mirror of
https://github.com/torvalds/linux.git
synced 2024-12-29 14:21:47 +00:00
1860033237
PR_SET_THP_DISABLE has a rather subtle semantic. It doesn't affect any
existing mapping because it only updated mm->def_flags which is a
template for new mappings.
The mappings created after prctl(PR_SET_THP_DISABLE) have VM_NOHUGEPAGE
flag set. This can be quite surprising for all those applications which
do not do prctl(); fork() & exec() and want to control their own THP
behavior.
Another usecase when the immediate semantic of the prctl might be useful
is a combination of pre- and post-copy migration of containers with
CRIU. In this case CRIU populates a part of a memory region with data
that was saved during the pre-copy stage. Afterwards, the region is
registered with userfaultfd and CRIU expects to get page faults for the
parts of the region that were not yet populated. However, khugepaged
collapses the pages and the expected page faults do not occur.
In more general case, the prctl(PR_SET_THP_DISABLE) could be used as a
temporary mechanism for enabling/disabling THP process wide.
Implementation wise, a new MMF_DISABLE_THP flag is added. This flag is
tested when decision whether to use huge pages is taken either during
page fault of at the time of THP collapse.
It should be noted, that the new implementation makes PR_SET_THP_DISABLE
master override to any per-VMA setting, which was not the case
previously.
Fixes: a0715cc226
("mm, thp: add VM_INIT_DEF_MASK and PRCTL_THP_DISABLE")
Link: http://lkml.kernel.org/r/1496415802-30944-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1933 lines
48 KiB
C
1933 lines
48 KiB
C
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/coredump.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/khugepaged.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/hashtable.h>
|
|
#include <linux/userfaultfd_k.h>
|
|
#include <linux/page_idle.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/shmem_fs.h>
|
|
|
|
#include <asm/tlb.h>
|
|
#include <asm/pgalloc.h>
|
|
#include "internal.h"
|
|
|
|
enum scan_result {
|
|
SCAN_FAIL,
|
|
SCAN_SUCCEED,
|
|
SCAN_PMD_NULL,
|
|
SCAN_EXCEED_NONE_PTE,
|
|
SCAN_PTE_NON_PRESENT,
|
|
SCAN_PAGE_RO,
|
|
SCAN_LACK_REFERENCED_PAGE,
|
|
SCAN_PAGE_NULL,
|
|
SCAN_SCAN_ABORT,
|
|
SCAN_PAGE_COUNT,
|
|
SCAN_PAGE_LRU,
|
|
SCAN_PAGE_LOCK,
|
|
SCAN_PAGE_ANON,
|
|
SCAN_PAGE_COMPOUND,
|
|
SCAN_ANY_PROCESS,
|
|
SCAN_VMA_NULL,
|
|
SCAN_VMA_CHECK,
|
|
SCAN_ADDRESS_RANGE,
|
|
SCAN_SWAP_CACHE_PAGE,
|
|
SCAN_DEL_PAGE_LRU,
|
|
SCAN_ALLOC_HUGE_PAGE_FAIL,
|
|
SCAN_CGROUP_CHARGE_FAIL,
|
|
SCAN_EXCEED_SWAP_PTE,
|
|
SCAN_TRUNCATED,
|
|
};
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/huge_memory.h>
|
|
|
|
/* default scan 8*512 pte (or vmas) every 30 second */
|
|
static unsigned int khugepaged_pages_to_scan __read_mostly;
|
|
static unsigned int khugepaged_pages_collapsed;
|
|
static unsigned int khugepaged_full_scans;
|
|
static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
|
|
/* during fragmentation poll the hugepage allocator once every minute */
|
|
static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
|
|
static unsigned long khugepaged_sleep_expire;
|
|
static DEFINE_SPINLOCK(khugepaged_mm_lock);
|
|
static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
|
|
/*
|
|
* default collapse hugepages if there is at least one pte mapped like
|
|
* it would have happened if the vma was large enough during page
|
|
* fault.
|
|
*/
|
|
static unsigned int khugepaged_max_ptes_none __read_mostly;
|
|
static unsigned int khugepaged_max_ptes_swap __read_mostly;
|
|
|
|
#define MM_SLOTS_HASH_BITS 10
|
|
static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
|
|
|
|
static struct kmem_cache *mm_slot_cache __read_mostly;
|
|
|
|
/**
|
|
* struct mm_slot - hash lookup from mm to mm_slot
|
|
* @hash: hash collision list
|
|
* @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
|
|
* @mm: the mm that this information is valid for
|
|
*/
|
|
struct mm_slot {
|
|
struct hlist_node hash;
|
|
struct list_head mm_node;
|
|
struct mm_struct *mm;
|
|
};
|
|
|
|
/**
|
|
* struct khugepaged_scan - cursor for scanning
|
|
* @mm_head: the head of the mm list to scan
|
|
* @mm_slot: the current mm_slot we are scanning
|
|
* @address: the next address inside that to be scanned
|
|
*
|
|
* There is only the one khugepaged_scan instance of this cursor structure.
|
|
*/
|
|
struct khugepaged_scan {
|
|
struct list_head mm_head;
|
|
struct mm_slot *mm_slot;
|
|
unsigned long address;
|
|
};
|
|
|
|
static struct khugepaged_scan khugepaged_scan = {
|
|
.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
|
|
};
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
|
|
}
|
|
|
|
static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned long msecs;
|
|
int err;
|
|
|
|
err = kstrtoul(buf, 10, &msecs);
|
|
if (err || msecs > UINT_MAX)
|
|
return -EINVAL;
|
|
|
|
khugepaged_scan_sleep_millisecs = msecs;
|
|
khugepaged_sleep_expire = 0;
|
|
wake_up_interruptible(&khugepaged_wait);
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute scan_sleep_millisecs_attr =
|
|
__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
|
|
scan_sleep_millisecs_store);
|
|
|
|
static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
|
|
}
|
|
|
|
static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned long msecs;
|
|
int err;
|
|
|
|
err = kstrtoul(buf, 10, &msecs);
|
|
if (err || msecs > UINT_MAX)
|
|
return -EINVAL;
|
|
|
|
khugepaged_alloc_sleep_millisecs = msecs;
|
|
khugepaged_sleep_expire = 0;
|
|
wake_up_interruptible(&khugepaged_wait);
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute alloc_sleep_millisecs_attr =
|
|
__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
|
|
alloc_sleep_millisecs_store);
|
|
|
|
static ssize_t pages_to_scan_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
|
|
}
|
|
static ssize_t pages_to_scan_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int err;
|
|
unsigned long pages;
|
|
|
|
err = kstrtoul(buf, 10, &pages);
|
|
if (err || !pages || pages > UINT_MAX)
|
|
return -EINVAL;
|
|
|
|
khugepaged_pages_to_scan = pages;
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute pages_to_scan_attr =
|
|
__ATTR(pages_to_scan, 0644, pages_to_scan_show,
|
|
pages_to_scan_store);
|
|
|
|
static ssize_t pages_collapsed_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
|
|
}
|
|
static struct kobj_attribute pages_collapsed_attr =
|
|
__ATTR_RO(pages_collapsed);
|
|
|
|
static ssize_t full_scans_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_full_scans);
|
|
}
|
|
static struct kobj_attribute full_scans_attr =
|
|
__ATTR_RO(full_scans);
|
|
|
|
static ssize_t khugepaged_defrag_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return single_hugepage_flag_show(kobj, attr, buf,
|
|
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
|
|
}
|
|
static ssize_t khugepaged_defrag_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
return single_hugepage_flag_store(kobj, attr, buf, count,
|
|
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
|
|
}
|
|
static struct kobj_attribute khugepaged_defrag_attr =
|
|
__ATTR(defrag, 0644, khugepaged_defrag_show,
|
|
khugepaged_defrag_store);
|
|
|
|
/*
|
|
* max_ptes_none controls if khugepaged should collapse hugepages over
|
|
* any unmapped ptes in turn potentially increasing the memory
|
|
* footprint of the vmas. When max_ptes_none is 0 khugepaged will not
|
|
* reduce the available free memory in the system as it
|
|
* runs. Increasing max_ptes_none will instead potentially reduce the
|
|
* free memory in the system during the khugepaged scan.
|
|
*/
|
|
static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
|
|
}
|
|
static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int err;
|
|
unsigned long max_ptes_none;
|
|
|
|
err = kstrtoul(buf, 10, &max_ptes_none);
|
|
if (err || max_ptes_none > HPAGE_PMD_NR-1)
|
|
return -EINVAL;
|
|
|
|
khugepaged_max_ptes_none = max_ptes_none;
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute khugepaged_max_ptes_none_attr =
|
|
__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
|
|
khugepaged_max_ptes_none_store);
|
|
|
|
static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
|
|
}
|
|
|
|
static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int err;
|
|
unsigned long max_ptes_swap;
|
|
|
|
err = kstrtoul(buf, 10, &max_ptes_swap);
|
|
if (err || max_ptes_swap > HPAGE_PMD_NR-1)
|
|
return -EINVAL;
|
|
|
|
khugepaged_max_ptes_swap = max_ptes_swap;
|
|
|
|
return count;
|
|
}
|
|
|
|
static struct kobj_attribute khugepaged_max_ptes_swap_attr =
|
|
__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
|
|
khugepaged_max_ptes_swap_store);
|
|
|
|
static struct attribute *khugepaged_attr[] = {
|
|
&khugepaged_defrag_attr.attr,
|
|
&khugepaged_max_ptes_none_attr.attr,
|
|
&pages_to_scan_attr.attr,
|
|
&pages_collapsed_attr.attr,
|
|
&full_scans_attr.attr,
|
|
&scan_sleep_millisecs_attr.attr,
|
|
&alloc_sleep_millisecs_attr.attr,
|
|
&khugepaged_max_ptes_swap_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
struct attribute_group khugepaged_attr_group = {
|
|
.attrs = khugepaged_attr,
|
|
.name = "khugepaged",
|
|
};
|
|
#endif /* CONFIG_SYSFS */
|
|
|
|
#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
|
|
|
|
int hugepage_madvise(struct vm_area_struct *vma,
|
|
unsigned long *vm_flags, int advice)
|
|
{
|
|
switch (advice) {
|
|
case MADV_HUGEPAGE:
|
|
#ifdef CONFIG_S390
|
|
/*
|
|
* qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
|
|
* can't handle this properly after s390_enable_sie, so we simply
|
|
* ignore the madvise to prevent qemu from causing a SIGSEGV.
|
|
*/
|
|
if (mm_has_pgste(vma->vm_mm))
|
|
return 0;
|
|
#endif
|
|
*vm_flags &= ~VM_NOHUGEPAGE;
|
|
*vm_flags |= VM_HUGEPAGE;
|
|
/*
|
|
* If the vma become good for khugepaged to scan,
|
|
* register it here without waiting a page fault that
|
|
* may not happen any time soon.
|
|
*/
|
|
if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
|
|
khugepaged_enter_vma_merge(vma, *vm_flags))
|
|
return -ENOMEM;
|
|
break;
|
|
case MADV_NOHUGEPAGE:
|
|
*vm_flags &= ~VM_HUGEPAGE;
|
|
*vm_flags |= VM_NOHUGEPAGE;
|
|
/*
|
|
* Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
|
|
* this vma even if we leave the mm registered in khugepaged if
|
|
* it got registered before VM_NOHUGEPAGE was set.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init khugepaged_init(void)
|
|
{
|
|
mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
|
|
sizeof(struct mm_slot),
|
|
__alignof__(struct mm_slot), 0, NULL);
|
|
if (!mm_slot_cache)
|
|
return -ENOMEM;
|
|
|
|
khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
|
|
khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
|
|
khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __init khugepaged_destroy(void)
|
|
{
|
|
kmem_cache_destroy(mm_slot_cache);
|
|
}
|
|
|
|
static inline struct mm_slot *alloc_mm_slot(void)
|
|
{
|
|
if (!mm_slot_cache) /* initialization failed */
|
|
return NULL;
|
|
return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
|
|
}
|
|
|
|
static inline void free_mm_slot(struct mm_slot *mm_slot)
|
|
{
|
|
kmem_cache_free(mm_slot_cache, mm_slot);
|
|
}
|
|
|
|
static struct mm_slot *get_mm_slot(struct mm_struct *mm)
|
|
{
|
|
struct mm_slot *mm_slot;
|
|
|
|
hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
|
|
if (mm == mm_slot->mm)
|
|
return mm_slot;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void insert_to_mm_slots_hash(struct mm_struct *mm,
|
|
struct mm_slot *mm_slot)
|
|
{
|
|
mm_slot->mm = mm;
|
|
hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
|
|
}
|
|
|
|
static inline int khugepaged_test_exit(struct mm_struct *mm)
|
|
{
|
|
return atomic_read(&mm->mm_users) == 0;
|
|
}
|
|
|
|
int __khugepaged_enter(struct mm_struct *mm)
|
|
{
|
|
struct mm_slot *mm_slot;
|
|
int wakeup;
|
|
|
|
mm_slot = alloc_mm_slot();
|
|
if (!mm_slot)
|
|
return -ENOMEM;
|
|
|
|
/* __khugepaged_exit() must not run from under us */
|
|
VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
|
|
if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
|
|
free_mm_slot(mm_slot);
|
|
return 0;
|
|
}
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
insert_to_mm_slots_hash(mm, mm_slot);
|
|
/*
|
|
* Insert just behind the scanning cursor, to let the area settle
|
|
* down a little.
|
|
*/
|
|
wakeup = list_empty(&khugepaged_scan.mm_head);
|
|
list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
|
|
mmgrab(mm);
|
|
if (wakeup)
|
|
wake_up_interruptible(&khugepaged_wait);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
|
|
unsigned long vm_flags)
|
|
{
|
|
unsigned long hstart, hend;
|
|
if (!vma->anon_vma)
|
|
/*
|
|
* Not yet faulted in so we will register later in the
|
|
* page fault if needed.
|
|
*/
|
|
return 0;
|
|
if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
|
|
/* khugepaged not yet working on file or special mappings */
|
|
return 0;
|
|
hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
|
|
hend = vma->vm_end & HPAGE_PMD_MASK;
|
|
if (hstart < hend)
|
|
return khugepaged_enter(vma, vm_flags);
|
|
return 0;
|
|
}
|
|
|
|
void __khugepaged_exit(struct mm_struct *mm)
|
|
{
|
|
struct mm_slot *mm_slot;
|
|
int free = 0;
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
mm_slot = get_mm_slot(mm);
|
|
if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
|
|
hash_del(&mm_slot->hash);
|
|
list_del(&mm_slot->mm_node);
|
|
free = 1;
|
|
}
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
|
|
if (free) {
|
|
clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
|
|
free_mm_slot(mm_slot);
|
|
mmdrop(mm);
|
|
} else if (mm_slot) {
|
|
/*
|
|
* This is required to serialize against
|
|
* khugepaged_test_exit() (which is guaranteed to run
|
|
* under mmap sem read mode). Stop here (after we
|
|
* return all pagetables will be destroyed) until
|
|
* khugepaged has finished working on the pagetables
|
|
* under the mmap_sem.
|
|
*/
|
|
down_write(&mm->mmap_sem);
|
|
up_write(&mm->mmap_sem);
|
|
}
|
|
}
|
|
|
|
static void release_pte_page(struct page *page)
|
|
{
|
|
dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
|
|
unlock_page(page);
|
|
putback_lru_page(page);
|
|
}
|
|
|
|
static void release_pte_pages(pte_t *pte, pte_t *_pte)
|
|
{
|
|
while (--_pte >= pte) {
|
|
pte_t pteval = *_pte;
|
|
if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
|
|
release_pte_page(pte_page(pteval));
|
|
}
|
|
}
|
|
|
|
static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pte_t *pte)
|
|
{
|
|
struct page *page = NULL;
|
|
pte_t *_pte;
|
|
int none_or_zero = 0, result = 0, referenced = 0;
|
|
bool writable = false;
|
|
|
|
for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
|
|
_pte++, address += PAGE_SIZE) {
|
|
pte_t pteval = *_pte;
|
|
if (pte_none(pteval) || (pte_present(pteval) &&
|
|
is_zero_pfn(pte_pfn(pteval)))) {
|
|
if (!userfaultfd_armed(vma) &&
|
|
++none_or_zero <= khugepaged_max_ptes_none) {
|
|
continue;
|
|
} else {
|
|
result = SCAN_EXCEED_NONE_PTE;
|
|
goto out;
|
|
}
|
|
}
|
|
if (!pte_present(pteval)) {
|
|
result = SCAN_PTE_NON_PRESENT;
|
|
goto out;
|
|
}
|
|
page = vm_normal_page(vma, address, pteval);
|
|
if (unlikely(!page)) {
|
|
result = SCAN_PAGE_NULL;
|
|
goto out;
|
|
}
|
|
|
|
VM_BUG_ON_PAGE(PageCompound(page), page);
|
|
VM_BUG_ON_PAGE(!PageAnon(page), page);
|
|
|
|
/*
|
|
* We can do it before isolate_lru_page because the
|
|
* page can't be freed from under us. NOTE: PG_lock
|
|
* is needed to serialize against split_huge_page
|
|
* when invoked from the VM.
|
|
*/
|
|
if (!trylock_page(page)) {
|
|
result = SCAN_PAGE_LOCK;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* cannot use mapcount: can't collapse if there's a gup pin.
|
|
* The page must only be referenced by the scanned process
|
|
* and page swap cache.
|
|
*/
|
|
if (page_count(page) != 1 + PageSwapCache(page)) {
|
|
unlock_page(page);
|
|
result = SCAN_PAGE_COUNT;
|
|
goto out;
|
|
}
|
|
if (pte_write(pteval)) {
|
|
writable = true;
|
|
} else {
|
|
if (PageSwapCache(page) &&
|
|
!reuse_swap_page(page, NULL)) {
|
|
unlock_page(page);
|
|
result = SCAN_SWAP_CACHE_PAGE;
|
|
goto out;
|
|
}
|
|
/*
|
|
* Page is not in the swap cache. It can be collapsed
|
|
* into a THP.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Isolate the page to avoid collapsing an hugepage
|
|
* currently in use by the VM.
|
|
*/
|
|
if (isolate_lru_page(page)) {
|
|
unlock_page(page);
|
|
result = SCAN_DEL_PAGE_LRU;
|
|
goto out;
|
|
}
|
|
inc_node_page_state(page,
|
|
NR_ISOLATED_ANON + page_is_file_cache(page));
|
|
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
|
VM_BUG_ON_PAGE(PageLRU(page), page);
|
|
|
|
/* There should be enough young pte to collapse the page */
|
|
if (pte_young(pteval) ||
|
|
page_is_young(page) || PageReferenced(page) ||
|
|
mmu_notifier_test_young(vma->vm_mm, address))
|
|
referenced++;
|
|
}
|
|
if (likely(writable)) {
|
|
if (likely(referenced)) {
|
|
result = SCAN_SUCCEED;
|
|
trace_mm_collapse_huge_page_isolate(page, none_or_zero,
|
|
referenced, writable, result);
|
|
return 1;
|
|
}
|
|
} else {
|
|
result = SCAN_PAGE_RO;
|
|
}
|
|
|
|
out:
|
|
release_pte_pages(pte, _pte);
|
|
trace_mm_collapse_huge_page_isolate(page, none_or_zero,
|
|
referenced, writable, result);
|
|
return 0;
|
|
}
|
|
|
|
static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
spinlock_t *ptl)
|
|
{
|
|
pte_t *_pte;
|
|
for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
|
|
_pte++, page++, address += PAGE_SIZE) {
|
|
pte_t pteval = *_pte;
|
|
struct page *src_page;
|
|
|
|
if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
|
|
clear_user_highpage(page, address);
|
|
add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
|
|
if (is_zero_pfn(pte_pfn(pteval))) {
|
|
/*
|
|
* ptl mostly unnecessary.
|
|
*/
|
|
spin_lock(ptl);
|
|
/*
|
|
* paravirt calls inside pte_clear here are
|
|
* superfluous.
|
|
*/
|
|
pte_clear(vma->vm_mm, address, _pte);
|
|
spin_unlock(ptl);
|
|
}
|
|
} else {
|
|
src_page = pte_page(pteval);
|
|
copy_user_highpage(page, src_page, address, vma);
|
|
VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
|
|
release_pte_page(src_page);
|
|
/*
|
|
* ptl mostly unnecessary, but preempt has to
|
|
* be disabled to update the per-cpu stats
|
|
* inside page_remove_rmap().
|
|
*/
|
|
spin_lock(ptl);
|
|
/*
|
|
* paravirt calls inside pte_clear here are
|
|
* superfluous.
|
|
*/
|
|
pte_clear(vma->vm_mm, address, _pte);
|
|
page_remove_rmap(src_page, false);
|
|
spin_unlock(ptl);
|
|
free_page_and_swap_cache(src_page);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void khugepaged_alloc_sleep(void)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
|
|
add_wait_queue(&khugepaged_wait, &wait);
|
|
freezable_schedule_timeout_interruptible(
|
|
msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
|
|
remove_wait_queue(&khugepaged_wait, &wait);
|
|
}
|
|
|
|
static int khugepaged_node_load[MAX_NUMNODES];
|
|
|
|
static bool khugepaged_scan_abort(int nid)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* If node_reclaim_mode is disabled, then no extra effort is made to
|
|
* allocate memory locally.
|
|
*/
|
|
if (!node_reclaim_mode)
|
|
return false;
|
|
|
|
/* If there is a count for this node already, it must be acceptable */
|
|
if (khugepaged_node_load[nid])
|
|
return false;
|
|
|
|
for (i = 0; i < MAX_NUMNODES; i++) {
|
|
if (!khugepaged_node_load[i])
|
|
continue;
|
|
if (node_distance(nid, i) > RECLAIM_DISTANCE)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
|
|
static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
|
|
{
|
|
return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
static int khugepaged_find_target_node(void)
|
|
{
|
|
static int last_khugepaged_target_node = NUMA_NO_NODE;
|
|
int nid, target_node = 0, max_value = 0;
|
|
|
|
/* find first node with max normal pages hit */
|
|
for (nid = 0; nid < MAX_NUMNODES; nid++)
|
|
if (khugepaged_node_load[nid] > max_value) {
|
|
max_value = khugepaged_node_load[nid];
|
|
target_node = nid;
|
|
}
|
|
|
|
/* do some balance if several nodes have the same hit record */
|
|
if (target_node <= last_khugepaged_target_node)
|
|
for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
|
|
nid++)
|
|
if (max_value == khugepaged_node_load[nid]) {
|
|
target_node = nid;
|
|
break;
|
|
}
|
|
|
|
last_khugepaged_target_node = target_node;
|
|
return target_node;
|
|
}
|
|
|
|
static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
|
|
{
|
|
if (IS_ERR(*hpage)) {
|
|
if (!*wait)
|
|
return false;
|
|
|
|
*wait = false;
|
|
*hpage = NULL;
|
|
khugepaged_alloc_sleep();
|
|
} else if (*hpage) {
|
|
put_page(*hpage);
|
|
*hpage = NULL;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct page *
|
|
khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
|
|
{
|
|
VM_BUG_ON_PAGE(*hpage, *hpage);
|
|
|
|
*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
|
|
if (unlikely(!*hpage)) {
|
|
count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
|
|
*hpage = ERR_PTR(-ENOMEM);
|
|
return NULL;
|
|
}
|
|
|
|
prep_transhuge_page(*hpage);
|
|
count_vm_event(THP_COLLAPSE_ALLOC);
|
|
return *hpage;
|
|
}
|
|
#else
|
|
static int khugepaged_find_target_node(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline struct page *alloc_khugepaged_hugepage(void)
|
|
{
|
|
struct page *page;
|
|
|
|
page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
|
|
HPAGE_PMD_ORDER);
|
|
if (page)
|
|
prep_transhuge_page(page);
|
|
return page;
|
|
}
|
|
|
|
static struct page *khugepaged_alloc_hugepage(bool *wait)
|
|
{
|
|
struct page *hpage;
|
|
|
|
do {
|
|
hpage = alloc_khugepaged_hugepage();
|
|
if (!hpage) {
|
|
count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
|
|
if (!*wait)
|
|
return NULL;
|
|
|
|
*wait = false;
|
|
khugepaged_alloc_sleep();
|
|
} else
|
|
count_vm_event(THP_COLLAPSE_ALLOC);
|
|
} while (unlikely(!hpage) && likely(khugepaged_enabled()));
|
|
|
|
return hpage;
|
|
}
|
|
|
|
static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
|
|
{
|
|
if (!*hpage)
|
|
*hpage = khugepaged_alloc_hugepage(wait);
|
|
|
|
if (unlikely(!*hpage))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct page *
|
|
khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
|
|
{
|
|
VM_BUG_ON(!*hpage);
|
|
|
|
return *hpage;
|
|
}
|
|
#endif
|
|
|
|
static bool hugepage_vma_check(struct vm_area_struct *vma)
|
|
{
|
|
if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
|
|
(vma->vm_flags & VM_NOHUGEPAGE) ||
|
|
test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
|
|
return false;
|
|
if (shmem_file(vma->vm_file)) {
|
|
if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
|
|
return false;
|
|
return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
|
|
HPAGE_PMD_NR);
|
|
}
|
|
if (!vma->anon_vma || vma->vm_ops)
|
|
return false;
|
|
if (is_vma_temporary_stack(vma))
|
|
return false;
|
|
return !(vma->vm_flags & VM_NO_KHUGEPAGED);
|
|
}
|
|
|
|
/*
|
|
* If mmap_sem temporarily dropped, revalidate vma
|
|
* before taking mmap_sem.
|
|
* Return 0 if succeeds, otherwise return none-zero
|
|
* value (scan code).
|
|
*/
|
|
|
|
static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
|
|
struct vm_area_struct **vmap)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
unsigned long hstart, hend;
|
|
|
|
if (unlikely(khugepaged_test_exit(mm)))
|
|
return SCAN_ANY_PROCESS;
|
|
|
|
*vmap = vma = find_vma(mm, address);
|
|
if (!vma)
|
|
return SCAN_VMA_NULL;
|
|
|
|
hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
|
|
hend = vma->vm_end & HPAGE_PMD_MASK;
|
|
if (address < hstart || address + HPAGE_PMD_SIZE > hend)
|
|
return SCAN_ADDRESS_RANGE;
|
|
if (!hugepage_vma_check(vma))
|
|
return SCAN_VMA_CHECK;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Bring missing pages in from swap, to complete THP collapse.
|
|
* Only done if khugepaged_scan_pmd believes it is worthwhile.
|
|
*
|
|
* Called and returns without pte mapped or spinlocks held,
|
|
* but with mmap_sem held to protect against vma changes.
|
|
*/
|
|
|
|
static bool __collapse_huge_page_swapin(struct mm_struct *mm,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmd,
|
|
int referenced)
|
|
{
|
|
int swapped_in = 0, ret = 0;
|
|
struct vm_fault vmf = {
|
|
.vma = vma,
|
|
.address = address,
|
|
.flags = FAULT_FLAG_ALLOW_RETRY,
|
|
.pmd = pmd,
|
|
.pgoff = linear_page_index(vma, address),
|
|
};
|
|
|
|
/* we only decide to swapin, if there is enough young ptes */
|
|
if (referenced < HPAGE_PMD_NR/2) {
|
|
trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
|
|
return false;
|
|
}
|
|
vmf.pte = pte_offset_map(pmd, address);
|
|
for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
|
|
vmf.pte++, vmf.address += PAGE_SIZE) {
|
|
vmf.orig_pte = *vmf.pte;
|
|
if (!is_swap_pte(vmf.orig_pte))
|
|
continue;
|
|
swapped_in++;
|
|
ret = do_swap_page(&vmf);
|
|
|
|
/* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
|
|
if (ret & VM_FAULT_RETRY) {
|
|
down_read(&mm->mmap_sem);
|
|
if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
|
|
/* vma is no longer available, don't continue to swapin */
|
|
trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
|
|
return false;
|
|
}
|
|
/* check if the pmd is still valid */
|
|
if (mm_find_pmd(mm, address) != pmd) {
|
|
trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
|
|
return false;
|
|
}
|
|
}
|
|
if (ret & VM_FAULT_ERROR) {
|
|
trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
|
|
return false;
|
|
}
|
|
/* pte is unmapped now, we need to map it */
|
|
vmf.pte = pte_offset_map(pmd, vmf.address);
|
|
}
|
|
vmf.pte--;
|
|
pte_unmap(vmf.pte);
|
|
trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
|
|
return true;
|
|
}
|
|
|
|
static void collapse_huge_page(struct mm_struct *mm,
|
|
unsigned long address,
|
|
struct page **hpage,
|
|
int node, int referenced)
|
|
{
|
|
pmd_t *pmd, _pmd;
|
|
pte_t *pte;
|
|
pgtable_t pgtable;
|
|
struct page *new_page;
|
|
spinlock_t *pmd_ptl, *pte_ptl;
|
|
int isolated = 0, result = 0;
|
|
struct mem_cgroup *memcg;
|
|
struct vm_area_struct *vma;
|
|
unsigned long mmun_start; /* For mmu_notifiers */
|
|
unsigned long mmun_end; /* For mmu_notifiers */
|
|
gfp_t gfp;
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
|
|
/* Only allocate from the target node */
|
|
gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
|
|
|
|
/*
|
|
* Before allocating the hugepage, release the mmap_sem read lock.
|
|
* The allocation can take potentially a long time if it involves
|
|
* sync compaction, and we do not need to hold the mmap_sem during
|
|
* that. We will recheck the vma after taking it again in write mode.
|
|
*/
|
|
up_read(&mm->mmap_sem);
|
|
new_page = khugepaged_alloc_page(hpage, gfp, node);
|
|
if (!new_page) {
|
|
result = SCAN_ALLOC_HUGE_PAGE_FAIL;
|
|
goto out_nolock;
|
|
}
|
|
|
|
if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
|
|
result = SCAN_CGROUP_CHARGE_FAIL;
|
|
goto out_nolock;
|
|
}
|
|
|
|
down_read(&mm->mmap_sem);
|
|
result = hugepage_vma_revalidate(mm, address, &vma);
|
|
if (result) {
|
|
mem_cgroup_cancel_charge(new_page, memcg, true);
|
|
up_read(&mm->mmap_sem);
|
|
goto out_nolock;
|
|
}
|
|
|
|
pmd = mm_find_pmd(mm, address);
|
|
if (!pmd) {
|
|
result = SCAN_PMD_NULL;
|
|
mem_cgroup_cancel_charge(new_page, memcg, true);
|
|
up_read(&mm->mmap_sem);
|
|
goto out_nolock;
|
|
}
|
|
|
|
/*
|
|
* __collapse_huge_page_swapin always returns with mmap_sem locked.
|
|
* If it fails, we release mmap_sem and jump out_nolock.
|
|
* Continuing to collapse causes inconsistency.
|
|
*/
|
|
if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
|
|
mem_cgroup_cancel_charge(new_page, memcg, true);
|
|
up_read(&mm->mmap_sem);
|
|
goto out_nolock;
|
|
}
|
|
|
|
up_read(&mm->mmap_sem);
|
|
/*
|
|
* Prevent all access to pagetables with the exception of
|
|
* gup_fast later handled by the ptep_clear_flush and the VM
|
|
* handled by the anon_vma lock + PG_lock.
|
|
*/
|
|
down_write(&mm->mmap_sem);
|
|
result = hugepage_vma_revalidate(mm, address, &vma);
|
|
if (result)
|
|
goto out;
|
|
/* check if the pmd is still valid */
|
|
if (mm_find_pmd(mm, address) != pmd)
|
|
goto out;
|
|
|
|
anon_vma_lock_write(vma->anon_vma);
|
|
|
|
pte = pte_offset_map(pmd, address);
|
|
pte_ptl = pte_lockptr(mm, pmd);
|
|
|
|
mmun_start = address;
|
|
mmun_end = address + HPAGE_PMD_SIZE;
|
|
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
|
|
pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
|
|
/*
|
|
* After this gup_fast can't run anymore. This also removes
|
|
* any huge TLB entry from the CPU so we won't allow
|
|
* huge and small TLB entries for the same virtual address
|
|
* to avoid the risk of CPU bugs in that area.
|
|
*/
|
|
_pmd = pmdp_collapse_flush(vma, address, pmd);
|
|
spin_unlock(pmd_ptl);
|
|
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
|
|
|
|
spin_lock(pte_ptl);
|
|
isolated = __collapse_huge_page_isolate(vma, address, pte);
|
|
spin_unlock(pte_ptl);
|
|
|
|
if (unlikely(!isolated)) {
|
|
pte_unmap(pte);
|
|
spin_lock(pmd_ptl);
|
|
BUG_ON(!pmd_none(*pmd));
|
|
/*
|
|
* We can only use set_pmd_at when establishing
|
|
* hugepmds and never for establishing regular pmds that
|
|
* points to regular pagetables. Use pmd_populate for that
|
|
*/
|
|
pmd_populate(mm, pmd, pmd_pgtable(_pmd));
|
|
spin_unlock(pmd_ptl);
|
|
anon_vma_unlock_write(vma->anon_vma);
|
|
result = SCAN_FAIL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* All pages are isolated and locked so anon_vma rmap
|
|
* can't run anymore.
|
|
*/
|
|
anon_vma_unlock_write(vma->anon_vma);
|
|
|
|
__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
|
|
pte_unmap(pte);
|
|
__SetPageUptodate(new_page);
|
|
pgtable = pmd_pgtable(_pmd);
|
|
|
|
_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
|
|
_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
|
|
|
|
/*
|
|
* spin_lock() below is not the equivalent of smp_wmb(), so
|
|
* this is needed to avoid the copy_huge_page writes to become
|
|
* visible after the set_pmd_at() write.
|
|
*/
|
|
smp_wmb();
|
|
|
|
spin_lock(pmd_ptl);
|
|
BUG_ON(!pmd_none(*pmd));
|
|
page_add_new_anon_rmap(new_page, vma, address, true);
|
|
mem_cgroup_commit_charge(new_page, memcg, false, true);
|
|
lru_cache_add_active_or_unevictable(new_page, vma);
|
|
pgtable_trans_huge_deposit(mm, pmd, pgtable);
|
|
set_pmd_at(mm, address, pmd, _pmd);
|
|
update_mmu_cache_pmd(vma, address, pmd);
|
|
spin_unlock(pmd_ptl);
|
|
|
|
*hpage = NULL;
|
|
|
|
khugepaged_pages_collapsed++;
|
|
result = SCAN_SUCCEED;
|
|
out_up_write:
|
|
up_write(&mm->mmap_sem);
|
|
out_nolock:
|
|
trace_mm_collapse_huge_page(mm, isolated, result);
|
|
return;
|
|
out:
|
|
mem_cgroup_cancel_charge(new_page, memcg, true);
|
|
goto out_up_write;
|
|
}
|
|
|
|
static int khugepaged_scan_pmd(struct mm_struct *mm,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
struct page **hpage)
|
|
{
|
|
pmd_t *pmd;
|
|
pte_t *pte, *_pte;
|
|
int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
|
|
struct page *page = NULL;
|
|
unsigned long _address;
|
|
spinlock_t *ptl;
|
|
int node = NUMA_NO_NODE, unmapped = 0;
|
|
bool writable = false;
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
|
|
pmd = mm_find_pmd(mm, address);
|
|
if (!pmd) {
|
|
result = SCAN_PMD_NULL;
|
|
goto out;
|
|
}
|
|
|
|
memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
|
|
pte = pte_offset_map_lock(mm, pmd, address, &ptl);
|
|
for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
|
|
_pte++, _address += PAGE_SIZE) {
|
|
pte_t pteval = *_pte;
|
|
if (is_swap_pte(pteval)) {
|
|
if (++unmapped <= khugepaged_max_ptes_swap) {
|
|
continue;
|
|
} else {
|
|
result = SCAN_EXCEED_SWAP_PTE;
|
|
goto out_unmap;
|
|
}
|
|
}
|
|
if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
|
|
if (!userfaultfd_armed(vma) &&
|
|
++none_or_zero <= khugepaged_max_ptes_none) {
|
|
continue;
|
|
} else {
|
|
result = SCAN_EXCEED_NONE_PTE;
|
|
goto out_unmap;
|
|
}
|
|
}
|
|
if (!pte_present(pteval)) {
|
|
result = SCAN_PTE_NON_PRESENT;
|
|
goto out_unmap;
|
|
}
|
|
if (pte_write(pteval))
|
|
writable = true;
|
|
|
|
page = vm_normal_page(vma, _address, pteval);
|
|
if (unlikely(!page)) {
|
|
result = SCAN_PAGE_NULL;
|
|
goto out_unmap;
|
|
}
|
|
|
|
/* TODO: teach khugepaged to collapse THP mapped with pte */
|
|
if (PageCompound(page)) {
|
|
result = SCAN_PAGE_COMPOUND;
|
|
goto out_unmap;
|
|
}
|
|
|
|
/*
|
|
* Record which node the original page is from and save this
|
|
* information to khugepaged_node_load[].
|
|
* Khupaged will allocate hugepage from the node has the max
|
|
* hit record.
|
|
*/
|
|
node = page_to_nid(page);
|
|
if (khugepaged_scan_abort(node)) {
|
|
result = SCAN_SCAN_ABORT;
|
|
goto out_unmap;
|
|
}
|
|
khugepaged_node_load[node]++;
|
|
if (!PageLRU(page)) {
|
|
result = SCAN_PAGE_LRU;
|
|
goto out_unmap;
|
|
}
|
|
if (PageLocked(page)) {
|
|
result = SCAN_PAGE_LOCK;
|
|
goto out_unmap;
|
|
}
|
|
if (!PageAnon(page)) {
|
|
result = SCAN_PAGE_ANON;
|
|
goto out_unmap;
|
|
}
|
|
|
|
/*
|
|
* cannot use mapcount: can't collapse if there's a gup pin.
|
|
* The page must only be referenced by the scanned process
|
|
* and page swap cache.
|
|
*/
|
|
if (page_count(page) != 1 + PageSwapCache(page)) {
|
|
result = SCAN_PAGE_COUNT;
|
|
goto out_unmap;
|
|
}
|
|
if (pte_young(pteval) ||
|
|
page_is_young(page) || PageReferenced(page) ||
|
|
mmu_notifier_test_young(vma->vm_mm, address))
|
|
referenced++;
|
|
}
|
|
if (writable) {
|
|
if (referenced) {
|
|
result = SCAN_SUCCEED;
|
|
ret = 1;
|
|
} else {
|
|
result = SCAN_LACK_REFERENCED_PAGE;
|
|
}
|
|
} else {
|
|
result = SCAN_PAGE_RO;
|
|
}
|
|
out_unmap:
|
|
pte_unmap_unlock(pte, ptl);
|
|
if (ret) {
|
|
node = khugepaged_find_target_node();
|
|
/* collapse_huge_page will return with the mmap_sem released */
|
|
collapse_huge_page(mm, address, hpage, node, referenced);
|
|
}
|
|
out:
|
|
trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
|
|
none_or_zero, result, unmapped);
|
|
return ret;
|
|
}
|
|
|
|
static void collect_mm_slot(struct mm_slot *mm_slot)
|
|
{
|
|
struct mm_struct *mm = mm_slot->mm;
|
|
|
|
VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
|
|
|
|
if (khugepaged_test_exit(mm)) {
|
|
/* free mm_slot */
|
|
hash_del(&mm_slot->hash);
|
|
list_del(&mm_slot->mm_node);
|
|
|
|
/*
|
|
* Not strictly needed because the mm exited already.
|
|
*
|
|
* clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
|
|
*/
|
|
|
|
/* khugepaged_mm_lock actually not necessary for the below */
|
|
free_mm_slot(mm_slot);
|
|
mmdrop(mm);
|
|
}
|
|
}
|
|
|
|
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
|
|
static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
unsigned long addr;
|
|
pmd_t *pmd, _pmd;
|
|
|
|
i_mmap_lock_write(mapping);
|
|
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
|
|
/* probably overkill */
|
|
if (vma->anon_vma)
|
|
continue;
|
|
addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
|
|
if (addr & ~HPAGE_PMD_MASK)
|
|
continue;
|
|
if (vma->vm_end < addr + HPAGE_PMD_SIZE)
|
|
continue;
|
|
pmd = mm_find_pmd(vma->vm_mm, addr);
|
|
if (!pmd)
|
|
continue;
|
|
/*
|
|
* We need exclusive mmap_sem to retract page table.
|
|
* If trylock fails we would end up with pte-mapped THP after
|
|
* re-fault. Not ideal, but it's more important to not disturb
|
|
* the system too much.
|
|
*/
|
|
if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
|
|
spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
|
|
/* assume page table is clear */
|
|
_pmd = pmdp_collapse_flush(vma, addr, pmd);
|
|
spin_unlock(ptl);
|
|
up_write(&vma->vm_mm->mmap_sem);
|
|
atomic_long_dec(&vma->vm_mm->nr_ptes);
|
|
pte_free(vma->vm_mm, pmd_pgtable(_pmd));
|
|
}
|
|
}
|
|
i_mmap_unlock_write(mapping);
|
|
}
|
|
|
|
/**
|
|
* collapse_shmem - collapse small tmpfs/shmem pages into huge one.
|
|
*
|
|
* Basic scheme is simple, details are more complex:
|
|
* - allocate and freeze a new huge page;
|
|
* - scan over radix tree replacing old pages the new one
|
|
* + swap in pages if necessary;
|
|
* + fill in gaps;
|
|
* + keep old pages around in case if rollback is required;
|
|
* - if replacing succeed:
|
|
* + copy data over;
|
|
* + free old pages;
|
|
* + unfreeze huge page;
|
|
* - if replacing failed;
|
|
* + put all pages back and unfreeze them;
|
|
* + restore gaps in the radix-tree;
|
|
* + free huge page;
|
|
*/
|
|
static void collapse_shmem(struct mm_struct *mm,
|
|
struct address_space *mapping, pgoff_t start,
|
|
struct page **hpage, int node)
|
|
{
|
|
gfp_t gfp;
|
|
struct page *page, *new_page, *tmp;
|
|
struct mem_cgroup *memcg;
|
|
pgoff_t index, end = start + HPAGE_PMD_NR;
|
|
LIST_HEAD(pagelist);
|
|
struct radix_tree_iter iter;
|
|
void **slot;
|
|
int nr_none = 0, result = SCAN_SUCCEED;
|
|
|
|
VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
|
|
|
|
/* Only allocate from the target node */
|
|
gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
|
|
|
|
new_page = khugepaged_alloc_page(hpage, gfp, node);
|
|
if (!new_page) {
|
|
result = SCAN_ALLOC_HUGE_PAGE_FAIL;
|
|
goto out;
|
|
}
|
|
|
|
if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
|
|
result = SCAN_CGROUP_CHARGE_FAIL;
|
|
goto out;
|
|
}
|
|
|
|
new_page->index = start;
|
|
new_page->mapping = mapping;
|
|
__SetPageSwapBacked(new_page);
|
|
__SetPageLocked(new_page);
|
|
BUG_ON(!page_ref_freeze(new_page, 1));
|
|
|
|
|
|
/*
|
|
* At this point the new_page is 'frozen' (page_count() is zero), locked
|
|
* and not up-to-date. It's safe to insert it into radix tree, because
|
|
* nobody would be able to map it or use it in other way until we
|
|
* unfreeze it.
|
|
*/
|
|
|
|
index = start;
|
|
spin_lock_irq(&mapping->tree_lock);
|
|
radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
|
|
int n = min(iter.index, end) - index;
|
|
|
|
/*
|
|
* Handle holes in the radix tree: charge it from shmem and
|
|
* insert relevant subpage of new_page into the radix-tree.
|
|
*/
|
|
if (n && !shmem_charge(mapping->host, n)) {
|
|
result = SCAN_FAIL;
|
|
break;
|
|
}
|
|
nr_none += n;
|
|
for (; index < min(iter.index, end); index++) {
|
|
radix_tree_insert(&mapping->page_tree, index,
|
|
new_page + (index % HPAGE_PMD_NR));
|
|
}
|
|
|
|
/* We are done. */
|
|
if (index >= end)
|
|
break;
|
|
|
|
page = radix_tree_deref_slot_protected(slot,
|
|
&mapping->tree_lock);
|
|
if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
/* swap in or instantiate fallocated page */
|
|
if (shmem_getpage(mapping->host, index, &page,
|
|
SGP_NOHUGE)) {
|
|
result = SCAN_FAIL;
|
|
goto tree_unlocked;
|
|
}
|
|
spin_lock_irq(&mapping->tree_lock);
|
|
} else if (trylock_page(page)) {
|
|
get_page(page);
|
|
} else {
|
|
result = SCAN_PAGE_LOCK;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* The page must be locked, so we can drop the tree_lock
|
|
* without racing with truncate.
|
|
*/
|
|
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
|
VM_BUG_ON_PAGE(!PageUptodate(page), page);
|
|
VM_BUG_ON_PAGE(PageTransCompound(page), page);
|
|
|
|
if (page_mapping(page) != mapping) {
|
|
result = SCAN_TRUNCATED;
|
|
goto out_unlock;
|
|
}
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
|
|
if (isolate_lru_page(page)) {
|
|
result = SCAN_DEL_PAGE_LRU;
|
|
goto out_isolate_failed;
|
|
}
|
|
|
|
if (page_mapped(page))
|
|
unmap_mapping_range(mapping, index << PAGE_SHIFT,
|
|
PAGE_SIZE, 0);
|
|
|
|
spin_lock_irq(&mapping->tree_lock);
|
|
|
|
slot = radix_tree_lookup_slot(&mapping->page_tree, index);
|
|
VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
|
|
&mapping->tree_lock), page);
|
|
VM_BUG_ON_PAGE(page_mapped(page), page);
|
|
|
|
/*
|
|
* The page is expected to have page_count() == 3:
|
|
* - we hold a pin on it;
|
|
* - one reference from radix tree;
|
|
* - one from isolate_lru_page;
|
|
*/
|
|
if (!page_ref_freeze(page, 3)) {
|
|
result = SCAN_PAGE_COUNT;
|
|
goto out_lru;
|
|
}
|
|
|
|
/*
|
|
* Add the page to the list to be able to undo the collapse if
|
|
* something go wrong.
|
|
*/
|
|
list_add_tail(&page->lru, &pagelist);
|
|
|
|
/* Finally, replace with the new page. */
|
|
radix_tree_replace_slot(&mapping->page_tree, slot,
|
|
new_page + (index % HPAGE_PMD_NR));
|
|
|
|
slot = radix_tree_iter_resume(slot, &iter);
|
|
index++;
|
|
continue;
|
|
out_lru:
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
putback_lru_page(page);
|
|
out_isolate_failed:
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto tree_unlocked;
|
|
out_unlock:
|
|
unlock_page(page);
|
|
put_page(page);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Handle hole in radix tree at the end of the range.
|
|
* This code only triggers if there's nothing in radix tree
|
|
* beyond 'end'.
|
|
*/
|
|
if (result == SCAN_SUCCEED && index < end) {
|
|
int n = end - index;
|
|
|
|
if (!shmem_charge(mapping->host, n)) {
|
|
result = SCAN_FAIL;
|
|
goto tree_locked;
|
|
}
|
|
|
|
for (; index < end; index++) {
|
|
radix_tree_insert(&mapping->page_tree, index,
|
|
new_page + (index % HPAGE_PMD_NR));
|
|
}
|
|
nr_none += n;
|
|
}
|
|
|
|
tree_locked:
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
tree_unlocked:
|
|
|
|
if (result == SCAN_SUCCEED) {
|
|
unsigned long flags;
|
|
struct zone *zone = page_zone(new_page);
|
|
|
|
/*
|
|
* Replacing old pages with new one has succeed, now we need to
|
|
* copy the content and free old pages.
|
|
*/
|
|
list_for_each_entry_safe(page, tmp, &pagelist, lru) {
|
|
copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
|
|
page);
|
|
list_del(&page->lru);
|
|
unlock_page(page);
|
|
page_ref_unfreeze(page, 1);
|
|
page->mapping = NULL;
|
|
ClearPageActive(page);
|
|
ClearPageUnevictable(page);
|
|
put_page(page);
|
|
}
|
|
|
|
local_irq_save(flags);
|
|
__inc_node_page_state(new_page, NR_SHMEM_THPS);
|
|
if (nr_none) {
|
|
__mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
|
|
__mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
|
|
}
|
|
local_irq_restore(flags);
|
|
|
|
/*
|
|
* Remove pte page tables, so we can re-faulti
|
|
* the page as huge.
|
|
*/
|
|
retract_page_tables(mapping, start);
|
|
|
|
/* Everything is ready, let's unfreeze the new_page */
|
|
set_page_dirty(new_page);
|
|
SetPageUptodate(new_page);
|
|
page_ref_unfreeze(new_page, HPAGE_PMD_NR);
|
|
mem_cgroup_commit_charge(new_page, memcg, false, true);
|
|
lru_cache_add_anon(new_page);
|
|
unlock_page(new_page);
|
|
|
|
*hpage = NULL;
|
|
} else {
|
|
/* Something went wrong: rollback changes to the radix-tree */
|
|
shmem_uncharge(mapping->host, nr_none);
|
|
spin_lock_irq(&mapping->tree_lock);
|
|
radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
|
|
start) {
|
|
if (iter.index >= end)
|
|
break;
|
|
page = list_first_entry_or_null(&pagelist,
|
|
struct page, lru);
|
|
if (!page || iter.index < page->index) {
|
|
if (!nr_none)
|
|
break;
|
|
nr_none--;
|
|
/* Put holes back where they were */
|
|
radix_tree_delete(&mapping->page_tree,
|
|
iter.index);
|
|
continue;
|
|
}
|
|
|
|
VM_BUG_ON_PAGE(page->index != iter.index, page);
|
|
|
|
/* Unfreeze the page. */
|
|
list_del(&page->lru);
|
|
page_ref_unfreeze(page, 2);
|
|
radix_tree_replace_slot(&mapping->page_tree,
|
|
slot, page);
|
|
slot = radix_tree_iter_resume(slot, &iter);
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
putback_lru_page(page);
|
|
unlock_page(page);
|
|
spin_lock_irq(&mapping->tree_lock);
|
|
}
|
|
VM_BUG_ON(nr_none);
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
|
|
/* Unfreeze new_page, caller would take care about freeing it */
|
|
page_ref_unfreeze(new_page, 1);
|
|
mem_cgroup_cancel_charge(new_page, memcg, true);
|
|
unlock_page(new_page);
|
|
new_page->mapping = NULL;
|
|
}
|
|
out:
|
|
VM_BUG_ON(!list_empty(&pagelist));
|
|
/* TODO: tracepoints */
|
|
}
|
|
|
|
static void khugepaged_scan_shmem(struct mm_struct *mm,
|
|
struct address_space *mapping,
|
|
pgoff_t start, struct page **hpage)
|
|
{
|
|
struct page *page = NULL;
|
|
struct radix_tree_iter iter;
|
|
void **slot;
|
|
int present, swap;
|
|
int node = NUMA_NO_NODE;
|
|
int result = SCAN_SUCCEED;
|
|
|
|
present = 0;
|
|
swap = 0;
|
|
memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
|
|
rcu_read_lock();
|
|
radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
|
|
if (iter.index >= start + HPAGE_PMD_NR)
|
|
break;
|
|
|
|
page = radix_tree_deref_slot(slot);
|
|
if (radix_tree_deref_retry(page)) {
|
|
slot = radix_tree_iter_retry(&iter);
|
|
continue;
|
|
}
|
|
|
|
if (radix_tree_exception(page)) {
|
|
if (++swap > khugepaged_max_ptes_swap) {
|
|
result = SCAN_EXCEED_SWAP_PTE;
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (PageTransCompound(page)) {
|
|
result = SCAN_PAGE_COMPOUND;
|
|
break;
|
|
}
|
|
|
|
node = page_to_nid(page);
|
|
if (khugepaged_scan_abort(node)) {
|
|
result = SCAN_SCAN_ABORT;
|
|
break;
|
|
}
|
|
khugepaged_node_load[node]++;
|
|
|
|
if (!PageLRU(page)) {
|
|
result = SCAN_PAGE_LRU;
|
|
break;
|
|
}
|
|
|
|
if (page_count(page) != 1 + page_mapcount(page)) {
|
|
result = SCAN_PAGE_COUNT;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We probably should check if the page is referenced here, but
|
|
* nobody would transfer pte_young() to PageReferenced() for us.
|
|
* And rmap walk here is just too costly...
|
|
*/
|
|
|
|
present++;
|
|
|
|
if (need_resched()) {
|
|
slot = radix_tree_iter_resume(slot, &iter);
|
|
cond_resched_rcu();
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (result == SCAN_SUCCEED) {
|
|
if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
|
|
result = SCAN_EXCEED_NONE_PTE;
|
|
} else {
|
|
node = khugepaged_find_target_node();
|
|
collapse_shmem(mm, mapping, start, hpage, node);
|
|
}
|
|
}
|
|
|
|
/* TODO: tracepoints */
|
|
}
|
|
#else
|
|
static void khugepaged_scan_shmem(struct mm_struct *mm,
|
|
struct address_space *mapping,
|
|
pgoff_t start, struct page **hpage)
|
|
{
|
|
BUILD_BUG();
|
|
}
|
|
#endif
|
|
|
|
static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
|
|
struct page **hpage)
|
|
__releases(&khugepaged_mm_lock)
|
|
__acquires(&khugepaged_mm_lock)
|
|
{
|
|
struct mm_slot *mm_slot;
|
|
struct mm_struct *mm;
|
|
struct vm_area_struct *vma;
|
|
int progress = 0;
|
|
|
|
VM_BUG_ON(!pages);
|
|
VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
|
|
|
|
if (khugepaged_scan.mm_slot)
|
|
mm_slot = khugepaged_scan.mm_slot;
|
|
else {
|
|
mm_slot = list_entry(khugepaged_scan.mm_head.next,
|
|
struct mm_slot, mm_node);
|
|
khugepaged_scan.address = 0;
|
|
khugepaged_scan.mm_slot = mm_slot;
|
|
}
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
|
|
mm = mm_slot->mm;
|
|
down_read(&mm->mmap_sem);
|
|
if (unlikely(khugepaged_test_exit(mm)))
|
|
vma = NULL;
|
|
else
|
|
vma = find_vma(mm, khugepaged_scan.address);
|
|
|
|
progress++;
|
|
for (; vma; vma = vma->vm_next) {
|
|
unsigned long hstart, hend;
|
|
|
|
cond_resched();
|
|
if (unlikely(khugepaged_test_exit(mm))) {
|
|
progress++;
|
|
break;
|
|
}
|
|
if (!hugepage_vma_check(vma)) {
|
|
skip:
|
|
progress++;
|
|
continue;
|
|
}
|
|
hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
|
|
hend = vma->vm_end & HPAGE_PMD_MASK;
|
|
if (hstart >= hend)
|
|
goto skip;
|
|
if (khugepaged_scan.address > hend)
|
|
goto skip;
|
|
if (khugepaged_scan.address < hstart)
|
|
khugepaged_scan.address = hstart;
|
|
VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
|
|
|
|
while (khugepaged_scan.address < hend) {
|
|
int ret;
|
|
cond_resched();
|
|
if (unlikely(khugepaged_test_exit(mm)))
|
|
goto breakouterloop;
|
|
|
|
VM_BUG_ON(khugepaged_scan.address < hstart ||
|
|
khugepaged_scan.address + HPAGE_PMD_SIZE >
|
|
hend);
|
|
if (shmem_file(vma->vm_file)) {
|
|
struct file *file;
|
|
pgoff_t pgoff = linear_page_index(vma,
|
|
khugepaged_scan.address);
|
|
if (!shmem_huge_enabled(vma))
|
|
goto skip;
|
|
file = get_file(vma->vm_file);
|
|
up_read(&mm->mmap_sem);
|
|
ret = 1;
|
|
khugepaged_scan_shmem(mm, file->f_mapping,
|
|
pgoff, hpage);
|
|
fput(file);
|
|
} else {
|
|
ret = khugepaged_scan_pmd(mm, vma,
|
|
khugepaged_scan.address,
|
|
hpage);
|
|
}
|
|
/* move to next address */
|
|
khugepaged_scan.address += HPAGE_PMD_SIZE;
|
|
progress += HPAGE_PMD_NR;
|
|
if (ret)
|
|
/* we released mmap_sem so break loop */
|
|
goto breakouterloop_mmap_sem;
|
|
if (progress >= pages)
|
|
goto breakouterloop;
|
|
}
|
|
}
|
|
breakouterloop:
|
|
up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
|
|
breakouterloop_mmap_sem:
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
|
|
/*
|
|
* Release the current mm_slot if this mm is about to die, or
|
|
* if we scanned all vmas of this mm.
|
|
*/
|
|
if (khugepaged_test_exit(mm) || !vma) {
|
|
/*
|
|
* Make sure that if mm_users is reaching zero while
|
|
* khugepaged runs here, khugepaged_exit will find
|
|
* mm_slot not pointing to the exiting mm.
|
|
*/
|
|
if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
|
|
khugepaged_scan.mm_slot = list_entry(
|
|
mm_slot->mm_node.next,
|
|
struct mm_slot, mm_node);
|
|
khugepaged_scan.address = 0;
|
|
} else {
|
|
khugepaged_scan.mm_slot = NULL;
|
|
khugepaged_full_scans++;
|
|
}
|
|
|
|
collect_mm_slot(mm_slot);
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
static int khugepaged_has_work(void)
|
|
{
|
|
return !list_empty(&khugepaged_scan.mm_head) &&
|
|
khugepaged_enabled();
|
|
}
|
|
|
|
static int khugepaged_wait_event(void)
|
|
{
|
|
return !list_empty(&khugepaged_scan.mm_head) ||
|
|
kthread_should_stop();
|
|
}
|
|
|
|
static void khugepaged_do_scan(void)
|
|
{
|
|
struct page *hpage = NULL;
|
|
unsigned int progress = 0, pass_through_head = 0;
|
|
unsigned int pages = khugepaged_pages_to_scan;
|
|
bool wait = true;
|
|
|
|
barrier(); /* write khugepaged_pages_to_scan to local stack */
|
|
|
|
while (progress < pages) {
|
|
if (!khugepaged_prealloc_page(&hpage, &wait))
|
|
break;
|
|
|
|
cond_resched();
|
|
|
|
if (unlikely(kthread_should_stop() || try_to_freeze()))
|
|
break;
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
if (!khugepaged_scan.mm_slot)
|
|
pass_through_head++;
|
|
if (khugepaged_has_work() &&
|
|
pass_through_head < 2)
|
|
progress += khugepaged_scan_mm_slot(pages - progress,
|
|
&hpage);
|
|
else
|
|
progress = pages;
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
}
|
|
|
|
if (!IS_ERR_OR_NULL(hpage))
|
|
put_page(hpage);
|
|
}
|
|
|
|
static bool khugepaged_should_wakeup(void)
|
|
{
|
|
return kthread_should_stop() ||
|
|
time_after_eq(jiffies, khugepaged_sleep_expire);
|
|
}
|
|
|
|
static void khugepaged_wait_work(void)
|
|
{
|
|
if (khugepaged_has_work()) {
|
|
const unsigned long scan_sleep_jiffies =
|
|
msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
|
|
|
|
if (!scan_sleep_jiffies)
|
|
return;
|
|
|
|
khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
|
|
wait_event_freezable_timeout(khugepaged_wait,
|
|
khugepaged_should_wakeup(),
|
|
scan_sleep_jiffies);
|
|
return;
|
|
}
|
|
|
|
if (khugepaged_enabled())
|
|
wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
|
|
}
|
|
|
|
static int khugepaged(void *none)
|
|
{
|
|
struct mm_slot *mm_slot;
|
|
|
|
set_freezable();
|
|
set_user_nice(current, MAX_NICE);
|
|
|
|
while (!kthread_should_stop()) {
|
|
khugepaged_do_scan();
|
|
khugepaged_wait_work();
|
|
}
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
mm_slot = khugepaged_scan.mm_slot;
|
|
khugepaged_scan.mm_slot = NULL;
|
|
if (mm_slot)
|
|
collect_mm_slot(mm_slot);
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void set_recommended_min_free_kbytes(void)
|
|
{
|
|
struct zone *zone;
|
|
int nr_zones = 0;
|
|
unsigned long recommended_min;
|
|
|
|
for_each_populated_zone(zone)
|
|
nr_zones++;
|
|
|
|
/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
|
|
recommended_min = pageblock_nr_pages * nr_zones * 2;
|
|
|
|
/*
|
|
* Make sure that on average at least two pageblocks are almost free
|
|
* of another type, one for a migratetype to fall back to and a
|
|
* second to avoid subsequent fallbacks of other types There are 3
|
|
* MIGRATE_TYPES we care about.
|
|
*/
|
|
recommended_min += pageblock_nr_pages * nr_zones *
|
|
MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
|
|
|
|
/* don't ever allow to reserve more than 5% of the lowmem */
|
|
recommended_min = min(recommended_min,
|
|
(unsigned long) nr_free_buffer_pages() / 20);
|
|
recommended_min <<= (PAGE_SHIFT-10);
|
|
|
|
if (recommended_min > min_free_kbytes) {
|
|
if (user_min_free_kbytes >= 0)
|
|
pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
|
|
min_free_kbytes, recommended_min);
|
|
|
|
min_free_kbytes = recommended_min;
|
|
}
|
|
setup_per_zone_wmarks();
|
|
}
|
|
|
|
int start_stop_khugepaged(void)
|
|
{
|
|
static struct task_struct *khugepaged_thread __read_mostly;
|
|
static DEFINE_MUTEX(khugepaged_mutex);
|
|
int err = 0;
|
|
|
|
mutex_lock(&khugepaged_mutex);
|
|
if (khugepaged_enabled()) {
|
|
if (!khugepaged_thread)
|
|
khugepaged_thread = kthread_run(khugepaged, NULL,
|
|
"khugepaged");
|
|
if (IS_ERR(khugepaged_thread)) {
|
|
pr_err("khugepaged: kthread_run(khugepaged) failed\n");
|
|
err = PTR_ERR(khugepaged_thread);
|
|
khugepaged_thread = NULL;
|
|
goto fail;
|
|
}
|
|
|
|
if (!list_empty(&khugepaged_scan.mm_head))
|
|
wake_up_interruptible(&khugepaged_wait);
|
|
|
|
set_recommended_min_free_kbytes();
|
|
} else if (khugepaged_thread) {
|
|
kthread_stop(khugepaged_thread);
|
|
khugepaged_thread = NULL;
|
|
}
|
|
fail:
|
|
mutex_unlock(&khugepaged_mutex);
|
|
return err;
|
|
}
|