mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 12:42:02 +00:00
2f5bef5a59
region->nr_accesses is the number of sampling intervals in the last aggregation interval that access to the region has found, and region->age is the number of aggregation intervals that its access pattern has maintained. Hence, the real meaning of the two fields' values is depending on current sampling and aggregation intervals. This means the values need to be updated for every sampling and/or aggregation intervals updates. As DAMON core doesn't, it is a duty of in-kernel DAMON framework applications like DAMON sysfs interface, or the userspace users. Handling it in userspace or in-kernel DAMON application is complicated, inefficient, and repetitive compared to doing the update in DAMON core. Do the update in DAMON core. Link: https://lkml.kernel.org/r/20230119013831.1911-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Brendan Higgins <brendanhiggins@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
1469 lines
36 KiB
C
1469 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Data Access Monitor
|
|
*
|
|
* Author: SeongJae Park <sjpark@amazon.de>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "damon: " fmt
|
|
|
|
#include <linux/damon.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/damon.h>
|
|
|
|
#ifdef CONFIG_DAMON_KUNIT_TEST
|
|
#undef DAMON_MIN_REGION
|
|
#define DAMON_MIN_REGION 1
|
|
#endif
|
|
|
|
static DEFINE_MUTEX(damon_lock);
|
|
static int nr_running_ctxs;
|
|
static bool running_exclusive_ctxs;
|
|
|
|
static DEFINE_MUTEX(damon_ops_lock);
|
|
static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
|
|
|
|
static struct kmem_cache *damon_region_cache __ro_after_init;
|
|
|
|
/* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
|
|
static bool __damon_is_registered_ops(enum damon_ops_id id)
|
|
{
|
|
struct damon_operations empty_ops = {};
|
|
|
|
if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* damon_is_registered_ops() - Check if a given damon_operations is registered.
|
|
* @id: Id of the damon_operations to check if registered.
|
|
*
|
|
* Return: true if the ops is set, false otherwise.
|
|
*/
|
|
bool damon_is_registered_ops(enum damon_ops_id id)
|
|
{
|
|
bool registered;
|
|
|
|
if (id >= NR_DAMON_OPS)
|
|
return false;
|
|
mutex_lock(&damon_ops_lock);
|
|
registered = __damon_is_registered_ops(id);
|
|
mutex_unlock(&damon_ops_lock);
|
|
return registered;
|
|
}
|
|
|
|
/**
|
|
* damon_register_ops() - Register a monitoring operations set to DAMON.
|
|
* @ops: monitoring operations set to register.
|
|
*
|
|
* This function registers a monitoring operations set of valid &struct
|
|
* damon_operations->id so that others can find and use them later.
|
|
*
|
|
* Return: 0 on success, negative error code otherwise.
|
|
*/
|
|
int damon_register_ops(struct damon_operations *ops)
|
|
{
|
|
int err = 0;
|
|
|
|
if (ops->id >= NR_DAMON_OPS)
|
|
return -EINVAL;
|
|
mutex_lock(&damon_ops_lock);
|
|
/* Fail for already registered ops */
|
|
if (__damon_is_registered_ops(ops->id)) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
damon_registered_ops[ops->id] = *ops;
|
|
out:
|
|
mutex_unlock(&damon_ops_lock);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* damon_select_ops() - Select a monitoring operations to use with the context.
|
|
* @ctx: monitoring context to use the operations.
|
|
* @id: id of the registered monitoring operations to select.
|
|
*
|
|
* This function finds registered monitoring operations set of @id and make
|
|
* @ctx to use it.
|
|
*
|
|
* Return: 0 on success, negative error code otherwise.
|
|
*/
|
|
int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
|
|
{
|
|
int err = 0;
|
|
|
|
if (id >= NR_DAMON_OPS)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&damon_ops_lock);
|
|
if (!__damon_is_registered_ops(id))
|
|
err = -EINVAL;
|
|
else
|
|
ctx->ops = damon_registered_ops[id];
|
|
mutex_unlock(&damon_ops_lock);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Construct a damon_region struct
|
|
*
|
|
* Returns the pointer to the new struct if success, or NULL otherwise
|
|
*/
|
|
struct damon_region *damon_new_region(unsigned long start, unsigned long end)
|
|
{
|
|
struct damon_region *region;
|
|
|
|
region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
|
|
if (!region)
|
|
return NULL;
|
|
|
|
region->ar.start = start;
|
|
region->ar.end = end;
|
|
region->nr_accesses = 0;
|
|
INIT_LIST_HEAD(®ion->list);
|
|
|
|
region->age = 0;
|
|
region->last_nr_accesses = 0;
|
|
|
|
return region;
|
|
}
|
|
|
|
void damon_add_region(struct damon_region *r, struct damon_target *t)
|
|
{
|
|
list_add_tail(&r->list, &t->regions_list);
|
|
t->nr_regions++;
|
|
}
|
|
|
|
static void damon_del_region(struct damon_region *r, struct damon_target *t)
|
|
{
|
|
list_del(&r->list);
|
|
t->nr_regions--;
|
|
}
|
|
|
|
static void damon_free_region(struct damon_region *r)
|
|
{
|
|
kmem_cache_free(damon_region_cache, r);
|
|
}
|
|
|
|
void damon_destroy_region(struct damon_region *r, struct damon_target *t)
|
|
{
|
|
damon_del_region(r, t);
|
|
damon_free_region(r);
|
|
}
|
|
|
|
/*
|
|
* Check whether a region is intersecting an address range
|
|
*
|
|
* Returns true if it is.
|
|
*/
|
|
static bool damon_intersect(struct damon_region *r,
|
|
struct damon_addr_range *re)
|
|
{
|
|
return !(r->ar.end <= re->start || re->end <= r->ar.start);
|
|
}
|
|
|
|
/*
|
|
* Fill holes in regions with new regions.
|
|
*/
|
|
static int damon_fill_regions_holes(struct damon_region *first,
|
|
struct damon_region *last, struct damon_target *t)
|
|
{
|
|
struct damon_region *r = first;
|
|
|
|
damon_for_each_region_from(r, t) {
|
|
struct damon_region *next, *newr;
|
|
|
|
if (r == last)
|
|
break;
|
|
next = damon_next_region(r);
|
|
if (r->ar.end != next->ar.start) {
|
|
newr = damon_new_region(r->ar.end, next->ar.start);
|
|
if (!newr)
|
|
return -ENOMEM;
|
|
damon_insert_region(newr, r, next, t);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* damon_set_regions() - Set regions of a target for given address ranges.
|
|
* @t: the given target.
|
|
* @ranges: array of new monitoring target ranges.
|
|
* @nr_ranges: length of @ranges.
|
|
*
|
|
* This function adds new regions to, or modify existing regions of a
|
|
* monitoring target to fit in specific ranges.
|
|
*
|
|
* Return: 0 if success, or negative error code otherwise.
|
|
*/
|
|
int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
|
|
unsigned int nr_ranges)
|
|
{
|
|
struct damon_region *r, *next;
|
|
unsigned int i;
|
|
int err;
|
|
|
|
/* Remove regions which are not in the new ranges */
|
|
damon_for_each_region_safe(r, next, t) {
|
|
for (i = 0; i < nr_ranges; i++) {
|
|
if (damon_intersect(r, &ranges[i]))
|
|
break;
|
|
}
|
|
if (i == nr_ranges)
|
|
damon_destroy_region(r, t);
|
|
}
|
|
|
|
r = damon_first_region(t);
|
|
/* Add new regions or resize existing regions to fit in the ranges */
|
|
for (i = 0; i < nr_ranges; i++) {
|
|
struct damon_region *first = NULL, *last, *newr;
|
|
struct damon_addr_range *range;
|
|
|
|
range = &ranges[i];
|
|
/* Get the first/last regions intersecting with the range */
|
|
damon_for_each_region_from(r, t) {
|
|
if (damon_intersect(r, range)) {
|
|
if (!first)
|
|
first = r;
|
|
last = r;
|
|
}
|
|
if (r->ar.start >= range->end)
|
|
break;
|
|
}
|
|
if (!first) {
|
|
/* no region intersects with this range */
|
|
newr = damon_new_region(
|
|
ALIGN_DOWN(range->start,
|
|
DAMON_MIN_REGION),
|
|
ALIGN(range->end, DAMON_MIN_REGION));
|
|
if (!newr)
|
|
return -ENOMEM;
|
|
damon_insert_region(newr, damon_prev_region(r), r, t);
|
|
} else {
|
|
/* resize intersecting regions to fit in this range */
|
|
first->ar.start = ALIGN_DOWN(range->start,
|
|
DAMON_MIN_REGION);
|
|
last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
|
|
|
|
/* fill possible holes in the range */
|
|
err = damon_fill_regions_holes(first, last, t);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct damos_filter *damos_new_filter(enum damos_filter_type type,
|
|
bool matching)
|
|
{
|
|
struct damos_filter *filter;
|
|
|
|
filter = kmalloc(sizeof(*filter), GFP_KERNEL);
|
|
if (!filter)
|
|
return NULL;
|
|
filter->type = type;
|
|
filter->matching = matching;
|
|
return filter;
|
|
}
|
|
|
|
void damos_add_filter(struct damos *s, struct damos_filter *f)
|
|
{
|
|
list_add_tail(&f->list, &s->filters);
|
|
}
|
|
|
|
static void damos_del_filter(struct damos_filter *f)
|
|
{
|
|
list_del(&f->list);
|
|
}
|
|
|
|
static void damos_free_filter(struct damos_filter *f)
|
|
{
|
|
kfree(f);
|
|
}
|
|
|
|
void damos_destroy_filter(struct damos_filter *f)
|
|
{
|
|
damos_del_filter(f);
|
|
damos_free_filter(f);
|
|
}
|
|
|
|
/* initialize private fields of damos_quota and return the pointer */
|
|
static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota)
|
|
{
|
|
quota->total_charged_sz = 0;
|
|
quota->total_charged_ns = 0;
|
|
quota->esz = 0;
|
|
quota->charged_sz = 0;
|
|
quota->charged_from = 0;
|
|
quota->charge_target_from = NULL;
|
|
quota->charge_addr_from = 0;
|
|
return quota;
|
|
}
|
|
|
|
struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
|
|
enum damos_action action, struct damos_quota *quota,
|
|
struct damos_watermarks *wmarks)
|
|
{
|
|
struct damos *scheme;
|
|
|
|
scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
|
|
if (!scheme)
|
|
return NULL;
|
|
scheme->pattern = *pattern;
|
|
scheme->action = action;
|
|
INIT_LIST_HEAD(&scheme->filters);
|
|
scheme->stat = (struct damos_stat){};
|
|
INIT_LIST_HEAD(&scheme->list);
|
|
|
|
scheme->quota = *(damos_quota_init_priv(quota));
|
|
|
|
scheme->wmarks = *wmarks;
|
|
scheme->wmarks.activated = true;
|
|
|
|
return scheme;
|
|
}
|
|
|
|
void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
|
|
{
|
|
list_add_tail(&s->list, &ctx->schemes);
|
|
}
|
|
|
|
static void damon_del_scheme(struct damos *s)
|
|
{
|
|
list_del(&s->list);
|
|
}
|
|
|
|
static void damon_free_scheme(struct damos *s)
|
|
{
|
|
kfree(s);
|
|
}
|
|
|
|
void damon_destroy_scheme(struct damos *s)
|
|
{
|
|
struct damos_filter *f, *next;
|
|
|
|
damos_for_each_filter_safe(f, next, s)
|
|
damos_destroy_filter(f);
|
|
damon_del_scheme(s);
|
|
damon_free_scheme(s);
|
|
}
|
|
|
|
/*
|
|
* Construct a damon_target struct
|
|
*
|
|
* Returns the pointer to the new struct if success, or NULL otherwise
|
|
*/
|
|
struct damon_target *damon_new_target(void)
|
|
{
|
|
struct damon_target *t;
|
|
|
|
t = kmalloc(sizeof(*t), GFP_KERNEL);
|
|
if (!t)
|
|
return NULL;
|
|
|
|
t->pid = NULL;
|
|
t->nr_regions = 0;
|
|
INIT_LIST_HEAD(&t->regions_list);
|
|
INIT_LIST_HEAD(&t->list);
|
|
|
|
return t;
|
|
}
|
|
|
|
void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
|
|
{
|
|
list_add_tail(&t->list, &ctx->adaptive_targets);
|
|
}
|
|
|
|
bool damon_targets_empty(struct damon_ctx *ctx)
|
|
{
|
|
return list_empty(&ctx->adaptive_targets);
|
|
}
|
|
|
|
static void damon_del_target(struct damon_target *t)
|
|
{
|
|
list_del(&t->list);
|
|
}
|
|
|
|
void damon_free_target(struct damon_target *t)
|
|
{
|
|
struct damon_region *r, *next;
|
|
|
|
damon_for_each_region_safe(r, next, t)
|
|
damon_free_region(r);
|
|
kfree(t);
|
|
}
|
|
|
|
void damon_destroy_target(struct damon_target *t)
|
|
{
|
|
damon_del_target(t);
|
|
damon_free_target(t);
|
|
}
|
|
|
|
unsigned int damon_nr_regions(struct damon_target *t)
|
|
{
|
|
return t->nr_regions;
|
|
}
|
|
|
|
struct damon_ctx *damon_new_ctx(void)
|
|
{
|
|
struct damon_ctx *ctx;
|
|
|
|
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
|
|
if (!ctx)
|
|
return NULL;
|
|
|
|
ctx->attrs.sample_interval = 5 * 1000;
|
|
ctx->attrs.aggr_interval = 100 * 1000;
|
|
ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
|
|
|
|
ktime_get_coarse_ts64(&ctx->last_aggregation);
|
|
ctx->last_ops_update = ctx->last_aggregation;
|
|
|
|
mutex_init(&ctx->kdamond_lock);
|
|
|
|
ctx->attrs.min_nr_regions = 10;
|
|
ctx->attrs.max_nr_regions = 1000;
|
|
|
|
INIT_LIST_HEAD(&ctx->adaptive_targets);
|
|
INIT_LIST_HEAD(&ctx->schemes);
|
|
|
|
return ctx;
|
|
}
|
|
|
|
static void damon_destroy_targets(struct damon_ctx *ctx)
|
|
{
|
|
struct damon_target *t, *next_t;
|
|
|
|
if (ctx->ops.cleanup) {
|
|
ctx->ops.cleanup(ctx);
|
|
return;
|
|
}
|
|
|
|
damon_for_each_target_safe(t, next_t, ctx)
|
|
damon_destroy_target(t);
|
|
}
|
|
|
|
void damon_destroy_ctx(struct damon_ctx *ctx)
|
|
{
|
|
struct damos *s, *next_s;
|
|
|
|
damon_destroy_targets(ctx);
|
|
|
|
damon_for_each_scheme_safe(s, next_s, ctx)
|
|
damon_destroy_scheme(s);
|
|
|
|
kfree(ctx);
|
|
}
|
|
|
|
static unsigned int damon_age_for_new_attrs(unsigned int age,
|
|
struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
|
|
{
|
|
return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
|
|
}
|
|
|
|
/* convert access ratio in bp (per 10,000) to nr_accesses */
|
|
static unsigned int damon_accesses_bp_to_nr_accesses(
|
|
unsigned int accesses_bp, struct damon_attrs *attrs)
|
|
{
|
|
unsigned int max_nr_accesses =
|
|
attrs->aggr_interval / attrs->sample_interval;
|
|
|
|
return accesses_bp * max_nr_accesses / 10000;
|
|
}
|
|
|
|
/* convert nr_accesses to access ratio in bp (per 10,000) */
|
|
static unsigned int damon_nr_accesses_to_accesses_bp(
|
|
unsigned int nr_accesses, struct damon_attrs *attrs)
|
|
{
|
|
unsigned int max_nr_accesses =
|
|
attrs->aggr_interval / attrs->sample_interval;
|
|
|
|
return nr_accesses * 10000 / max_nr_accesses;
|
|
}
|
|
|
|
static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
|
|
struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
|
|
{
|
|
return damon_accesses_bp_to_nr_accesses(
|
|
damon_nr_accesses_to_accesses_bp(
|
|
nr_accesses, old_attrs),
|
|
new_attrs);
|
|
}
|
|
|
|
static void damon_update_monitoring_result(struct damon_region *r,
|
|
struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
|
|
{
|
|
r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
|
|
old_attrs, new_attrs);
|
|
r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
|
|
}
|
|
|
|
/*
|
|
* region->nr_accesses is the number of sampling intervals in the last
|
|
* aggregation interval that access to the region has found, and region->age is
|
|
* the number of aggregation intervals that its access pattern has maintained.
|
|
* For the reason, the real meaning of the two fields depend on current
|
|
* sampling interval and aggregation interval. This function updates
|
|
* ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
|
|
*/
|
|
static void damon_update_monitoring_results(struct damon_ctx *ctx,
|
|
struct damon_attrs *new_attrs)
|
|
{
|
|
struct damon_attrs *old_attrs = &ctx->attrs;
|
|
struct damon_target *t;
|
|
struct damon_region *r;
|
|
|
|
/* if any interval is zero, simply forgive conversion */
|
|
if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
|
|
!new_attrs->sample_interval ||
|
|
!new_attrs->aggr_interval)
|
|
return;
|
|
|
|
damon_for_each_target(t, ctx)
|
|
damon_for_each_region(r, t)
|
|
damon_update_monitoring_result(
|
|
r, old_attrs, new_attrs);
|
|
}
|
|
|
|
/**
|
|
* damon_set_attrs() - Set attributes for the monitoring.
|
|
* @ctx: monitoring context
|
|
* @attrs: monitoring attributes
|
|
*
|
|
* This function should not be called while the kdamond is running.
|
|
* Every time interval is in micro-seconds.
|
|
*
|
|
* Return: 0 on success, negative error code otherwise.
|
|
*/
|
|
int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
|
|
{
|
|
if (attrs->min_nr_regions < 3)
|
|
return -EINVAL;
|
|
if (attrs->min_nr_regions > attrs->max_nr_regions)
|
|
return -EINVAL;
|
|
|
|
damon_update_monitoring_results(ctx, attrs);
|
|
ctx->attrs = *attrs;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* damon_set_schemes() - Set data access monitoring based operation schemes.
|
|
* @ctx: monitoring context
|
|
* @schemes: array of the schemes
|
|
* @nr_schemes: number of entries in @schemes
|
|
*
|
|
* This function should not be called while the kdamond of the context is
|
|
* running.
|
|
*/
|
|
void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
|
|
ssize_t nr_schemes)
|
|
{
|
|
struct damos *s, *next;
|
|
ssize_t i;
|
|
|
|
damon_for_each_scheme_safe(s, next, ctx)
|
|
damon_destroy_scheme(s);
|
|
for (i = 0; i < nr_schemes; i++)
|
|
damon_add_scheme(ctx, schemes[i]);
|
|
}
|
|
|
|
/**
|
|
* damon_nr_running_ctxs() - Return number of currently running contexts.
|
|
*/
|
|
int damon_nr_running_ctxs(void)
|
|
{
|
|
int nr_ctxs;
|
|
|
|
mutex_lock(&damon_lock);
|
|
nr_ctxs = nr_running_ctxs;
|
|
mutex_unlock(&damon_lock);
|
|
|
|
return nr_ctxs;
|
|
}
|
|
|
|
/* Returns the size upper limit for each monitoring region */
|
|
static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
|
|
{
|
|
struct damon_target *t;
|
|
struct damon_region *r;
|
|
unsigned long sz = 0;
|
|
|
|
damon_for_each_target(t, ctx) {
|
|
damon_for_each_region(r, t)
|
|
sz += damon_sz_region(r);
|
|
}
|
|
|
|
if (ctx->attrs.min_nr_regions)
|
|
sz /= ctx->attrs.min_nr_regions;
|
|
if (sz < DAMON_MIN_REGION)
|
|
sz = DAMON_MIN_REGION;
|
|
|
|
return sz;
|
|
}
|
|
|
|
static int kdamond_fn(void *data);
|
|
|
|
/*
|
|
* __damon_start() - Starts monitoring with given context.
|
|
* @ctx: monitoring context
|
|
*
|
|
* This function should be called while damon_lock is hold.
|
|
*
|
|
* Return: 0 on success, negative error code otherwise.
|
|
*/
|
|
static int __damon_start(struct damon_ctx *ctx)
|
|
{
|
|
int err = -EBUSY;
|
|
|
|
mutex_lock(&ctx->kdamond_lock);
|
|
if (!ctx->kdamond) {
|
|
err = 0;
|
|
ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
|
|
nr_running_ctxs);
|
|
if (IS_ERR(ctx->kdamond)) {
|
|
err = PTR_ERR(ctx->kdamond);
|
|
ctx->kdamond = NULL;
|
|
}
|
|
}
|
|
mutex_unlock(&ctx->kdamond_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* damon_start() - Starts the monitorings for a given group of contexts.
|
|
* @ctxs: an array of the pointers for contexts to start monitoring
|
|
* @nr_ctxs: size of @ctxs
|
|
* @exclusive: exclusiveness of this contexts group
|
|
*
|
|
* This function starts a group of monitoring threads for a group of monitoring
|
|
* contexts. One thread per each context is created and run in parallel. The
|
|
* caller should handle synchronization between the threads by itself. If
|
|
* @exclusive is true and a group of threads that created by other
|
|
* 'damon_start()' call is currently running, this function does nothing but
|
|
* returns -EBUSY.
|
|
*
|
|
* Return: 0 on success, negative error code otherwise.
|
|
*/
|
|
int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
|
|
{
|
|
int i;
|
|
int err = 0;
|
|
|
|
mutex_lock(&damon_lock);
|
|
if ((exclusive && nr_running_ctxs) ||
|
|
(!exclusive && running_exclusive_ctxs)) {
|
|
mutex_unlock(&damon_lock);
|
|
return -EBUSY;
|
|
}
|
|
|
|
for (i = 0; i < nr_ctxs; i++) {
|
|
err = __damon_start(ctxs[i]);
|
|
if (err)
|
|
break;
|
|
nr_running_ctxs++;
|
|
}
|
|
if (exclusive && nr_running_ctxs)
|
|
running_exclusive_ctxs = true;
|
|
mutex_unlock(&damon_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* __damon_stop() - Stops monitoring of a given context.
|
|
* @ctx: monitoring context
|
|
*
|
|
* Return: 0 on success, negative error code otherwise.
|
|
*/
|
|
static int __damon_stop(struct damon_ctx *ctx)
|
|
{
|
|
struct task_struct *tsk;
|
|
|
|
mutex_lock(&ctx->kdamond_lock);
|
|
tsk = ctx->kdamond;
|
|
if (tsk) {
|
|
get_task_struct(tsk);
|
|
mutex_unlock(&ctx->kdamond_lock);
|
|
kthread_stop(tsk);
|
|
put_task_struct(tsk);
|
|
return 0;
|
|
}
|
|
mutex_unlock(&ctx->kdamond_lock);
|
|
|
|
return -EPERM;
|
|
}
|
|
|
|
/**
|
|
* damon_stop() - Stops the monitorings for a given group of contexts.
|
|
* @ctxs: an array of the pointers for contexts to stop monitoring
|
|
* @nr_ctxs: size of @ctxs
|
|
*
|
|
* Return: 0 on success, negative error code otherwise.
|
|
*/
|
|
int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
|
|
{
|
|
int i, err = 0;
|
|
|
|
for (i = 0; i < nr_ctxs; i++) {
|
|
/* nr_running_ctxs is decremented in kdamond_fn */
|
|
err = __damon_stop(ctxs[i]);
|
|
if (err)
|
|
break;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* damon_check_reset_time_interval() - Check if a time interval is elapsed.
|
|
* @baseline: the time to check whether the interval has elapsed since
|
|
* @interval: the time interval (microseconds)
|
|
*
|
|
* See whether the given time interval has passed since the given baseline
|
|
* time. If so, it also updates the baseline to current time for next check.
|
|
*
|
|
* Return: true if the time interval has passed, or false otherwise.
|
|
*/
|
|
static bool damon_check_reset_time_interval(struct timespec64 *baseline,
|
|
unsigned long interval)
|
|
{
|
|
struct timespec64 now;
|
|
|
|
ktime_get_coarse_ts64(&now);
|
|
if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
|
|
interval * 1000)
|
|
return false;
|
|
*baseline = now;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Check whether it is time to flush the aggregated information
|
|
*/
|
|
static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
|
|
{
|
|
return damon_check_reset_time_interval(&ctx->last_aggregation,
|
|
ctx->attrs.aggr_interval);
|
|
}
|
|
|
|
/*
|
|
* Reset the aggregated monitoring results ('nr_accesses' of each region).
|
|
*/
|
|
static void kdamond_reset_aggregated(struct damon_ctx *c)
|
|
{
|
|
struct damon_target *t;
|
|
unsigned int ti = 0; /* target's index */
|
|
|
|
damon_for_each_target(t, c) {
|
|
struct damon_region *r;
|
|
|
|
damon_for_each_region(r, t) {
|
|
trace_damon_aggregated(t, ti, r, damon_nr_regions(t));
|
|
r->last_nr_accesses = r->nr_accesses;
|
|
r->nr_accesses = 0;
|
|
}
|
|
ti++;
|
|
}
|
|
}
|
|
|
|
static void damon_split_region_at(struct damon_target *t,
|
|
struct damon_region *r, unsigned long sz_r);
|
|
|
|
static bool __damos_valid_target(struct damon_region *r, struct damos *s)
|
|
{
|
|
unsigned long sz;
|
|
|
|
sz = damon_sz_region(r);
|
|
return s->pattern.min_sz_region <= sz &&
|
|
sz <= s->pattern.max_sz_region &&
|
|
s->pattern.min_nr_accesses <= r->nr_accesses &&
|
|
r->nr_accesses <= s->pattern.max_nr_accesses &&
|
|
s->pattern.min_age_region <= r->age &&
|
|
r->age <= s->pattern.max_age_region;
|
|
}
|
|
|
|
static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
|
|
struct damon_region *r, struct damos *s)
|
|
{
|
|
bool ret = __damos_valid_target(r, s);
|
|
|
|
if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
|
|
return ret;
|
|
|
|
return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
|
|
}
|
|
|
|
/*
|
|
* damos_skip_charged_region() - Check if the given region or starting part of
|
|
* it is already charged for the DAMOS quota.
|
|
* @t: The target of the region.
|
|
* @rp: The pointer to the region.
|
|
* @s: The scheme to be applied.
|
|
*
|
|
* If a quota of a scheme has exceeded in a quota charge window, the scheme's
|
|
* action would applied to only a part of the target access pattern fulfilling
|
|
* regions. To avoid applying the scheme action to only already applied
|
|
* regions, DAMON skips applying the scheme action to the regions that charged
|
|
* in the previous charge window.
|
|
*
|
|
* This function checks if a given region should be skipped or not for the
|
|
* reason. If only the starting part of the region has previously charged,
|
|
* this function splits the region into two so that the second one covers the
|
|
* area that not charged in the previous charge widnow and saves the second
|
|
* region in *rp and returns false, so that the caller can apply DAMON action
|
|
* to the second one.
|
|
*
|
|
* Return: true if the region should be entirely skipped, false otherwise.
|
|
*/
|
|
static bool damos_skip_charged_region(struct damon_target *t,
|
|
struct damon_region **rp, struct damos *s)
|
|
{
|
|
struct damon_region *r = *rp;
|
|
struct damos_quota *quota = &s->quota;
|
|
unsigned long sz_to_skip;
|
|
|
|
/* Skip previously charged regions */
|
|
if (quota->charge_target_from) {
|
|
if (t != quota->charge_target_from)
|
|
return true;
|
|
if (r == damon_last_region(t)) {
|
|
quota->charge_target_from = NULL;
|
|
quota->charge_addr_from = 0;
|
|
return true;
|
|
}
|
|
if (quota->charge_addr_from &&
|
|
r->ar.end <= quota->charge_addr_from)
|
|
return true;
|
|
|
|
if (quota->charge_addr_from && r->ar.start <
|
|
quota->charge_addr_from) {
|
|
sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
|
|
r->ar.start, DAMON_MIN_REGION);
|
|
if (!sz_to_skip) {
|
|
if (damon_sz_region(r) <= DAMON_MIN_REGION)
|
|
return true;
|
|
sz_to_skip = DAMON_MIN_REGION;
|
|
}
|
|
damon_split_region_at(t, r, sz_to_skip);
|
|
r = damon_next_region(r);
|
|
*rp = r;
|
|
}
|
|
quota->charge_target_from = NULL;
|
|
quota->charge_addr_from = 0;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void damos_update_stat(struct damos *s,
|
|
unsigned long sz_tried, unsigned long sz_applied)
|
|
{
|
|
s->stat.nr_tried++;
|
|
s->stat.sz_tried += sz_tried;
|
|
if (sz_applied)
|
|
s->stat.nr_applied++;
|
|
s->stat.sz_applied += sz_applied;
|
|
}
|
|
|
|
static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
|
|
struct damon_region *r, struct damos *s)
|
|
{
|
|
struct damos_quota *quota = &s->quota;
|
|
unsigned long sz = damon_sz_region(r);
|
|
struct timespec64 begin, end;
|
|
unsigned long sz_applied = 0;
|
|
int err = 0;
|
|
|
|
if (c->ops.apply_scheme) {
|
|
if (quota->esz && quota->charged_sz + sz > quota->esz) {
|
|
sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
|
|
DAMON_MIN_REGION);
|
|
if (!sz)
|
|
goto update_stat;
|
|
damon_split_region_at(t, r, sz);
|
|
}
|
|
ktime_get_coarse_ts64(&begin);
|
|
if (c->callback.before_damos_apply)
|
|
err = c->callback.before_damos_apply(c, t, r, s);
|
|
if (!err)
|
|
sz_applied = c->ops.apply_scheme(c, t, r, s);
|
|
ktime_get_coarse_ts64(&end);
|
|
quota->total_charged_ns += timespec64_to_ns(&end) -
|
|
timespec64_to_ns(&begin);
|
|
quota->charged_sz += sz;
|
|
if (quota->esz && quota->charged_sz >= quota->esz) {
|
|
quota->charge_target_from = t;
|
|
quota->charge_addr_from = r->ar.end + 1;
|
|
}
|
|
}
|
|
if (s->action != DAMOS_STAT)
|
|
r->age = 0;
|
|
|
|
update_stat:
|
|
damos_update_stat(s, sz, sz_applied);
|
|
}
|
|
|
|
static void damon_do_apply_schemes(struct damon_ctx *c,
|
|
struct damon_target *t,
|
|
struct damon_region *r)
|
|
{
|
|
struct damos *s;
|
|
|
|
damon_for_each_scheme(s, c) {
|
|
struct damos_quota *quota = &s->quota;
|
|
|
|
if (!s->wmarks.activated)
|
|
continue;
|
|
|
|
/* Check the quota */
|
|
if (quota->esz && quota->charged_sz >= quota->esz)
|
|
continue;
|
|
|
|
if (damos_skip_charged_region(t, &r, s))
|
|
continue;
|
|
|
|
if (!damos_valid_target(c, t, r, s))
|
|
continue;
|
|
|
|
damos_apply_scheme(c, t, r, s);
|
|
}
|
|
}
|
|
|
|
/* Shouldn't be called if quota->ms and quota->sz are zero */
|
|
static void damos_set_effective_quota(struct damos_quota *quota)
|
|
{
|
|
unsigned long throughput;
|
|
unsigned long esz;
|
|
|
|
if (!quota->ms) {
|
|
quota->esz = quota->sz;
|
|
return;
|
|
}
|
|
|
|
if (quota->total_charged_ns)
|
|
throughput = quota->total_charged_sz * 1000000 /
|
|
quota->total_charged_ns;
|
|
else
|
|
throughput = PAGE_SIZE * 1024;
|
|
esz = throughput * quota->ms;
|
|
|
|
if (quota->sz && quota->sz < esz)
|
|
esz = quota->sz;
|
|
quota->esz = esz;
|
|
}
|
|
|
|
static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
|
|
{
|
|
struct damos_quota *quota = &s->quota;
|
|
struct damon_target *t;
|
|
struct damon_region *r;
|
|
unsigned long cumulated_sz;
|
|
unsigned int score, max_score = 0;
|
|
|
|
if (!quota->ms && !quota->sz)
|
|
return;
|
|
|
|
/* New charge window starts */
|
|
if (time_after_eq(jiffies, quota->charged_from +
|
|
msecs_to_jiffies(quota->reset_interval))) {
|
|
if (quota->esz && quota->charged_sz >= quota->esz)
|
|
s->stat.qt_exceeds++;
|
|
quota->total_charged_sz += quota->charged_sz;
|
|
quota->charged_from = jiffies;
|
|
quota->charged_sz = 0;
|
|
damos_set_effective_quota(quota);
|
|
}
|
|
|
|
if (!c->ops.get_scheme_score)
|
|
return;
|
|
|
|
/* Fill up the score histogram */
|
|
memset(quota->histogram, 0, sizeof(quota->histogram));
|
|
damon_for_each_target(t, c) {
|
|
damon_for_each_region(r, t) {
|
|
if (!__damos_valid_target(r, s))
|
|
continue;
|
|
score = c->ops.get_scheme_score(c, t, r, s);
|
|
quota->histogram[score] += damon_sz_region(r);
|
|
if (score > max_score)
|
|
max_score = score;
|
|
}
|
|
}
|
|
|
|
/* Set the min score limit */
|
|
for (cumulated_sz = 0, score = max_score; ; score--) {
|
|
cumulated_sz += quota->histogram[score];
|
|
if (cumulated_sz >= quota->esz || !score)
|
|
break;
|
|
}
|
|
quota->min_score = score;
|
|
}
|
|
|
|
static void kdamond_apply_schemes(struct damon_ctx *c)
|
|
{
|
|
struct damon_target *t;
|
|
struct damon_region *r, *next_r;
|
|
struct damos *s;
|
|
|
|
damon_for_each_scheme(s, c) {
|
|
if (!s->wmarks.activated)
|
|
continue;
|
|
|
|
damos_adjust_quota(c, s);
|
|
}
|
|
|
|
damon_for_each_target(t, c) {
|
|
damon_for_each_region_safe(r, next_r, t)
|
|
damon_do_apply_schemes(c, t, r);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Merge two adjacent regions into one region
|
|
*/
|
|
static void damon_merge_two_regions(struct damon_target *t,
|
|
struct damon_region *l, struct damon_region *r)
|
|
{
|
|
unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
|
|
|
|
l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
|
|
(sz_l + sz_r);
|
|
l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
|
|
l->ar.end = r->ar.end;
|
|
damon_destroy_region(r, t);
|
|
}
|
|
|
|
/*
|
|
* Merge adjacent regions having similar access frequencies
|
|
*
|
|
* t target affected by this merge operation
|
|
* thres '->nr_accesses' diff threshold for the merge
|
|
* sz_limit size upper limit of each region
|
|
*/
|
|
static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
|
|
unsigned long sz_limit)
|
|
{
|
|
struct damon_region *r, *prev = NULL, *next;
|
|
|
|
damon_for_each_region_safe(r, next, t) {
|
|
if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
|
|
r->age = 0;
|
|
else
|
|
r->age++;
|
|
|
|
if (prev && prev->ar.end == r->ar.start &&
|
|
abs(prev->nr_accesses - r->nr_accesses) <= thres &&
|
|
damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
|
|
damon_merge_two_regions(t, prev, r);
|
|
else
|
|
prev = r;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Merge adjacent regions having similar access frequencies
|
|
*
|
|
* threshold '->nr_accesses' diff threshold for the merge
|
|
* sz_limit size upper limit of each region
|
|
*
|
|
* This function merges monitoring target regions which are adjacent and their
|
|
* access frequencies are similar. This is for minimizing the monitoring
|
|
* overhead under the dynamically changeable access pattern. If a merge was
|
|
* unnecessarily made, later 'kdamond_split_regions()' will revert it.
|
|
*/
|
|
static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
|
|
unsigned long sz_limit)
|
|
{
|
|
struct damon_target *t;
|
|
|
|
damon_for_each_target(t, c)
|
|
damon_merge_regions_of(t, threshold, sz_limit);
|
|
}
|
|
|
|
/*
|
|
* Split a region in two
|
|
*
|
|
* r the region to be split
|
|
* sz_r size of the first sub-region that will be made
|
|
*/
|
|
static void damon_split_region_at(struct damon_target *t,
|
|
struct damon_region *r, unsigned long sz_r)
|
|
{
|
|
struct damon_region *new;
|
|
|
|
new = damon_new_region(r->ar.start + sz_r, r->ar.end);
|
|
if (!new)
|
|
return;
|
|
|
|
r->ar.end = new->ar.start;
|
|
|
|
new->age = r->age;
|
|
new->last_nr_accesses = r->last_nr_accesses;
|
|
|
|
damon_insert_region(new, r, damon_next_region(r), t);
|
|
}
|
|
|
|
/* Split every region in the given target into 'nr_subs' regions */
|
|
static void damon_split_regions_of(struct damon_target *t, int nr_subs)
|
|
{
|
|
struct damon_region *r, *next;
|
|
unsigned long sz_region, sz_sub = 0;
|
|
int i;
|
|
|
|
damon_for_each_region_safe(r, next, t) {
|
|
sz_region = damon_sz_region(r);
|
|
|
|
for (i = 0; i < nr_subs - 1 &&
|
|
sz_region > 2 * DAMON_MIN_REGION; i++) {
|
|
/*
|
|
* Randomly select size of left sub-region to be at
|
|
* least 10 percent and at most 90% of original region
|
|
*/
|
|
sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
|
|
sz_region / 10, DAMON_MIN_REGION);
|
|
/* Do not allow blank region */
|
|
if (sz_sub == 0 || sz_sub >= sz_region)
|
|
continue;
|
|
|
|
damon_split_region_at(t, r, sz_sub);
|
|
sz_region = sz_sub;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Split every target region into randomly-sized small regions
|
|
*
|
|
* This function splits every target region into random-sized small regions if
|
|
* current total number of the regions is equal or smaller than half of the
|
|
* user-specified maximum number of regions. This is for maximizing the
|
|
* monitoring accuracy under the dynamically changeable access patterns. If a
|
|
* split was unnecessarily made, later 'kdamond_merge_regions()' will revert
|
|
* it.
|
|
*/
|
|
static void kdamond_split_regions(struct damon_ctx *ctx)
|
|
{
|
|
struct damon_target *t;
|
|
unsigned int nr_regions = 0;
|
|
static unsigned int last_nr_regions;
|
|
int nr_subregions = 2;
|
|
|
|
damon_for_each_target(t, ctx)
|
|
nr_regions += damon_nr_regions(t);
|
|
|
|
if (nr_regions > ctx->attrs.max_nr_regions / 2)
|
|
return;
|
|
|
|
/* Maybe the middle of the region has different access frequency */
|
|
if (last_nr_regions == nr_regions &&
|
|
nr_regions < ctx->attrs.max_nr_regions / 3)
|
|
nr_subregions = 3;
|
|
|
|
damon_for_each_target(t, ctx)
|
|
damon_split_regions_of(t, nr_subregions);
|
|
|
|
last_nr_regions = nr_regions;
|
|
}
|
|
|
|
/*
|
|
* Check whether it is time to check and apply the operations-related data
|
|
* structures.
|
|
*
|
|
* Returns true if it is.
|
|
*/
|
|
static bool kdamond_need_update_operations(struct damon_ctx *ctx)
|
|
{
|
|
return damon_check_reset_time_interval(&ctx->last_ops_update,
|
|
ctx->attrs.ops_update_interval);
|
|
}
|
|
|
|
/*
|
|
* Check whether current monitoring should be stopped
|
|
*
|
|
* The monitoring is stopped when either the user requested to stop, or all
|
|
* monitoring targets are invalid.
|
|
*
|
|
* Returns true if need to stop current monitoring.
|
|
*/
|
|
static bool kdamond_need_stop(struct damon_ctx *ctx)
|
|
{
|
|
struct damon_target *t;
|
|
|
|
if (kthread_should_stop())
|
|
return true;
|
|
|
|
if (!ctx->ops.target_valid)
|
|
return false;
|
|
|
|
damon_for_each_target(t, ctx) {
|
|
if (ctx->ops.target_valid(t))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
|
|
{
|
|
struct sysinfo i;
|
|
|
|
switch (metric) {
|
|
case DAMOS_WMARK_FREE_MEM_RATE:
|
|
si_meminfo(&i);
|
|
return i.freeram * 1000 / i.totalram;
|
|
default:
|
|
break;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Returns zero if the scheme is active. Else, returns time to wait for next
|
|
* watermark check in micro-seconds.
|
|
*/
|
|
static unsigned long damos_wmark_wait_us(struct damos *scheme)
|
|
{
|
|
unsigned long metric;
|
|
|
|
if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
|
|
return 0;
|
|
|
|
metric = damos_wmark_metric_value(scheme->wmarks.metric);
|
|
/* higher than high watermark or lower than low watermark */
|
|
if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
|
|
if (scheme->wmarks.activated)
|
|
pr_debug("deactivate a scheme (%d) for %s wmark\n",
|
|
scheme->action,
|
|
metric > scheme->wmarks.high ?
|
|
"high" : "low");
|
|
scheme->wmarks.activated = false;
|
|
return scheme->wmarks.interval;
|
|
}
|
|
|
|
/* inactive and higher than middle watermark */
|
|
if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
|
|
!scheme->wmarks.activated)
|
|
return scheme->wmarks.interval;
|
|
|
|
if (!scheme->wmarks.activated)
|
|
pr_debug("activate a scheme (%d)\n", scheme->action);
|
|
scheme->wmarks.activated = true;
|
|
return 0;
|
|
}
|
|
|
|
static void kdamond_usleep(unsigned long usecs)
|
|
{
|
|
/* See Documentation/timers/timers-howto.rst for the thresholds */
|
|
if (usecs > 20 * USEC_PER_MSEC)
|
|
schedule_timeout_idle(usecs_to_jiffies(usecs));
|
|
else
|
|
usleep_idle_range(usecs, usecs + 1);
|
|
}
|
|
|
|
/* Returns negative error code if it's not activated but should return */
|
|
static int kdamond_wait_activation(struct damon_ctx *ctx)
|
|
{
|
|
struct damos *s;
|
|
unsigned long wait_time;
|
|
unsigned long min_wait_time = 0;
|
|
bool init_wait_time = false;
|
|
|
|
while (!kdamond_need_stop(ctx)) {
|
|
damon_for_each_scheme(s, ctx) {
|
|
wait_time = damos_wmark_wait_us(s);
|
|
if (!init_wait_time || wait_time < min_wait_time) {
|
|
init_wait_time = true;
|
|
min_wait_time = wait_time;
|
|
}
|
|
}
|
|
if (!min_wait_time)
|
|
return 0;
|
|
|
|
kdamond_usleep(min_wait_time);
|
|
|
|
if (ctx->callback.after_wmarks_check &&
|
|
ctx->callback.after_wmarks_check(ctx))
|
|
break;
|
|
}
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* The monitoring daemon that runs as a kernel thread
|
|
*/
|
|
static int kdamond_fn(void *data)
|
|
{
|
|
struct damon_ctx *ctx = data;
|
|
struct damon_target *t;
|
|
struct damon_region *r, *next;
|
|
unsigned int max_nr_accesses = 0;
|
|
unsigned long sz_limit = 0;
|
|
|
|
pr_debug("kdamond (%d) starts\n", current->pid);
|
|
|
|
if (ctx->ops.init)
|
|
ctx->ops.init(ctx);
|
|
if (ctx->callback.before_start && ctx->callback.before_start(ctx))
|
|
goto done;
|
|
|
|
sz_limit = damon_region_sz_limit(ctx);
|
|
|
|
while (!kdamond_need_stop(ctx)) {
|
|
if (kdamond_wait_activation(ctx))
|
|
break;
|
|
|
|
if (ctx->ops.prepare_access_checks)
|
|
ctx->ops.prepare_access_checks(ctx);
|
|
if (ctx->callback.after_sampling &&
|
|
ctx->callback.after_sampling(ctx))
|
|
break;
|
|
|
|
kdamond_usleep(ctx->attrs.sample_interval);
|
|
|
|
if (ctx->ops.check_accesses)
|
|
max_nr_accesses = ctx->ops.check_accesses(ctx);
|
|
|
|
if (kdamond_aggregate_interval_passed(ctx)) {
|
|
kdamond_merge_regions(ctx,
|
|
max_nr_accesses / 10,
|
|
sz_limit);
|
|
if (ctx->callback.after_aggregation &&
|
|
ctx->callback.after_aggregation(ctx))
|
|
break;
|
|
if (!list_empty(&ctx->schemes))
|
|
kdamond_apply_schemes(ctx);
|
|
kdamond_reset_aggregated(ctx);
|
|
kdamond_split_regions(ctx);
|
|
if (ctx->ops.reset_aggregated)
|
|
ctx->ops.reset_aggregated(ctx);
|
|
}
|
|
|
|
if (kdamond_need_update_operations(ctx)) {
|
|
if (ctx->ops.update)
|
|
ctx->ops.update(ctx);
|
|
sz_limit = damon_region_sz_limit(ctx);
|
|
}
|
|
}
|
|
done:
|
|
damon_for_each_target(t, ctx) {
|
|
damon_for_each_region_safe(r, next, t)
|
|
damon_destroy_region(r, t);
|
|
}
|
|
|
|
if (ctx->callback.before_terminate)
|
|
ctx->callback.before_terminate(ctx);
|
|
if (ctx->ops.cleanup)
|
|
ctx->ops.cleanup(ctx);
|
|
|
|
pr_debug("kdamond (%d) finishes\n", current->pid);
|
|
mutex_lock(&ctx->kdamond_lock);
|
|
ctx->kdamond = NULL;
|
|
mutex_unlock(&ctx->kdamond_lock);
|
|
|
|
mutex_lock(&damon_lock);
|
|
nr_running_ctxs--;
|
|
if (!nr_running_ctxs && running_exclusive_ctxs)
|
|
running_exclusive_ctxs = false;
|
|
mutex_unlock(&damon_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* struct damon_system_ram_region - System RAM resource address region of
|
|
* [@start, @end).
|
|
* @start: Start address of the region (inclusive).
|
|
* @end: End address of the region (exclusive).
|
|
*/
|
|
struct damon_system_ram_region {
|
|
unsigned long start;
|
|
unsigned long end;
|
|
};
|
|
|
|
static int walk_system_ram(struct resource *res, void *arg)
|
|
{
|
|
struct damon_system_ram_region *a = arg;
|
|
|
|
if (a->end - a->start < resource_size(res)) {
|
|
a->start = res->start;
|
|
a->end = res->end;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find biggest 'System RAM' resource and store its start and end address in
|
|
* @start and @end, respectively. If no System RAM is found, returns false.
|
|
*/
|
|
static bool damon_find_biggest_system_ram(unsigned long *start,
|
|
unsigned long *end)
|
|
|
|
{
|
|
struct damon_system_ram_region arg = {};
|
|
|
|
walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
|
|
if (arg.end <= arg.start)
|
|
return false;
|
|
|
|
*start = arg.start;
|
|
*end = arg.end;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* damon_set_region_biggest_system_ram_default() - Set the region of the given
|
|
* monitoring target as requested, or biggest 'System RAM'.
|
|
* @t: The monitoring target to set the region.
|
|
* @start: The pointer to the start address of the region.
|
|
* @end: The pointer to the end address of the region.
|
|
*
|
|
* This function sets the region of @t as requested by @start and @end. If the
|
|
* values of @start and @end are zero, however, this function finds the biggest
|
|
* 'System RAM' resource and sets the region to cover the resource. In the
|
|
* latter case, this function saves the start and end addresses of the resource
|
|
* in @start and @end, respectively.
|
|
*
|
|
* Return: 0 on success, negative error code otherwise.
|
|
*/
|
|
int damon_set_region_biggest_system_ram_default(struct damon_target *t,
|
|
unsigned long *start, unsigned long *end)
|
|
{
|
|
struct damon_addr_range addr_range;
|
|
|
|
if (*start > *end)
|
|
return -EINVAL;
|
|
|
|
if (!*start && !*end &&
|
|
!damon_find_biggest_system_ram(start, end))
|
|
return -EINVAL;
|
|
|
|
addr_range.start = *start;
|
|
addr_range.end = *end;
|
|
return damon_set_regions(t, &addr_range, 1);
|
|
}
|
|
|
|
static int __init damon_init(void)
|
|
{
|
|
damon_region_cache = KMEM_CACHE(damon_region, 0);
|
|
if (unlikely(!damon_region_cache)) {
|
|
pr_err("creating damon_region_cache fails\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
subsys_initcall(damon_init);
|
|
|
|
#include "core-test.h"
|