linux/drivers/net/macvlan.c
Yunjian Wang 89430ef34c macvlan: remove redundant null check on data
Because macvlan_common_newlink() and macvlan_changelink() already
checked NULL data parameter, so the additional check is unnecessary,
just remove it.

Fixes: 79cf79abce ("macvlan: add source mode")
Signed-off-by: Yunjian Wang <wangyunjian@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-01-05 16:52:02 -08:00

1829 lines
46 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2007 Patrick McHardy <kaber@trash.net>
*
* The code this is based on carried the following copyright notice:
* ---
* (C) Copyright 2001-2006
* Alex Zeffertt, Cambridge Broadband Ltd, ajz@cambridgebroadband.com
* Re-worked by Ben Greear <greearb@candelatech.com>
* ---
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/rculist.h>
#include <linux/notifier.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/net_tstamp.h>
#include <linux/ethtool.h>
#include <linux/if_arp.h>
#include <linux/if_vlan.h>
#include <linux/if_link.h>
#include <linux/if_macvlan.h>
#include <linux/hash.h>
#include <linux/workqueue.h>
#include <net/rtnetlink.h>
#include <net/xfrm.h>
#include <linux/netpoll.h>
#include <linux/phy.h>
#define MACVLAN_HASH_BITS 8
#define MACVLAN_HASH_SIZE (1<<MACVLAN_HASH_BITS)
#define MACVLAN_DEFAULT_BC_QUEUE_LEN 1000
#define MACVLAN_F_PASSTHRU 1
#define MACVLAN_F_ADDRCHANGE 2
struct macvlan_port {
struct net_device *dev;
struct hlist_head vlan_hash[MACVLAN_HASH_SIZE];
struct list_head vlans;
struct sk_buff_head bc_queue;
struct work_struct bc_work;
u32 bc_queue_len_used;
u32 flags;
int count;
struct hlist_head vlan_source_hash[MACVLAN_HASH_SIZE];
DECLARE_BITMAP(mc_filter, MACVLAN_MC_FILTER_SZ);
unsigned char perm_addr[ETH_ALEN];
};
struct macvlan_source_entry {
struct hlist_node hlist;
struct macvlan_dev *vlan;
unsigned char addr[6+2] __aligned(sizeof(u16));
struct rcu_head rcu;
};
struct macvlan_skb_cb {
const struct macvlan_dev *src;
};
#define MACVLAN_SKB_CB(__skb) ((struct macvlan_skb_cb *)&((__skb)->cb[0]))
static void macvlan_port_destroy(struct net_device *dev);
static void update_port_bc_queue_len(struct macvlan_port *port);
static inline bool macvlan_passthru(const struct macvlan_port *port)
{
return port->flags & MACVLAN_F_PASSTHRU;
}
static inline void macvlan_set_passthru(struct macvlan_port *port)
{
port->flags |= MACVLAN_F_PASSTHRU;
}
static inline bool macvlan_addr_change(const struct macvlan_port *port)
{
return port->flags & MACVLAN_F_ADDRCHANGE;
}
static inline void macvlan_set_addr_change(struct macvlan_port *port)
{
port->flags |= MACVLAN_F_ADDRCHANGE;
}
static inline void macvlan_clear_addr_change(struct macvlan_port *port)
{
port->flags &= ~MACVLAN_F_ADDRCHANGE;
}
/* Hash Ethernet address */
static u32 macvlan_eth_hash(const unsigned char *addr)
{
u64 value = get_unaligned((u64 *)addr);
/* only want 6 bytes */
#ifdef __BIG_ENDIAN
value >>= 16;
#else
value <<= 16;
#endif
return hash_64(value, MACVLAN_HASH_BITS);
}
static struct macvlan_port *macvlan_port_get_rcu(const struct net_device *dev)
{
return rcu_dereference(dev->rx_handler_data);
}
static struct macvlan_port *macvlan_port_get_rtnl(const struct net_device *dev)
{
return rtnl_dereference(dev->rx_handler_data);
}
static struct macvlan_dev *macvlan_hash_lookup(const struct macvlan_port *port,
const unsigned char *addr)
{
struct macvlan_dev *vlan;
u32 idx = macvlan_eth_hash(addr);
hlist_for_each_entry_rcu(vlan, &port->vlan_hash[idx], hlist,
lockdep_rtnl_is_held()) {
if (ether_addr_equal_64bits(vlan->dev->dev_addr, addr))
return vlan;
}
return NULL;
}
static struct macvlan_source_entry *macvlan_hash_lookup_source(
const struct macvlan_dev *vlan,
const unsigned char *addr)
{
struct macvlan_source_entry *entry;
u32 idx = macvlan_eth_hash(addr);
struct hlist_head *h = &vlan->port->vlan_source_hash[idx];
hlist_for_each_entry_rcu(entry, h, hlist) {
if (ether_addr_equal_64bits(entry->addr, addr) &&
entry->vlan == vlan)
return entry;
}
return NULL;
}
static int macvlan_hash_add_source(struct macvlan_dev *vlan,
const unsigned char *addr)
{
struct macvlan_port *port = vlan->port;
struct macvlan_source_entry *entry;
struct hlist_head *h;
entry = macvlan_hash_lookup_source(vlan, addr);
if (entry)
return 0;
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
ether_addr_copy(entry->addr, addr);
entry->vlan = vlan;
h = &port->vlan_source_hash[macvlan_eth_hash(addr)];
hlist_add_head_rcu(&entry->hlist, h);
vlan->macaddr_count++;
return 0;
}
static void macvlan_hash_add(struct macvlan_dev *vlan)
{
struct macvlan_port *port = vlan->port;
const unsigned char *addr = vlan->dev->dev_addr;
u32 idx = macvlan_eth_hash(addr);
hlist_add_head_rcu(&vlan->hlist, &port->vlan_hash[idx]);
}
static void macvlan_hash_del_source(struct macvlan_source_entry *entry)
{
hlist_del_rcu(&entry->hlist);
kfree_rcu(entry, rcu);
}
static void macvlan_hash_del(struct macvlan_dev *vlan, bool sync)
{
hlist_del_rcu(&vlan->hlist);
if (sync)
synchronize_rcu();
}
static void macvlan_hash_change_addr(struct macvlan_dev *vlan,
const unsigned char *addr)
{
macvlan_hash_del(vlan, true);
/* Now that we are unhashed it is safe to change the device
* address without confusing packet delivery.
*/
memcpy(vlan->dev->dev_addr, addr, ETH_ALEN);
macvlan_hash_add(vlan);
}
static bool macvlan_addr_busy(const struct macvlan_port *port,
const unsigned char *addr)
{
/* Test to see if the specified address is
* currently in use by the underlying device or
* another macvlan.
*/
if (!macvlan_passthru(port) && !macvlan_addr_change(port) &&
ether_addr_equal_64bits(port->dev->dev_addr, addr))
return true;
if (macvlan_hash_lookup(port, addr))
return true;
return false;
}
static int macvlan_broadcast_one(struct sk_buff *skb,
const struct macvlan_dev *vlan,
const struct ethhdr *eth, bool local)
{
struct net_device *dev = vlan->dev;
if (local)
return __dev_forward_skb(dev, skb);
skb->dev = dev;
if (ether_addr_equal_64bits(eth->h_dest, dev->broadcast))
skb->pkt_type = PACKET_BROADCAST;
else
skb->pkt_type = PACKET_MULTICAST;
return 0;
}
static u32 macvlan_hash_mix(const struct macvlan_dev *vlan)
{
return (u32)(((unsigned long)vlan) >> L1_CACHE_SHIFT);
}
static unsigned int mc_hash(const struct macvlan_dev *vlan,
const unsigned char *addr)
{
u32 val = __get_unaligned_cpu32(addr + 2);
val ^= macvlan_hash_mix(vlan);
return hash_32(val, MACVLAN_MC_FILTER_BITS);
}
static void macvlan_broadcast(struct sk_buff *skb,
const struct macvlan_port *port,
struct net_device *src,
enum macvlan_mode mode)
{
const struct ethhdr *eth = eth_hdr(skb);
const struct macvlan_dev *vlan;
struct sk_buff *nskb;
unsigned int i;
int err;
unsigned int hash;
if (skb->protocol == htons(ETH_P_PAUSE))
return;
for (i = 0; i < MACVLAN_HASH_SIZE; i++) {
hlist_for_each_entry_rcu(vlan, &port->vlan_hash[i], hlist) {
if (vlan->dev == src || !(vlan->mode & mode))
continue;
hash = mc_hash(vlan, eth->h_dest);
if (!test_bit(hash, vlan->mc_filter))
continue;
err = NET_RX_DROP;
nskb = skb_clone(skb, GFP_ATOMIC);
if (likely(nskb))
err = macvlan_broadcast_one(
nskb, vlan, eth,
mode == MACVLAN_MODE_BRIDGE) ?:
netif_rx_ni(nskb);
macvlan_count_rx(vlan, skb->len + ETH_HLEN,
err == NET_RX_SUCCESS, true);
}
}
}
static void macvlan_process_broadcast(struct work_struct *w)
{
struct macvlan_port *port = container_of(w, struct macvlan_port,
bc_work);
struct sk_buff *skb;
struct sk_buff_head list;
__skb_queue_head_init(&list);
spin_lock_bh(&port->bc_queue.lock);
skb_queue_splice_tail_init(&port->bc_queue, &list);
spin_unlock_bh(&port->bc_queue.lock);
while ((skb = __skb_dequeue(&list))) {
const struct macvlan_dev *src = MACVLAN_SKB_CB(skb)->src;
rcu_read_lock();
if (!src)
/* frame comes from an external address */
macvlan_broadcast(skb, port, NULL,
MACVLAN_MODE_PRIVATE |
MACVLAN_MODE_VEPA |
MACVLAN_MODE_PASSTHRU|
MACVLAN_MODE_BRIDGE);
else if (src->mode == MACVLAN_MODE_VEPA)
/* flood to everyone except source */
macvlan_broadcast(skb, port, src->dev,
MACVLAN_MODE_VEPA |
MACVLAN_MODE_BRIDGE);
else
/*
* flood only to VEPA ports, bridge ports
* already saw the frame on the way out.
*/
macvlan_broadcast(skb, port, src->dev,
MACVLAN_MODE_VEPA);
rcu_read_unlock();
if (src)
dev_put(src->dev);
consume_skb(skb);
cond_resched();
}
}
static void macvlan_broadcast_enqueue(struct macvlan_port *port,
const struct macvlan_dev *src,
struct sk_buff *skb)
{
struct sk_buff *nskb;
int err = -ENOMEM;
nskb = skb_clone(skb, GFP_ATOMIC);
if (!nskb)
goto err;
MACVLAN_SKB_CB(nskb)->src = src;
spin_lock(&port->bc_queue.lock);
if (skb_queue_len(&port->bc_queue) < port->bc_queue_len_used) {
if (src)
dev_hold(src->dev);
__skb_queue_tail(&port->bc_queue, nskb);
err = 0;
}
spin_unlock(&port->bc_queue.lock);
schedule_work(&port->bc_work);
if (err)
goto free_nskb;
return;
free_nskb:
kfree_skb(nskb);
err:
atomic_long_inc(&skb->dev->rx_dropped);
}
static void macvlan_flush_sources(struct macvlan_port *port,
struct macvlan_dev *vlan)
{
int i;
for (i = 0; i < MACVLAN_HASH_SIZE; i++) {
struct hlist_node *h, *n;
hlist_for_each_safe(h, n, &port->vlan_source_hash[i]) {
struct macvlan_source_entry *entry;
entry = hlist_entry(h, struct macvlan_source_entry,
hlist);
if (entry->vlan == vlan)
macvlan_hash_del_source(entry);
}
}
vlan->macaddr_count = 0;
}
static void macvlan_forward_source_one(struct sk_buff *skb,
struct macvlan_dev *vlan)
{
struct sk_buff *nskb;
struct net_device *dev;
int len;
int ret;
dev = vlan->dev;
if (unlikely(!(dev->flags & IFF_UP)))
return;
nskb = skb_clone(skb, GFP_ATOMIC);
if (!nskb)
return;
len = nskb->len + ETH_HLEN;
nskb->dev = dev;
if (ether_addr_equal_64bits(eth_hdr(skb)->h_dest, dev->dev_addr))
nskb->pkt_type = PACKET_HOST;
ret = netif_rx(nskb);
macvlan_count_rx(vlan, len, ret == NET_RX_SUCCESS, false);
}
static void macvlan_forward_source(struct sk_buff *skb,
struct macvlan_port *port,
const unsigned char *addr)
{
struct macvlan_source_entry *entry;
u32 idx = macvlan_eth_hash(addr);
struct hlist_head *h = &port->vlan_source_hash[idx];
hlist_for_each_entry_rcu(entry, h, hlist) {
if (ether_addr_equal_64bits(entry->addr, addr))
macvlan_forward_source_one(skb, entry->vlan);
}
}
/* called under rcu_read_lock() from netif_receive_skb */
static rx_handler_result_t macvlan_handle_frame(struct sk_buff **pskb)
{
struct macvlan_port *port;
struct sk_buff *skb = *pskb;
const struct ethhdr *eth = eth_hdr(skb);
const struct macvlan_dev *vlan;
const struct macvlan_dev *src;
struct net_device *dev;
unsigned int len = 0;
int ret;
rx_handler_result_t handle_res;
/* Packets from dev_loopback_xmit() do not have L2 header, bail out */
if (unlikely(skb->pkt_type == PACKET_LOOPBACK))
return RX_HANDLER_PASS;
port = macvlan_port_get_rcu(skb->dev);
if (is_multicast_ether_addr(eth->h_dest)) {
unsigned int hash;
skb = ip_check_defrag(dev_net(skb->dev), skb, IP_DEFRAG_MACVLAN);
if (!skb)
return RX_HANDLER_CONSUMED;
*pskb = skb;
eth = eth_hdr(skb);
macvlan_forward_source(skb, port, eth->h_source);
src = macvlan_hash_lookup(port, eth->h_source);
if (src && src->mode != MACVLAN_MODE_VEPA &&
src->mode != MACVLAN_MODE_BRIDGE) {
/* forward to original port. */
vlan = src;
ret = macvlan_broadcast_one(skb, vlan, eth, 0) ?:
netif_rx(skb);
handle_res = RX_HANDLER_CONSUMED;
goto out;
}
hash = mc_hash(NULL, eth->h_dest);
if (test_bit(hash, port->mc_filter))
macvlan_broadcast_enqueue(port, src, skb);
return RX_HANDLER_PASS;
}
macvlan_forward_source(skb, port, eth->h_source);
if (macvlan_passthru(port))
vlan = list_first_or_null_rcu(&port->vlans,
struct macvlan_dev, list);
else
vlan = macvlan_hash_lookup(port, eth->h_dest);
if (!vlan || vlan->mode == MACVLAN_MODE_SOURCE)
return RX_HANDLER_PASS;
dev = vlan->dev;
if (unlikely(!(dev->flags & IFF_UP))) {
kfree_skb(skb);
return RX_HANDLER_CONSUMED;
}
len = skb->len + ETH_HLEN;
skb = skb_share_check(skb, GFP_ATOMIC);
if (!skb) {
ret = NET_RX_DROP;
handle_res = RX_HANDLER_CONSUMED;
goto out;
}
*pskb = skb;
skb->dev = dev;
skb->pkt_type = PACKET_HOST;
ret = NET_RX_SUCCESS;
handle_res = RX_HANDLER_ANOTHER;
out:
macvlan_count_rx(vlan, len, ret == NET_RX_SUCCESS, false);
return handle_res;
}
static int macvlan_queue_xmit(struct sk_buff *skb, struct net_device *dev)
{
const struct macvlan_dev *vlan = netdev_priv(dev);
const struct macvlan_port *port = vlan->port;
const struct macvlan_dev *dest;
if (vlan->mode == MACVLAN_MODE_BRIDGE) {
const struct ethhdr *eth = skb_eth_hdr(skb);
/* send to other bridge ports directly */
if (is_multicast_ether_addr(eth->h_dest)) {
skb_reset_mac_header(skb);
macvlan_broadcast(skb, port, dev, MACVLAN_MODE_BRIDGE);
goto xmit_world;
}
dest = macvlan_hash_lookup(port, eth->h_dest);
if (dest && dest->mode == MACVLAN_MODE_BRIDGE) {
/* send to lowerdev first for its network taps */
dev_forward_skb(vlan->lowerdev, skb);
return NET_XMIT_SUCCESS;
}
}
xmit_world:
skb->dev = vlan->lowerdev;
return dev_queue_xmit_accel(skb,
netdev_get_sb_channel(dev) ? dev : NULL);
}
static inline netdev_tx_t macvlan_netpoll_send_skb(struct macvlan_dev *vlan, struct sk_buff *skb)
{
#ifdef CONFIG_NET_POLL_CONTROLLER
return netpoll_send_skb(vlan->netpoll, skb);
#else
BUG();
return NETDEV_TX_OK;
#endif
}
static netdev_tx_t macvlan_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
unsigned int len = skb->len;
int ret;
if (unlikely(netpoll_tx_running(dev)))
return macvlan_netpoll_send_skb(vlan, skb);
ret = macvlan_queue_xmit(skb, dev);
if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
struct vlan_pcpu_stats *pcpu_stats;
pcpu_stats = this_cpu_ptr(vlan->pcpu_stats);
u64_stats_update_begin(&pcpu_stats->syncp);
pcpu_stats->tx_packets++;
pcpu_stats->tx_bytes += len;
u64_stats_update_end(&pcpu_stats->syncp);
} else {
this_cpu_inc(vlan->pcpu_stats->tx_dropped);
}
return ret;
}
static int macvlan_hard_header(struct sk_buff *skb, struct net_device *dev,
unsigned short type, const void *daddr,
const void *saddr, unsigned len)
{
const struct macvlan_dev *vlan = netdev_priv(dev);
struct net_device *lowerdev = vlan->lowerdev;
return dev_hard_header(skb, lowerdev, type, daddr,
saddr ? : dev->dev_addr, len);
}
static const struct header_ops macvlan_hard_header_ops = {
.create = macvlan_hard_header,
.parse = eth_header_parse,
.cache = eth_header_cache,
.cache_update = eth_header_cache_update,
};
static int macvlan_open(struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct net_device *lowerdev = vlan->lowerdev;
int err;
if (macvlan_passthru(vlan->port)) {
if (!(vlan->flags & MACVLAN_FLAG_NOPROMISC)) {
err = dev_set_promiscuity(lowerdev, 1);
if (err < 0)
goto out;
}
goto hash_add;
}
err = -EADDRINUSE;
if (macvlan_addr_busy(vlan->port, dev->dev_addr))
goto out;
/* Attempt to populate accel_priv which is used to offload the L2
* forwarding requests for unicast packets.
*/
if (lowerdev->features & NETIF_F_HW_L2FW_DOFFLOAD)
vlan->accel_priv =
lowerdev->netdev_ops->ndo_dfwd_add_station(lowerdev, dev);
/* If earlier attempt to offload failed, or accel_priv is not
* populated we must add the unicast address to the lower device.
*/
if (IS_ERR_OR_NULL(vlan->accel_priv)) {
vlan->accel_priv = NULL;
err = dev_uc_add(lowerdev, dev->dev_addr);
if (err < 0)
goto out;
}
if (dev->flags & IFF_ALLMULTI) {
err = dev_set_allmulti(lowerdev, 1);
if (err < 0)
goto del_unicast;
}
if (dev->flags & IFF_PROMISC) {
err = dev_set_promiscuity(lowerdev, 1);
if (err < 0)
goto clear_multi;
}
hash_add:
macvlan_hash_add(vlan);
return 0;
clear_multi:
if (dev->flags & IFF_ALLMULTI)
dev_set_allmulti(lowerdev, -1);
del_unicast:
if (vlan->accel_priv) {
lowerdev->netdev_ops->ndo_dfwd_del_station(lowerdev,
vlan->accel_priv);
vlan->accel_priv = NULL;
} else {
dev_uc_del(lowerdev, dev->dev_addr);
}
out:
return err;
}
static int macvlan_stop(struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct net_device *lowerdev = vlan->lowerdev;
if (vlan->accel_priv) {
lowerdev->netdev_ops->ndo_dfwd_del_station(lowerdev,
vlan->accel_priv);
vlan->accel_priv = NULL;
}
dev_uc_unsync(lowerdev, dev);
dev_mc_unsync(lowerdev, dev);
if (macvlan_passthru(vlan->port)) {
if (!(vlan->flags & MACVLAN_FLAG_NOPROMISC))
dev_set_promiscuity(lowerdev, -1);
goto hash_del;
}
if (dev->flags & IFF_ALLMULTI)
dev_set_allmulti(lowerdev, -1);
if (dev->flags & IFF_PROMISC)
dev_set_promiscuity(lowerdev, -1);
dev_uc_del(lowerdev, dev->dev_addr);
hash_del:
macvlan_hash_del(vlan, !dev->dismantle);
return 0;
}
static int macvlan_sync_address(struct net_device *dev, unsigned char *addr)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct net_device *lowerdev = vlan->lowerdev;
struct macvlan_port *port = vlan->port;
int err;
if (!(dev->flags & IFF_UP)) {
/* Just copy in the new address */
ether_addr_copy(dev->dev_addr, addr);
} else {
/* Rehash and update the device filters */
if (macvlan_addr_busy(vlan->port, addr))
return -EADDRINUSE;
if (!macvlan_passthru(port)) {
err = dev_uc_add(lowerdev, addr);
if (err)
return err;
dev_uc_del(lowerdev, dev->dev_addr);
}
macvlan_hash_change_addr(vlan, addr);
}
if (macvlan_passthru(port) && !macvlan_addr_change(port)) {
/* Since addr_change isn't set, we are here due to lower
* device change. Save the lower-dev address so we can
* restore it later.
*/
ether_addr_copy(vlan->port->perm_addr,
lowerdev->dev_addr);
}
macvlan_clear_addr_change(port);
return 0;
}
static int macvlan_set_mac_address(struct net_device *dev, void *p)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
/* If the addresses are the same, this is a no-op */
if (ether_addr_equal(dev->dev_addr, addr->sa_data))
return 0;
if (vlan->mode == MACVLAN_MODE_PASSTHRU) {
macvlan_set_addr_change(vlan->port);
return dev_set_mac_address(vlan->lowerdev, addr, NULL);
}
if (macvlan_addr_busy(vlan->port, addr->sa_data))
return -EADDRINUSE;
return macvlan_sync_address(dev, addr->sa_data);
}
static void macvlan_change_rx_flags(struct net_device *dev, int change)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct net_device *lowerdev = vlan->lowerdev;
if (dev->flags & IFF_UP) {
if (change & IFF_ALLMULTI)
dev_set_allmulti(lowerdev, dev->flags & IFF_ALLMULTI ? 1 : -1);
if (change & IFF_PROMISC)
dev_set_promiscuity(lowerdev,
dev->flags & IFF_PROMISC ? 1 : -1);
}
}
static void macvlan_compute_filter(unsigned long *mc_filter,
struct net_device *dev,
struct macvlan_dev *vlan)
{
if (dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
bitmap_fill(mc_filter, MACVLAN_MC_FILTER_SZ);
} else {
struct netdev_hw_addr *ha;
DECLARE_BITMAP(filter, MACVLAN_MC_FILTER_SZ);
bitmap_zero(filter, MACVLAN_MC_FILTER_SZ);
netdev_for_each_mc_addr(ha, dev) {
__set_bit(mc_hash(vlan, ha->addr), filter);
}
__set_bit(mc_hash(vlan, dev->broadcast), filter);
bitmap_copy(mc_filter, filter, MACVLAN_MC_FILTER_SZ);
}
}
static void macvlan_set_mac_lists(struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
macvlan_compute_filter(vlan->mc_filter, dev, vlan);
dev_uc_sync(vlan->lowerdev, dev);
dev_mc_sync(vlan->lowerdev, dev);
/* This is slightly inaccurate as we're including the subscription
* list of vlan->lowerdev too.
*
* Bug alert: This only works if everyone has the same broadcast
* address as lowerdev. As soon as someone changes theirs this
* will break.
*
* However, this is already broken as when you change your broadcast
* address we don't get called.
*
* The solution is to maintain a list of broadcast addresses like
* we do for uc/mc, if you care.
*/
macvlan_compute_filter(vlan->port->mc_filter, vlan->lowerdev, NULL);
}
static int macvlan_change_mtu(struct net_device *dev, int new_mtu)
{
struct macvlan_dev *vlan = netdev_priv(dev);
if (vlan->lowerdev->mtu < new_mtu)
return -EINVAL;
dev->mtu = new_mtu;
return 0;
}
static int macvlan_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct net_device *real_dev = macvlan_dev_real_dev(dev);
const struct net_device_ops *ops = real_dev->netdev_ops;
struct ifreq ifrr;
int err = -EOPNOTSUPP;
strscpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ);
ifrr.ifr_ifru = ifr->ifr_ifru;
switch (cmd) {
case SIOCSHWTSTAMP:
if (!net_eq(dev_net(dev), &init_net))
break;
fallthrough;
case SIOCGHWTSTAMP:
if (netif_device_present(real_dev) && ops->ndo_do_ioctl)
err = ops->ndo_do_ioctl(real_dev, &ifrr, cmd);
break;
}
if (!err)
ifr->ifr_ifru = ifrr.ifr_ifru;
return err;
}
/*
* macvlan network devices have devices nesting below it and are a special
* "super class" of normal network devices; split their locks off into a
* separate class since they always nest.
*/
static struct lock_class_key macvlan_netdev_addr_lock_key;
#define ALWAYS_ON_OFFLOADS \
(NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE | \
NETIF_F_GSO_ROBUST | NETIF_F_GSO_ENCAP_ALL)
#define ALWAYS_ON_FEATURES (ALWAYS_ON_OFFLOADS | NETIF_F_LLTX)
#define MACVLAN_FEATURES \
(NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | \
NETIF_F_GSO | NETIF_F_TSO | NETIF_F_LRO | \
NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_GRO | NETIF_F_RXCSUM | \
NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)
#define MACVLAN_STATE_MASK \
((1<<__LINK_STATE_NOCARRIER) | (1<<__LINK_STATE_DORMANT))
static void macvlan_set_lockdep_class(struct net_device *dev)
{
netdev_lockdep_set_classes(dev);
lockdep_set_class(&dev->addr_list_lock,
&macvlan_netdev_addr_lock_key);
}
static int macvlan_init(struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
const struct net_device *lowerdev = vlan->lowerdev;
struct macvlan_port *port = vlan->port;
dev->state = (dev->state & ~MACVLAN_STATE_MASK) |
(lowerdev->state & MACVLAN_STATE_MASK);
dev->features = lowerdev->features & MACVLAN_FEATURES;
dev->features |= ALWAYS_ON_FEATURES;
dev->hw_features |= NETIF_F_LRO;
dev->vlan_features = lowerdev->vlan_features & MACVLAN_FEATURES;
dev->vlan_features |= ALWAYS_ON_OFFLOADS;
dev->hw_enc_features |= dev->features;
dev->gso_max_size = lowerdev->gso_max_size;
dev->gso_max_segs = lowerdev->gso_max_segs;
dev->hard_header_len = lowerdev->hard_header_len;
macvlan_set_lockdep_class(dev);
vlan->pcpu_stats = netdev_alloc_pcpu_stats(struct vlan_pcpu_stats);
if (!vlan->pcpu_stats)
return -ENOMEM;
port->count += 1;
return 0;
}
static void macvlan_uninit(struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct macvlan_port *port = vlan->port;
free_percpu(vlan->pcpu_stats);
macvlan_flush_sources(port, vlan);
port->count -= 1;
if (!port->count)
macvlan_port_destroy(port->dev);
}
static void macvlan_dev_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *stats)
{
struct macvlan_dev *vlan = netdev_priv(dev);
if (vlan->pcpu_stats) {
struct vlan_pcpu_stats *p;
u64 rx_packets, rx_bytes, rx_multicast, tx_packets, tx_bytes;
u32 rx_errors = 0, tx_dropped = 0;
unsigned int start;
int i;
for_each_possible_cpu(i) {
p = per_cpu_ptr(vlan->pcpu_stats, i);
do {
start = u64_stats_fetch_begin_irq(&p->syncp);
rx_packets = p->rx_packets;
rx_bytes = p->rx_bytes;
rx_multicast = p->rx_multicast;
tx_packets = p->tx_packets;
tx_bytes = p->tx_bytes;
} while (u64_stats_fetch_retry_irq(&p->syncp, start));
stats->rx_packets += rx_packets;
stats->rx_bytes += rx_bytes;
stats->multicast += rx_multicast;
stats->tx_packets += tx_packets;
stats->tx_bytes += tx_bytes;
/* rx_errors & tx_dropped are u32, updated
* without syncp protection.
*/
rx_errors += p->rx_errors;
tx_dropped += p->tx_dropped;
}
stats->rx_errors = rx_errors;
stats->rx_dropped = rx_errors;
stats->tx_dropped = tx_dropped;
}
}
static int macvlan_vlan_rx_add_vid(struct net_device *dev,
__be16 proto, u16 vid)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct net_device *lowerdev = vlan->lowerdev;
return vlan_vid_add(lowerdev, proto, vid);
}
static int macvlan_vlan_rx_kill_vid(struct net_device *dev,
__be16 proto, u16 vid)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct net_device *lowerdev = vlan->lowerdev;
vlan_vid_del(lowerdev, proto, vid);
return 0;
}
static int macvlan_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
struct net_device *dev,
const unsigned char *addr, u16 vid,
u16 flags,
struct netlink_ext_ack *extack)
{
struct macvlan_dev *vlan = netdev_priv(dev);
int err = -EINVAL;
/* Support unicast filter only on passthru devices.
* Multicast filter should be allowed on all devices.
*/
if (!macvlan_passthru(vlan->port) && is_unicast_ether_addr(addr))
return -EOPNOTSUPP;
if (flags & NLM_F_REPLACE)
return -EOPNOTSUPP;
if (is_unicast_ether_addr(addr))
err = dev_uc_add_excl(dev, addr);
else if (is_multicast_ether_addr(addr))
err = dev_mc_add_excl(dev, addr);
return err;
}
static int macvlan_fdb_del(struct ndmsg *ndm, struct nlattr *tb[],
struct net_device *dev,
const unsigned char *addr, u16 vid)
{
struct macvlan_dev *vlan = netdev_priv(dev);
int err = -EINVAL;
/* Support unicast filter only on passthru devices.
* Multicast filter should be allowed on all devices.
*/
if (!macvlan_passthru(vlan->port) && is_unicast_ether_addr(addr))
return -EOPNOTSUPP;
if (is_unicast_ether_addr(addr))
err = dev_uc_del(dev, addr);
else if (is_multicast_ether_addr(addr))
err = dev_mc_del(dev, addr);
return err;
}
static void macvlan_ethtool_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *drvinfo)
{
strlcpy(drvinfo->driver, "macvlan", sizeof(drvinfo->driver));
strlcpy(drvinfo->version, "0.1", sizeof(drvinfo->version));
}
static int macvlan_ethtool_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
const struct macvlan_dev *vlan = netdev_priv(dev);
return __ethtool_get_link_ksettings(vlan->lowerdev, cmd);
}
static int macvlan_ethtool_get_ts_info(struct net_device *dev,
struct ethtool_ts_info *info)
{
struct net_device *real_dev = macvlan_dev_real_dev(dev);
const struct ethtool_ops *ops = real_dev->ethtool_ops;
struct phy_device *phydev = real_dev->phydev;
if (phy_has_tsinfo(phydev)) {
return phy_ts_info(phydev, info);
} else if (ops->get_ts_info) {
return ops->get_ts_info(real_dev, info);
} else {
info->so_timestamping = SOF_TIMESTAMPING_RX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE;
info->phc_index = -1;
}
return 0;
}
static netdev_features_t macvlan_fix_features(struct net_device *dev,
netdev_features_t features)
{
struct macvlan_dev *vlan = netdev_priv(dev);
netdev_features_t lowerdev_features = vlan->lowerdev->features;
netdev_features_t mask;
features |= NETIF_F_ALL_FOR_ALL;
features &= (vlan->set_features | ~MACVLAN_FEATURES);
mask = features;
lowerdev_features &= (features | ~NETIF_F_LRO);
features = netdev_increment_features(lowerdev_features, features, mask);
features |= ALWAYS_ON_FEATURES;
features &= (ALWAYS_ON_FEATURES | MACVLAN_FEATURES);
return features;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void macvlan_dev_poll_controller(struct net_device *dev)
{
return;
}
static int macvlan_dev_netpoll_setup(struct net_device *dev, struct netpoll_info *npinfo)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct net_device *real_dev = vlan->lowerdev;
struct netpoll *netpoll;
int err;
netpoll = kzalloc(sizeof(*netpoll), GFP_KERNEL);
err = -ENOMEM;
if (!netpoll)
goto out;
err = __netpoll_setup(netpoll, real_dev);
if (err) {
kfree(netpoll);
goto out;
}
vlan->netpoll = netpoll;
out:
return err;
}
static void macvlan_dev_netpoll_cleanup(struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct netpoll *netpoll = vlan->netpoll;
if (!netpoll)
return;
vlan->netpoll = NULL;
__netpoll_free(netpoll);
}
#endif /* CONFIG_NET_POLL_CONTROLLER */
static int macvlan_dev_get_iflink(const struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
return vlan->lowerdev->ifindex;
}
static const struct ethtool_ops macvlan_ethtool_ops = {
.get_link = ethtool_op_get_link,
.get_link_ksettings = macvlan_ethtool_get_link_ksettings,
.get_drvinfo = macvlan_ethtool_get_drvinfo,
.get_ts_info = macvlan_ethtool_get_ts_info,
};
static const struct net_device_ops macvlan_netdev_ops = {
.ndo_init = macvlan_init,
.ndo_uninit = macvlan_uninit,
.ndo_open = macvlan_open,
.ndo_stop = macvlan_stop,
.ndo_start_xmit = macvlan_start_xmit,
.ndo_change_mtu = macvlan_change_mtu,
.ndo_do_ioctl = macvlan_do_ioctl,
.ndo_fix_features = macvlan_fix_features,
.ndo_change_rx_flags = macvlan_change_rx_flags,
.ndo_set_mac_address = macvlan_set_mac_address,
.ndo_set_rx_mode = macvlan_set_mac_lists,
.ndo_get_stats64 = macvlan_dev_get_stats64,
.ndo_validate_addr = eth_validate_addr,
.ndo_vlan_rx_add_vid = macvlan_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = macvlan_vlan_rx_kill_vid,
.ndo_fdb_add = macvlan_fdb_add,
.ndo_fdb_del = macvlan_fdb_del,
.ndo_fdb_dump = ndo_dflt_fdb_dump,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = macvlan_dev_poll_controller,
.ndo_netpoll_setup = macvlan_dev_netpoll_setup,
.ndo_netpoll_cleanup = macvlan_dev_netpoll_cleanup,
#endif
.ndo_get_iflink = macvlan_dev_get_iflink,
.ndo_features_check = passthru_features_check,
.ndo_change_proto_down = dev_change_proto_down_generic,
};
void macvlan_common_setup(struct net_device *dev)
{
ether_setup(dev);
dev->min_mtu = 0;
dev->max_mtu = ETH_MAX_MTU;
dev->priv_flags &= ~IFF_TX_SKB_SHARING;
netif_keep_dst(dev);
dev->priv_flags |= IFF_UNICAST_FLT;
dev->netdev_ops = &macvlan_netdev_ops;
dev->needs_free_netdev = true;
dev->header_ops = &macvlan_hard_header_ops;
dev->ethtool_ops = &macvlan_ethtool_ops;
}
EXPORT_SYMBOL_GPL(macvlan_common_setup);
static void macvlan_setup(struct net_device *dev)
{
macvlan_common_setup(dev);
dev->priv_flags |= IFF_NO_QUEUE;
}
static int macvlan_port_create(struct net_device *dev)
{
struct macvlan_port *port;
unsigned int i;
int err;
if (dev->type != ARPHRD_ETHER || dev->flags & IFF_LOOPBACK)
return -EINVAL;
if (netdev_is_rx_handler_busy(dev))
return -EBUSY;
port = kzalloc(sizeof(*port), GFP_KERNEL);
if (port == NULL)
return -ENOMEM;
port->dev = dev;
ether_addr_copy(port->perm_addr, dev->dev_addr);
INIT_LIST_HEAD(&port->vlans);
for (i = 0; i < MACVLAN_HASH_SIZE; i++)
INIT_HLIST_HEAD(&port->vlan_hash[i]);
for (i = 0; i < MACVLAN_HASH_SIZE; i++)
INIT_HLIST_HEAD(&port->vlan_source_hash[i]);
port->bc_queue_len_used = 0;
skb_queue_head_init(&port->bc_queue);
INIT_WORK(&port->bc_work, macvlan_process_broadcast);
err = netdev_rx_handler_register(dev, macvlan_handle_frame, port);
if (err)
kfree(port);
else
dev->priv_flags |= IFF_MACVLAN_PORT;
return err;
}
static void macvlan_port_destroy(struct net_device *dev)
{
struct macvlan_port *port = macvlan_port_get_rtnl(dev);
struct sk_buff *skb;
dev->priv_flags &= ~IFF_MACVLAN_PORT;
netdev_rx_handler_unregister(dev);
/* After this point, no packet can schedule bc_work anymore,
* but we need to cancel it and purge left skbs if any.
*/
cancel_work_sync(&port->bc_work);
while ((skb = __skb_dequeue(&port->bc_queue))) {
const struct macvlan_dev *src = MACVLAN_SKB_CB(skb)->src;
if (src)
dev_put(src->dev);
kfree_skb(skb);
}
/* If the lower device address has been changed by passthru
* macvlan, put it back.
*/
if (macvlan_passthru(port) &&
!ether_addr_equal(port->dev->dev_addr, port->perm_addr)) {
struct sockaddr sa;
sa.sa_family = port->dev->type;
memcpy(&sa.sa_data, port->perm_addr, port->dev->addr_len);
dev_set_mac_address(port->dev, &sa, NULL);
}
kfree(port);
}
static int macvlan_validate(struct nlattr *tb[], struct nlattr *data[],
struct netlink_ext_ack *extack)
{
struct nlattr *nla, *head;
int rem, len;
if (tb[IFLA_ADDRESS]) {
if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
return -EINVAL;
if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
return -EADDRNOTAVAIL;
}
if (!data)
return 0;
if (data[IFLA_MACVLAN_FLAGS] &&
nla_get_u16(data[IFLA_MACVLAN_FLAGS]) & ~MACVLAN_FLAG_NOPROMISC)
return -EINVAL;
if (data[IFLA_MACVLAN_MODE]) {
switch (nla_get_u32(data[IFLA_MACVLAN_MODE])) {
case MACVLAN_MODE_PRIVATE:
case MACVLAN_MODE_VEPA:
case MACVLAN_MODE_BRIDGE:
case MACVLAN_MODE_PASSTHRU:
case MACVLAN_MODE_SOURCE:
break;
default:
return -EINVAL;
}
}
if (data[IFLA_MACVLAN_MACADDR_MODE]) {
switch (nla_get_u32(data[IFLA_MACVLAN_MACADDR_MODE])) {
case MACVLAN_MACADDR_ADD:
case MACVLAN_MACADDR_DEL:
case MACVLAN_MACADDR_FLUSH:
case MACVLAN_MACADDR_SET:
break;
default:
return -EINVAL;
}
}
if (data[IFLA_MACVLAN_MACADDR]) {
if (nla_len(data[IFLA_MACVLAN_MACADDR]) != ETH_ALEN)
return -EINVAL;
if (!is_valid_ether_addr(nla_data(data[IFLA_MACVLAN_MACADDR])))
return -EADDRNOTAVAIL;
}
if (data[IFLA_MACVLAN_MACADDR_DATA]) {
head = nla_data(data[IFLA_MACVLAN_MACADDR_DATA]);
len = nla_len(data[IFLA_MACVLAN_MACADDR_DATA]);
nla_for_each_attr(nla, head, len, rem) {
if (nla_type(nla) != IFLA_MACVLAN_MACADDR ||
nla_len(nla) != ETH_ALEN)
return -EINVAL;
if (!is_valid_ether_addr(nla_data(nla)))
return -EADDRNOTAVAIL;
}
}
if (data[IFLA_MACVLAN_MACADDR_COUNT])
return -EINVAL;
return 0;
}
/*
* reconfigure list of remote source mac address
* (only for macvlan devices in source mode)
* Note regarding alignment: all netlink data is aligned to 4 Byte, which
* suffices for both ether_addr_copy and ether_addr_equal_64bits usage.
*/
static int macvlan_changelink_sources(struct macvlan_dev *vlan, u32 mode,
struct nlattr *data[])
{
char *addr = NULL;
int ret, rem, len;
struct nlattr *nla, *head;
struct macvlan_source_entry *entry;
if (data[IFLA_MACVLAN_MACADDR])
addr = nla_data(data[IFLA_MACVLAN_MACADDR]);
if (mode == MACVLAN_MACADDR_ADD) {
if (!addr)
return -EINVAL;
return macvlan_hash_add_source(vlan, addr);
} else if (mode == MACVLAN_MACADDR_DEL) {
if (!addr)
return -EINVAL;
entry = macvlan_hash_lookup_source(vlan, addr);
if (entry) {
macvlan_hash_del_source(entry);
vlan->macaddr_count--;
}
} else if (mode == MACVLAN_MACADDR_FLUSH) {
macvlan_flush_sources(vlan->port, vlan);
} else if (mode == MACVLAN_MACADDR_SET) {
macvlan_flush_sources(vlan->port, vlan);
if (addr) {
ret = macvlan_hash_add_source(vlan, addr);
if (ret)
return ret;
}
if (!data[IFLA_MACVLAN_MACADDR_DATA])
return 0;
head = nla_data(data[IFLA_MACVLAN_MACADDR_DATA]);
len = nla_len(data[IFLA_MACVLAN_MACADDR_DATA]);
nla_for_each_attr(nla, head, len, rem) {
addr = nla_data(nla);
ret = macvlan_hash_add_source(vlan, addr);
if (ret)
return ret;
}
} else {
return -EINVAL;
}
return 0;
}
int macvlan_common_newlink(struct net *src_net, struct net_device *dev,
struct nlattr *tb[], struct nlattr *data[],
struct netlink_ext_ack *extack)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct macvlan_port *port;
struct net_device *lowerdev;
int err;
int macmode;
bool create = false;
if (!tb[IFLA_LINK])
return -EINVAL;
lowerdev = __dev_get_by_index(src_net, nla_get_u32(tb[IFLA_LINK]));
if (lowerdev == NULL)
return -ENODEV;
/* When creating macvlans or macvtaps on top of other macvlans - use
* the real device as the lowerdev.
*/
if (netif_is_macvlan(lowerdev))
lowerdev = macvlan_dev_real_dev(lowerdev);
if (!tb[IFLA_MTU])
dev->mtu = lowerdev->mtu;
else if (dev->mtu > lowerdev->mtu)
return -EINVAL;
/* MTU range: 68 - lowerdev->max_mtu */
dev->min_mtu = ETH_MIN_MTU;
dev->max_mtu = lowerdev->max_mtu;
if (!tb[IFLA_ADDRESS])
eth_hw_addr_random(dev);
if (!netif_is_macvlan_port(lowerdev)) {
err = macvlan_port_create(lowerdev);
if (err < 0)
return err;
create = true;
}
port = macvlan_port_get_rtnl(lowerdev);
/* Only 1 macvlan device can be created in passthru mode */
if (macvlan_passthru(port)) {
/* The macvlan port must be not created this time,
* still goto destroy_macvlan_port for readability.
*/
err = -EINVAL;
goto destroy_macvlan_port;
}
vlan->lowerdev = lowerdev;
vlan->dev = dev;
vlan->port = port;
vlan->set_features = MACVLAN_FEATURES;
vlan->mode = MACVLAN_MODE_VEPA;
if (data && data[IFLA_MACVLAN_MODE])
vlan->mode = nla_get_u32(data[IFLA_MACVLAN_MODE]);
if (data && data[IFLA_MACVLAN_FLAGS])
vlan->flags = nla_get_u16(data[IFLA_MACVLAN_FLAGS]);
if (vlan->mode == MACVLAN_MODE_PASSTHRU) {
if (port->count) {
err = -EINVAL;
goto destroy_macvlan_port;
}
macvlan_set_passthru(port);
eth_hw_addr_inherit(dev, lowerdev);
}
if (data && data[IFLA_MACVLAN_MACADDR_MODE]) {
if (vlan->mode != MACVLAN_MODE_SOURCE) {
err = -EINVAL;
goto destroy_macvlan_port;
}
macmode = nla_get_u32(data[IFLA_MACVLAN_MACADDR_MODE]);
err = macvlan_changelink_sources(vlan, macmode, data);
if (err)
goto destroy_macvlan_port;
}
vlan->bc_queue_len_req = MACVLAN_DEFAULT_BC_QUEUE_LEN;
if (data && data[IFLA_MACVLAN_BC_QUEUE_LEN])
vlan->bc_queue_len_req = nla_get_u32(data[IFLA_MACVLAN_BC_QUEUE_LEN]);
err = register_netdevice(dev);
if (err < 0)
goto destroy_macvlan_port;
dev->priv_flags |= IFF_MACVLAN;
err = netdev_upper_dev_link(lowerdev, dev, extack);
if (err)
goto unregister_netdev;
list_add_tail_rcu(&vlan->list, &port->vlans);
update_port_bc_queue_len(vlan->port);
netif_stacked_transfer_operstate(lowerdev, dev);
linkwatch_fire_event(dev);
return 0;
unregister_netdev:
/* macvlan_uninit would free the macvlan port */
unregister_netdevice(dev);
return err;
destroy_macvlan_port:
/* the macvlan port may be freed by macvlan_uninit when fail to register.
* so we destroy the macvlan port only when it's valid.
*/
if (create && macvlan_port_get_rtnl(lowerdev))
macvlan_port_destroy(port->dev);
return err;
}
EXPORT_SYMBOL_GPL(macvlan_common_newlink);
static int macvlan_newlink(struct net *src_net, struct net_device *dev,
struct nlattr *tb[], struct nlattr *data[],
struct netlink_ext_ack *extack)
{
return macvlan_common_newlink(src_net, dev, tb, data, extack);
}
void macvlan_dellink(struct net_device *dev, struct list_head *head)
{
struct macvlan_dev *vlan = netdev_priv(dev);
if (vlan->mode == MACVLAN_MODE_SOURCE)
macvlan_flush_sources(vlan->port, vlan);
list_del_rcu(&vlan->list);
update_port_bc_queue_len(vlan->port);
unregister_netdevice_queue(dev, head);
netdev_upper_dev_unlink(vlan->lowerdev, dev);
}
EXPORT_SYMBOL_GPL(macvlan_dellink);
static int macvlan_changelink(struct net_device *dev,
struct nlattr *tb[], struct nlattr *data[],
struct netlink_ext_ack *extack)
{
struct macvlan_dev *vlan = netdev_priv(dev);
enum macvlan_mode mode;
bool set_mode = false;
enum macvlan_macaddr_mode macmode;
int ret;
/* Validate mode, but don't set yet: setting flags may fail. */
if (data && data[IFLA_MACVLAN_MODE]) {
set_mode = true;
mode = nla_get_u32(data[IFLA_MACVLAN_MODE]);
/* Passthrough mode can't be set or cleared dynamically */
if ((mode == MACVLAN_MODE_PASSTHRU) !=
(vlan->mode == MACVLAN_MODE_PASSTHRU))
return -EINVAL;
if (vlan->mode == MACVLAN_MODE_SOURCE &&
vlan->mode != mode)
macvlan_flush_sources(vlan->port, vlan);
}
if (data && data[IFLA_MACVLAN_FLAGS]) {
__u16 flags = nla_get_u16(data[IFLA_MACVLAN_FLAGS]);
bool promisc = (flags ^ vlan->flags) & MACVLAN_FLAG_NOPROMISC;
if (macvlan_passthru(vlan->port) && promisc) {
int err;
if (flags & MACVLAN_FLAG_NOPROMISC)
err = dev_set_promiscuity(vlan->lowerdev, -1);
else
err = dev_set_promiscuity(vlan->lowerdev, 1);
if (err < 0)
return err;
}
vlan->flags = flags;
}
if (data && data[IFLA_MACVLAN_BC_QUEUE_LEN]) {
vlan->bc_queue_len_req = nla_get_u32(data[IFLA_MACVLAN_BC_QUEUE_LEN]);
update_port_bc_queue_len(vlan->port);
}
if (set_mode)
vlan->mode = mode;
if (data && data[IFLA_MACVLAN_MACADDR_MODE]) {
if (vlan->mode != MACVLAN_MODE_SOURCE)
return -EINVAL;
macmode = nla_get_u32(data[IFLA_MACVLAN_MACADDR_MODE]);
ret = macvlan_changelink_sources(vlan, macmode, data);
if (ret)
return ret;
}
return 0;
}
static size_t macvlan_get_size_mac(const struct macvlan_dev *vlan)
{
if (vlan->macaddr_count == 0)
return 0;
return nla_total_size(0) /* IFLA_MACVLAN_MACADDR_DATA */
+ vlan->macaddr_count * nla_total_size(sizeof(u8) * ETH_ALEN);
}
static size_t macvlan_get_size(const struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
return (0
+ nla_total_size(4) /* IFLA_MACVLAN_MODE */
+ nla_total_size(2) /* IFLA_MACVLAN_FLAGS */
+ nla_total_size(4) /* IFLA_MACVLAN_MACADDR_COUNT */
+ macvlan_get_size_mac(vlan) /* IFLA_MACVLAN_MACADDR */
+ nla_total_size(4) /* IFLA_MACVLAN_BC_QUEUE_LEN */
+ nla_total_size(4) /* IFLA_MACVLAN_BC_QUEUE_LEN_USED */
);
}
static int macvlan_fill_info_macaddr(struct sk_buff *skb,
const struct macvlan_dev *vlan,
const int i)
{
struct hlist_head *h = &vlan->port->vlan_source_hash[i];
struct macvlan_source_entry *entry;
hlist_for_each_entry_rcu(entry, h, hlist) {
if (entry->vlan != vlan)
continue;
if (nla_put(skb, IFLA_MACVLAN_MACADDR, ETH_ALEN, entry->addr))
return 1;
}
return 0;
}
static int macvlan_fill_info(struct sk_buff *skb,
const struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct macvlan_port *port = vlan->port;
int i;
struct nlattr *nest;
if (nla_put_u32(skb, IFLA_MACVLAN_MODE, vlan->mode))
goto nla_put_failure;
if (nla_put_u16(skb, IFLA_MACVLAN_FLAGS, vlan->flags))
goto nla_put_failure;
if (nla_put_u32(skb, IFLA_MACVLAN_MACADDR_COUNT, vlan->macaddr_count))
goto nla_put_failure;
if (vlan->macaddr_count > 0) {
nest = nla_nest_start_noflag(skb, IFLA_MACVLAN_MACADDR_DATA);
if (nest == NULL)
goto nla_put_failure;
for (i = 0; i < MACVLAN_HASH_SIZE; i++) {
if (macvlan_fill_info_macaddr(skb, vlan, i))
goto nla_put_failure;
}
nla_nest_end(skb, nest);
}
if (nla_put_u32(skb, IFLA_MACVLAN_BC_QUEUE_LEN, vlan->bc_queue_len_req))
goto nla_put_failure;
if (nla_put_u32(skb, IFLA_MACVLAN_BC_QUEUE_LEN_USED, port->bc_queue_len_used))
goto nla_put_failure;
return 0;
nla_put_failure:
return -EMSGSIZE;
}
static const struct nla_policy macvlan_policy[IFLA_MACVLAN_MAX + 1] = {
[IFLA_MACVLAN_MODE] = { .type = NLA_U32 },
[IFLA_MACVLAN_FLAGS] = { .type = NLA_U16 },
[IFLA_MACVLAN_MACADDR_MODE] = { .type = NLA_U32 },
[IFLA_MACVLAN_MACADDR] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
[IFLA_MACVLAN_MACADDR_DATA] = { .type = NLA_NESTED },
[IFLA_MACVLAN_MACADDR_COUNT] = { .type = NLA_U32 },
[IFLA_MACVLAN_BC_QUEUE_LEN] = { .type = NLA_U32 },
[IFLA_MACVLAN_BC_QUEUE_LEN_USED] = { .type = NLA_REJECT },
};
int macvlan_link_register(struct rtnl_link_ops *ops)
{
/* common fields */
ops->validate = macvlan_validate;
ops->maxtype = IFLA_MACVLAN_MAX;
ops->policy = macvlan_policy;
ops->changelink = macvlan_changelink;
ops->get_size = macvlan_get_size;
ops->fill_info = macvlan_fill_info;
return rtnl_link_register(ops);
};
EXPORT_SYMBOL_GPL(macvlan_link_register);
static struct net *macvlan_get_link_net(const struct net_device *dev)
{
return dev_net(macvlan_dev_real_dev(dev));
}
static struct rtnl_link_ops macvlan_link_ops = {
.kind = "macvlan",
.setup = macvlan_setup,
.newlink = macvlan_newlink,
.dellink = macvlan_dellink,
.get_link_net = macvlan_get_link_net,
.priv_size = sizeof(struct macvlan_dev),
};
static void update_port_bc_queue_len(struct macvlan_port *port)
{
u32 max_bc_queue_len_req = 0;
struct macvlan_dev *vlan;
list_for_each_entry(vlan, &port->vlans, list) {
if (vlan->bc_queue_len_req > max_bc_queue_len_req)
max_bc_queue_len_req = vlan->bc_queue_len_req;
}
port->bc_queue_len_used = max_bc_queue_len_req;
}
static int macvlan_device_event(struct notifier_block *unused,
unsigned long event, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct macvlan_dev *vlan, *next;
struct macvlan_port *port;
LIST_HEAD(list_kill);
if (!netif_is_macvlan_port(dev))
return NOTIFY_DONE;
port = macvlan_port_get_rtnl(dev);
switch (event) {
case NETDEV_UP:
case NETDEV_DOWN:
case NETDEV_CHANGE:
list_for_each_entry(vlan, &port->vlans, list)
netif_stacked_transfer_operstate(vlan->lowerdev,
vlan->dev);
break;
case NETDEV_FEAT_CHANGE:
list_for_each_entry(vlan, &port->vlans, list) {
vlan->dev->gso_max_size = dev->gso_max_size;
vlan->dev->gso_max_segs = dev->gso_max_segs;
netdev_update_features(vlan->dev);
}
break;
case NETDEV_CHANGEMTU:
list_for_each_entry(vlan, &port->vlans, list) {
if (vlan->dev->mtu <= dev->mtu)
continue;
dev_set_mtu(vlan->dev, dev->mtu);
}
break;
case NETDEV_CHANGEADDR:
if (!macvlan_passthru(port))
return NOTIFY_DONE;
vlan = list_first_entry_or_null(&port->vlans,
struct macvlan_dev,
list);
if (vlan && macvlan_sync_address(vlan->dev, dev->dev_addr))
return NOTIFY_BAD;
break;
case NETDEV_UNREGISTER:
/* twiddle thumbs on netns device moves */
if (dev->reg_state != NETREG_UNREGISTERING)
break;
list_for_each_entry_safe(vlan, next, &port->vlans, list)
vlan->dev->rtnl_link_ops->dellink(vlan->dev, &list_kill);
unregister_netdevice_many(&list_kill);
break;
case NETDEV_PRE_TYPE_CHANGE:
/* Forbid underlaying device to change its type. */
return NOTIFY_BAD;
case NETDEV_NOTIFY_PEERS:
case NETDEV_BONDING_FAILOVER:
case NETDEV_RESEND_IGMP:
/* Propagate to all vlans */
list_for_each_entry(vlan, &port->vlans, list)
call_netdevice_notifiers(event, vlan->dev);
}
return NOTIFY_DONE;
}
static struct notifier_block macvlan_notifier_block __read_mostly = {
.notifier_call = macvlan_device_event,
};
static int __init macvlan_init_module(void)
{
int err;
register_netdevice_notifier(&macvlan_notifier_block);
err = macvlan_link_register(&macvlan_link_ops);
if (err < 0)
goto err1;
return 0;
err1:
unregister_netdevice_notifier(&macvlan_notifier_block);
return err;
}
static void __exit macvlan_cleanup_module(void)
{
rtnl_link_unregister(&macvlan_link_ops);
unregister_netdevice_notifier(&macvlan_notifier_block);
}
module_init(macvlan_init_module);
module_exit(macvlan_cleanup_module);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
MODULE_DESCRIPTION("Driver for MAC address based VLANs");
MODULE_ALIAS_RTNL_LINK("macvlan");