mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 12:11:40 +00:00
a8625217a0
SBI v2.0 SBI introduced PMU snapshot feature which adds the following features. 1. Read counter values directly from the shared memory instead of csr read. 2. Start multiple counters with initial values with one SBI call. These functionalities optimizes the number of traps to the higher privilege mode. If the kernel is in VS mode while the hypervisor deploy trap & emulate method, this would minimize all the hpmcounter CSR read traps. If the kernel is running in S-mode, the benefits reduced to CSR latency vs DRAM/cache latency as there is no trap involved while accessing the hpmcounter CSRs. In both modes, it does saves the number of ecalls while starting multiple counter together with an initial values. This is a likely scenario if multiple counters overflow at the same time. Acked-by: Palmer Dabbelt <palmer@rivosinc.com> Reviewed-by: Anup Patel <anup@brainfault.org> Reviewed-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Reviewed-by: Samuel Holland <samuel.holland@sifive.com> Signed-off-by: Atish Patra <atishp@rivosinc.com> Link: https://lore.kernel.org/r/20240420151741.962500-10-atishp@rivosinc.com Signed-off-by: Anup Patel <anup@brainfault.org>
430 lines
11 KiB
C
430 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* RISC-V performance counter support.
|
|
*
|
|
* Copyright (C) 2021 Western Digital Corporation or its affiliates.
|
|
*
|
|
* This implementation is based on old RISC-V perf and ARM perf event code
|
|
* which are in turn based on sparc64 and x86 code.
|
|
*/
|
|
|
|
#include <linux/cpumask.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/irqdesc.h>
|
|
#include <linux/perf/riscv_pmu.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/sched_clock.h>
|
|
|
|
#include <asm/sbi.h>
|
|
|
|
static bool riscv_perf_user_access(struct perf_event *event)
|
|
{
|
|
return ((event->attr.type == PERF_TYPE_HARDWARE) ||
|
|
(event->attr.type == PERF_TYPE_HW_CACHE) ||
|
|
(event->attr.type == PERF_TYPE_RAW)) &&
|
|
!!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) &&
|
|
(event->hw.idx != -1);
|
|
}
|
|
|
|
void arch_perf_update_userpage(struct perf_event *event,
|
|
struct perf_event_mmap_page *userpg, u64 now)
|
|
{
|
|
struct clock_read_data *rd;
|
|
unsigned int seq;
|
|
u64 ns;
|
|
|
|
userpg->cap_user_time = 0;
|
|
userpg->cap_user_time_zero = 0;
|
|
userpg->cap_user_time_short = 0;
|
|
userpg->cap_user_rdpmc = riscv_perf_user_access(event);
|
|
|
|
#ifdef CONFIG_RISCV_PMU
|
|
/*
|
|
* The counters are 64-bit but the priv spec doesn't mandate all the
|
|
* bits to be implemented: that's why, counter width can vary based on
|
|
* the cpu vendor.
|
|
*/
|
|
if (userpg->cap_user_rdpmc)
|
|
userpg->pmc_width = to_riscv_pmu(event->pmu)->ctr_get_width(event->hw.idx) + 1;
|
|
#endif
|
|
|
|
do {
|
|
rd = sched_clock_read_begin(&seq);
|
|
|
|
userpg->time_mult = rd->mult;
|
|
userpg->time_shift = rd->shift;
|
|
userpg->time_zero = rd->epoch_ns;
|
|
userpg->time_cycles = rd->epoch_cyc;
|
|
userpg->time_mask = rd->sched_clock_mask;
|
|
|
|
/*
|
|
* Subtract the cycle base, such that software that
|
|
* doesn't know about cap_user_time_short still 'works'
|
|
* assuming no wraps.
|
|
*/
|
|
ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
|
|
userpg->time_zero -= ns;
|
|
|
|
} while (sched_clock_read_retry(seq));
|
|
|
|
userpg->time_offset = userpg->time_zero - now;
|
|
|
|
/*
|
|
* time_shift is not expected to be greater than 31 due to
|
|
* the original published conversion algorithm shifting a
|
|
* 32-bit value (now specifies a 64-bit value) - refer
|
|
* perf_event_mmap_page documentation in perf_event.h.
|
|
*/
|
|
if (userpg->time_shift == 32) {
|
|
userpg->time_shift = 31;
|
|
userpg->time_mult >>= 1;
|
|
}
|
|
|
|
/*
|
|
* Internal timekeeping for enabled/running/stopped times
|
|
* is always computed with the sched_clock.
|
|
*/
|
|
userpg->cap_user_time = 1;
|
|
userpg->cap_user_time_zero = 1;
|
|
userpg->cap_user_time_short = 1;
|
|
}
|
|
|
|
static unsigned long csr_read_num(int csr_num)
|
|
{
|
|
#define switchcase_csr_read(__csr_num, __val) {\
|
|
case __csr_num: \
|
|
__val = csr_read(__csr_num); \
|
|
break; }
|
|
#define switchcase_csr_read_2(__csr_num, __val) {\
|
|
switchcase_csr_read(__csr_num + 0, __val) \
|
|
switchcase_csr_read(__csr_num + 1, __val)}
|
|
#define switchcase_csr_read_4(__csr_num, __val) {\
|
|
switchcase_csr_read_2(__csr_num + 0, __val) \
|
|
switchcase_csr_read_2(__csr_num + 2, __val)}
|
|
#define switchcase_csr_read_8(__csr_num, __val) {\
|
|
switchcase_csr_read_4(__csr_num + 0, __val) \
|
|
switchcase_csr_read_4(__csr_num + 4, __val)}
|
|
#define switchcase_csr_read_16(__csr_num, __val) {\
|
|
switchcase_csr_read_8(__csr_num + 0, __val) \
|
|
switchcase_csr_read_8(__csr_num + 8, __val)}
|
|
#define switchcase_csr_read_32(__csr_num, __val) {\
|
|
switchcase_csr_read_16(__csr_num + 0, __val) \
|
|
switchcase_csr_read_16(__csr_num + 16, __val)}
|
|
|
|
unsigned long ret = 0;
|
|
|
|
switch (csr_num) {
|
|
switchcase_csr_read_32(CSR_CYCLE, ret)
|
|
switchcase_csr_read_32(CSR_CYCLEH, ret)
|
|
default :
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
#undef switchcase_csr_read_32
|
|
#undef switchcase_csr_read_16
|
|
#undef switchcase_csr_read_8
|
|
#undef switchcase_csr_read_4
|
|
#undef switchcase_csr_read_2
|
|
#undef switchcase_csr_read
|
|
}
|
|
|
|
/*
|
|
* Read the CSR of a corresponding counter.
|
|
*/
|
|
unsigned long riscv_pmu_ctr_read_csr(unsigned long csr)
|
|
{
|
|
if (csr < CSR_CYCLE || csr > CSR_HPMCOUNTER31H ||
|
|
(csr > CSR_HPMCOUNTER31 && csr < CSR_CYCLEH)) {
|
|
pr_err("Invalid performance counter csr %lx\n", csr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return csr_read_num(csr);
|
|
}
|
|
|
|
u64 riscv_pmu_ctr_get_width_mask(struct perf_event *event)
|
|
{
|
|
int cwidth;
|
|
struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
if (hwc->idx == -1)
|
|
/* Handle init case where idx is not initialized yet */
|
|
cwidth = rvpmu->ctr_get_width(0);
|
|
else
|
|
cwidth = rvpmu->ctr_get_width(hwc->idx);
|
|
|
|
return GENMASK_ULL(cwidth, 0);
|
|
}
|
|
|
|
u64 riscv_pmu_event_update(struct perf_event *event)
|
|
{
|
|
struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
u64 prev_raw_count, new_raw_count;
|
|
unsigned long cmask;
|
|
u64 oldval, delta;
|
|
|
|
if (!rvpmu->ctr_read)
|
|
return 0;
|
|
|
|
cmask = riscv_pmu_ctr_get_width_mask(event);
|
|
|
|
do {
|
|
prev_raw_count = local64_read(&hwc->prev_count);
|
|
new_raw_count = rvpmu->ctr_read(event);
|
|
oldval = local64_cmpxchg(&hwc->prev_count, prev_raw_count,
|
|
new_raw_count);
|
|
} while (oldval != prev_raw_count);
|
|
|
|
delta = (new_raw_count - prev_raw_count) & cmask;
|
|
local64_add(delta, &event->count);
|
|
local64_sub(delta, &hwc->period_left);
|
|
|
|
return delta;
|
|
}
|
|
|
|
void riscv_pmu_stop(struct perf_event *event, int flags)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
|
|
|
|
if (!(hwc->state & PERF_HES_STOPPED)) {
|
|
if (rvpmu->ctr_stop) {
|
|
rvpmu->ctr_stop(event, 0);
|
|
hwc->state |= PERF_HES_STOPPED;
|
|
}
|
|
riscv_pmu_event_update(event);
|
|
hwc->state |= PERF_HES_UPTODATE;
|
|
}
|
|
}
|
|
|
|
int riscv_pmu_event_set_period(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
s64 left = local64_read(&hwc->period_left);
|
|
s64 period = hwc->sample_period;
|
|
int overflow = 0;
|
|
uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
|
|
|
|
if (unlikely(left <= -period)) {
|
|
left = period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
overflow = 1;
|
|
}
|
|
|
|
if (unlikely(left <= 0)) {
|
|
left += period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
overflow = 1;
|
|
}
|
|
|
|
/*
|
|
* Limit the maximum period to prevent the counter value
|
|
* from overtaking the one we are about to program. In
|
|
* effect we are reducing max_period to account for
|
|
* interrupt latency (and we are being very conservative).
|
|
*/
|
|
if (left > (max_period >> 1))
|
|
left = (max_period >> 1);
|
|
|
|
local64_set(&hwc->prev_count, (u64)-left);
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
return overflow;
|
|
}
|
|
|
|
void riscv_pmu_start(struct perf_event *event, int flags)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
|
|
uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
|
|
u64 init_val;
|
|
|
|
if (flags & PERF_EF_RELOAD)
|
|
WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
|
|
|
|
hwc->state = 0;
|
|
riscv_pmu_event_set_period(event);
|
|
init_val = local64_read(&hwc->prev_count) & max_period;
|
|
rvpmu->ctr_start(event, init_val);
|
|
perf_event_update_userpage(event);
|
|
}
|
|
|
|
static int riscv_pmu_add(struct perf_event *event, int flags)
|
|
{
|
|
struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx;
|
|
|
|
idx = rvpmu->ctr_get_idx(event);
|
|
if (idx < 0)
|
|
return idx;
|
|
|
|
hwc->idx = idx;
|
|
cpuc->events[idx] = event;
|
|
cpuc->n_events++;
|
|
hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
|
|
if (flags & PERF_EF_START)
|
|
riscv_pmu_start(event, PERF_EF_RELOAD);
|
|
|
|
/* Propagate our changes to the userspace mapping. */
|
|
perf_event_update_userpage(event);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void riscv_pmu_del(struct perf_event *event, int flags)
|
|
{
|
|
struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
riscv_pmu_stop(event, PERF_EF_UPDATE);
|
|
cpuc->events[hwc->idx] = NULL;
|
|
/* The firmware need to reset the counter mapping */
|
|
if (rvpmu->ctr_stop)
|
|
rvpmu->ctr_stop(event, RISCV_PMU_STOP_FLAG_RESET);
|
|
cpuc->n_events--;
|
|
if (rvpmu->ctr_clear_idx)
|
|
rvpmu->ctr_clear_idx(event);
|
|
perf_event_update_userpage(event);
|
|
hwc->idx = -1;
|
|
}
|
|
|
|
static void riscv_pmu_read(struct perf_event *event)
|
|
{
|
|
riscv_pmu_event_update(event);
|
|
}
|
|
|
|
static int riscv_pmu_event_init(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
|
|
int mapped_event;
|
|
u64 event_config = 0;
|
|
uint64_t cmask;
|
|
|
|
/* driver does not support branch stack sampling */
|
|
if (has_branch_stack(event))
|
|
return -EOPNOTSUPP;
|
|
|
|
hwc->flags = 0;
|
|
mapped_event = rvpmu->event_map(event, &event_config);
|
|
if (mapped_event < 0) {
|
|
pr_debug("event %x:%llx not supported\n", event->attr.type,
|
|
event->attr.config);
|
|
return mapped_event;
|
|
}
|
|
|
|
/*
|
|
* idx is set to -1 because the index of a general event should not be
|
|
* decided until binding to some counter in pmu->add().
|
|
* config will contain the information about counter CSR
|
|
* the idx will contain the counter index
|
|
*/
|
|
hwc->config = event_config;
|
|
hwc->idx = -1;
|
|
hwc->event_base = mapped_event;
|
|
|
|
if (rvpmu->event_init)
|
|
rvpmu->event_init(event);
|
|
|
|
if (!is_sampling_event(event)) {
|
|
/*
|
|
* For non-sampling runs, limit the sample_period to half
|
|
* of the counter width. That way, the new counter value
|
|
* is far less likely to overtake the previous one unless
|
|
* you have some serious IRQ latency issues.
|
|
*/
|
|
cmask = riscv_pmu_ctr_get_width_mask(event);
|
|
hwc->sample_period = cmask >> 1;
|
|
hwc->last_period = hwc->sample_period;
|
|
local64_set(&hwc->period_left, hwc->sample_period);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int riscv_pmu_event_idx(struct perf_event *event)
|
|
{
|
|
struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
|
|
|
|
if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
|
|
return 0;
|
|
|
|
if (rvpmu->csr_index)
|
|
return rvpmu->csr_index(event) + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void riscv_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
|
|
{
|
|
struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
|
|
|
|
if (rvpmu->event_mapped) {
|
|
rvpmu->event_mapped(event, mm);
|
|
perf_event_update_userpage(event);
|
|
}
|
|
}
|
|
|
|
static void riscv_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
|
|
{
|
|
struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
|
|
|
|
if (rvpmu->event_unmapped) {
|
|
rvpmu->event_unmapped(event, mm);
|
|
perf_event_update_userpage(event);
|
|
}
|
|
}
|
|
|
|
struct riscv_pmu *riscv_pmu_alloc(void)
|
|
{
|
|
struct riscv_pmu *pmu;
|
|
int cpuid, i;
|
|
struct cpu_hw_events *cpuc;
|
|
|
|
pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
|
|
if (!pmu)
|
|
goto out;
|
|
|
|
pmu->hw_events = alloc_percpu_gfp(struct cpu_hw_events, GFP_KERNEL);
|
|
if (!pmu->hw_events) {
|
|
pr_info("failed to allocate per-cpu PMU data.\n");
|
|
goto out_free_pmu;
|
|
}
|
|
|
|
for_each_possible_cpu(cpuid) {
|
|
cpuc = per_cpu_ptr(pmu->hw_events, cpuid);
|
|
cpuc->n_events = 0;
|
|
for (i = 0; i < RISCV_MAX_COUNTERS; i++)
|
|
cpuc->events[i] = NULL;
|
|
cpuc->snapshot_addr = NULL;
|
|
}
|
|
pmu->pmu = (struct pmu) {
|
|
.event_init = riscv_pmu_event_init,
|
|
.event_mapped = riscv_pmu_event_mapped,
|
|
.event_unmapped = riscv_pmu_event_unmapped,
|
|
.event_idx = riscv_pmu_event_idx,
|
|
.add = riscv_pmu_add,
|
|
.del = riscv_pmu_del,
|
|
.start = riscv_pmu_start,
|
|
.stop = riscv_pmu_stop,
|
|
.read = riscv_pmu_read,
|
|
};
|
|
|
|
return pmu;
|
|
|
|
out_free_pmu:
|
|
kfree(pmu);
|
|
out:
|
|
return NULL;
|
|
}
|