mirror of
https://github.com/torvalds/linux.git
synced 2024-12-27 21:33:00 +00:00
8f586b2243
This patch corrects the printing of progress indicators to the op panel on p/iSeries ppc64 systems. Each discrete reference code should begin with a form feed char to clear the op panel, and the first and second lines should be separated with a CR/LF sequence. Padding with spaces is not necessary. Also, capitalize the hex value printed on the first line, to be consistent with the values printed by firmware, service processor, etc. It turns out that there's an ibm,form-feed property; this patch uses it in the pSeries-specific progress routine. This patch also checks the number of rows and the specific width of each row (the second row on power5 systems can actually hold 80 characters). If the displayed text is too wide for the physical display, it can be viewed in the ASM menus, or by selecting option 14 on the op panel. Signed-off-by: Mike Strosaker <strosake@austin.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
775 lines
19 KiB
C
775 lines
19 KiB
C
/*
|
|
*
|
|
* Procedures for interfacing to the RTAS on CHRP machines.
|
|
*
|
|
* Peter Bergner, IBM March 2001.
|
|
* Copyright (C) 2001 IBM.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <asm/prom.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/semaphore.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/page.h>
|
|
#include <asm/param.h>
|
|
#include <asm/system.h>
|
|
#include <asm/abs_addr.h>
|
|
#include <asm/udbg.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/systemcfg.h>
|
|
|
|
struct flash_block_list_header rtas_firmware_flash_list = {0, NULL};
|
|
|
|
struct rtas_t rtas = {
|
|
.lock = SPIN_LOCK_UNLOCKED
|
|
};
|
|
|
|
EXPORT_SYMBOL(rtas);
|
|
|
|
char rtas_err_buf[RTAS_ERROR_LOG_MAX];
|
|
|
|
DEFINE_SPINLOCK(rtas_data_buf_lock);
|
|
char rtas_data_buf[RTAS_DATA_BUF_SIZE]__page_aligned;
|
|
unsigned long rtas_rmo_buf;
|
|
|
|
void
|
|
call_rtas_display_status(unsigned char c)
|
|
{
|
|
struct rtas_args *args = &rtas.args;
|
|
unsigned long s;
|
|
|
|
if (!rtas.base)
|
|
return;
|
|
spin_lock_irqsave(&rtas.lock, s);
|
|
|
|
args->token = 10;
|
|
args->nargs = 1;
|
|
args->nret = 1;
|
|
args->rets = (rtas_arg_t *)&(args->args[1]);
|
|
args->args[0] = (int)c;
|
|
|
|
enter_rtas(__pa(args));
|
|
|
|
spin_unlock_irqrestore(&rtas.lock, s);
|
|
}
|
|
|
|
void
|
|
call_rtas_display_status_delay(unsigned char c)
|
|
{
|
|
static int pending_newline = 0; /* did last write end with unprinted newline? */
|
|
static int width = 16;
|
|
|
|
if (c == '\n') {
|
|
while (width-- > 0)
|
|
call_rtas_display_status(' ');
|
|
width = 16;
|
|
udelay(500000);
|
|
pending_newline = 1;
|
|
} else {
|
|
if (pending_newline) {
|
|
call_rtas_display_status('\r');
|
|
call_rtas_display_status('\n');
|
|
}
|
|
pending_newline = 0;
|
|
if (width--) {
|
|
call_rtas_display_status(c);
|
|
udelay(10000);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
rtas_progress(char *s, unsigned short hex)
|
|
{
|
|
struct device_node *root;
|
|
int width, *p;
|
|
char *os;
|
|
static int display_character, set_indicator;
|
|
static int display_width, display_lines, *row_width, form_feed;
|
|
static DEFINE_SPINLOCK(progress_lock);
|
|
static int current_line;
|
|
static int pending_newline = 0; /* did last write end with unprinted newline? */
|
|
|
|
if (!rtas.base)
|
|
return;
|
|
|
|
if (display_width == 0) {
|
|
display_width = 0x10;
|
|
if ((root = find_path_device("/rtas"))) {
|
|
if ((p = (unsigned int *)get_property(root,
|
|
"ibm,display-line-length", NULL)))
|
|
display_width = *p;
|
|
if ((p = (unsigned int *)get_property(root,
|
|
"ibm,form-feed", NULL)))
|
|
form_feed = *p;
|
|
if ((p = (unsigned int *)get_property(root,
|
|
"ibm,display-number-of-lines", NULL)))
|
|
display_lines = *p;
|
|
row_width = (unsigned int *)get_property(root,
|
|
"ibm,display-truncation-length", NULL);
|
|
}
|
|
display_character = rtas_token("display-character");
|
|
set_indicator = rtas_token("set-indicator");
|
|
}
|
|
|
|
if (display_character == RTAS_UNKNOWN_SERVICE) {
|
|
/* use hex display if available */
|
|
if (set_indicator != RTAS_UNKNOWN_SERVICE)
|
|
rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
|
|
return;
|
|
}
|
|
|
|
spin_lock(&progress_lock);
|
|
|
|
/*
|
|
* Last write ended with newline, but we didn't print it since
|
|
* it would just clear the bottom line of output. Print it now
|
|
* instead.
|
|
*
|
|
* If no newline is pending and form feed is supported, clear the
|
|
* display with a form feed; otherwise, print a CR to start output
|
|
* at the beginning of the line.
|
|
*/
|
|
if (pending_newline) {
|
|
rtas_call(display_character, 1, 1, NULL, '\r');
|
|
rtas_call(display_character, 1, 1, NULL, '\n');
|
|
pending_newline = 0;
|
|
} else {
|
|
current_line = 0;
|
|
if (form_feed)
|
|
rtas_call(display_character, 1, 1, NULL,
|
|
(char)form_feed);
|
|
else
|
|
rtas_call(display_character, 1, 1, NULL, '\r');
|
|
}
|
|
|
|
if (row_width)
|
|
width = row_width[current_line];
|
|
else
|
|
width = display_width;
|
|
os = s;
|
|
while (*os) {
|
|
if (*os == '\n' || *os == '\r') {
|
|
/* If newline is the last character, save it
|
|
* until next call to avoid bumping up the
|
|
* display output.
|
|
*/
|
|
if (*os == '\n' && !os[1]) {
|
|
pending_newline = 1;
|
|
current_line++;
|
|
if (current_line > display_lines-1)
|
|
current_line = display_lines-1;
|
|
spin_unlock(&progress_lock);
|
|
return;
|
|
}
|
|
|
|
/* RTAS wants CR-LF, not just LF */
|
|
|
|
if (*os == '\n') {
|
|
rtas_call(display_character, 1, 1, NULL, '\r');
|
|
rtas_call(display_character, 1, 1, NULL, '\n');
|
|
} else {
|
|
/* CR might be used to re-draw a line, so we'll
|
|
* leave it alone and not add LF.
|
|
*/
|
|
rtas_call(display_character, 1, 1, NULL, *os);
|
|
}
|
|
|
|
if (row_width)
|
|
width = row_width[current_line];
|
|
else
|
|
width = display_width;
|
|
} else {
|
|
width--;
|
|
rtas_call(display_character, 1, 1, NULL, *os);
|
|
}
|
|
|
|
os++;
|
|
|
|
/* if we overwrite the screen length */
|
|
if (width <= 0)
|
|
while ((*os != 0) && (*os != '\n') && (*os != '\r'))
|
|
os++;
|
|
}
|
|
|
|
spin_unlock(&progress_lock);
|
|
}
|
|
|
|
int
|
|
rtas_token(const char *service)
|
|
{
|
|
int *tokp;
|
|
if (rtas.dev == NULL) {
|
|
PPCDBG(PPCDBG_RTAS,"\tNo rtas device in device-tree...\n");
|
|
return RTAS_UNKNOWN_SERVICE;
|
|
}
|
|
tokp = (int *) get_property(rtas.dev, service, NULL);
|
|
return tokp ? *tokp : RTAS_UNKNOWN_SERVICE;
|
|
}
|
|
|
|
/*
|
|
* Return the firmware-specified size of the error log buffer
|
|
* for all rtas calls that require an error buffer argument.
|
|
* This includes 'check-exception' and 'rtas-last-error'.
|
|
*/
|
|
int rtas_get_error_log_max(void)
|
|
{
|
|
static int rtas_error_log_max;
|
|
if (rtas_error_log_max)
|
|
return rtas_error_log_max;
|
|
|
|
rtas_error_log_max = rtas_token ("rtas-error-log-max");
|
|
if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) ||
|
|
(rtas_error_log_max > RTAS_ERROR_LOG_MAX)) {
|
|
printk (KERN_WARNING "RTAS: bad log buffer size %d\n", rtas_error_log_max);
|
|
rtas_error_log_max = RTAS_ERROR_LOG_MAX;
|
|
}
|
|
return rtas_error_log_max;
|
|
}
|
|
|
|
|
|
/** Return a copy of the detailed error text associated with the
|
|
* most recent failed call to rtas. Because the error text
|
|
* might go stale if there are any other intervening rtas calls,
|
|
* this routine must be called atomically with whatever produced
|
|
* the error (i.e. with rtas.lock still held from the previous call).
|
|
*/
|
|
static int
|
|
__fetch_rtas_last_error(void)
|
|
{
|
|
struct rtas_args err_args, save_args;
|
|
u32 bufsz;
|
|
|
|
bufsz = rtas_get_error_log_max();
|
|
|
|
err_args.token = rtas_token("rtas-last-error");
|
|
err_args.nargs = 2;
|
|
err_args.nret = 1;
|
|
|
|
err_args.args[0] = (rtas_arg_t)__pa(rtas_err_buf);
|
|
err_args.args[1] = bufsz;
|
|
err_args.args[2] = 0;
|
|
|
|
save_args = rtas.args;
|
|
rtas.args = err_args;
|
|
|
|
enter_rtas(__pa(&rtas.args));
|
|
|
|
err_args = rtas.args;
|
|
rtas.args = save_args;
|
|
|
|
return err_args.args[2];
|
|
}
|
|
|
|
int rtas_call(int token, int nargs, int nret, int *outputs, ...)
|
|
{
|
|
va_list list;
|
|
int i, logit = 0;
|
|
unsigned long s;
|
|
struct rtas_args *rtas_args;
|
|
char * buff_copy = NULL;
|
|
int ret;
|
|
|
|
PPCDBG(PPCDBG_RTAS, "Entering rtas_call\n");
|
|
PPCDBG(PPCDBG_RTAS, "\ttoken = 0x%x\n", token);
|
|
PPCDBG(PPCDBG_RTAS, "\tnargs = %d\n", nargs);
|
|
PPCDBG(PPCDBG_RTAS, "\tnret = %d\n", nret);
|
|
PPCDBG(PPCDBG_RTAS, "\t&outputs = 0x%lx\n", outputs);
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -1;
|
|
|
|
/* Gotta do something different here, use global lock for now... */
|
|
spin_lock_irqsave(&rtas.lock, s);
|
|
rtas_args = &rtas.args;
|
|
|
|
rtas_args->token = token;
|
|
rtas_args->nargs = nargs;
|
|
rtas_args->nret = nret;
|
|
rtas_args->rets = (rtas_arg_t *)&(rtas_args->args[nargs]);
|
|
va_start(list, outputs);
|
|
for (i = 0; i < nargs; ++i) {
|
|
rtas_args->args[i] = va_arg(list, rtas_arg_t);
|
|
PPCDBG(PPCDBG_RTAS, "\tnarg[%d] = 0x%x\n", i, rtas_args->args[i]);
|
|
}
|
|
va_end(list);
|
|
|
|
for (i = 0; i < nret; ++i)
|
|
rtas_args->rets[i] = 0;
|
|
|
|
PPCDBG(PPCDBG_RTAS, "\tentering rtas with 0x%lx\n",
|
|
__pa(rtas_args));
|
|
enter_rtas(__pa(rtas_args));
|
|
PPCDBG(PPCDBG_RTAS, "\treturned from rtas ...\n");
|
|
|
|
/* A -1 return code indicates that the last command couldn't
|
|
be completed due to a hardware error. */
|
|
if (rtas_args->rets[0] == -1)
|
|
logit = (__fetch_rtas_last_error() == 0);
|
|
|
|
ifppcdebug(PPCDBG_RTAS) {
|
|
for(i=0; i < nret ;i++)
|
|
udbg_printf("\tnret[%d] = 0x%lx\n", i, (ulong)rtas_args->rets[i]);
|
|
}
|
|
|
|
if (nret > 1 && outputs != NULL)
|
|
for (i = 0; i < nret-1; ++i)
|
|
outputs[i] = rtas_args->rets[i+1];
|
|
ret = (nret > 0)? rtas_args->rets[0]: 0;
|
|
|
|
/* Log the error in the unlikely case that there was one. */
|
|
if (unlikely(logit)) {
|
|
buff_copy = rtas_err_buf;
|
|
if (mem_init_done) {
|
|
buff_copy = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
|
|
if (buff_copy)
|
|
memcpy(buff_copy, rtas_err_buf,
|
|
RTAS_ERROR_LOG_MAX);
|
|
}
|
|
}
|
|
|
|
/* Gotta do something different here, use global lock for now... */
|
|
spin_unlock_irqrestore(&rtas.lock, s);
|
|
|
|
if (buff_copy) {
|
|
log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
|
|
if (mem_init_done)
|
|
kfree(buff_copy);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Given an RTAS status code of 990n compute the hinted delay of 10^n
|
|
* (last digit) milliseconds. For now we bound at n=5 (100 sec).
|
|
*/
|
|
unsigned int
|
|
rtas_extended_busy_delay_time(int status)
|
|
{
|
|
int order = status - 9900;
|
|
unsigned long ms;
|
|
|
|
if (order < 0)
|
|
order = 0; /* RTC depends on this for -2 clock busy */
|
|
else if (order > 5)
|
|
order = 5; /* bound */
|
|
|
|
/* Use microseconds for reasonable accuracy */
|
|
for (ms=1; order > 0; order--)
|
|
ms *= 10;
|
|
|
|
return ms;
|
|
}
|
|
|
|
int rtas_error_rc(int rtas_rc)
|
|
{
|
|
int rc;
|
|
|
|
switch (rtas_rc) {
|
|
case -1: /* Hardware Error */
|
|
rc = -EIO;
|
|
break;
|
|
case -3: /* Bad indicator/domain/etc */
|
|
rc = -EINVAL;
|
|
break;
|
|
case -9000: /* Isolation error */
|
|
rc = -EFAULT;
|
|
break;
|
|
case -9001: /* Outstanding TCE/PTE */
|
|
rc = -EEXIST;
|
|
break;
|
|
case -9002: /* No usable slot */
|
|
rc = -ENODEV;
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "%s: unexpected RTAS error %d\n",
|
|
__FUNCTION__, rtas_rc);
|
|
rc = -ERANGE;
|
|
break;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
int rtas_get_power_level(int powerdomain, int *level)
|
|
{
|
|
int token = rtas_token("get-power-level");
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
|
|
udelay(1);
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
|
|
int rtas_set_power_level(int powerdomain, int level, int *setlevel)
|
|
{
|
|
int token = rtas_token("set-power-level");
|
|
unsigned int wait_time;
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
while (1) {
|
|
rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
|
|
if (rc == RTAS_BUSY)
|
|
udelay(1);
|
|
else if (rtas_is_extended_busy(rc)) {
|
|
wait_time = rtas_extended_busy_delay_time(rc);
|
|
udelay(wait_time * 1000);
|
|
} else
|
|
break;
|
|
}
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
|
|
int rtas_get_sensor(int sensor, int index, int *state)
|
|
{
|
|
int token = rtas_token("get-sensor-state");
|
|
unsigned int wait_time;
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
while (1) {
|
|
rc = rtas_call(token, 2, 2, state, sensor, index);
|
|
if (rc == RTAS_BUSY)
|
|
udelay(1);
|
|
else if (rtas_is_extended_busy(rc)) {
|
|
wait_time = rtas_extended_busy_delay_time(rc);
|
|
udelay(wait_time * 1000);
|
|
} else
|
|
break;
|
|
}
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
|
|
int rtas_set_indicator(int indicator, int index, int new_value)
|
|
{
|
|
int token = rtas_token("set-indicator");
|
|
unsigned int wait_time;
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
while (1) {
|
|
rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
|
|
if (rc == RTAS_BUSY)
|
|
udelay(1);
|
|
else if (rtas_is_extended_busy(rc)) {
|
|
wait_time = rtas_extended_busy_delay_time(rc);
|
|
udelay(wait_time * 1000);
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
|
|
#define FLASH_BLOCK_LIST_VERSION (1UL)
|
|
static void
|
|
rtas_flash_firmware(void)
|
|
{
|
|
unsigned long image_size;
|
|
struct flash_block_list *f, *next, *flist;
|
|
unsigned long rtas_block_list;
|
|
int i, status, update_token;
|
|
|
|
update_token = rtas_token("ibm,update-flash-64-and-reboot");
|
|
if (update_token == RTAS_UNKNOWN_SERVICE) {
|
|
printk(KERN_ALERT "FLASH: ibm,update-flash-64-and-reboot is not available -- not a service partition?\n");
|
|
printk(KERN_ALERT "FLASH: firmware will not be flashed\n");
|
|
return;
|
|
}
|
|
|
|
/* NOTE: the "first" block list is a global var with no data
|
|
* blocks in the kernel data segment. We do this because
|
|
* we want to ensure this block_list addr is under 4GB.
|
|
*/
|
|
rtas_firmware_flash_list.num_blocks = 0;
|
|
flist = (struct flash_block_list *)&rtas_firmware_flash_list;
|
|
rtas_block_list = virt_to_abs(flist);
|
|
if (rtas_block_list >= 4UL*1024*1024*1024) {
|
|
printk(KERN_ALERT "FLASH: kernel bug...flash list header addr above 4GB\n");
|
|
return;
|
|
}
|
|
|
|
printk(KERN_ALERT "FLASH: preparing saved firmware image for flash\n");
|
|
/* Update the block_list in place. */
|
|
image_size = 0;
|
|
for (f = flist; f; f = next) {
|
|
/* Translate data addrs to absolute */
|
|
for (i = 0; i < f->num_blocks; i++) {
|
|
f->blocks[i].data = (char *)virt_to_abs(f->blocks[i].data);
|
|
image_size += f->blocks[i].length;
|
|
}
|
|
next = f->next;
|
|
/* Don't translate NULL pointer for last entry */
|
|
if (f->next)
|
|
f->next = (struct flash_block_list *)virt_to_abs(f->next);
|
|
else
|
|
f->next = NULL;
|
|
/* make num_blocks into the version/length field */
|
|
f->num_blocks = (FLASH_BLOCK_LIST_VERSION << 56) | ((f->num_blocks+1)*16);
|
|
}
|
|
|
|
printk(KERN_ALERT "FLASH: flash image is %ld bytes\n", image_size);
|
|
printk(KERN_ALERT "FLASH: performing flash and reboot\n");
|
|
rtas_progress("Flashing \n", 0x0);
|
|
rtas_progress("Please Wait... ", 0x0);
|
|
printk(KERN_ALERT "FLASH: this will take several minutes. Do not power off!\n");
|
|
status = rtas_call(update_token, 1, 1, NULL, rtas_block_list);
|
|
switch (status) { /* should only get "bad" status */
|
|
case 0:
|
|
printk(KERN_ALERT "FLASH: success\n");
|
|
break;
|
|
case -1:
|
|
printk(KERN_ALERT "FLASH: hardware error. Firmware may not be not flashed\n");
|
|
break;
|
|
case -3:
|
|
printk(KERN_ALERT "FLASH: image is corrupt or not correct for this platform. Firmware not flashed\n");
|
|
break;
|
|
case -4:
|
|
printk(KERN_ALERT "FLASH: flash failed when partially complete. System may not reboot\n");
|
|
break;
|
|
default:
|
|
printk(KERN_ALERT "FLASH: unknown flash return code %d\n", status);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void rtas_flash_bypass_warning(void)
|
|
{
|
|
printk(KERN_ALERT "FLASH: firmware flash requires a reboot\n");
|
|
printk(KERN_ALERT "FLASH: the firmware image will NOT be flashed\n");
|
|
}
|
|
|
|
|
|
void
|
|
rtas_restart(char *cmd)
|
|
{
|
|
if (rtas_firmware_flash_list.next)
|
|
rtas_flash_firmware();
|
|
|
|
printk("RTAS system-reboot returned %d\n",
|
|
rtas_call(rtas_token("system-reboot"), 0, 1, NULL));
|
|
for (;;);
|
|
}
|
|
|
|
void
|
|
rtas_power_off(void)
|
|
{
|
|
if (rtas_firmware_flash_list.next)
|
|
rtas_flash_bypass_warning();
|
|
/* allow power on only with power button press */
|
|
printk("RTAS power-off returned %d\n",
|
|
rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
|
|
for (;;);
|
|
}
|
|
|
|
void
|
|
rtas_halt(void)
|
|
{
|
|
if (rtas_firmware_flash_list.next)
|
|
rtas_flash_bypass_warning();
|
|
rtas_power_off();
|
|
}
|
|
|
|
/* Must be in the RMO region, so we place it here */
|
|
static char rtas_os_term_buf[2048];
|
|
|
|
void rtas_os_term(char *str)
|
|
{
|
|
int status;
|
|
|
|
if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term"))
|
|
return;
|
|
|
|
snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
|
|
|
|
do {
|
|
status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL,
|
|
__pa(rtas_os_term_buf));
|
|
|
|
if (status == RTAS_BUSY)
|
|
udelay(1);
|
|
else if (status != 0)
|
|
printk(KERN_EMERG "ibm,os-term call failed %d\n",
|
|
status);
|
|
} while (status == RTAS_BUSY);
|
|
}
|
|
|
|
|
|
asmlinkage int ppc_rtas(struct rtas_args __user *uargs)
|
|
{
|
|
struct rtas_args args;
|
|
unsigned long flags;
|
|
char * buff_copy;
|
|
int nargs;
|
|
int err_rc = 0;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
|
|
return -EFAULT;
|
|
|
|
nargs = args.nargs;
|
|
if (nargs > ARRAY_SIZE(args.args)
|
|
|| args.nret > ARRAY_SIZE(args.args)
|
|
|| nargs + args.nret > ARRAY_SIZE(args.args))
|
|
return -EINVAL;
|
|
|
|
/* Copy in args. */
|
|
if (copy_from_user(args.args, uargs->args,
|
|
nargs * sizeof(rtas_arg_t)) != 0)
|
|
return -EFAULT;
|
|
|
|
buff_copy = kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL);
|
|
|
|
spin_lock_irqsave(&rtas.lock, flags);
|
|
|
|
rtas.args = args;
|
|
enter_rtas(__pa(&rtas.args));
|
|
args = rtas.args;
|
|
|
|
args.rets = &args.args[nargs];
|
|
|
|
/* A -1 return code indicates that the last command couldn't
|
|
be completed due to a hardware error. */
|
|
if (args.rets[0] == -1) {
|
|
err_rc = __fetch_rtas_last_error();
|
|
if ((err_rc == 0) && buff_copy) {
|
|
memcpy(buff_copy, rtas_err_buf, RTAS_ERROR_LOG_MAX);
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&rtas.lock, flags);
|
|
|
|
if (buff_copy) {
|
|
if ((args.rets[0] == -1) && (err_rc == 0)) {
|
|
log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
|
|
}
|
|
kfree(buff_copy);
|
|
}
|
|
|
|
/* Copy out args. */
|
|
if (copy_to_user(uargs->args + nargs,
|
|
args.args + nargs,
|
|
args.nret * sizeof(rtas_arg_t)) != 0)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This version can't take the spinlock, because it never returns */
|
|
|
|
struct rtas_args rtas_stop_self_args = {
|
|
/* The token is initialized for real in setup_system() */
|
|
.token = RTAS_UNKNOWN_SERVICE,
|
|
.nargs = 0,
|
|
.nret = 1,
|
|
.rets = &rtas_stop_self_args.args[0],
|
|
};
|
|
|
|
void rtas_stop_self(void)
|
|
{
|
|
struct rtas_args *rtas_args = &rtas_stop_self_args;
|
|
|
|
local_irq_disable();
|
|
|
|
BUG_ON(rtas_args->token == RTAS_UNKNOWN_SERVICE);
|
|
|
|
printk("cpu %u (hwid %u) Ready to die...\n",
|
|
smp_processor_id(), hard_smp_processor_id());
|
|
enter_rtas(__pa(rtas_args));
|
|
|
|
panic("Alas, I survived.\n");
|
|
}
|
|
|
|
/*
|
|
* Call early during boot, before mem init or bootmem, to retreive the RTAS
|
|
* informations from the device-tree and allocate the RMO buffer for userland
|
|
* accesses.
|
|
*/
|
|
void __init rtas_initialize(void)
|
|
{
|
|
/* Get RTAS dev node and fill up our "rtas" structure with infos
|
|
* about it.
|
|
*/
|
|
rtas.dev = of_find_node_by_name(NULL, "rtas");
|
|
if (rtas.dev) {
|
|
u32 *basep, *entryp;
|
|
u32 *sizep;
|
|
|
|
basep = (u32 *)get_property(rtas.dev, "linux,rtas-base", NULL);
|
|
sizep = (u32 *)get_property(rtas.dev, "rtas-size", NULL);
|
|
if (basep != NULL && sizep != NULL) {
|
|
rtas.base = *basep;
|
|
rtas.size = *sizep;
|
|
entryp = (u32 *)get_property(rtas.dev, "linux,rtas-entry", NULL);
|
|
if (entryp == NULL) /* Ugh */
|
|
rtas.entry = rtas.base;
|
|
else
|
|
rtas.entry = *entryp;
|
|
} else
|
|
rtas.dev = NULL;
|
|
}
|
|
/* If RTAS was found, allocate the RMO buffer for it and look for
|
|
* the stop-self token if any
|
|
*/
|
|
if (rtas.dev) {
|
|
unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
|
|
if (systemcfg->platform == PLATFORM_PSERIES_LPAR)
|
|
rtas_region = min(lmb.rmo_size, RTAS_INSTANTIATE_MAX);
|
|
|
|
rtas_rmo_buf = lmb_alloc_base(RTAS_RMOBUF_MAX, PAGE_SIZE,
|
|
rtas_region);
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
rtas_stop_self_args.token = rtas_token("stop-self");
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
}
|
|
|
|
}
|
|
|
|
|
|
EXPORT_SYMBOL(rtas_firmware_flash_list);
|
|
EXPORT_SYMBOL(rtas_token);
|
|
EXPORT_SYMBOL(rtas_call);
|
|
EXPORT_SYMBOL(rtas_data_buf);
|
|
EXPORT_SYMBOL(rtas_data_buf_lock);
|
|
EXPORT_SYMBOL(rtas_extended_busy_delay_time);
|
|
EXPORT_SYMBOL(rtas_get_sensor);
|
|
EXPORT_SYMBOL(rtas_get_power_level);
|
|
EXPORT_SYMBOL(rtas_set_power_level);
|
|
EXPORT_SYMBOL(rtas_set_indicator);
|
|
EXPORT_SYMBOL(rtas_get_error_log_max);
|