mirror of
https://github.com/torvalds/linux.git
synced 2024-12-19 09:32:32 +00:00
5c00ff742b
Sergey Senozhatsky improves zram's post-processing selection algorithm. This leads to improved memory savings. - Wei Yang has gone to town on the mapletree code, contributing several series which clean up the implementation: - "refine mas_mab_cp()" - "Reduce the space to be cleared for maple_big_node" - "maple_tree: simplify mas_push_node()" - "Following cleanup after introduce mas_wr_store_type()" - "refine storing null" - The series "selftests/mm: hugetlb_fault_after_madv improvements" from David Hildenbrand fixes this selftest for s390. - The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng implements some rationaizations and cleanups in the page mapping code. - The series "mm: optimize shadow entries removal" from Shakeel Butt optimizes the file truncation code by speeding up the handling of shadow entries. - The series "Remove PageKsm()" from Matthew Wilcox completes the migration of this flag over to being a folio-based flag. - The series "Unify hugetlb into arch_get_unmapped_area functions" from Oscar Salvador implements a bunch of consolidations and cleanups in the hugetlb code. - The series "Do not shatter hugezeropage on wp-fault" from Dev Jain takes away the wp-fault time practice of turning a huge zero page into small pages. Instead we replace the whole thing with a THP. More consistent cleaner and potentiall saves a large number of pagefaults. - The series "percpu: Add a test case and fix for clang" from Andy Shevchenko enhances and fixes the kernel's built in percpu test code. - The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett optimizes mremap() by avoiding doing things which we didn't need to do. - The series "Improve the tmpfs large folio read performance" from Baolin Wang teaches tmpfs to copy data into userspace at the folio size rather than as individual pages. A 20% speedup was observed. - The series "mm/damon/vaddr: Fix issue in damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON splitting. - The series "memcg-v1: fully deprecate charge moving" from Shakeel Butt removes the long-deprecated memcgv2 charge moving feature. - The series "fix error handling in mmap_region() and refactor" from Lorenzo Stoakes cleanup up some of the mmap() error handling and addresses some potential performance issues. - The series "x86/module: use large ROX pages for text allocations" from Mike Rapoport teaches x86 to use large pages for read-only-execute module text. - The series "page allocation tag compression" from Suren Baghdasaryan is followon maintenance work for the new page allocation profiling feature. - The series "page->index removals in mm" from Matthew Wilcox remove most references to page->index in mm/. A slow march towards shrinking struct page. - The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs interface tests" from Andrew Paniakin performs maintenance work for DAMON's self testing code. - The series "mm: zswap swap-out of large folios" from Kanchana Sridhar improves zswap's batching of compression and decompression. It is a step along the way towards using Intel IAA hardware acceleration for this zswap operation. - The series "kasan: migrate the last module test to kunit" from Sabyrzhan Tasbolatov completes the migration of the KASAN built-in tests over to the KUnit framework. - The series "implement lightweight guard pages" from Lorenzo Stoakes permits userapace to place fault-generating guard pages within a single VMA, rather than requiring that multiple VMAs be created for this. Improved efficiencies for userspace memory allocators are expected. - The series "memcg: tracepoint for flushing stats" from JP Kobryn uses tracepoints to provide increased visibility into memcg stats flushing activity. - The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky fixes a zram buglet which potentially affected performance. - The series "mm: add more kernel parameters to control mTHP" from Maíra Canal enhances our ability to control/configuremultisize THP from the kernel boot command line. - The series "kasan: few improvements on kunit tests" from Sabyrzhan Tasbolatov has a couple of fixups for the KASAN KUnit tests. - The series "mm/list_lru: Split list_lru lock into per-cgroup scope" from Kairui Song optimizes list_lru memory utilization when lockdep is enabled. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZzwFqgAKCRDdBJ7gKXxA jkeuAQCkl+BmeYHE6uG0hi3pRxkupseR6DEOAYIiTv0/l8/GggD/Z3jmEeqnZaNq xyyenpibWgUoShU2wZ/Ha8FE5WDINwg= =JfWR -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - The series "zram: optimal post-processing target selection" from Sergey Senozhatsky improves zram's post-processing selection algorithm. This leads to improved memory savings. - Wei Yang has gone to town on the mapletree code, contributing several series which clean up the implementation: - "refine mas_mab_cp()" - "Reduce the space to be cleared for maple_big_node" - "maple_tree: simplify mas_push_node()" - "Following cleanup after introduce mas_wr_store_type()" - "refine storing null" - The series "selftests/mm: hugetlb_fault_after_madv improvements" from David Hildenbrand fixes this selftest for s390. - The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng implements some rationaizations and cleanups in the page mapping code. - The series "mm: optimize shadow entries removal" from Shakeel Butt optimizes the file truncation code by speeding up the handling of shadow entries. - The series "Remove PageKsm()" from Matthew Wilcox completes the migration of this flag over to being a folio-based flag. - The series "Unify hugetlb into arch_get_unmapped_area functions" from Oscar Salvador implements a bunch of consolidations and cleanups in the hugetlb code. - The series "Do not shatter hugezeropage on wp-fault" from Dev Jain takes away the wp-fault time practice of turning a huge zero page into small pages. Instead we replace the whole thing with a THP. More consistent cleaner and potentiall saves a large number of pagefaults. - The series "percpu: Add a test case and fix for clang" from Andy Shevchenko enhances and fixes the kernel's built in percpu test code. - The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett optimizes mremap() by avoiding doing things which we didn't need to do. - The series "Improve the tmpfs large folio read performance" from Baolin Wang teaches tmpfs to copy data into userspace at the folio size rather than as individual pages. A 20% speedup was observed. - The series "mm/damon/vaddr: Fix issue in damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON splitting. - The series "memcg-v1: fully deprecate charge moving" from Shakeel Butt removes the long-deprecated memcgv2 charge moving feature. - The series "fix error handling in mmap_region() and refactor" from Lorenzo Stoakes cleanup up some of the mmap() error handling and addresses some potential performance issues. - The series "x86/module: use large ROX pages for text allocations" from Mike Rapoport teaches x86 to use large pages for read-only-execute module text. - The series "page allocation tag compression" from Suren Baghdasaryan is followon maintenance work for the new page allocation profiling feature. - The series "page->index removals in mm" from Matthew Wilcox remove most references to page->index in mm/. A slow march towards shrinking struct page. - The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs interface tests" from Andrew Paniakin performs maintenance work for DAMON's self testing code. - The series "mm: zswap swap-out of large folios" from Kanchana Sridhar improves zswap's batching of compression and decompression. It is a step along the way towards using Intel IAA hardware acceleration for this zswap operation. - The series "kasan: migrate the last module test to kunit" from Sabyrzhan Tasbolatov completes the migration of the KASAN built-in tests over to the KUnit framework. - The series "implement lightweight guard pages" from Lorenzo Stoakes permits userapace to place fault-generating guard pages within a single VMA, rather than requiring that multiple VMAs be created for this. Improved efficiencies for userspace memory allocators are expected. - The series "memcg: tracepoint for flushing stats" from JP Kobryn uses tracepoints to provide increased visibility into memcg stats flushing activity. - The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky fixes a zram buglet which potentially affected performance. - The series "mm: add more kernel parameters to control mTHP" from Maíra Canal enhances our ability to control/configuremultisize THP from the kernel boot command line. - The series "kasan: few improvements on kunit tests" from Sabyrzhan Tasbolatov has a couple of fixups for the KASAN KUnit tests. - The series "mm/list_lru: Split list_lru lock into per-cgroup scope" from Kairui Song optimizes list_lru memory utilization when lockdep is enabled. * tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (215 commits) cma: enforce non-zero pageblock_order during cma_init_reserved_mem() mm/kfence: add a new kunit test test_use_after_free_read_nofault() zram: fix NULL pointer in comp_algorithm_show() memcg/hugetlb: add hugeTLB counters to memcg vmstat: call fold_vm_zone_numa_events() before show per zone NUMA event mm: mmap_lock: check trace_mmap_lock_$type_enabled() instead of regcount zram: ZRAM_DEF_COMP should depend on ZRAM MAINTAINERS/MEMORY MANAGEMENT: add document files for mm Docs/mm/damon: recommend academic papers to read and/or cite mm: define general function pXd_init() kmemleak: iommu/iova: fix transient kmemleak false positive mm/list_lru: simplify the list_lru walk callback function mm/list_lru: split the lock to per-cgroup scope mm/list_lru: simplify reparenting and initial allocation mm/list_lru: code clean up for reparenting mm/list_lru: don't export list_lru_add mm/list_lru: don't pass unnecessary key parameters kasan: add kunit tests for kmalloc_track_caller, kmalloc_node_track_caller kasan: change kasan_atomics kunit test as KUNIT_CASE_SLOW kasan: use EXPORT_SYMBOL_IF_KUNIT to export symbols ...
2707 lines
68 KiB
C
2707 lines
68 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* User-space Probes (UProbes)
|
|
*
|
|
* Copyright (C) IBM Corporation, 2008-2012
|
|
* Authors:
|
|
* Srikar Dronamraju
|
|
* Jim Keniston
|
|
* Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/pagemap.h> /* read_mapping_page */
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/export.h>
|
|
#include <linux/rmap.h> /* anon_vma_prepare */
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/swap.h> /* folio_free_swap */
|
|
#include <linux/ptrace.h> /* user_enable_single_step */
|
|
#include <linux/kdebug.h> /* notifier mechanism */
|
|
#include <linux/percpu-rwsem.h>
|
|
#include <linux/task_work.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/khugepaged.h>
|
|
#include <linux/rcupdate_trace.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/srcu.h>
|
|
|
|
#include <linux/uprobes.h>
|
|
|
|
#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
|
|
#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
|
|
|
|
static struct rb_root uprobes_tree = RB_ROOT;
|
|
/*
|
|
* allows us to skip the uprobe_mmap if there are no uprobe events active
|
|
* at this time. Probably a fine grained per inode count is better?
|
|
*/
|
|
#define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
|
|
|
|
static DEFINE_RWLOCK(uprobes_treelock); /* serialize rbtree access */
|
|
static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock);
|
|
|
|
#define UPROBES_HASH_SZ 13
|
|
/* serialize uprobe->pending_list */
|
|
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
|
|
#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
|
|
|
|
DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
|
|
|
|
/* Covers return_instance's uprobe lifetime. */
|
|
DEFINE_STATIC_SRCU(uretprobes_srcu);
|
|
|
|
/* Have a copy of original instruction */
|
|
#define UPROBE_COPY_INSN 0
|
|
|
|
struct uprobe {
|
|
struct rb_node rb_node; /* node in the rb tree */
|
|
refcount_t ref;
|
|
struct rw_semaphore register_rwsem;
|
|
struct rw_semaphore consumer_rwsem;
|
|
struct list_head pending_list;
|
|
struct list_head consumers;
|
|
struct inode *inode; /* Also hold a ref to inode */
|
|
union {
|
|
struct rcu_head rcu;
|
|
struct work_struct work;
|
|
};
|
|
loff_t offset;
|
|
loff_t ref_ctr_offset;
|
|
unsigned long flags; /* "unsigned long" so bitops work */
|
|
|
|
/*
|
|
* The generic code assumes that it has two members of unknown type
|
|
* owned by the arch-specific code:
|
|
*
|
|
* insn - copy_insn() saves the original instruction here for
|
|
* arch_uprobe_analyze_insn().
|
|
*
|
|
* ixol - potentially modified instruction to execute out of
|
|
* line, copied to xol_area by xol_get_insn_slot().
|
|
*/
|
|
struct arch_uprobe arch;
|
|
};
|
|
|
|
struct delayed_uprobe {
|
|
struct list_head list;
|
|
struct uprobe *uprobe;
|
|
struct mm_struct *mm;
|
|
};
|
|
|
|
static DEFINE_MUTEX(delayed_uprobe_lock);
|
|
static LIST_HEAD(delayed_uprobe_list);
|
|
|
|
/*
|
|
* Execute out of line area: anonymous executable mapping installed
|
|
* by the probed task to execute the copy of the original instruction
|
|
* mangled by set_swbp().
|
|
*
|
|
* On a breakpoint hit, thread contests for a slot. It frees the
|
|
* slot after singlestep. Currently a fixed number of slots are
|
|
* allocated.
|
|
*/
|
|
struct xol_area {
|
|
wait_queue_head_t wq; /* if all slots are busy */
|
|
unsigned long *bitmap; /* 0 = free slot */
|
|
|
|
struct page *page;
|
|
/*
|
|
* We keep the vma's vm_start rather than a pointer to the vma
|
|
* itself. The probed process or a naughty kernel module could make
|
|
* the vma go away, and we must handle that reasonably gracefully.
|
|
*/
|
|
unsigned long vaddr; /* Page(s) of instruction slots */
|
|
};
|
|
|
|
static void uprobe_warn(struct task_struct *t, const char *msg)
|
|
{
|
|
pr_warn("uprobe: %s:%d failed to %s\n", current->comm, current->pid, msg);
|
|
}
|
|
|
|
/*
|
|
* valid_vma: Verify if the specified vma is an executable vma
|
|
* Relax restrictions while unregistering: vm_flags might have
|
|
* changed after breakpoint was inserted.
|
|
* - is_register: indicates if we are in register context.
|
|
* - Return 1 if the specified virtual address is in an
|
|
* executable vma.
|
|
*/
|
|
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
|
|
{
|
|
vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
|
|
|
|
if (is_register)
|
|
flags |= VM_WRITE;
|
|
|
|
return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
|
|
}
|
|
|
|
static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
|
|
{
|
|
return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
|
|
}
|
|
|
|
static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
|
|
{
|
|
return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
|
|
}
|
|
|
|
/**
|
|
* __replace_page - replace page in vma by new page.
|
|
* based on replace_page in mm/ksm.c
|
|
*
|
|
* @vma: vma that holds the pte pointing to page
|
|
* @addr: address the old @page is mapped at
|
|
* @old_page: the page we are replacing by new_page
|
|
* @new_page: the modified page we replace page by
|
|
*
|
|
* If @new_page is NULL, only unmap @old_page.
|
|
*
|
|
* Returns 0 on success, negative error code otherwise.
|
|
*/
|
|
static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
|
|
struct page *old_page, struct page *new_page)
|
|
{
|
|
struct folio *old_folio = page_folio(old_page);
|
|
struct folio *new_folio;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
|
|
int err;
|
|
struct mmu_notifier_range range;
|
|
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
|
|
addr + PAGE_SIZE);
|
|
|
|
if (new_page) {
|
|
new_folio = page_folio(new_page);
|
|
err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* For folio_free_swap() below */
|
|
folio_lock(old_folio);
|
|
|
|
mmu_notifier_invalidate_range_start(&range);
|
|
err = -EAGAIN;
|
|
if (!page_vma_mapped_walk(&pvmw))
|
|
goto unlock;
|
|
VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
|
|
|
|
if (new_page) {
|
|
folio_get(new_folio);
|
|
folio_add_new_anon_rmap(new_folio, vma, addr, RMAP_EXCLUSIVE);
|
|
folio_add_lru_vma(new_folio, vma);
|
|
} else
|
|
/* no new page, just dec_mm_counter for old_page */
|
|
dec_mm_counter(mm, MM_ANONPAGES);
|
|
|
|
if (!folio_test_anon(old_folio)) {
|
|
dec_mm_counter(mm, mm_counter_file(old_folio));
|
|
inc_mm_counter(mm, MM_ANONPAGES);
|
|
}
|
|
|
|
flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte)));
|
|
ptep_clear_flush(vma, addr, pvmw.pte);
|
|
if (new_page)
|
|
set_pte_at(mm, addr, pvmw.pte,
|
|
mk_pte(new_page, vma->vm_page_prot));
|
|
|
|
folio_remove_rmap_pte(old_folio, old_page, vma);
|
|
if (!folio_mapped(old_folio))
|
|
folio_free_swap(old_folio);
|
|
page_vma_mapped_walk_done(&pvmw);
|
|
folio_put(old_folio);
|
|
|
|
err = 0;
|
|
unlock:
|
|
mmu_notifier_invalidate_range_end(&range);
|
|
folio_unlock(old_folio);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* is_swbp_insn - check if instruction is breakpoint instruction.
|
|
* @insn: instruction to be checked.
|
|
* Default implementation of is_swbp_insn
|
|
* Returns true if @insn is a breakpoint instruction.
|
|
*/
|
|
bool __weak is_swbp_insn(uprobe_opcode_t *insn)
|
|
{
|
|
return *insn == UPROBE_SWBP_INSN;
|
|
}
|
|
|
|
/**
|
|
* is_trap_insn - check if instruction is breakpoint instruction.
|
|
* @insn: instruction to be checked.
|
|
* Default implementation of is_trap_insn
|
|
* Returns true if @insn is a breakpoint instruction.
|
|
*
|
|
* This function is needed for the case where an architecture has multiple
|
|
* trap instructions (like powerpc).
|
|
*/
|
|
bool __weak is_trap_insn(uprobe_opcode_t *insn)
|
|
{
|
|
return is_swbp_insn(insn);
|
|
}
|
|
|
|
static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
|
|
{
|
|
void *kaddr = kmap_atomic(page);
|
|
memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
|
|
kunmap_atomic(kaddr);
|
|
}
|
|
|
|
static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
|
|
{
|
|
void *kaddr = kmap_atomic(page);
|
|
memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
|
|
kunmap_atomic(kaddr);
|
|
}
|
|
|
|
static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
|
|
{
|
|
uprobe_opcode_t old_opcode;
|
|
bool is_swbp;
|
|
|
|
/*
|
|
* Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
|
|
* We do not check if it is any other 'trap variant' which could
|
|
* be conditional trap instruction such as the one powerpc supports.
|
|
*
|
|
* The logic is that we do not care if the underlying instruction
|
|
* is a trap variant; uprobes always wins over any other (gdb)
|
|
* breakpoint.
|
|
*/
|
|
copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
|
|
is_swbp = is_swbp_insn(&old_opcode);
|
|
|
|
if (is_swbp_insn(new_opcode)) {
|
|
if (is_swbp) /* register: already installed? */
|
|
return 0;
|
|
} else {
|
|
if (!is_swbp) /* unregister: was it changed by us? */
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static struct delayed_uprobe *
|
|
delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
|
|
{
|
|
struct delayed_uprobe *du;
|
|
|
|
list_for_each_entry(du, &delayed_uprobe_list, list)
|
|
if (du->uprobe == uprobe && du->mm == mm)
|
|
return du;
|
|
return NULL;
|
|
}
|
|
|
|
static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
|
|
{
|
|
struct delayed_uprobe *du;
|
|
|
|
if (delayed_uprobe_check(uprobe, mm))
|
|
return 0;
|
|
|
|
du = kzalloc(sizeof(*du), GFP_KERNEL);
|
|
if (!du)
|
|
return -ENOMEM;
|
|
|
|
du->uprobe = uprobe;
|
|
du->mm = mm;
|
|
list_add(&du->list, &delayed_uprobe_list);
|
|
return 0;
|
|
}
|
|
|
|
static void delayed_uprobe_delete(struct delayed_uprobe *du)
|
|
{
|
|
if (WARN_ON(!du))
|
|
return;
|
|
list_del(&du->list);
|
|
kfree(du);
|
|
}
|
|
|
|
static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
|
|
{
|
|
struct list_head *pos, *q;
|
|
struct delayed_uprobe *du;
|
|
|
|
if (!uprobe && !mm)
|
|
return;
|
|
|
|
list_for_each_safe(pos, q, &delayed_uprobe_list) {
|
|
du = list_entry(pos, struct delayed_uprobe, list);
|
|
|
|
if (uprobe && du->uprobe != uprobe)
|
|
continue;
|
|
if (mm && du->mm != mm)
|
|
continue;
|
|
|
|
delayed_uprobe_delete(du);
|
|
}
|
|
}
|
|
|
|
static bool valid_ref_ctr_vma(struct uprobe *uprobe,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
|
|
|
|
return uprobe->ref_ctr_offset &&
|
|
vma->vm_file &&
|
|
file_inode(vma->vm_file) == uprobe->inode &&
|
|
(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
|
|
vma->vm_start <= vaddr &&
|
|
vma->vm_end > vaddr;
|
|
}
|
|
|
|
static struct vm_area_struct *
|
|
find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
|
|
{
|
|
VMA_ITERATOR(vmi, mm, 0);
|
|
struct vm_area_struct *tmp;
|
|
|
|
for_each_vma(vmi, tmp)
|
|
if (valid_ref_ctr_vma(uprobe, tmp))
|
|
return tmp;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
__update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
|
|
{
|
|
void *kaddr;
|
|
struct page *page;
|
|
int ret;
|
|
short *ptr;
|
|
|
|
if (!vaddr || !d)
|
|
return -EINVAL;
|
|
|
|
ret = get_user_pages_remote(mm, vaddr, 1,
|
|
FOLL_WRITE, &page, NULL);
|
|
if (unlikely(ret <= 0)) {
|
|
/*
|
|
* We are asking for 1 page. If get_user_pages_remote() fails,
|
|
* it may return 0, in that case we have to return error.
|
|
*/
|
|
return ret == 0 ? -EBUSY : ret;
|
|
}
|
|
|
|
kaddr = kmap_atomic(page);
|
|
ptr = kaddr + (vaddr & ~PAGE_MASK);
|
|
|
|
if (unlikely(*ptr + d < 0)) {
|
|
pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
|
|
"curr val: %d, delta: %d\n", vaddr, *ptr, d);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
*ptr += d;
|
|
ret = 0;
|
|
out:
|
|
kunmap_atomic(kaddr);
|
|
put_page(page);
|
|
return ret;
|
|
}
|
|
|
|
static void update_ref_ctr_warn(struct uprobe *uprobe,
|
|
struct mm_struct *mm, short d)
|
|
{
|
|
pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
|
|
"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
|
|
d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
|
|
(unsigned long long) uprobe->offset,
|
|
(unsigned long long) uprobe->ref_ctr_offset, mm);
|
|
}
|
|
|
|
static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
|
|
short d)
|
|
{
|
|
struct vm_area_struct *rc_vma;
|
|
unsigned long rc_vaddr;
|
|
int ret = 0;
|
|
|
|
rc_vma = find_ref_ctr_vma(uprobe, mm);
|
|
|
|
if (rc_vma) {
|
|
rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
|
|
ret = __update_ref_ctr(mm, rc_vaddr, d);
|
|
if (ret)
|
|
update_ref_ctr_warn(uprobe, mm, d);
|
|
|
|
if (d > 0)
|
|
return ret;
|
|
}
|
|
|
|
mutex_lock(&delayed_uprobe_lock);
|
|
if (d > 0)
|
|
ret = delayed_uprobe_add(uprobe, mm);
|
|
else
|
|
delayed_uprobe_remove(uprobe, mm);
|
|
mutex_unlock(&delayed_uprobe_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* NOTE:
|
|
* Expect the breakpoint instruction to be the smallest size instruction for
|
|
* the architecture. If an arch has variable length instruction and the
|
|
* breakpoint instruction is not of the smallest length instruction
|
|
* supported by that architecture then we need to modify is_trap_at_addr and
|
|
* uprobe_write_opcode accordingly. This would never be a problem for archs
|
|
* that have fixed length instructions.
|
|
*
|
|
* uprobe_write_opcode - write the opcode at a given virtual address.
|
|
* @auprobe: arch specific probepoint information.
|
|
* @mm: the probed process address space.
|
|
* @vaddr: the virtual address to store the opcode.
|
|
* @opcode: opcode to be written at @vaddr.
|
|
*
|
|
* Called with mm->mmap_lock held for read or write.
|
|
* Return 0 (success) or a negative errno.
|
|
*/
|
|
int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
|
|
unsigned long vaddr, uprobe_opcode_t opcode)
|
|
{
|
|
struct uprobe *uprobe;
|
|
struct page *old_page, *new_page;
|
|
struct vm_area_struct *vma;
|
|
int ret, is_register, ref_ctr_updated = 0;
|
|
bool orig_page_huge = false;
|
|
unsigned int gup_flags = FOLL_FORCE;
|
|
|
|
is_register = is_swbp_insn(&opcode);
|
|
uprobe = container_of(auprobe, struct uprobe, arch);
|
|
|
|
retry:
|
|
if (is_register)
|
|
gup_flags |= FOLL_SPLIT_PMD;
|
|
/* Read the page with vaddr into memory */
|
|
old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma);
|
|
if (IS_ERR(old_page))
|
|
return PTR_ERR(old_page);
|
|
|
|
ret = verify_opcode(old_page, vaddr, &opcode);
|
|
if (ret <= 0)
|
|
goto put_old;
|
|
|
|
if (WARN(!is_register && PageCompound(old_page),
|
|
"uprobe unregister should never work on compound page\n")) {
|
|
ret = -EINVAL;
|
|
goto put_old;
|
|
}
|
|
|
|
/* We are going to replace instruction, update ref_ctr. */
|
|
if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
|
|
ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
|
|
if (ret)
|
|
goto put_old;
|
|
|
|
ref_ctr_updated = 1;
|
|
}
|
|
|
|
ret = 0;
|
|
if (!is_register && !PageAnon(old_page))
|
|
goto put_old;
|
|
|
|
ret = anon_vma_prepare(vma);
|
|
if (ret)
|
|
goto put_old;
|
|
|
|
ret = -ENOMEM;
|
|
new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
|
|
if (!new_page)
|
|
goto put_old;
|
|
|
|
__SetPageUptodate(new_page);
|
|
copy_highpage(new_page, old_page);
|
|
copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
|
|
|
|
if (!is_register) {
|
|
struct page *orig_page;
|
|
pgoff_t index;
|
|
|
|
VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
|
|
|
|
index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
|
|
orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
|
|
index);
|
|
|
|
if (orig_page) {
|
|
if (PageUptodate(orig_page) &&
|
|
pages_identical(new_page, orig_page)) {
|
|
/* let go new_page */
|
|
put_page(new_page);
|
|
new_page = NULL;
|
|
|
|
if (PageCompound(orig_page))
|
|
orig_page_huge = true;
|
|
}
|
|
put_page(orig_page);
|
|
}
|
|
}
|
|
|
|
ret = __replace_page(vma, vaddr & PAGE_MASK, old_page, new_page);
|
|
if (new_page)
|
|
put_page(new_page);
|
|
put_old:
|
|
put_page(old_page);
|
|
|
|
if (unlikely(ret == -EAGAIN))
|
|
goto retry;
|
|
|
|
/* Revert back reference counter if instruction update failed. */
|
|
if (ret && is_register && ref_ctr_updated)
|
|
update_ref_ctr(uprobe, mm, -1);
|
|
|
|
/* try collapse pmd for compound page */
|
|
if (!ret && orig_page_huge)
|
|
collapse_pte_mapped_thp(mm, vaddr, false);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* set_swbp - store breakpoint at a given address.
|
|
* @auprobe: arch specific probepoint information.
|
|
* @mm: the probed process address space.
|
|
* @vaddr: the virtual address to insert the opcode.
|
|
*
|
|
* For mm @mm, store the breakpoint instruction at @vaddr.
|
|
* Return 0 (success) or a negative errno.
|
|
*/
|
|
int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
|
|
{
|
|
return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
|
|
}
|
|
|
|
/**
|
|
* set_orig_insn - Restore the original instruction.
|
|
* @mm: the probed process address space.
|
|
* @auprobe: arch specific probepoint information.
|
|
* @vaddr: the virtual address to insert the opcode.
|
|
*
|
|
* For mm @mm, restore the original opcode (opcode) at @vaddr.
|
|
* Return 0 (success) or a negative errno.
|
|
*/
|
|
int __weak
|
|
set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
|
|
{
|
|
return uprobe_write_opcode(auprobe, mm, vaddr,
|
|
*(uprobe_opcode_t *)&auprobe->insn);
|
|
}
|
|
|
|
/* uprobe should have guaranteed positive refcount */
|
|
static struct uprobe *get_uprobe(struct uprobe *uprobe)
|
|
{
|
|
refcount_inc(&uprobe->ref);
|
|
return uprobe;
|
|
}
|
|
|
|
/*
|
|
* uprobe should have guaranteed lifetime, which can be either of:
|
|
* - caller already has refcount taken (and wants an extra one);
|
|
* - uprobe is RCU protected and won't be freed until after grace period;
|
|
* - we are holding uprobes_treelock (for read or write, doesn't matter).
|
|
*/
|
|
static struct uprobe *try_get_uprobe(struct uprobe *uprobe)
|
|
{
|
|
if (refcount_inc_not_zero(&uprobe->ref))
|
|
return uprobe;
|
|
return NULL;
|
|
}
|
|
|
|
static inline bool uprobe_is_active(struct uprobe *uprobe)
|
|
{
|
|
return !RB_EMPTY_NODE(&uprobe->rb_node);
|
|
}
|
|
|
|
static void uprobe_free_rcu_tasks_trace(struct rcu_head *rcu)
|
|
{
|
|
struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
|
|
|
|
kfree(uprobe);
|
|
}
|
|
|
|
static void uprobe_free_srcu(struct rcu_head *rcu)
|
|
{
|
|
struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
|
|
|
|
call_rcu_tasks_trace(&uprobe->rcu, uprobe_free_rcu_tasks_trace);
|
|
}
|
|
|
|
static void uprobe_free_deferred(struct work_struct *work)
|
|
{
|
|
struct uprobe *uprobe = container_of(work, struct uprobe, work);
|
|
|
|
write_lock(&uprobes_treelock);
|
|
|
|
if (uprobe_is_active(uprobe)) {
|
|
write_seqcount_begin(&uprobes_seqcount);
|
|
rb_erase(&uprobe->rb_node, &uprobes_tree);
|
|
write_seqcount_end(&uprobes_seqcount);
|
|
}
|
|
|
|
write_unlock(&uprobes_treelock);
|
|
|
|
/*
|
|
* If application munmap(exec_vma) before uprobe_unregister()
|
|
* gets called, we don't get a chance to remove uprobe from
|
|
* delayed_uprobe_list from remove_breakpoint(). Do it here.
|
|
*/
|
|
mutex_lock(&delayed_uprobe_lock);
|
|
delayed_uprobe_remove(uprobe, NULL);
|
|
mutex_unlock(&delayed_uprobe_lock);
|
|
|
|
/* start srcu -> rcu_tasks_trace -> kfree chain */
|
|
call_srcu(&uretprobes_srcu, &uprobe->rcu, uprobe_free_srcu);
|
|
}
|
|
|
|
static void put_uprobe(struct uprobe *uprobe)
|
|
{
|
|
if (!refcount_dec_and_test(&uprobe->ref))
|
|
return;
|
|
|
|
INIT_WORK(&uprobe->work, uprobe_free_deferred);
|
|
schedule_work(&uprobe->work);
|
|
}
|
|
|
|
/* Initialize hprobe as SRCU-protected "leased" uprobe */
|
|
static void hprobe_init_leased(struct hprobe *hprobe, struct uprobe *uprobe, int srcu_idx)
|
|
{
|
|
WARN_ON(!uprobe);
|
|
hprobe->state = HPROBE_LEASED;
|
|
hprobe->uprobe = uprobe;
|
|
hprobe->srcu_idx = srcu_idx;
|
|
}
|
|
|
|
/* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */
|
|
static void hprobe_init_stable(struct hprobe *hprobe, struct uprobe *uprobe)
|
|
{
|
|
hprobe->state = uprobe ? HPROBE_STABLE : HPROBE_GONE;
|
|
hprobe->uprobe = uprobe;
|
|
hprobe->srcu_idx = -1;
|
|
}
|
|
|
|
/*
|
|
* hprobe_consume() fetches hprobe's underlying uprobe and detects whether
|
|
* uprobe is SRCU protected or is refcounted. hprobe_consume() can be
|
|
* used only once for a given hprobe.
|
|
*
|
|
* Caller has to call hprobe_finalize() and pass previous hprobe_state, so
|
|
* that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever
|
|
* is appropriate.
|
|
*/
|
|
static inline struct uprobe *hprobe_consume(struct hprobe *hprobe, enum hprobe_state *hstate)
|
|
{
|
|
*hstate = xchg(&hprobe->state, HPROBE_CONSUMED);
|
|
switch (*hstate) {
|
|
case HPROBE_LEASED:
|
|
case HPROBE_STABLE:
|
|
return hprobe->uprobe;
|
|
case HPROBE_GONE: /* uprobe is NULL, no SRCU */
|
|
case HPROBE_CONSUMED: /* uprobe was finalized already, do nothing */
|
|
return NULL;
|
|
default:
|
|
WARN(1, "hprobe invalid state %d", *hstate);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reset hprobe state and, if hprobe was LEASED, release SRCU lock.
|
|
* hprobe_finalize() can only be used from current context after
|
|
* hprobe_consume() call (which determines uprobe and hstate value).
|
|
*/
|
|
static void hprobe_finalize(struct hprobe *hprobe, enum hprobe_state hstate)
|
|
{
|
|
switch (hstate) {
|
|
case HPROBE_LEASED:
|
|
__srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
|
|
break;
|
|
case HPROBE_STABLE:
|
|
put_uprobe(hprobe->uprobe);
|
|
break;
|
|
case HPROBE_GONE:
|
|
case HPROBE_CONSUMED:
|
|
break;
|
|
default:
|
|
WARN(1, "hprobe invalid state %d", hstate);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Attempt to switch (atomically) uprobe from being SRCU protected (LEASED)
|
|
* to refcounted (STABLE) state. Competes with hprobe_consume(); only one of
|
|
* them can win the race to perform SRCU unlocking. Whoever wins must perform
|
|
* SRCU unlock.
|
|
*
|
|
* Returns underlying valid uprobe or NULL, if there was no underlying uprobe
|
|
* to begin with or we failed to bump its refcount and it's going away.
|
|
*
|
|
* Returned non-NULL uprobe can be still safely used within an ongoing SRCU
|
|
* locked region. If `get` is true, it's guaranteed that non-NULL uprobe has
|
|
* an extra refcount for caller to assume and use. Otherwise, it's not
|
|
* guaranteed that returned uprobe has a positive refcount, so caller has to
|
|
* attempt try_get_uprobe(), if it needs to preserve uprobe beyond current
|
|
* SRCU lock region. See dup_utask().
|
|
*/
|
|
static struct uprobe *hprobe_expire(struct hprobe *hprobe, bool get)
|
|
{
|
|
enum hprobe_state hstate;
|
|
|
|
/*
|
|
* return_instance's hprobe is protected by RCU.
|
|
* Underlying uprobe is itself protected from reuse by SRCU.
|
|
*/
|
|
lockdep_assert(rcu_read_lock_held() && srcu_read_lock_held(&uretprobes_srcu));
|
|
|
|
hstate = READ_ONCE(hprobe->state);
|
|
switch (hstate) {
|
|
case HPROBE_STABLE:
|
|
/* uprobe has positive refcount, bump refcount, if necessary */
|
|
return get ? get_uprobe(hprobe->uprobe) : hprobe->uprobe;
|
|
case HPROBE_GONE:
|
|
/*
|
|
* SRCU was unlocked earlier and we didn't manage to take
|
|
* uprobe refcnt, so it's effectively NULL
|
|
*/
|
|
return NULL;
|
|
case HPROBE_CONSUMED:
|
|
/*
|
|
* uprobe was consumed, so it's effectively NULL as far as
|
|
* uretprobe processing logic is concerned
|
|
*/
|
|
return NULL;
|
|
case HPROBE_LEASED: {
|
|
struct uprobe *uprobe = try_get_uprobe(hprobe->uprobe);
|
|
/*
|
|
* Try to switch hprobe state, guarding against
|
|
* hprobe_consume() or another hprobe_expire() racing with us.
|
|
* Note, if we failed to get uprobe refcount, we use special
|
|
* HPROBE_GONE state to signal that hprobe->uprobe shouldn't
|
|
* be used as it will be freed after SRCU is unlocked.
|
|
*/
|
|
if (try_cmpxchg(&hprobe->state, &hstate, uprobe ? HPROBE_STABLE : HPROBE_GONE)) {
|
|
/* We won the race, we are the ones to unlock SRCU */
|
|
__srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
|
|
return get ? get_uprobe(uprobe) : uprobe;
|
|
}
|
|
|
|
/*
|
|
* We lost the race, undo refcount bump (if it ever happened),
|
|
* unless caller would like an extra refcount anyways.
|
|
*/
|
|
if (uprobe && !get)
|
|
put_uprobe(uprobe);
|
|
/*
|
|
* Even if hprobe_consume() or another hprobe_expire() wins
|
|
* the state update race and unlocks SRCU from under us, we
|
|
* still have a guarantee that underyling uprobe won't be
|
|
* freed due to ongoing caller's SRCU lock region, so we can
|
|
* return it regardless. Also, if `get` was true, we also have
|
|
* an extra ref for the caller to own. This is used in dup_utask().
|
|
*/
|
|
return uprobe;
|
|
}
|
|
default:
|
|
WARN(1, "unknown hprobe state %d", hstate);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static __always_inline
|
|
int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
|
|
const struct uprobe *r)
|
|
{
|
|
if (l_inode < r->inode)
|
|
return -1;
|
|
|
|
if (l_inode > r->inode)
|
|
return 1;
|
|
|
|
if (l_offset < r->offset)
|
|
return -1;
|
|
|
|
if (l_offset > r->offset)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define __node_2_uprobe(node) \
|
|
rb_entry((node), struct uprobe, rb_node)
|
|
|
|
struct __uprobe_key {
|
|
struct inode *inode;
|
|
loff_t offset;
|
|
};
|
|
|
|
static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
|
|
{
|
|
const struct __uprobe_key *a = key;
|
|
return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
|
|
}
|
|
|
|
static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
|
|
{
|
|
struct uprobe *u = __node_2_uprobe(a);
|
|
return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
|
|
}
|
|
|
|
/*
|
|
* Assumes being inside RCU protected region.
|
|
* No refcount is taken on returned uprobe.
|
|
*/
|
|
static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset)
|
|
{
|
|
struct __uprobe_key key = {
|
|
.inode = inode,
|
|
.offset = offset,
|
|
};
|
|
struct rb_node *node;
|
|
unsigned int seq;
|
|
|
|
lockdep_assert(rcu_read_lock_trace_held());
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&uprobes_seqcount);
|
|
node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key);
|
|
/*
|
|
* Lockless RB-tree lookups can result only in false negatives.
|
|
* If the element is found, it is correct and can be returned
|
|
* under RCU protection. If we find nothing, we need to
|
|
* validate that seqcount didn't change. If it did, we have to
|
|
* try again as we might have missed the element (false
|
|
* negative). If seqcount is unchanged, search truly failed.
|
|
*/
|
|
if (node)
|
|
return __node_2_uprobe(node);
|
|
} while (read_seqcount_retry(&uprobes_seqcount, seq));
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Attempt to insert a new uprobe into uprobes_tree.
|
|
*
|
|
* If uprobe already exists (for given inode+offset), we just increment
|
|
* refcount of previously existing uprobe.
|
|
*
|
|
* If not, a provided new instance of uprobe is inserted into the tree (with
|
|
* assumed initial refcount == 1).
|
|
*
|
|
* In any case, we return a uprobe instance that ends up being in uprobes_tree.
|
|
* Caller has to clean up new uprobe instance, if it ended up not being
|
|
* inserted into the tree.
|
|
*
|
|
* We assume that uprobes_treelock is held for writing.
|
|
*/
|
|
static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
|
|
{
|
|
struct rb_node *node;
|
|
again:
|
|
node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
|
|
if (node) {
|
|
struct uprobe *u = __node_2_uprobe(node);
|
|
|
|
if (!try_get_uprobe(u)) {
|
|
rb_erase(node, &uprobes_tree);
|
|
RB_CLEAR_NODE(&u->rb_node);
|
|
goto again;
|
|
}
|
|
|
|
return u;
|
|
}
|
|
|
|
return uprobe;
|
|
}
|
|
|
|
/*
|
|
* Acquire uprobes_treelock and insert uprobe into uprobes_tree
|
|
* (or reuse existing one, see __insert_uprobe() comments above).
|
|
*/
|
|
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
|
|
{
|
|
struct uprobe *u;
|
|
|
|
write_lock(&uprobes_treelock);
|
|
write_seqcount_begin(&uprobes_seqcount);
|
|
u = __insert_uprobe(uprobe);
|
|
write_seqcount_end(&uprobes_seqcount);
|
|
write_unlock(&uprobes_treelock);
|
|
|
|
return u;
|
|
}
|
|
|
|
static void
|
|
ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
|
|
{
|
|
pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
|
|
"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
|
|
uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
|
|
(unsigned long long) cur_uprobe->ref_ctr_offset,
|
|
(unsigned long long) uprobe->ref_ctr_offset);
|
|
}
|
|
|
|
static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
|
|
loff_t ref_ctr_offset)
|
|
{
|
|
struct uprobe *uprobe, *cur_uprobe;
|
|
|
|
uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
|
|
if (!uprobe)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
uprobe->inode = inode;
|
|
uprobe->offset = offset;
|
|
uprobe->ref_ctr_offset = ref_ctr_offset;
|
|
INIT_LIST_HEAD(&uprobe->consumers);
|
|
init_rwsem(&uprobe->register_rwsem);
|
|
init_rwsem(&uprobe->consumer_rwsem);
|
|
RB_CLEAR_NODE(&uprobe->rb_node);
|
|
refcount_set(&uprobe->ref, 1);
|
|
|
|
/* add to uprobes_tree, sorted on inode:offset */
|
|
cur_uprobe = insert_uprobe(uprobe);
|
|
/* a uprobe exists for this inode:offset combination */
|
|
if (cur_uprobe != uprobe) {
|
|
if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
|
|
ref_ctr_mismatch_warn(cur_uprobe, uprobe);
|
|
put_uprobe(cur_uprobe);
|
|
kfree(uprobe);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
kfree(uprobe);
|
|
uprobe = cur_uprobe;
|
|
}
|
|
|
|
return uprobe;
|
|
}
|
|
|
|
static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
|
|
{
|
|
static atomic64_t id;
|
|
|
|
down_write(&uprobe->consumer_rwsem);
|
|
list_add_rcu(&uc->cons_node, &uprobe->consumers);
|
|
uc->id = (__u64) atomic64_inc_return(&id);
|
|
up_write(&uprobe->consumer_rwsem);
|
|
}
|
|
|
|
/*
|
|
* For uprobe @uprobe, delete the consumer @uc.
|
|
* Should never be called with consumer that's not part of @uprobe->consumers.
|
|
*/
|
|
static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
|
|
{
|
|
down_write(&uprobe->consumer_rwsem);
|
|
list_del_rcu(&uc->cons_node);
|
|
up_write(&uprobe->consumer_rwsem);
|
|
}
|
|
|
|
static int __copy_insn(struct address_space *mapping, struct file *filp,
|
|
void *insn, int nbytes, loff_t offset)
|
|
{
|
|
struct page *page;
|
|
/*
|
|
* Ensure that the page that has the original instruction is populated
|
|
* and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
|
|
* see uprobe_register().
|
|
*/
|
|
if (mapping->a_ops->read_folio)
|
|
page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
|
|
else
|
|
page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
copy_from_page(page, offset, insn, nbytes);
|
|
put_page(page);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int copy_insn(struct uprobe *uprobe, struct file *filp)
|
|
{
|
|
struct address_space *mapping = uprobe->inode->i_mapping;
|
|
loff_t offs = uprobe->offset;
|
|
void *insn = &uprobe->arch.insn;
|
|
int size = sizeof(uprobe->arch.insn);
|
|
int len, err = -EIO;
|
|
|
|
/* Copy only available bytes, -EIO if nothing was read */
|
|
do {
|
|
if (offs >= i_size_read(uprobe->inode))
|
|
break;
|
|
|
|
len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
|
|
err = __copy_insn(mapping, filp, insn, len, offs);
|
|
if (err)
|
|
break;
|
|
|
|
insn += len;
|
|
offs += len;
|
|
size -= len;
|
|
} while (size);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
|
|
struct mm_struct *mm, unsigned long vaddr)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
|
|
return ret;
|
|
|
|
/* TODO: move this into _register, until then we abuse this sem. */
|
|
down_write(&uprobe->consumer_rwsem);
|
|
if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
|
|
goto out;
|
|
|
|
ret = copy_insn(uprobe, file);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = -ENOTSUPP;
|
|
if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
|
|
goto out;
|
|
|
|
ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
|
|
if (ret)
|
|
goto out;
|
|
|
|
smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
|
|
set_bit(UPROBE_COPY_INSN, &uprobe->flags);
|
|
|
|
out:
|
|
up_write(&uprobe->consumer_rwsem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm)
|
|
{
|
|
return !uc->filter || uc->filter(uc, mm);
|
|
}
|
|
|
|
static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm)
|
|
{
|
|
struct uprobe_consumer *uc;
|
|
bool ret = false;
|
|
|
|
down_read(&uprobe->consumer_rwsem);
|
|
list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
|
|
ret = consumer_filter(uc, mm);
|
|
if (ret)
|
|
break;
|
|
}
|
|
up_read(&uprobe->consumer_rwsem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
|
|
struct vm_area_struct *vma, unsigned long vaddr)
|
|
{
|
|
bool first_uprobe;
|
|
int ret;
|
|
|
|
ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
|
|
* the task can hit this breakpoint right after __replace_page().
|
|
*/
|
|
first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
|
|
if (first_uprobe)
|
|
set_bit(MMF_HAS_UPROBES, &mm->flags);
|
|
|
|
ret = set_swbp(&uprobe->arch, mm, vaddr);
|
|
if (!ret)
|
|
clear_bit(MMF_RECALC_UPROBES, &mm->flags);
|
|
else if (first_uprobe)
|
|
clear_bit(MMF_HAS_UPROBES, &mm->flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
|
|
{
|
|
set_bit(MMF_RECALC_UPROBES, &mm->flags);
|
|
return set_orig_insn(&uprobe->arch, mm, vaddr);
|
|
}
|
|
|
|
struct map_info {
|
|
struct map_info *next;
|
|
struct mm_struct *mm;
|
|
unsigned long vaddr;
|
|
};
|
|
|
|
static inline struct map_info *free_map_info(struct map_info *info)
|
|
{
|
|
struct map_info *next = info->next;
|
|
kfree(info);
|
|
return next;
|
|
}
|
|
|
|
static struct map_info *
|
|
build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
|
|
{
|
|
unsigned long pgoff = offset >> PAGE_SHIFT;
|
|
struct vm_area_struct *vma;
|
|
struct map_info *curr = NULL;
|
|
struct map_info *prev = NULL;
|
|
struct map_info *info;
|
|
int more = 0;
|
|
|
|
again:
|
|
i_mmap_lock_read(mapping);
|
|
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
|
|
if (!valid_vma(vma, is_register))
|
|
continue;
|
|
|
|
if (!prev && !more) {
|
|
/*
|
|
* Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
|
|
* reclaim. This is optimistic, no harm done if it fails.
|
|
*/
|
|
prev = kmalloc(sizeof(struct map_info),
|
|
GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
|
|
if (prev)
|
|
prev->next = NULL;
|
|
}
|
|
if (!prev) {
|
|
more++;
|
|
continue;
|
|
}
|
|
|
|
if (!mmget_not_zero(vma->vm_mm))
|
|
continue;
|
|
|
|
info = prev;
|
|
prev = prev->next;
|
|
info->next = curr;
|
|
curr = info;
|
|
|
|
info->mm = vma->vm_mm;
|
|
info->vaddr = offset_to_vaddr(vma, offset);
|
|
}
|
|
i_mmap_unlock_read(mapping);
|
|
|
|
if (!more)
|
|
goto out;
|
|
|
|
prev = curr;
|
|
while (curr) {
|
|
mmput(curr->mm);
|
|
curr = curr->next;
|
|
}
|
|
|
|
do {
|
|
info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
|
|
if (!info) {
|
|
curr = ERR_PTR(-ENOMEM);
|
|
goto out;
|
|
}
|
|
info->next = prev;
|
|
prev = info;
|
|
} while (--more);
|
|
|
|
goto again;
|
|
out:
|
|
while (prev)
|
|
prev = free_map_info(prev);
|
|
return curr;
|
|
}
|
|
|
|
static int
|
|
register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
|
|
{
|
|
bool is_register = !!new;
|
|
struct map_info *info;
|
|
int err = 0;
|
|
|
|
percpu_down_write(&dup_mmap_sem);
|
|
info = build_map_info(uprobe->inode->i_mapping,
|
|
uprobe->offset, is_register);
|
|
if (IS_ERR(info)) {
|
|
err = PTR_ERR(info);
|
|
goto out;
|
|
}
|
|
|
|
while (info) {
|
|
struct mm_struct *mm = info->mm;
|
|
struct vm_area_struct *vma;
|
|
|
|
if (err && is_register)
|
|
goto free;
|
|
/*
|
|
* We take mmap_lock for writing to avoid the race with
|
|
* find_active_uprobe_rcu() which takes mmap_lock for reading.
|
|
* Thus this install_breakpoint() can not make
|
|
* is_trap_at_addr() true right after find_uprobe_rcu()
|
|
* returns NULL in find_active_uprobe_rcu().
|
|
*/
|
|
mmap_write_lock(mm);
|
|
vma = find_vma(mm, info->vaddr);
|
|
if (!vma || !valid_vma(vma, is_register) ||
|
|
file_inode(vma->vm_file) != uprobe->inode)
|
|
goto unlock;
|
|
|
|
if (vma->vm_start > info->vaddr ||
|
|
vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
|
|
goto unlock;
|
|
|
|
if (is_register) {
|
|
/* consult only the "caller", new consumer. */
|
|
if (consumer_filter(new, mm))
|
|
err = install_breakpoint(uprobe, mm, vma, info->vaddr);
|
|
} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
|
|
if (!filter_chain(uprobe, mm))
|
|
err |= remove_breakpoint(uprobe, mm, info->vaddr);
|
|
}
|
|
|
|
unlock:
|
|
mmap_write_unlock(mm);
|
|
free:
|
|
mmput(mm);
|
|
info = free_map_info(info);
|
|
}
|
|
out:
|
|
percpu_up_write(&dup_mmap_sem);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* uprobe_unregister_nosync - unregister an already registered probe.
|
|
* @uprobe: uprobe to remove
|
|
* @uc: identify which probe if multiple probes are colocated.
|
|
*/
|
|
void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc)
|
|
{
|
|
int err;
|
|
|
|
down_write(&uprobe->register_rwsem);
|
|
consumer_del(uprobe, uc);
|
|
err = register_for_each_vma(uprobe, NULL);
|
|
up_write(&uprobe->register_rwsem);
|
|
|
|
/* TODO : cant unregister? schedule a worker thread */
|
|
if (unlikely(err)) {
|
|
uprobe_warn(current, "unregister, leaking uprobe");
|
|
return;
|
|
}
|
|
|
|
put_uprobe(uprobe);
|
|
}
|
|
EXPORT_SYMBOL_GPL(uprobe_unregister_nosync);
|
|
|
|
void uprobe_unregister_sync(void)
|
|
{
|
|
/*
|
|
* Now that handler_chain() and handle_uretprobe_chain() iterate over
|
|
* uprobe->consumers list under RCU protection without holding
|
|
* uprobe->register_rwsem, we need to wait for RCU grace period to
|
|
* make sure that we can't call into just unregistered
|
|
* uprobe_consumer's callbacks anymore. If we don't do that, fast and
|
|
* unlucky enough caller can free consumer's memory and cause
|
|
* handler_chain() or handle_uretprobe_chain() to do an use-after-free.
|
|
*/
|
|
synchronize_rcu_tasks_trace();
|
|
synchronize_srcu(&uretprobes_srcu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(uprobe_unregister_sync);
|
|
|
|
/**
|
|
* uprobe_register - register a probe
|
|
* @inode: the file in which the probe has to be placed.
|
|
* @offset: offset from the start of the file.
|
|
* @ref_ctr_offset: offset of SDT marker / reference counter
|
|
* @uc: information on howto handle the probe..
|
|
*
|
|
* Apart from the access refcount, uprobe_register() takes a creation
|
|
* refcount (thro alloc_uprobe) if and only if this @uprobe is getting
|
|
* inserted into the rbtree (i.e first consumer for a @inode:@offset
|
|
* tuple). Creation refcount stops uprobe_unregister from freeing the
|
|
* @uprobe even before the register operation is complete. Creation
|
|
* refcount is released when the last @uc for the @uprobe
|
|
* unregisters. Caller of uprobe_register() is required to keep @inode
|
|
* (and the containing mount) referenced.
|
|
*
|
|
* Return: pointer to the new uprobe on success or an ERR_PTR on failure.
|
|
*/
|
|
struct uprobe *uprobe_register(struct inode *inode,
|
|
loff_t offset, loff_t ref_ctr_offset,
|
|
struct uprobe_consumer *uc)
|
|
{
|
|
struct uprobe *uprobe;
|
|
int ret;
|
|
|
|
/* Uprobe must have at least one set consumer */
|
|
if (!uc->handler && !uc->ret_handler)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
|
|
if (!inode->i_mapping->a_ops->read_folio &&
|
|
!shmem_mapping(inode->i_mapping))
|
|
return ERR_PTR(-EIO);
|
|
/* Racy, just to catch the obvious mistakes */
|
|
if (offset > i_size_read(inode))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/*
|
|
* This ensures that copy_from_page(), copy_to_page() and
|
|
* __update_ref_ctr() can't cross page boundary.
|
|
*/
|
|
if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
|
|
return ERR_PTR(-EINVAL);
|
|
if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
|
|
if (IS_ERR(uprobe))
|
|
return uprobe;
|
|
|
|
down_write(&uprobe->register_rwsem);
|
|
consumer_add(uprobe, uc);
|
|
ret = register_for_each_vma(uprobe, uc);
|
|
up_write(&uprobe->register_rwsem);
|
|
|
|
if (ret) {
|
|
uprobe_unregister_nosync(uprobe, uc);
|
|
/*
|
|
* Registration might have partially succeeded, so we can have
|
|
* this consumer being called right at this time. We need to
|
|
* sync here. It's ok, it's unlikely slow path.
|
|
*/
|
|
uprobe_unregister_sync();
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
return uprobe;
|
|
}
|
|
EXPORT_SYMBOL_GPL(uprobe_register);
|
|
|
|
/**
|
|
* uprobe_apply - add or remove the breakpoints according to @uc->filter
|
|
* @uprobe: uprobe which "owns" the breakpoint
|
|
* @uc: consumer which wants to add more or remove some breakpoints
|
|
* @add: add or remove the breakpoints
|
|
* Return: 0 on success or negative error code.
|
|
*/
|
|
int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add)
|
|
{
|
|
struct uprobe_consumer *con;
|
|
int ret = -ENOENT;
|
|
|
|
down_write(&uprobe->register_rwsem);
|
|
|
|
rcu_read_lock_trace();
|
|
list_for_each_entry_rcu(con, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
|
|
if (con == uc) {
|
|
ret = register_for_each_vma(uprobe, add ? uc : NULL);
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock_trace();
|
|
|
|
up_write(&uprobe->register_rwsem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
|
|
{
|
|
VMA_ITERATOR(vmi, mm, 0);
|
|
struct vm_area_struct *vma;
|
|
int err = 0;
|
|
|
|
mmap_read_lock(mm);
|
|
for_each_vma(vmi, vma) {
|
|
unsigned long vaddr;
|
|
loff_t offset;
|
|
|
|
if (!valid_vma(vma, false) ||
|
|
file_inode(vma->vm_file) != uprobe->inode)
|
|
continue;
|
|
|
|
offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
|
|
if (uprobe->offset < offset ||
|
|
uprobe->offset >= offset + vma->vm_end - vma->vm_start)
|
|
continue;
|
|
|
|
vaddr = offset_to_vaddr(vma, uprobe->offset);
|
|
err |= remove_breakpoint(uprobe, mm, vaddr);
|
|
}
|
|
mmap_read_unlock(mm);
|
|
|
|
return err;
|
|
}
|
|
|
|
static struct rb_node *
|
|
find_node_in_range(struct inode *inode, loff_t min, loff_t max)
|
|
{
|
|
struct rb_node *n = uprobes_tree.rb_node;
|
|
|
|
while (n) {
|
|
struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
|
|
|
|
if (inode < u->inode) {
|
|
n = n->rb_left;
|
|
} else if (inode > u->inode) {
|
|
n = n->rb_right;
|
|
} else {
|
|
if (max < u->offset)
|
|
n = n->rb_left;
|
|
else if (min > u->offset)
|
|
n = n->rb_right;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* For a given range in vma, build a list of probes that need to be inserted.
|
|
*/
|
|
static void build_probe_list(struct inode *inode,
|
|
struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end,
|
|
struct list_head *head)
|
|
{
|
|
loff_t min, max;
|
|
struct rb_node *n, *t;
|
|
struct uprobe *u;
|
|
|
|
INIT_LIST_HEAD(head);
|
|
min = vaddr_to_offset(vma, start);
|
|
max = min + (end - start) - 1;
|
|
|
|
read_lock(&uprobes_treelock);
|
|
n = find_node_in_range(inode, min, max);
|
|
if (n) {
|
|
for (t = n; t; t = rb_prev(t)) {
|
|
u = rb_entry(t, struct uprobe, rb_node);
|
|
if (u->inode != inode || u->offset < min)
|
|
break;
|
|
/* if uprobe went away, it's safe to ignore it */
|
|
if (try_get_uprobe(u))
|
|
list_add(&u->pending_list, head);
|
|
}
|
|
for (t = n; (t = rb_next(t)); ) {
|
|
u = rb_entry(t, struct uprobe, rb_node);
|
|
if (u->inode != inode || u->offset > max)
|
|
break;
|
|
/* if uprobe went away, it's safe to ignore it */
|
|
if (try_get_uprobe(u))
|
|
list_add(&u->pending_list, head);
|
|
}
|
|
}
|
|
read_unlock(&uprobes_treelock);
|
|
}
|
|
|
|
/* @vma contains reference counter, not the probed instruction. */
|
|
static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
|
|
{
|
|
struct list_head *pos, *q;
|
|
struct delayed_uprobe *du;
|
|
unsigned long vaddr;
|
|
int ret = 0, err = 0;
|
|
|
|
mutex_lock(&delayed_uprobe_lock);
|
|
list_for_each_safe(pos, q, &delayed_uprobe_list) {
|
|
du = list_entry(pos, struct delayed_uprobe, list);
|
|
|
|
if (du->mm != vma->vm_mm ||
|
|
!valid_ref_ctr_vma(du->uprobe, vma))
|
|
continue;
|
|
|
|
vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
|
|
ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
|
|
if (ret) {
|
|
update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
|
|
if (!err)
|
|
err = ret;
|
|
}
|
|
delayed_uprobe_delete(du);
|
|
}
|
|
mutex_unlock(&delayed_uprobe_lock);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Called from mmap_region/vma_merge with mm->mmap_lock acquired.
|
|
*
|
|
* Currently we ignore all errors and always return 0, the callers
|
|
* can't handle the failure anyway.
|
|
*/
|
|
int uprobe_mmap(struct vm_area_struct *vma)
|
|
{
|
|
struct list_head tmp_list;
|
|
struct uprobe *uprobe, *u;
|
|
struct inode *inode;
|
|
|
|
if (no_uprobe_events())
|
|
return 0;
|
|
|
|
if (vma->vm_file &&
|
|
(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
|
|
test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
|
|
delayed_ref_ctr_inc(vma);
|
|
|
|
if (!valid_vma(vma, true))
|
|
return 0;
|
|
|
|
inode = file_inode(vma->vm_file);
|
|
if (!inode)
|
|
return 0;
|
|
|
|
mutex_lock(uprobes_mmap_hash(inode));
|
|
build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
|
|
/*
|
|
* We can race with uprobe_unregister(), this uprobe can be already
|
|
* removed. But in this case filter_chain() must return false, all
|
|
* consumers have gone away.
|
|
*/
|
|
list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
|
|
if (!fatal_signal_pending(current) &&
|
|
filter_chain(uprobe, vma->vm_mm)) {
|
|
unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
|
|
install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
|
|
}
|
|
put_uprobe(uprobe);
|
|
}
|
|
mutex_unlock(uprobes_mmap_hash(inode));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
|
|
{
|
|
loff_t min, max;
|
|
struct inode *inode;
|
|
struct rb_node *n;
|
|
|
|
inode = file_inode(vma->vm_file);
|
|
|
|
min = vaddr_to_offset(vma, start);
|
|
max = min + (end - start) - 1;
|
|
|
|
read_lock(&uprobes_treelock);
|
|
n = find_node_in_range(inode, min, max);
|
|
read_unlock(&uprobes_treelock);
|
|
|
|
return !!n;
|
|
}
|
|
|
|
/*
|
|
* Called in context of a munmap of a vma.
|
|
*/
|
|
void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
|
|
{
|
|
if (no_uprobe_events() || !valid_vma(vma, false))
|
|
return;
|
|
|
|
if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
|
|
return;
|
|
|
|
if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
|
|
test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
|
|
return;
|
|
|
|
if (vma_has_uprobes(vma, start, end))
|
|
set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
|
|
}
|
|
|
|
static vm_fault_t xol_fault(const struct vm_special_mapping *sm,
|
|
struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct xol_area *area = vma->vm_mm->uprobes_state.xol_area;
|
|
|
|
vmf->page = area->page;
|
|
get_page(vmf->page);
|
|
return 0;
|
|
}
|
|
|
|
static int xol_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma)
|
|
{
|
|
return -EPERM;
|
|
}
|
|
|
|
static const struct vm_special_mapping xol_mapping = {
|
|
.name = "[uprobes]",
|
|
.fault = xol_fault,
|
|
.mremap = xol_mremap,
|
|
};
|
|
|
|
/* Slot allocation for XOL */
|
|
static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
int ret;
|
|
|
|
if (mmap_write_lock_killable(mm))
|
|
return -EINTR;
|
|
|
|
if (mm->uprobes_state.xol_area) {
|
|
ret = -EALREADY;
|
|
goto fail;
|
|
}
|
|
|
|
if (!area->vaddr) {
|
|
/* Try to map as high as possible, this is only a hint. */
|
|
area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
|
|
PAGE_SIZE, 0, 0);
|
|
if (IS_ERR_VALUE(area->vaddr)) {
|
|
ret = area->vaddr;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
|
|
VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
|
|
&xol_mapping);
|
|
if (IS_ERR(vma)) {
|
|
ret = PTR_ERR(vma);
|
|
goto fail;
|
|
}
|
|
|
|
ret = 0;
|
|
/* pairs with get_xol_area() */
|
|
smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
|
|
fail:
|
|
mmap_write_unlock(mm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void * __weak arch_uprobe_trampoline(unsigned long *psize)
|
|
{
|
|
static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
|
|
|
|
*psize = UPROBE_SWBP_INSN_SIZE;
|
|
return &insn;
|
|
}
|
|
|
|
static struct xol_area *__create_xol_area(unsigned long vaddr)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long insns_size;
|
|
struct xol_area *area;
|
|
void *insns;
|
|
|
|
area = kzalloc(sizeof(*area), GFP_KERNEL);
|
|
if (unlikely(!area))
|
|
goto out;
|
|
|
|
area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
|
|
GFP_KERNEL);
|
|
if (!area->bitmap)
|
|
goto free_area;
|
|
|
|
area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
|
|
if (!area->page)
|
|
goto free_bitmap;
|
|
|
|
area->vaddr = vaddr;
|
|
init_waitqueue_head(&area->wq);
|
|
/* Reserve the 1st slot for get_trampoline_vaddr() */
|
|
set_bit(0, area->bitmap);
|
|
insns = arch_uprobe_trampoline(&insns_size);
|
|
arch_uprobe_copy_ixol(area->page, 0, insns, insns_size);
|
|
|
|
if (!xol_add_vma(mm, area))
|
|
return area;
|
|
|
|
__free_page(area->page);
|
|
free_bitmap:
|
|
kfree(area->bitmap);
|
|
free_area:
|
|
kfree(area);
|
|
out:
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* get_xol_area - Allocate process's xol_area if necessary.
|
|
* This area will be used for storing instructions for execution out of line.
|
|
*
|
|
* Returns the allocated area or NULL.
|
|
*/
|
|
static struct xol_area *get_xol_area(void)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct xol_area *area;
|
|
|
|
if (!mm->uprobes_state.xol_area)
|
|
__create_xol_area(0);
|
|
|
|
/* Pairs with xol_add_vma() smp_store_release() */
|
|
area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
|
|
return area;
|
|
}
|
|
|
|
/*
|
|
* uprobe_clear_state - Free the area allocated for slots.
|
|
*/
|
|
void uprobe_clear_state(struct mm_struct *mm)
|
|
{
|
|
struct xol_area *area = mm->uprobes_state.xol_area;
|
|
|
|
mutex_lock(&delayed_uprobe_lock);
|
|
delayed_uprobe_remove(NULL, mm);
|
|
mutex_unlock(&delayed_uprobe_lock);
|
|
|
|
if (!area)
|
|
return;
|
|
|
|
put_page(area->page);
|
|
kfree(area->bitmap);
|
|
kfree(area);
|
|
}
|
|
|
|
void uprobe_start_dup_mmap(void)
|
|
{
|
|
percpu_down_read(&dup_mmap_sem);
|
|
}
|
|
|
|
void uprobe_end_dup_mmap(void)
|
|
{
|
|
percpu_up_read(&dup_mmap_sem);
|
|
}
|
|
|
|
void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
|
|
{
|
|
if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
|
|
set_bit(MMF_HAS_UPROBES, &newmm->flags);
|
|
/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
|
|
set_bit(MMF_RECALC_UPROBES, &newmm->flags);
|
|
}
|
|
}
|
|
|
|
static unsigned long xol_get_slot_nr(struct xol_area *area)
|
|
{
|
|
unsigned long slot_nr;
|
|
|
|
slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
|
|
if (slot_nr < UINSNS_PER_PAGE) {
|
|
if (!test_and_set_bit(slot_nr, area->bitmap))
|
|
return slot_nr;
|
|
}
|
|
|
|
return UINSNS_PER_PAGE;
|
|
}
|
|
|
|
/*
|
|
* xol_get_insn_slot - allocate a slot for xol.
|
|
*/
|
|
static bool xol_get_insn_slot(struct uprobe *uprobe, struct uprobe_task *utask)
|
|
{
|
|
struct xol_area *area = get_xol_area();
|
|
unsigned long slot_nr;
|
|
|
|
if (!area)
|
|
return false;
|
|
|
|
wait_event(area->wq, (slot_nr = xol_get_slot_nr(area)) < UINSNS_PER_PAGE);
|
|
|
|
utask->xol_vaddr = area->vaddr + slot_nr * UPROBE_XOL_SLOT_BYTES;
|
|
arch_uprobe_copy_ixol(area->page, utask->xol_vaddr,
|
|
&uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* xol_free_insn_slot - free the slot allocated by xol_get_insn_slot()
|
|
*/
|
|
static void xol_free_insn_slot(struct uprobe_task *utask)
|
|
{
|
|
struct xol_area *area = current->mm->uprobes_state.xol_area;
|
|
unsigned long offset = utask->xol_vaddr - area->vaddr;
|
|
unsigned int slot_nr;
|
|
|
|
utask->xol_vaddr = 0;
|
|
/* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */
|
|
if (WARN_ON_ONCE(offset >= PAGE_SIZE))
|
|
return;
|
|
|
|
slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
|
|
clear_bit(slot_nr, area->bitmap);
|
|
smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
|
|
if (waitqueue_active(&area->wq))
|
|
wake_up(&area->wq);
|
|
}
|
|
|
|
void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
|
|
void *src, unsigned long len)
|
|
{
|
|
/* Initialize the slot */
|
|
copy_to_page(page, vaddr, src, len);
|
|
|
|
/*
|
|
* We probably need flush_icache_user_page() but it needs vma.
|
|
* This should work on most of architectures by default. If
|
|
* architecture needs to do something different it can define
|
|
* its own version of the function.
|
|
*/
|
|
flush_dcache_page(page);
|
|
}
|
|
|
|
/**
|
|
* uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
|
|
* @regs: Reflects the saved state of the task after it has hit a breakpoint
|
|
* instruction.
|
|
* Return the address of the breakpoint instruction.
|
|
*/
|
|
unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
|
|
{
|
|
return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
|
|
}
|
|
|
|
unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
|
|
{
|
|
struct uprobe_task *utask = current->utask;
|
|
|
|
if (unlikely(utask && utask->active_uprobe))
|
|
return utask->vaddr;
|
|
|
|
return instruction_pointer(regs);
|
|
}
|
|
|
|
static struct return_instance *free_ret_instance(struct return_instance *ri, bool cleanup_hprobe)
|
|
{
|
|
struct return_instance *next = ri->next;
|
|
|
|
if (cleanup_hprobe) {
|
|
enum hprobe_state hstate;
|
|
|
|
(void)hprobe_consume(&ri->hprobe, &hstate);
|
|
hprobe_finalize(&ri->hprobe, hstate);
|
|
}
|
|
|
|
kfree_rcu(ri, rcu);
|
|
return next;
|
|
}
|
|
|
|
/*
|
|
* Called with no locks held.
|
|
* Called in context of an exiting or an exec-ing thread.
|
|
*/
|
|
void uprobe_free_utask(struct task_struct *t)
|
|
{
|
|
struct uprobe_task *utask = t->utask;
|
|
struct return_instance *ri;
|
|
|
|
if (!utask)
|
|
return;
|
|
|
|
WARN_ON_ONCE(utask->active_uprobe || utask->xol_vaddr);
|
|
|
|
timer_delete_sync(&utask->ri_timer);
|
|
|
|
ri = utask->return_instances;
|
|
while (ri)
|
|
ri = free_ret_instance(ri, true /* cleanup_hprobe */);
|
|
|
|
kfree(utask);
|
|
t->utask = NULL;
|
|
}
|
|
|
|
#define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */
|
|
|
|
#define for_each_ret_instance_rcu(pos, head) \
|
|
for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next))
|
|
|
|
static void ri_timer(struct timer_list *timer)
|
|
{
|
|
struct uprobe_task *utask = container_of(timer, struct uprobe_task, ri_timer);
|
|
struct return_instance *ri;
|
|
|
|
/* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */
|
|
guard(srcu)(&uretprobes_srcu);
|
|
/* RCU protects return_instance from freeing. */
|
|
guard(rcu)();
|
|
|
|
for_each_ret_instance_rcu(ri, utask->return_instances)
|
|
hprobe_expire(&ri->hprobe, false);
|
|
}
|
|
|
|
static struct uprobe_task *alloc_utask(void)
|
|
{
|
|
struct uprobe_task *utask;
|
|
|
|
utask = kzalloc(sizeof(*utask), GFP_KERNEL);
|
|
if (!utask)
|
|
return NULL;
|
|
|
|
timer_setup(&utask->ri_timer, ri_timer, 0);
|
|
|
|
return utask;
|
|
}
|
|
|
|
/*
|
|
* Allocate a uprobe_task object for the task if necessary.
|
|
* Called when the thread hits a breakpoint.
|
|
*
|
|
* Returns:
|
|
* - pointer to new uprobe_task on success
|
|
* - NULL otherwise
|
|
*/
|
|
static struct uprobe_task *get_utask(void)
|
|
{
|
|
if (!current->utask)
|
|
current->utask = alloc_utask();
|
|
return current->utask;
|
|
}
|
|
|
|
static size_t ri_size(int consumers_cnt)
|
|
{
|
|
struct return_instance *ri;
|
|
|
|
return sizeof(*ri) + sizeof(ri->consumers[0]) * consumers_cnt;
|
|
}
|
|
|
|
#define DEF_CNT 4
|
|
|
|
static struct return_instance *alloc_return_instance(void)
|
|
{
|
|
struct return_instance *ri;
|
|
|
|
ri = kzalloc(ri_size(DEF_CNT), GFP_KERNEL);
|
|
if (!ri)
|
|
return ZERO_SIZE_PTR;
|
|
|
|
ri->consumers_cnt = DEF_CNT;
|
|
return ri;
|
|
}
|
|
|
|
static struct return_instance *dup_return_instance(struct return_instance *old)
|
|
{
|
|
size_t size = ri_size(old->consumers_cnt);
|
|
|
|
return kmemdup(old, size, GFP_KERNEL);
|
|
}
|
|
|
|
static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
|
|
{
|
|
struct uprobe_task *n_utask;
|
|
struct return_instance **p, *o, *n;
|
|
struct uprobe *uprobe;
|
|
|
|
n_utask = alloc_utask();
|
|
if (!n_utask)
|
|
return -ENOMEM;
|
|
t->utask = n_utask;
|
|
|
|
/* protect uprobes from freeing, we'll need try_get_uprobe() them */
|
|
guard(srcu)(&uretprobes_srcu);
|
|
|
|
p = &n_utask->return_instances;
|
|
for (o = o_utask->return_instances; o; o = o->next) {
|
|
n = dup_return_instance(o);
|
|
if (!n)
|
|
return -ENOMEM;
|
|
|
|
/* if uprobe is non-NULL, we'll have an extra refcount for uprobe */
|
|
uprobe = hprobe_expire(&o->hprobe, true);
|
|
|
|
/*
|
|
* New utask will have stable properly refcounted uprobe or
|
|
* NULL. Even if we failed to get refcounted uprobe, we still
|
|
* need to preserve full set of return_instances for proper
|
|
* uretprobe handling and nesting in forked task.
|
|
*/
|
|
hprobe_init_stable(&n->hprobe, uprobe);
|
|
|
|
n->next = NULL;
|
|
rcu_assign_pointer(*p, n);
|
|
p = &n->next;
|
|
|
|
n_utask->depth++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dup_xol_work(struct callback_head *work)
|
|
{
|
|
if (current->flags & PF_EXITING)
|
|
return;
|
|
|
|
if (!__create_xol_area(current->utask->dup_xol_addr) &&
|
|
!fatal_signal_pending(current))
|
|
uprobe_warn(current, "dup xol area");
|
|
}
|
|
|
|
/*
|
|
* Called in context of a new clone/fork from copy_process.
|
|
*/
|
|
void uprobe_copy_process(struct task_struct *t, unsigned long flags)
|
|
{
|
|
struct uprobe_task *utask = current->utask;
|
|
struct mm_struct *mm = current->mm;
|
|
struct xol_area *area;
|
|
|
|
t->utask = NULL;
|
|
|
|
if (!utask || !utask->return_instances)
|
|
return;
|
|
|
|
if (mm == t->mm && !(flags & CLONE_VFORK))
|
|
return;
|
|
|
|
if (dup_utask(t, utask))
|
|
return uprobe_warn(t, "dup ret instances");
|
|
|
|
/* The task can fork() after dup_xol_work() fails */
|
|
area = mm->uprobes_state.xol_area;
|
|
if (!area)
|
|
return uprobe_warn(t, "dup xol area");
|
|
|
|
if (mm == t->mm)
|
|
return;
|
|
|
|
t->utask->dup_xol_addr = area->vaddr;
|
|
init_task_work(&t->utask->dup_xol_work, dup_xol_work);
|
|
task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
|
|
}
|
|
|
|
/*
|
|
* Current area->vaddr notion assume the trampoline address is always
|
|
* equal area->vaddr.
|
|
*
|
|
* Returns -1 in case the xol_area is not allocated.
|
|
*/
|
|
unsigned long uprobe_get_trampoline_vaddr(void)
|
|
{
|
|
struct xol_area *area;
|
|
unsigned long trampoline_vaddr = -1;
|
|
|
|
/* Pairs with xol_add_vma() smp_store_release() */
|
|
area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
|
|
if (area)
|
|
trampoline_vaddr = area->vaddr;
|
|
|
|
return trampoline_vaddr;
|
|
}
|
|
|
|
static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct return_instance *ri = utask->return_instances;
|
|
enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
|
|
|
|
while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
|
|
ri = free_ret_instance(ri, true /* cleanup_hprobe */);
|
|
utask->depth--;
|
|
}
|
|
rcu_assign_pointer(utask->return_instances, ri);
|
|
}
|
|
|
|
static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs,
|
|
struct return_instance *ri)
|
|
{
|
|
struct uprobe_task *utask = current->utask;
|
|
unsigned long orig_ret_vaddr, trampoline_vaddr;
|
|
bool chained;
|
|
int srcu_idx;
|
|
|
|
if (!get_xol_area())
|
|
goto free;
|
|
|
|
if (utask->depth >= MAX_URETPROBE_DEPTH) {
|
|
printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
|
|
" nestedness limit pid/tgid=%d/%d\n",
|
|
current->pid, current->tgid);
|
|
goto free;
|
|
}
|
|
|
|
trampoline_vaddr = uprobe_get_trampoline_vaddr();
|
|
orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
|
|
if (orig_ret_vaddr == -1)
|
|
goto free;
|
|
|
|
/* drop the entries invalidated by longjmp() */
|
|
chained = (orig_ret_vaddr == trampoline_vaddr);
|
|
cleanup_return_instances(utask, chained, regs);
|
|
|
|
/*
|
|
* We don't want to keep trampoline address in stack, rather keep the
|
|
* original return address of first caller thru all the consequent
|
|
* instances. This also makes breakpoint unwrapping easier.
|
|
*/
|
|
if (chained) {
|
|
if (!utask->return_instances) {
|
|
/*
|
|
* This situation is not possible. Likely we have an
|
|
* attack from user-space.
|
|
*/
|
|
uprobe_warn(current, "handle tail call");
|
|
goto free;
|
|
}
|
|
orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
|
|
}
|
|
|
|
/* __srcu_read_lock() because SRCU lock survives switch to user space */
|
|
srcu_idx = __srcu_read_lock(&uretprobes_srcu);
|
|
|
|
ri->func = instruction_pointer(regs);
|
|
ri->stack = user_stack_pointer(regs);
|
|
ri->orig_ret_vaddr = orig_ret_vaddr;
|
|
ri->chained = chained;
|
|
|
|
utask->depth++;
|
|
|
|
hprobe_init_leased(&ri->hprobe, uprobe, srcu_idx);
|
|
ri->next = utask->return_instances;
|
|
rcu_assign_pointer(utask->return_instances, ri);
|
|
|
|
mod_timer(&utask->ri_timer, jiffies + RI_TIMER_PERIOD);
|
|
|
|
return;
|
|
free:
|
|
kfree(ri);
|
|
}
|
|
|
|
/* Prepare to single-step probed instruction out of line. */
|
|
static int
|
|
pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
|
|
{
|
|
struct uprobe_task *utask = current->utask;
|
|
int err;
|
|
|
|
if (!try_get_uprobe(uprobe))
|
|
return -EINVAL;
|
|
|
|
if (!xol_get_insn_slot(uprobe, utask)) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
utask->vaddr = bp_vaddr;
|
|
err = arch_uprobe_pre_xol(&uprobe->arch, regs);
|
|
if (unlikely(err)) {
|
|
xol_free_insn_slot(utask);
|
|
goto err_out;
|
|
}
|
|
|
|
utask->active_uprobe = uprobe;
|
|
utask->state = UTASK_SSTEP;
|
|
return 0;
|
|
err_out:
|
|
put_uprobe(uprobe);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* If we are singlestepping, then ensure this thread is not connected to
|
|
* non-fatal signals until completion of singlestep. When xol insn itself
|
|
* triggers the signal, restart the original insn even if the task is
|
|
* already SIGKILL'ed (since coredump should report the correct ip). This
|
|
* is even more important if the task has a handler for SIGSEGV/etc, The
|
|
* _same_ instruction should be repeated again after return from the signal
|
|
* handler, and SSTEP can never finish in this case.
|
|
*/
|
|
bool uprobe_deny_signal(void)
|
|
{
|
|
struct task_struct *t = current;
|
|
struct uprobe_task *utask = t->utask;
|
|
|
|
if (likely(!utask || !utask->active_uprobe))
|
|
return false;
|
|
|
|
WARN_ON_ONCE(utask->state != UTASK_SSTEP);
|
|
|
|
if (task_sigpending(t)) {
|
|
spin_lock_irq(&t->sighand->siglock);
|
|
clear_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
spin_unlock_irq(&t->sighand->siglock);
|
|
|
|
if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
|
|
utask->state = UTASK_SSTEP_TRAPPED;
|
|
set_tsk_thread_flag(t, TIF_UPROBE);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void mmf_recalc_uprobes(struct mm_struct *mm)
|
|
{
|
|
VMA_ITERATOR(vmi, mm, 0);
|
|
struct vm_area_struct *vma;
|
|
|
|
for_each_vma(vmi, vma) {
|
|
if (!valid_vma(vma, false))
|
|
continue;
|
|
/*
|
|
* This is not strictly accurate, we can race with
|
|
* uprobe_unregister() and see the already removed
|
|
* uprobe if delete_uprobe() was not yet called.
|
|
* Or this uprobe can be filtered out.
|
|
*/
|
|
if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
|
|
return;
|
|
}
|
|
|
|
clear_bit(MMF_HAS_UPROBES, &mm->flags);
|
|
}
|
|
|
|
static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
|
|
{
|
|
struct page *page;
|
|
uprobe_opcode_t opcode;
|
|
int result;
|
|
|
|
if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
|
|
return -EINVAL;
|
|
|
|
pagefault_disable();
|
|
result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
|
|
pagefault_enable();
|
|
|
|
if (likely(result == 0))
|
|
goto out;
|
|
|
|
result = get_user_pages(vaddr, 1, FOLL_FORCE, &page);
|
|
if (result < 0)
|
|
return result;
|
|
|
|
copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
|
|
put_page(page);
|
|
out:
|
|
/* This needs to return true for any variant of the trap insn */
|
|
return is_trap_insn(&opcode);
|
|
}
|
|
|
|
/* assumes being inside RCU protected region */
|
|
static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct uprobe *uprobe = NULL;
|
|
struct vm_area_struct *vma;
|
|
|
|
mmap_read_lock(mm);
|
|
vma = vma_lookup(mm, bp_vaddr);
|
|
if (vma) {
|
|
if (valid_vma(vma, false)) {
|
|
struct inode *inode = file_inode(vma->vm_file);
|
|
loff_t offset = vaddr_to_offset(vma, bp_vaddr);
|
|
|
|
uprobe = find_uprobe_rcu(inode, offset);
|
|
}
|
|
|
|
if (!uprobe)
|
|
*is_swbp = is_trap_at_addr(mm, bp_vaddr);
|
|
} else {
|
|
*is_swbp = -EFAULT;
|
|
}
|
|
|
|
if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
|
|
mmf_recalc_uprobes(mm);
|
|
mmap_read_unlock(mm);
|
|
|
|
return uprobe;
|
|
}
|
|
|
|
static struct return_instance*
|
|
push_consumer(struct return_instance *ri, int idx, __u64 id, __u64 cookie)
|
|
{
|
|
if (unlikely(ri == ZERO_SIZE_PTR))
|
|
return ri;
|
|
|
|
if (unlikely(idx >= ri->consumers_cnt)) {
|
|
struct return_instance *old_ri = ri;
|
|
|
|
ri->consumers_cnt += DEF_CNT;
|
|
ri = krealloc(old_ri, ri_size(old_ri->consumers_cnt), GFP_KERNEL);
|
|
if (!ri) {
|
|
kfree(old_ri);
|
|
return ZERO_SIZE_PTR;
|
|
}
|
|
}
|
|
|
|
ri->consumers[idx].id = id;
|
|
ri->consumers[idx].cookie = cookie;
|
|
return ri;
|
|
}
|
|
|
|
static struct return_consumer *
|
|
return_consumer_find(struct return_instance *ri, int *iter, int id)
|
|
{
|
|
struct return_consumer *ric;
|
|
int idx = *iter;
|
|
|
|
for (ric = &ri->consumers[idx]; idx < ri->consumers_cnt; idx++, ric++) {
|
|
if (ric->id == id) {
|
|
*iter = idx + 1;
|
|
return ric;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static bool ignore_ret_handler(int rc)
|
|
{
|
|
return rc == UPROBE_HANDLER_REMOVE || rc == UPROBE_HANDLER_IGNORE;
|
|
}
|
|
|
|
static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
|
|
{
|
|
struct uprobe_consumer *uc;
|
|
bool has_consumers = false, remove = true;
|
|
struct return_instance *ri = NULL;
|
|
int push_idx = 0;
|
|
|
|
current->utask->auprobe = &uprobe->arch;
|
|
|
|
list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
|
|
bool session = uc->handler && uc->ret_handler;
|
|
__u64 cookie = 0;
|
|
int rc = 0;
|
|
|
|
if (uc->handler) {
|
|
rc = uc->handler(uc, regs, &cookie);
|
|
WARN(rc < 0 || rc > 2,
|
|
"bad rc=0x%x from %ps()\n", rc, uc->handler);
|
|
}
|
|
|
|
remove &= rc == UPROBE_HANDLER_REMOVE;
|
|
has_consumers = true;
|
|
|
|
if (!uc->ret_handler || ignore_ret_handler(rc))
|
|
continue;
|
|
|
|
if (!ri)
|
|
ri = alloc_return_instance();
|
|
|
|
if (session)
|
|
ri = push_consumer(ri, push_idx++, uc->id, cookie);
|
|
}
|
|
current->utask->auprobe = NULL;
|
|
|
|
if (!ZERO_OR_NULL_PTR(ri)) {
|
|
/*
|
|
* The push_idx value has the final number of return consumers,
|
|
* and ri->consumers_cnt has number of allocated consumers.
|
|
*/
|
|
ri->consumers_cnt = push_idx;
|
|
prepare_uretprobe(uprobe, regs, ri);
|
|
}
|
|
|
|
if (remove && has_consumers) {
|
|
down_read(&uprobe->register_rwsem);
|
|
|
|
/* re-check that removal is still required, this time under lock */
|
|
if (!filter_chain(uprobe, current->mm)) {
|
|
WARN_ON(!uprobe_is_active(uprobe));
|
|
unapply_uprobe(uprobe, current->mm);
|
|
}
|
|
|
|
up_read(&uprobe->register_rwsem);
|
|
}
|
|
}
|
|
|
|
static void
|
|
handle_uretprobe_chain(struct return_instance *ri, struct uprobe *uprobe, struct pt_regs *regs)
|
|
{
|
|
struct return_consumer *ric;
|
|
struct uprobe_consumer *uc;
|
|
int ric_idx = 0;
|
|
|
|
/* all consumers unsubscribed meanwhile */
|
|
if (unlikely(!uprobe))
|
|
return;
|
|
|
|
rcu_read_lock_trace();
|
|
list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
|
|
bool session = uc->handler && uc->ret_handler;
|
|
|
|
if (uc->ret_handler) {
|
|
ric = return_consumer_find(ri, &ric_idx, uc->id);
|
|
if (!session || ric)
|
|
uc->ret_handler(uc, ri->func, regs, ric ? &ric->cookie : NULL);
|
|
}
|
|
}
|
|
rcu_read_unlock_trace();
|
|
}
|
|
|
|
static struct return_instance *find_next_ret_chain(struct return_instance *ri)
|
|
{
|
|
bool chained;
|
|
|
|
do {
|
|
chained = ri->chained;
|
|
ri = ri->next; /* can't be NULL if chained */
|
|
} while (chained);
|
|
|
|
return ri;
|
|
}
|
|
|
|
void uprobe_handle_trampoline(struct pt_regs *regs)
|
|
{
|
|
struct uprobe_task *utask;
|
|
struct return_instance *ri, *next;
|
|
struct uprobe *uprobe;
|
|
enum hprobe_state hstate;
|
|
bool valid;
|
|
|
|
utask = current->utask;
|
|
if (!utask)
|
|
goto sigill;
|
|
|
|
ri = utask->return_instances;
|
|
if (!ri)
|
|
goto sigill;
|
|
|
|
do {
|
|
/*
|
|
* We should throw out the frames invalidated by longjmp().
|
|
* If this chain is valid, then the next one should be alive
|
|
* or NULL; the latter case means that nobody but ri->func
|
|
* could hit this trampoline on return. TODO: sigaltstack().
|
|
*/
|
|
next = find_next_ret_chain(ri);
|
|
valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
|
|
|
|
instruction_pointer_set(regs, ri->orig_ret_vaddr);
|
|
do {
|
|
/* pop current instance from the stack of pending return instances,
|
|
* as it's not pending anymore: we just fixed up original
|
|
* instruction pointer in regs and are about to call handlers;
|
|
* this allows fixup_uretprobe_trampoline_entries() to properly fix up
|
|
* captured stack traces from uretprobe handlers, in which pending
|
|
* trampoline addresses on the stack are replaced with correct
|
|
* original return addresses
|
|
*/
|
|
rcu_assign_pointer(utask->return_instances, ri->next);
|
|
|
|
uprobe = hprobe_consume(&ri->hprobe, &hstate);
|
|
if (valid)
|
|
handle_uretprobe_chain(ri, uprobe, regs);
|
|
hprobe_finalize(&ri->hprobe, hstate);
|
|
|
|
/* We already took care of hprobe, no need to waste more time on that. */
|
|
ri = free_ret_instance(ri, false /* !cleanup_hprobe */);
|
|
utask->depth--;
|
|
} while (ri != next);
|
|
} while (!valid);
|
|
|
|
return;
|
|
|
|
sigill:
|
|
uprobe_warn(current, "handle uretprobe, sending SIGILL.");
|
|
force_sig(SIGILL);
|
|
}
|
|
|
|
bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
|
|
struct pt_regs *regs)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Run handler and ask thread to singlestep.
|
|
* Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
|
|
*/
|
|
static void handle_swbp(struct pt_regs *regs)
|
|
{
|
|
struct uprobe *uprobe;
|
|
unsigned long bp_vaddr;
|
|
int is_swbp;
|
|
|
|
bp_vaddr = uprobe_get_swbp_addr(regs);
|
|
if (bp_vaddr == uprobe_get_trampoline_vaddr())
|
|
return uprobe_handle_trampoline(regs);
|
|
|
|
rcu_read_lock_trace();
|
|
|
|
uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp);
|
|
if (!uprobe) {
|
|
if (is_swbp > 0) {
|
|
/* No matching uprobe; signal SIGTRAP. */
|
|
force_sig(SIGTRAP);
|
|
} else {
|
|
/*
|
|
* Either we raced with uprobe_unregister() or we can't
|
|
* access this memory. The latter is only possible if
|
|
* another thread plays with our ->mm. In both cases
|
|
* we can simply restart. If this vma was unmapped we
|
|
* can pretend this insn was not executed yet and get
|
|
* the (correct) SIGSEGV after restart.
|
|
*/
|
|
instruction_pointer_set(regs, bp_vaddr);
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
/* change it in advance for ->handler() and restart */
|
|
instruction_pointer_set(regs, bp_vaddr);
|
|
|
|
/*
|
|
* TODO: move copy_insn/etc into _register and remove this hack.
|
|
* After we hit the bp, _unregister + _register can install the
|
|
* new and not-yet-analyzed uprobe at the same address, restart.
|
|
*/
|
|
if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
|
|
goto out;
|
|
|
|
/*
|
|
* Pairs with the smp_wmb() in prepare_uprobe().
|
|
*
|
|
* Guarantees that if we see the UPROBE_COPY_INSN bit set, then
|
|
* we must also see the stores to &uprobe->arch performed by the
|
|
* prepare_uprobe() call.
|
|
*/
|
|
smp_rmb();
|
|
|
|
/* Tracing handlers use ->utask to communicate with fetch methods */
|
|
if (!get_utask())
|
|
goto out;
|
|
|
|
if (arch_uprobe_ignore(&uprobe->arch, regs))
|
|
goto out;
|
|
|
|
handler_chain(uprobe, regs);
|
|
|
|
if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
|
|
goto out;
|
|
|
|
if (pre_ssout(uprobe, regs, bp_vaddr))
|
|
goto out;
|
|
|
|
out:
|
|
/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
|
|
rcu_read_unlock_trace();
|
|
}
|
|
|
|
/*
|
|
* Perform required fix-ups and disable singlestep.
|
|
* Allow pending signals to take effect.
|
|
*/
|
|
static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
|
|
{
|
|
struct uprobe *uprobe;
|
|
int err = 0;
|
|
|
|
uprobe = utask->active_uprobe;
|
|
if (utask->state == UTASK_SSTEP_ACK)
|
|
err = arch_uprobe_post_xol(&uprobe->arch, regs);
|
|
else if (utask->state == UTASK_SSTEP_TRAPPED)
|
|
arch_uprobe_abort_xol(&uprobe->arch, regs);
|
|
else
|
|
WARN_ON_ONCE(1);
|
|
|
|
put_uprobe(uprobe);
|
|
utask->active_uprobe = NULL;
|
|
utask->state = UTASK_RUNNING;
|
|
xol_free_insn_slot(utask);
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
recalc_sigpending(); /* see uprobe_deny_signal() */
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
if (unlikely(err)) {
|
|
uprobe_warn(current, "execute the probed insn, sending SIGILL.");
|
|
force_sig(SIGILL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
|
|
* allows the thread to return from interrupt. After that handle_swbp()
|
|
* sets utask->active_uprobe.
|
|
*
|
|
* On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
|
|
* and allows the thread to return from interrupt.
|
|
*
|
|
* While returning to userspace, thread notices the TIF_UPROBE flag and calls
|
|
* uprobe_notify_resume().
|
|
*/
|
|
void uprobe_notify_resume(struct pt_regs *regs)
|
|
{
|
|
struct uprobe_task *utask;
|
|
|
|
clear_thread_flag(TIF_UPROBE);
|
|
|
|
utask = current->utask;
|
|
if (utask && utask->active_uprobe)
|
|
handle_singlestep(utask, regs);
|
|
else
|
|
handle_swbp(regs);
|
|
}
|
|
|
|
/*
|
|
* uprobe_pre_sstep_notifier gets called from interrupt context as part of
|
|
* notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
|
|
*/
|
|
int uprobe_pre_sstep_notifier(struct pt_regs *regs)
|
|
{
|
|
if (!current->mm)
|
|
return 0;
|
|
|
|
if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) &&
|
|
(!current->utask || !current->utask->return_instances))
|
|
return 0;
|
|
|
|
set_thread_flag(TIF_UPROBE);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
|
|
* mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
|
|
*/
|
|
int uprobe_post_sstep_notifier(struct pt_regs *regs)
|
|
{
|
|
struct uprobe_task *utask = current->utask;
|
|
|
|
if (!current->mm || !utask || !utask->active_uprobe)
|
|
/* task is currently not uprobed */
|
|
return 0;
|
|
|
|
utask->state = UTASK_SSTEP_ACK;
|
|
set_thread_flag(TIF_UPROBE);
|
|
return 1;
|
|
}
|
|
|
|
static struct notifier_block uprobe_exception_nb = {
|
|
.notifier_call = arch_uprobe_exception_notify,
|
|
.priority = INT_MAX-1, /* notified after kprobes, kgdb */
|
|
};
|
|
|
|
void __init uprobes_init(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < UPROBES_HASH_SZ; i++)
|
|
mutex_init(&uprobes_mmap_mutex[i]);
|
|
|
|
BUG_ON(register_die_notifier(&uprobe_exception_nb));
|
|
}
|