs = status->rate_idx;
ri.nss = status->nss;
if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
break;
default:
WARN_ON(1);
/* fall through */
case RX_ENC_LEGACY: {
struct ieee80211_supported_band *sband;
int shift = 0;
int bitrate;
switch (status->bw) {
case RATE_INFO_BW_10:
shift = 1;
break;
case RATE_INFO_BW_5:
shift = 2;
break;
}
sband = local->hw.wiphy->bands[status->band];
bitrate = sband->bitrates[status->rate_idx].bitrate;
ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift));
if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
/* TODO: handle HT/VHT preambles */
if (status->band == NL80211_BAND_5GHZ) {
ts += 20 << shift;
mpdu_offset += 2;
} else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) {
ts += 96;
} else {
ts += 192;
}
}
break;
}
}
rate = cfg80211_calculate_bitrate(&ri);
if (WARN_ONCE(!rate,
"Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n",
(unsigned long long)status->flag, status->rate_idx,
status->nss))
return 0;
/* rewind from end of MPDU */
if (status->flag & RX_FLAG_MACTIME_END)
ts -= mpdu_len * 8 * 10 / rate;
ts += mpdu_offset * 8 * 10 / rate;
return ts;
}
void ieee80211_dfs_cac_cancel(struct ieee80211_local *local)
{
struct ieee80211_sub_if_data *sdata;
struct cfg80211_chan_def chandef;
/* for interface list, to avoid linking iflist_mtx and chanctx_mtx */
ASSERT_RTNL();
mutex_lock(&local->mtx);
list_for_each_entry(sdata, &local->interfaces, list) {
/* it might be waiting for the local->mtx, but then
* by the time it gets it, sdata->wdev.cac_started
* will no longer be true
*/
cancel_delayed_work(&sdata->dfs_cac_timer_work);
if (sdata->wdev.cac_started) {
chandef = sdata->vif.bss_conf.chandef;
ieee80211_vif_release_channel(sdata);
cfg80211_cac_event(sdata->dev,
&chandef,
NL80211_RADAR_CAC_ABORTED,
GFP_KERNEL);
}
}
mutex_unlock(&local->mtx);
}
void ieee80211_dfs_radar_detected_work(struct work_struct *work)
{
struct ieee80211_local *local =
container_of(work, struct ieee80211_local, radar_detected_work);
struct cfg80211_chan_def chandef = local->hw.conf.chandef;
struct ieee80211_chanctx *ctx;
int num_chanctx = 0;
mutex_lock(&local->chanctx_mtx);
list_for_each_entry(ctx, &local->chanctx_list, list) {
if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER)
continue;
num_chanctx++;
chandef = ctx->conf.def;
}
mutex_unlock(&local->chanctx_mtx);
rtnl_lock();
ieee80211_dfs_cac_cancel(local);
rtnl_unlock();
if (num_chanctx > 1)
/* XXX: multi-channel is not supported yet */
WARN_ON(1);
else
cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL);
}
void ieee80211_radar_detected(struct ieee80211_hw *hw)
{
struct ieee80211_local *local = hw_to_local(hw);
trace_api_radar_detected(local);
schedule_work(&local->radar_detected_work);
}
EXPORT_SYMBOL(ieee80211_radar_detected);
u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c)
{
u32 ret;
int tmp;
switch (c->width) {
case NL80211_CHAN_WIDTH_20:
c->width = NL80211_CHAN_WIDTH_20_NOHT;
ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
break;
case NL80211_CHAN_WIDTH_40:
c->width = NL80211_CHAN_WIDTH_20;
c->center_freq1 = c->chan->center_freq;
ret = IEEE80211_STA_DISABLE_40MHZ |
IEEE80211_STA_DISABLE_VHT;
break;
case NL80211_CHAN_WIDTH_80:
tmp = (30 + c->chan->center_freq - c->center_freq1)/20;
/* n_P40 */
tmp /= 2;
/* freq_P40 */
c->center_freq1 = c->center_freq1 - 20 + 40 * tmp;
c->width = NL80211_CHAN_WIDTH_40;
ret = IEEE80211_STA_DISABLE_VHT;
break;
case NL80211_CHAN_WIDTH_80P80:
c->center_freq2 = 0;
c->width = NL80211_CHAN_WIDTH_80;
ret = IEEE80211_STA_DISABLE_80P80MHZ |
IEEE80211_STA_DISABLE_160MHZ;
break;
case NL80211_CHAN_WIDTH_160:
/* n_P20 */
tmp = (70 + c->chan->center_freq - c->center_freq1)/20;
/* n_P80 */
tmp /= 4;
c->center_freq1 = c->center_freq1 - 40 + 80 * tmp;
c->width = NL80211_CHAN_WIDTH_80;
ret = IEEE80211_STA_DISABLE_80P80MHZ |
IEEE80211_STA_DISABLE_160MHZ;
break;
default:
case NL80211_CHAN_WIDTH_20_NOHT:
WARN_ON_ONCE(1);
c->width = NL80211_CHAN_WIDTH_20_NOHT;
ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
break;
case NL80211_CHAN_WIDTH_5:
case NL80211_CHAN_WIDTH_10:
WARN_ON_ONCE(1);
/* keep c->width */
ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
break;
}
WARN_ON_ONCE(!cfg80211_chandef_valid(c));
return ret;
}
/*
* Returns true if smps_mode_new is strictly more restrictive than
* smps_mode_old.
*/
bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old,
enum ieee80211_smps_mode smps_mode_new)
{
if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC ||
smps_mode_new == IEEE80211_SMPS_AUTOMATIC))
return false;
switch (smps_mode_old) {
case IEEE80211_SMPS_STATIC:
return false;
case IEEE80211_SMPS_DYNAMIC:
return smps_mode_new == IEEE80211_SMPS_STATIC;
case IEEE80211_SMPS_OFF:
return smps_mode_new != IEEE80211_SMPS_OFF;
default:
WARN_ON(1);
}
return false;
}
int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata,
struct cfg80211_csa_settings *csa_settings)
{
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
struct ieee80211_local *local = sdata->local;
int freq;
int hdr_len = offsetofend(struct ieee80211_mgmt,
u.action.u.chan_switch);
u8 *pos;
if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
return -EOPNOTSUPP;
skb = dev_alloc_skb(local->tx_headroom + hdr_len +
5 + /* channel switch announcement element */
3 + /* secondary channel offset element */
5 + /* wide bandwidth channel switch announcement */
8); /* mesh channel switch parameters element */
if (!skb)
return -ENOMEM;
skb_reserve(skb, local->tx_headroom);
mgmt = skb_put_zero(skb, hdr_len);
mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_ACTION);
eth_broadcast_addr(mgmt->da);
memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
if (ieee80211_vif_is_mesh(&sdata->vif)) {
memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
} else {
struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN);
}
mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT;
mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH;
pos = skb_put(skb, 5);
*pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */
*pos++ = 3; /* IE length */
*pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */
freq = csa_settings->chandef.chan->center_freq;
*pos++ = ieee80211_frequency_to_channel(freq); /* channel */
*pos++ = csa_settings->count; /* count */
if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) {
enum nl80211_channel_type ch_type;
skb_put(skb, 3);
*pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */
*pos++ = 1; /* IE length */
ch_type = cfg80211_get_chandef_type(&csa_settings->chandef);
if (ch_type == NL80211_CHAN_HT40PLUS)
*pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
else
*pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
}
if (ieee80211_vif_is_mesh(&sdata->vif)) {
struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
skb_put(skb, 8);
*pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */
*pos++ = 6; /* IE length */
*pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */
*pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */
*pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR;
*pos++ |= csa_settings->block_tx ?
WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00;
put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */
pos += 2;
put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */
pos += 2;
}
if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 ||
csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 ||
csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) {
skb_put(skb, 5);
ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef);
}
ieee80211_tx_skb(sdata, skb);
return 0;
}
bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs)
{
return !(cs == NULL || cs->cipher == 0 ||
cs->hdr_len < cs->pn_len + cs->pn_off ||
cs->hdr_len <= cs->key_idx_off ||
cs->key_idx_shift > 7 ||
cs->key_idx_mask == 0);
}
bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n)
{
int i;
/* Ensure we have enough iftype bitmap space for all iftype values */
WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype));
for (i = 0; i < n; i++)
if (!ieee80211_cs_valid(&cs[i]))
return false;
return true;
}
const struct ieee80211_cipher_scheme *
ieee80211_cs_get(struct ieee80211_local *local, u32 cipher,
enum nl80211_iftype iftype)
{
const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes;
int n = local->hw.n_cipher_schemes;
int i;
const struct ieee80211_cipher_scheme *cs = NULL;
for (i = 0; i < n; i++) {
if (l[i].cipher == cipher) {
cs = &l[i];
break;
}
}
if (!cs || !(cs->iftype & BIT(iftype)))
return NULL;
return cs;
}
int ieee80211_cs_headroom(struct ieee80211_local *local,
struct cfg80211_crypto_settings *crypto,
enum nl80211_iftype iftype)
{
const struct ieee80211_cipher_scheme *cs;
int headroom = IEEE80211_ENCRYPT_HEADROOM;
int i;
for (i = 0; i < crypto->n_ciphers_pairwise; i++) {
cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i],
iftype);
if (cs && headroom < cs->hdr_len)
headroom = cs->hdr_len;
}
cs = ieee80211_cs_get(local, crypto->cipher_group, iftype);
if (cs && headroom < cs->hdr_len)
headroom = cs->hdr_len;
return headroom;
}
static bool
ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i)
{
s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1);
int skip;
if (end > 0)
return false;
/* One shot NOA */
if (data->count[i] == 1)
return false;
if (data->desc[i].interval == 0)
return false;
/* End time is in the past, check for repetitions */
skip = DIV_ROUND_UP(-end, data->desc[i].interval);
if (data->count[i] < 255) {
if (data->count[i] <= skip) {
data->count[i] = 0;
return false;
}
data->count[i] -= skip;
}
data->desc[i].start += skip * data->desc[i].interval;
return true;
}
static bool
ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf,
s32 *offset)
{
bool ret = false;
int i;
for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
s32 cur;
if (!data->count[i])
continue;
if (ieee80211_extend_noa_desc(data, tsf + *offset, i))
ret = true;
cur = data->desc[i].start - tsf;
if (cur > *offset)
continue;
cur = data->desc[i].start + data->desc[i].duration - tsf;
if (cur > *offset)
*offset = cur;
}
return ret;
}
static u32
ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf)
{
s32 offset = 0;
int tries = 0;
/*
* arbitrary limit, used to avoid infinite loops when combined NoA
* descriptors cover the full time period.
*/
int max_tries = 5;
ieee80211_extend_absent_time(data, tsf, &offset);
do {
if (!ieee80211_extend_absent_time(data, tsf, &offset))
break;
tries++;
} while (tries < max_tries);
return offset;
}
void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf)
{
u32 next_offset = BIT(31) - 1;
int i;
data->absent = 0;
data->has_next_tsf = false;
for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
s32 start;
if (!data->count[i])
continue;
ieee80211_extend_noa_desc(data, tsf, i);
start = data->desc[i].start - tsf;
if (start <= 0)
data->absent |= BIT(i);
if (next_offset > start)
next_offset = start;
data->has_next_tsf = true;
}
if (data->absent)
next_offset = ieee80211_get_noa_absent_time(data, tsf);
data->next_tsf = tsf + next_offset;
}
EXPORT_SYMBOL(ieee80211_update_p2p_noa);
int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr,
struct ieee80211_noa_data *data, u32 tsf)
{
int ret = 0;
int i;
memset(data, 0, sizeof(*data));
for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i];
if (!desc->count || !desc->duration)
continue;
data->count[i] = desc->count;
data->desc[i].start = le32_to_cpu(desc->start_time);
data->desc[i].duration = le32_to_cpu(desc->duration);
data->desc[i].interval = le32_to_cpu(desc->interval);
if (data->count[i] > 1 &&
data->desc[i].interval < data->desc[i].duration)
continue;
ieee80211_extend_noa_desc(data, tsf, i);
ret++;
}
if (ret)
ieee80211_update_p2p_noa(data, tsf);
return ret;
}
EXPORT_SYMBOL(ieee80211_parse_p2p_noa);
void ieee80211_recalc_dtim(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata)
{
u64 tsf = drv_get_tsf(local, sdata);
u64 dtim_count = 0;
u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024;
u8 dtim_period = sdata->vif.bss_conf.dtim_period;
struct ps_data *ps;
u8 bcns_from_dtim;
if (tsf == -1ULL || !beacon_int || !dtim_period)
return;
if (sdata->vif.type == NL80211_IFTYPE_AP ||
sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
if (!sdata->bss)
return;
ps = &sdata->bss->ps;
} else if (ieee80211_vif_is_mesh(&sdata->vif)) {
ps = &sdata->u.mesh.ps;
} else {
return;
}
/*
* actually finds last dtim_count, mac80211 will update in
* __beacon_add_tim().
* dtim_count = dtim_period - (tsf / bcn_int) % dtim_period
*/
do_div(tsf, beacon_int);
bcns_from_dtim = do_div(tsf, dtim_period);
/* just had a DTIM */
if (!bcns_from_dtim)
dtim_count = 0;
else
dtim_count = dtim_period - bcns_from_dtim;
ps->dtim_count = dtim_count;
}
static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local,
struct ieee80211_chanctx *ctx)
{
struct ieee80211_sub_if_data *sdata;
u8 radar_detect = 0;
lockdep_assert_held(&local->chanctx_mtx);
if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED))
return 0;
list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list)
if (sdata->reserved_radar_required)
radar_detect |= BIT(sdata->reserved_chandef.width);
/*
* An in-place reservation context should not have any assigned vifs
* until it replaces the other context.
*/
WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER &&
!list_empty(&ctx->assigned_vifs));
list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list)
if (sdata->radar_required)
radar_detect |= BIT(sdata->vif.bss_conf.chandef.width);
return radar_detect;
}
int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata,
const struct cfg80211_chan_def *chandef,
enum ieee80211_chanctx_mode chanmode,
u8 radar_detect)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_sub_if_data *sdata_iter;
enum nl80211_iftype iftype = sdata->wdev.iftype;
struct ieee80211_chanctx *ctx;
int total = 1;
struct iface_combination_params params = {
.radar_detect = radar_detect,
};
lockdep_assert_held(&local->chanctx_mtx);
if (WARN_ON(hweight32(radar_detect) > 1))
return -EINVAL;
if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED &&
!chandef->chan))
return -EINVAL;
if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
return -EINVAL;
if (sdata->vif.type == NL80211_IFTYPE_AP ||
sdata->vif.type == NL80211_IFTYPE_MESH_POINT) {
/*
* always passing this is harmless, since it'll be the
* same value that cfg80211 finds if it finds the same
* interface ... and that's always allowed
*/
params.new_beacon_int = sdata->vif.bss_conf.beacon_int;
}
/* Always allow software iftypes */
if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) {
if (radar_detect)
return -EINVAL;
return 0;
}
if (chandef)
params.num_different_channels = 1;
if (iftype != NL80211_IFTYPE_UNSPECIFIED)
params.iftype_num[iftype] = 1;
list_for_each_entry(ctx, &local->chanctx_list, list) {
if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)
continue;
params.radar_detect |=
ieee80211_chanctx_radar_detect(local, ctx);
if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) {
params.num_different_channels++;
continue;
}
if (chandef && chanmode == IEEE80211_CHANCTX_SHARED &&
cfg80211_chandef_compatible(chandef,
&ctx->conf.def))
continue;
params.num_different_channels++;
}
list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) {
struct wireless_dev *wdev_iter;
wdev_iter = &sdata_iter->wdev;
if (sdata_iter == sdata ||
!ieee80211_sdata_running(sdata_iter) ||
cfg80211_iftype_allowed(local->hw.wiphy,
wdev_iter->iftype, 0, 1))
continue;
params.iftype_num[wdev_iter->iftype]++;
total++;
}
if (total == 1 && !params.radar_detect)
return 0;
return cfg80211_check_combinations(local->hw.wiphy, &params);
}
static void
ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c,
void *data)
{
u32 *max_num_different_channels = data;
*max_num_different_channels = max(*max_num_different_channels,
c->num_different_channels);
}
int ieee80211_max_num_channels(struct ieee80211_local *local)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_chanctx *ctx;
u32 max_num_different_channels = 1;
int err;
struct iface_combination_params params = {0};
lockdep_assert_held(&local->chanctx_mtx);
list_for_each_entry(ctx, &local->chanctx_list, list) {
if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)
continue;
params.num_different_channels++;
params.radar_detect |=
ieee80211_chanctx_radar_detect(local, ctx);
}
list_for_each_entry_rcu(sdata, &local->interfaces, list)
params.iftype_num[sdata->wdev.iftype]++;
err = cfg80211_iter_combinations(local->hw.wiphy, &params,
ieee80211_iter_max_chans,
&max_num_different_channels);
if (err < 0)
return err;
return max_num_different_channels;
}
u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo)
{
*buf++ = WLAN_EID_VENDOR_SPECIFIC;
*buf++ = 7; /* len */
*buf++ = 0x00; /* Microsoft OUI 00:50:F2 */
*buf++ = 0x50;
*buf++ = 0xf2;
*buf++ = 2; /* WME */
*buf++ = 0; /* WME info */
*buf++ = 1; /* WME ver */
*buf++ = qosinfo; /* U-APSD no in use */
return buf;
}
void ieee80211_txq_get_depth(struct ieee80211_txq *txq,
unsigned long *frame_cnt,
unsigned long *byte_cnt)
{
struct txq_info *txqi = to_txq_info(txq);
u32 frag_cnt = 0, frag_bytes = 0;
struct sk_buff *skb;
skb_queue_walk(&txqi->frags, skb) {
frag_cnt++;
frag_bytes += skb->len;
}
if (frame_cnt)
*frame_cnt = txqi->tin.backlog_packets + frag_cnt;
if (byte_cnt)
*byte_cnt = txqi->tin.backlog_bytes + frag_bytes;
}
EXPORT_SYMBOL(ieee80211_txq_get_depth);
const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = {
IEEE80211_WMM_IE_STA_QOSINFO_AC_VO,
IEEE80211_WMM_IE_STA_QOSINFO_AC_VI,
IEEE80211_WMM_IE_STA_QOSINFO_AC_BE,
IEEE80211_WMM_IE_STA_QOSINFO_AC_BK
};