mirror of
https://github.com/torvalds/linux.git
synced 2024-12-30 14:52:05 +00:00
bd809af16e
Update the translation tables from cache mode to pgprot values according to the PAT settings. This enables changing the cache attributes of a PAT index in just one place without having to change at the users side. With this change it is possible to use the same kernel with different PAT configurations, e.g. supporting Xen. Signed-off-by: Juergen Gross <jgross@suse.com> Reviewed-by: Toshi Kani <toshi.kani@hp.com> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: stefan.bader@canonical.com Cc: xen-devel@lists.xensource.com Cc: ville.syrjala@linux.intel.com Cc: david.vrabel@citrix.com Cc: jbeulich@suse.com Cc: plagnioj@jcrosoft.com Cc: tomi.valkeinen@ti.com Cc: bhelgaas@google.com Link: http://lkml.kernel.org/r/1415019724-4317-18-git-send-email-jgross@suse.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
727 lines
20 KiB
C
727 lines
20 KiB
C
#include <linux/gfp.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/bootmem.h> /* for max_low_pfn */
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/e820.h>
|
|
#include <asm/init.h>
|
|
#include <asm/page.h>
|
|
#include <asm/page_types.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/dma.h> /* for MAX_DMA_PFN */
|
|
#include <asm/microcode.h>
|
|
|
|
/*
|
|
* We need to define the tracepoints somewhere, and tlb.c
|
|
* is only compied when SMP=y.
|
|
*/
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/tlb.h>
|
|
|
|
#include "mm_internal.h"
|
|
|
|
/*
|
|
* Tables translating between page_cache_type_t and pte encoding.
|
|
* Minimal supported modes are defined statically, modified if more supported
|
|
* cache modes are available.
|
|
* Index into __cachemode2pte_tbl is the cachemode.
|
|
* Index into __pte2cachemode_tbl are the caching attribute bits of the pte
|
|
* (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
|
|
*/
|
|
uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
|
|
[_PAGE_CACHE_MODE_WB] = 0,
|
|
[_PAGE_CACHE_MODE_WC] = _PAGE_PWT,
|
|
[_PAGE_CACHE_MODE_UC_MINUS] = _PAGE_PCD,
|
|
[_PAGE_CACHE_MODE_UC] = _PAGE_PCD | _PAGE_PWT,
|
|
[_PAGE_CACHE_MODE_WT] = _PAGE_PCD,
|
|
[_PAGE_CACHE_MODE_WP] = _PAGE_PCD,
|
|
};
|
|
EXPORT_SYMBOL_GPL(__cachemode2pte_tbl);
|
|
uint8_t __pte2cachemode_tbl[8] = {
|
|
[__pte2cm_idx(0)] = _PAGE_CACHE_MODE_WB,
|
|
[__pte2cm_idx(_PAGE_PWT)] = _PAGE_CACHE_MODE_WC,
|
|
[__pte2cm_idx(_PAGE_PCD)] = _PAGE_CACHE_MODE_UC_MINUS,
|
|
[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD)] = _PAGE_CACHE_MODE_UC,
|
|
[__pte2cm_idx(_PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
|
|
[__pte2cm_idx(_PAGE_PWT | _PAGE_PAT)] = _PAGE_CACHE_MODE_WC,
|
|
[__pte2cm_idx(_PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
|
|
[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
|
|
};
|
|
EXPORT_SYMBOL_GPL(__pte2cachemode_tbl);
|
|
|
|
static unsigned long __initdata pgt_buf_start;
|
|
static unsigned long __initdata pgt_buf_end;
|
|
static unsigned long __initdata pgt_buf_top;
|
|
|
|
static unsigned long min_pfn_mapped;
|
|
|
|
static bool __initdata can_use_brk_pgt = true;
|
|
|
|
/*
|
|
* Pages returned are already directly mapped.
|
|
*
|
|
* Changing that is likely to break Xen, see commit:
|
|
*
|
|
* 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
|
|
*
|
|
* for detailed information.
|
|
*/
|
|
__ref void *alloc_low_pages(unsigned int num)
|
|
{
|
|
unsigned long pfn;
|
|
int i;
|
|
|
|
if (after_bootmem) {
|
|
unsigned int order;
|
|
|
|
order = get_order((unsigned long)num << PAGE_SHIFT);
|
|
return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
|
|
__GFP_ZERO, order);
|
|
}
|
|
|
|
if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
|
|
unsigned long ret;
|
|
if (min_pfn_mapped >= max_pfn_mapped)
|
|
panic("alloc_low_pages: ran out of memory");
|
|
ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
|
|
max_pfn_mapped << PAGE_SHIFT,
|
|
PAGE_SIZE * num , PAGE_SIZE);
|
|
if (!ret)
|
|
panic("alloc_low_pages: can not alloc memory");
|
|
memblock_reserve(ret, PAGE_SIZE * num);
|
|
pfn = ret >> PAGE_SHIFT;
|
|
} else {
|
|
pfn = pgt_buf_end;
|
|
pgt_buf_end += num;
|
|
printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
|
|
pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
|
|
}
|
|
|
|
for (i = 0; i < num; i++) {
|
|
void *adr;
|
|
|
|
adr = __va((pfn + i) << PAGE_SHIFT);
|
|
clear_page(adr);
|
|
}
|
|
|
|
return __va(pfn << PAGE_SHIFT);
|
|
}
|
|
|
|
/* need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS */
|
|
#define INIT_PGT_BUF_SIZE (6 * PAGE_SIZE)
|
|
RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
|
|
void __init early_alloc_pgt_buf(void)
|
|
{
|
|
unsigned long tables = INIT_PGT_BUF_SIZE;
|
|
phys_addr_t base;
|
|
|
|
base = __pa(extend_brk(tables, PAGE_SIZE));
|
|
|
|
pgt_buf_start = base >> PAGE_SHIFT;
|
|
pgt_buf_end = pgt_buf_start;
|
|
pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
|
|
}
|
|
|
|
int after_bootmem;
|
|
|
|
int direct_gbpages
|
|
#ifdef CONFIG_DIRECT_GBPAGES
|
|
= 1
|
|
#endif
|
|
;
|
|
|
|
static void __init init_gbpages(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
if (direct_gbpages && cpu_has_gbpages)
|
|
printk(KERN_INFO "Using GB pages for direct mapping\n");
|
|
else
|
|
direct_gbpages = 0;
|
|
#endif
|
|
}
|
|
|
|
struct map_range {
|
|
unsigned long start;
|
|
unsigned long end;
|
|
unsigned page_size_mask;
|
|
};
|
|
|
|
static int page_size_mask;
|
|
|
|
static void __init probe_page_size_mask(void)
|
|
{
|
|
init_gbpages();
|
|
|
|
#if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
|
|
/*
|
|
* For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
|
|
* This will simplify cpa(), which otherwise needs to support splitting
|
|
* large pages into small in interrupt context, etc.
|
|
*/
|
|
if (direct_gbpages)
|
|
page_size_mask |= 1 << PG_LEVEL_1G;
|
|
if (cpu_has_pse)
|
|
page_size_mask |= 1 << PG_LEVEL_2M;
|
|
#endif
|
|
|
|
/* Enable PSE if available */
|
|
if (cpu_has_pse)
|
|
set_in_cr4(X86_CR4_PSE);
|
|
|
|
/* Enable PGE if available */
|
|
if (cpu_has_pge) {
|
|
set_in_cr4(X86_CR4_PGE);
|
|
__supported_pte_mask |= _PAGE_GLOBAL;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
#define NR_RANGE_MR 3
|
|
#else /* CONFIG_X86_64 */
|
|
#define NR_RANGE_MR 5
|
|
#endif
|
|
|
|
static int __meminit save_mr(struct map_range *mr, int nr_range,
|
|
unsigned long start_pfn, unsigned long end_pfn,
|
|
unsigned long page_size_mask)
|
|
{
|
|
if (start_pfn < end_pfn) {
|
|
if (nr_range >= NR_RANGE_MR)
|
|
panic("run out of range for init_memory_mapping\n");
|
|
mr[nr_range].start = start_pfn<<PAGE_SHIFT;
|
|
mr[nr_range].end = end_pfn<<PAGE_SHIFT;
|
|
mr[nr_range].page_size_mask = page_size_mask;
|
|
nr_range++;
|
|
}
|
|
|
|
return nr_range;
|
|
}
|
|
|
|
/*
|
|
* adjust the page_size_mask for small range to go with
|
|
* big page size instead small one if nearby are ram too.
|
|
*/
|
|
static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
|
|
int nr_range)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr_range; i++) {
|
|
if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
|
|
!(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
|
|
unsigned long start = round_down(mr[i].start, PMD_SIZE);
|
|
unsigned long end = round_up(mr[i].end, PMD_SIZE);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
if ((end >> PAGE_SHIFT) > max_low_pfn)
|
|
continue;
|
|
#endif
|
|
|
|
if (memblock_is_region_memory(start, end - start))
|
|
mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
|
|
}
|
|
if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
|
|
!(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
|
|
unsigned long start = round_down(mr[i].start, PUD_SIZE);
|
|
unsigned long end = round_up(mr[i].end, PUD_SIZE);
|
|
|
|
if (memblock_is_region_memory(start, end - start))
|
|
mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int __meminit split_mem_range(struct map_range *mr, int nr_range,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
unsigned long start_pfn, end_pfn, limit_pfn;
|
|
unsigned long pfn;
|
|
int i;
|
|
|
|
limit_pfn = PFN_DOWN(end);
|
|
|
|
/* head if not big page alignment ? */
|
|
pfn = start_pfn = PFN_DOWN(start);
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* Don't use a large page for the first 2/4MB of memory
|
|
* because there are often fixed size MTRRs in there
|
|
* and overlapping MTRRs into large pages can cause
|
|
* slowdowns.
|
|
*/
|
|
if (pfn == 0)
|
|
end_pfn = PFN_DOWN(PMD_SIZE);
|
|
else
|
|
end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
|
|
#else /* CONFIG_X86_64 */
|
|
end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
|
|
#endif
|
|
if (end_pfn > limit_pfn)
|
|
end_pfn = limit_pfn;
|
|
if (start_pfn < end_pfn) {
|
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
|
|
pfn = end_pfn;
|
|
}
|
|
|
|
/* big page (2M) range */
|
|
start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
|
|
#ifdef CONFIG_X86_32
|
|
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
|
|
#else /* CONFIG_X86_64 */
|
|
end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
|
|
if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
|
|
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
|
|
#endif
|
|
|
|
if (start_pfn < end_pfn) {
|
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
|
|
page_size_mask & (1<<PG_LEVEL_2M));
|
|
pfn = end_pfn;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/* big page (1G) range */
|
|
start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
|
|
end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
|
|
if (start_pfn < end_pfn) {
|
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
|
|
page_size_mask &
|
|
((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
|
|
pfn = end_pfn;
|
|
}
|
|
|
|
/* tail is not big page (1G) alignment */
|
|
start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
|
|
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
|
|
if (start_pfn < end_pfn) {
|
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
|
|
page_size_mask & (1<<PG_LEVEL_2M));
|
|
pfn = end_pfn;
|
|
}
|
|
#endif
|
|
|
|
/* tail is not big page (2M) alignment */
|
|
start_pfn = pfn;
|
|
end_pfn = limit_pfn;
|
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
|
|
|
|
if (!after_bootmem)
|
|
adjust_range_page_size_mask(mr, nr_range);
|
|
|
|
/* try to merge same page size and continuous */
|
|
for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
|
|
unsigned long old_start;
|
|
if (mr[i].end != mr[i+1].start ||
|
|
mr[i].page_size_mask != mr[i+1].page_size_mask)
|
|
continue;
|
|
/* move it */
|
|
old_start = mr[i].start;
|
|
memmove(&mr[i], &mr[i+1],
|
|
(nr_range - 1 - i) * sizeof(struct map_range));
|
|
mr[i--].start = old_start;
|
|
nr_range--;
|
|
}
|
|
|
|
for (i = 0; i < nr_range; i++)
|
|
printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
|
|
mr[i].start, mr[i].end - 1,
|
|
(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
|
|
(mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
|
|
|
|
return nr_range;
|
|
}
|
|
|
|
struct range pfn_mapped[E820_X_MAX];
|
|
int nr_pfn_mapped;
|
|
|
|
static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
|
|
nr_pfn_mapped, start_pfn, end_pfn);
|
|
nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
|
|
|
|
max_pfn_mapped = max(max_pfn_mapped, end_pfn);
|
|
|
|
if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
|
|
max_low_pfn_mapped = max(max_low_pfn_mapped,
|
|
min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
|
|
}
|
|
|
|
bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr_pfn_mapped; i++)
|
|
if ((start_pfn >= pfn_mapped[i].start) &&
|
|
(end_pfn <= pfn_mapped[i].end))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Setup the direct mapping of the physical memory at PAGE_OFFSET.
|
|
* This runs before bootmem is initialized and gets pages directly from
|
|
* the physical memory. To access them they are temporarily mapped.
|
|
*/
|
|
unsigned long __init_refok init_memory_mapping(unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
struct map_range mr[NR_RANGE_MR];
|
|
unsigned long ret = 0;
|
|
int nr_range, i;
|
|
|
|
pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
|
|
start, end - 1);
|
|
|
|
memset(mr, 0, sizeof(mr));
|
|
nr_range = split_mem_range(mr, 0, start, end);
|
|
|
|
for (i = 0; i < nr_range; i++)
|
|
ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
|
|
mr[i].page_size_mask);
|
|
|
|
add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
|
|
|
|
return ret >> PAGE_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* We need to iterate through the E820 memory map and create direct mappings
|
|
* for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
|
|
* create direct mappings for all pfns from [0 to max_low_pfn) and
|
|
* [4GB to max_pfn) because of possible memory holes in high addresses
|
|
* that cannot be marked as UC by fixed/variable range MTRRs.
|
|
* Depending on the alignment of E820 ranges, this may possibly result
|
|
* in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
|
|
*
|
|
* init_mem_mapping() calls init_range_memory_mapping() with big range.
|
|
* That range would have hole in the middle or ends, and only ram parts
|
|
* will be mapped in init_range_memory_mapping().
|
|
*/
|
|
static unsigned long __init init_range_memory_mapping(
|
|
unsigned long r_start,
|
|
unsigned long r_end)
|
|
{
|
|
unsigned long start_pfn, end_pfn;
|
|
unsigned long mapped_ram_size = 0;
|
|
int i;
|
|
|
|
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
|
|
u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
|
|
u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
|
|
if (start >= end)
|
|
continue;
|
|
|
|
/*
|
|
* if it is overlapping with brk pgt, we need to
|
|
* alloc pgt buf from memblock instead.
|
|
*/
|
|
can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
|
|
min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
|
|
init_memory_mapping(start, end);
|
|
mapped_ram_size += end - start;
|
|
can_use_brk_pgt = true;
|
|
}
|
|
|
|
return mapped_ram_size;
|
|
}
|
|
|
|
static unsigned long __init get_new_step_size(unsigned long step_size)
|
|
{
|
|
/*
|
|
* Explain why we shift by 5 and why we don't have to worry about
|
|
* 'step_size << 5' overflowing:
|
|
*
|
|
* initial mapped size is PMD_SIZE (2M).
|
|
* We can not set step_size to be PUD_SIZE (1G) yet.
|
|
* In worse case, when we cross the 1G boundary, and
|
|
* PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
|
|
* to map 1G range with PTE. Use 5 as shift for now.
|
|
*
|
|
* Don't need to worry about overflow, on 32bit, when step_size
|
|
* is 0, round_down() returns 0 for start, and that turns it
|
|
* into 0x100000000ULL.
|
|
*/
|
|
return step_size << 5;
|
|
}
|
|
|
|
/**
|
|
* memory_map_top_down - Map [map_start, map_end) top down
|
|
* @map_start: start address of the target memory range
|
|
* @map_end: end address of the target memory range
|
|
*
|
|
* This function will setup direct mapping for memory range
|
|
* [map_start, map_end) in top-down. That said, the page tables
|
|
* will be allocated at the end of the memory, and we map the
|
|
* memory in top-down.
|
|
*/
|
|
static void __init memory_map_top_down(unsigned long map_start,
|
|
unsigned long map_end)
|
|
{
|
|
unsigned long real_end, start, last_start;
|
|
unsigned long step_size;
|
|
unsigned long addr;
|
|
unsigned long mapped_ram_size = 0;
|
|
unsigned long new_mapped_ram_size;
|
|
|
|
/* xen has big range in reserved near end of ram, skip it at first.*/
|
|
addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
|
|
real_end = addr + PMD_SIZE;
|
|
|
|
/* step_size need to be small so pgt_buf from BRK could cover it */
|
|
step_size = PMD_SIZE;
|
|
max_pfn_mapped = 0; /* will get exact value next */
|
|
min_pfn_mapped = real_end >> PAGE_SHIFT;
|
|
last_start = start = real_end;
|
|
|
|
/*
|
|
* We start from the top (end of memory) and go to the bottom.
|
|
* The memblock_find_in_range() gets us a block of RAM from the
|
|
* end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
|
|
* for page table.
|
|
*/
|
|
while (last_start > map_start) {
|
|
if (last_start > step_size) {
|
|
start = round_down(last_start - 1, step_size);
|
|
if (start < map_start)
|
|
start = map_start;
|
|
} else
|
|
start = map_start;
|
|
new_mapped_ram_size = init_range_memory_mapping(start,
|
|
last_start);
|
|
last_start = start;
|
|
min_pfn_mapped = last_start >> PAGE_SHIFT;
|
|
/* only increase step_size after big range get mapped */
|
|
if (new_mapped_ram_size > mapped_ram_size)
|
|
step_size = get_new_step_size(step_size);
|
|
mapped_ram_size += new_mapped_ram_size;
|
|
}
|
|
|
|
if (real_end < map_end)
|
|
init_range_memory_mapping(real_end, map_end);
|
|
}
|
|
|
|
/**
|
|
* memory_map_bottom_up - Map [map_start, map_end) bottom up
|
|
* @map_start: start address of the target memory range
|
|
* @map_end: end address of the target memory range
|
|
*
|
|
* This function will setup direct mapping for memory range
|
|
* [map_start, map_end) in bottom-up. Since we have limited the
|
|
* bottom-up allocation above the kernel, the page tables will
|
|
* be allocated just above the kernel and we map the memory
|
|
* in [map_start, map_end) in bottom-up.
|
|
*/
|
|
static void __init memory_map_bottom_up(unsigned long map_start,
|
|
unsigned long map_end)
|
|
{
|
|
unsigned long next, new_mapped_ram_size, start;
|
|
unsigned long mapped_ram_size = 0;
|
|
/* step_size need to be small so pgt_buf from BRK could cover it */
|
|
unsigned long step_size = PMD_SIZE;
|
|
|
|
start = map_start;
|
|
min_pfn_mapped = start >> PAGE_SHIFT;
|
|
|
|
/*
|
|
* We start from the bottom (@map_start) and go to the top (@map_end).
|
|
* The memblock_find_in_range() gets us a block of RAM from the
|
|
* end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
|
|
* for page table.
|
|
*/
|
|
while (start < map_end) {
|
|
if (map_end - start > step_size) {
|
|
next = round_up(start + 1, step_size);
|
|
if (next > map_end)
|
|
next = map_end;
|
|
} else
|
|
next = map_end;
|
|
|
|
new_mapped_ram_size = init_range_memory_mapping(start, next);
|
|
start = next;
|
|
|
|
if (new_mapped_ram_size > mapped_ram_size)
|
|
step_size = get_new_step_size(step_size);
|
|
mapped_ram_size += new_mapped_ram_size;
|
|
}
|
|
}
|
|
|
|
void __init init_mem_mapping(void)
|
|
{
|
|
unsigned long end;
|
|
|
|
probe_page_size_mask();
|
|
|
|
#ifdef CONFIG_X86_64
|
|
end = max_pfn << PAGE_SHIFT;
|
|
#else
|
|
end = max_low_pfn << PAGE_SHIFT;
|
|
#endif
|
|
|
|
/* the ISA range is always mapped regardless of memory holes */
|
|
init_memory_mapping(0, ISA_END_ADDRESS);
|
|
|
|
/*
|
|
* If the allocation is in bottom-up direction, we setup direct mapping
|
|
* in bottom-up, otherwise we setup direct mapping in top-down.
|
|
*/
|
|
if (memblock_bottom_up()) {
|
|
unsigned long kernel_end = __pa_symbol(_end);
|
|
|
|
/*
|
|
* we need two separate calls here. This is because we want to
|
|
* allocate page tables above the kernel. So we first map
|
|
* [kernel_end, end) to make memory above the kernel be mapped
|
|
* as soon as possible. And then use page tables allocated above
|
|
* the kernel to map [ISA_END_ADDRESS, kernel_end).
|
|
*/
|
|
memory_map_bottom_up(kernel_end, end);
|
|
memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
|
|
} else {
|
|
memory_map_top_down(ISA_END_ADDRESS, end);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (max_pfn > max_low_pfn) {
|
|
/* can we preseve max_low_pfn ?*/
|
|
max_low_pfn = max_pfn;
|
|
}
|
|
#else
|
|
early_ioremap_page_table_range_init();
|
|
#endif
|
|
|
|
load_cr3(swapper_pg_dir);
|
|
__flush_tlb_all();
|
|
|
|
early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* devmem_is_allowed() checks to see if /dev/mem access to a certain address
|
|
* is valid. The argument is a physical page number.
|
|
*
|
|
*
|
|
* On x86, access has to be given to the first megabyte of ram because that area
|
|
* contains bios code and data regions used by X and dosemu and similar apps.
|
|
* Access has to be given to non-kernel-ram areas as well, these contain the PCI
|
|
* mmio resources as well as potential bios/acpi data regions.
|
|
*/
|
|
int devmem_is_allowed(unsigned long pagenr)
|
|
{
|
|
if (pagenr < 256)
|
|
return 1;
|
|
if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
|
|
return 0;
|
|
if (!page_is_ram(pagenr))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
void free_init_pages(char *what, unsigned long begin, unsigned long end)
|
|
{
|
|
unsigned long begin_aligned, end_aligned;
|
|
|
|
/* Make sure boundaries are page aligned */
|
|
begin_aligned = PAGE_ALIGN(begin);
|
|
end_aligned = end & PAGE_MASK;
|
|
|
|
if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
|
|
begin = begin_aligned;
|
|
end = end_aligned;
|
|
}
|
|
|
|
if (begin >= end)
|
|
return;
|
|
|
|
/*
|
|
* If debugging page accesses then do not free this memory but
|
|
* mark them not present - any buggy init-section access will
|
|
* create a kernel page fault:
|
|
*/
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
|
|
begin, end - 1);
|
|
set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
|
|
#else
|
|
/*
|
|
* We just marked the kernel text read only above, now that
|
|
* we are going to free part of that, we need to make that
|
|
* writeable and non-executable first.
|
|
*/
|
|
set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
|
|
set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
|
|
|
|
free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
|
|
#endif
|
|
}
|
|
|
|
void free_initmem(void)
|
|
{
|
|
free_init_pages("unused kernel",
|
|
(unsigned long)(&__init_begin),
|
|
(unsigned long)(&__init_end));
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
void __init free_initrd_mem(unsigned long start, unsigned long end)
|
|
{
|
|
#ifdef CONFIG_MICROCODE_EARLY
|
|
/*
|
|
* Remember, initrd memory may contain microcode or other useful things.
|
|
* Before we lose initrd mem, we need to find a place to hold them
|
|
* now that normal virtual memory is enabled.
|
|
*/
|
|
save_microcode_in_initrd();
|
|
#endif
|
|
|
|
/*
|
|
* end could be not aligned, and We can not align that,
|
|
* decompresser could be confused by aligned initrd_end
|
|
* We already reserve the end partial page before in
|
|
* - i386_start_kernel()
|
|
* - x86_64_start_kernel()
|
|
* - relocate_initrd()
|
|
* So here We can do PAGE_ALIGN() safely to get partial page to be freed
|
|
*/
|
|
free_init_pages("initrd", start, PAGE_ALIGN(end));
|
|
}
|
|
#endif
|
|
|
|
void __init zone_sizes_init(void)
|
|
{
|
|
unsigned long max_zone_pfns[MAX_NR_ZONES];
|
|
|
|
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
|
|
#endif
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
|
|
#endif
|
|
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
|
|
#ifdef CONFIG_HIGHMEM
|
|
max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
|
|
#endif
|
|
|
|
free_area_init_nodes(max_zone_pfns);
|
|
}
|
|
|
|
void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
|
|
{
|
|
/* entry 0 MUST be WB (hardwired to speed up translations) */
|
|
BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
|
|
|
|
__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
|
|
__pte2cachemode_tbl[entry] = cache;
|
|
}
|