mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 20:22:09 +00:00
5897c17402
- Use FIELD_GET()/FIELD_PREP() when possible throughout drivers/pci/ (Ilpo Järvinen, Bjorn Helgaas) - Rework DPC control programming for clarity (Ilpo Järvinen) * pci/field-get: PCI/portdrv: Use FIELD_GET() PCI/VC: Use FIELD_GET() PCI/PTM: Use FIELD_GET() PCI/PME: Use FIELD_GET() PCI/ATS: Use FIELD_GET() PCI/ATS: Show PASID Capability register width in bitmasks PCI: Use FIELD_GET() in Sapphire RX 5600 XT Pulse quirk PCI: Use FIELD_GET() PCI/MSI: Use FIELD_GET/PREP() PCI/DPC: Use defines with DPC reason fields PCI/DPC: Use defined fields with DPC_CTL register PCI/DPC: Use FIELD_GET() PCI: hotplug: Use FIELD_GET/PREP() PCI: dwc: Use FIELD_GET/PREP() PCI: cadence: Use FIELD_GET() PCI: Use FIELD_GET() to extract Link Width PCI: mvebu: Use FIELD_PREP() with Link Width PCI: tegra194: Use FIELD_GET()/FIELD_PREP() with Link Width fields # Conflicts: # drivers/pci/controller/dwc/pcie-tegra194.c
7053 lines
184 KiB
C
7053 lines
184 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* PCI Bus Services, see include/linux/pci.h for further explanation.
|
|
*
|
|
* Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
|
|
* David Mosberger-Tang
|
|
*
|
|
* Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
|
|
*/
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/init.h>
|
|
#include <linux/msi.h>
|
|
#include <linux/of.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/string.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/logic_pio.h>
|
|
#include <linux/pm_wakeup.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/device.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/pci_hotplug.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <asm/dma.h>
|
|
#include <linux/aer.h>
|
|
#include <linux/bitfield.h>
|
|
#include "pci.h"
|
|
|
|
DEFINE_MUTEX(pci_slot_mutex);
|
|
|
|
const char *pci_power_names[] = {
|
|
"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
|
|
};
|
|
EXPORT_SYMBOL_GPL(pci_power_names);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
int isa_dma_bridge_buggy;
|
|
EXPORT_SYMBOL(isa_dma_bridge_buggy);
|
|
#endif
|
|
|
|
int pci_pci_problems;
|
|
EXPORT_SYMBOL(pci_pci_problems);
|
|
|
|
unsigned int pci_pm_d3hot_delay;
|
|
|
|
static void pci_pme_list_scan(struct work_struct *work);
|
|
|
|
static LIST_HEAD(pci_pme_list);
|
|
static DEFINE_MUTEX(pci_pme_list_mutex);
|
|
static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
|
|
|
|
struct pci_pme_device {
|
|
struct list_head list;
|
|
struct pci_dev *dev;
|
|
};
|
|
|
|
#define PME_TIMEOUT 1000 /* How long between PME checks */
|
|
|
|
/*
|
|
* Following exit from Conventional Reset, devices must be ready within 1 sec
|
|
* (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
|
|
* Reset (PCIe r6.0 sec 5.8).
|
|
*/
|
|
#define PCI_RESET_WAIT 1000 /* msec */
|
|
|
|
/*
|
|
* Devices may extend the 1 sec period through Request Retry Status
|
|
* completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
|
|
* limit, but 60 sec ought to be enough for any device to become
|
|
* responsive.
|
|
*/
|
|
#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
|
|
|
|
static void pci_dev_d3_sleep(struct pci_dev *dev)
|
|
{
|
|
unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
|
|
unsigned int upper;
|
|
|
|
if (delay_ms) {
|
|
/* Use a 20% upper bound, 1ms minimum */
|
|
upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
|
|
usleep_range(delay_ms * USEC_PER_MSEC,
|
|
(delay_ms + upper) * USEC_PER_MSEC);
|
|
}
|
|
}
|
|
|
|
bool pci_reset_supported(struct pci_dev *dev)
|
|
{
|
|
return dev->reset_methods[0] != 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PCI_DOMAINS
|
|
int pci_domains_supported = 1;
|
|
#endif
|
|
|
|
#define DEFAULT_CARDBUS_IO_SIZE (256)
|
|
#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
|
|
/* pci=cbmemsize=nnM,cbiosize=nn can override this */
|
|
unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
|
|
unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
|
|
|
|
#define DEFAULT_HOTPLUG_IO_SIZE (256)
|
|
#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
|
|
#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
|
|
/* hpiosize=nn can override this */
|
|
unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
|
|
/*
|
|
* pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
|
|
* pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
|
|
* pci=hpmemsize=nnM overrides both
|
|
*/
|
|
unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
|
|
unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
|
|
|
|
#define DEFAULT_HOTPLUG_BUS_SIZE 1
|
|
unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
|
|
|
|
|
|
/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
|
|
#ifdef CONFIG_PCIE_BUS_TUNE_OFF
|
|
enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
|
|
#elif defined CONFIG_PCIE_BUS_SAFE
|
|
enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
|
|
#elif defined CONFIG_PCIE_BUS_PERFORMANCE
|
|
enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
|
|
#elif defined CONFIG_PCIE_BUS_PEER2PEER
|
|
enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
|
|
#else
|
|
enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
|
|
#endif
|
|
|
|
/*
|
|
* The default CLS is used if arch didn't set CLS explicitly and not
|
|
* all pci devices agree on the same value. Arch can override either
|
|
* the dfl or actual value as it sees fit. Don't forget this is
|
|
* measured in 32-bit words, not bytes.
|
|
*/
|
|
u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
|
|
u8 pci_cache_line_size;
|
|
|
|
/*
|
|
* If we set up a device for bus mastering, we need to check the latency
|
|
* timer as certain BIOSes forget to set it properly.
|
|
*/
|
|
unsigned int pcibios_max_latency = 255;
|
|
|
|
/* If set, the PCIe ARI capability will not be used. */
|
|
static bool pcie_ari_disabled;
|
|
|
|
/* If set, the PCIe ATS capability will not be used. */
|
|
static bool pcie_ats_disabled;
|
|
|
|
/* If set, the PCI config space of each device is printed during boot. */
|
|
bool pci_early_dump;
|
|
|
|
bool pci_ats_disabled(void)
|
|
{
|
|
return pcie_ats_disabled;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_ats_disabled);
|
|
|
|
/* Disable bridge_d3 for all PCIe ports */
|
|
static bool pci_bridge_d3_disable;
|
|
/* Force bridge_d3 for all PCIe ports */
|
|
static bool pci_bridge_d3_force;
|
|
|
|
static int __init pcie_port_pm_setup(char *str)
|
|
{
|
|
if (!strcmp(str, "off"))
|
|
pci_bridge_d3_disable = true;
|
|
else if (!strcmp(str, "force"))
|
|
pci_bridge_d3_force = true;
|
|
return 1;
|
|
}
|
|
__setup("pcie_port_pm=", pcie_port_pm_setup);
|
|
|
|
/**
|
|
* pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
|
|
* @bus: pointer to PCI bus structure to search
|
|
*
|
|
* Given a PCI bus, returns the highest PCI bus number present in the set
|
|
* including the given PCI bus and its list of child PCI buses.
|
|
*/
|
|
unsigned char pci_bus_max_busnr(struct pci_bus *bus)
|
|
{
|
|
struct pci_bus *tmp;
|
|
unsigned char max, n;
|
|
|
|
max = bus->busn_res.end;
|
|
list_for_each_entry(tmp, &bus->children, node) {
|
|
n = pci_bus_max_busnr(tmp);
|
|
if (n > max)
|
|
max = n;
|
|
}
|
|
return max;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
|
|
|
|
/**
|
|
* pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
|
|
* @pdev: the PCI device
|
|
*
|
|
* Returns error bits set in PCI_STATUS and clears them.
|
|
*/
|
|
int pci_status_get_and_clear_errors(struct pci_dev *pdev)
|
|
{
|
|
u16 status;
|
|
int ret;
|
|
|
|
ret = pci_read_config_word(pdev, PCI_STATUS, &status);
|
|
if (ret != PCIBIOS_SUCCESSFUL)
|
|
return -EIO;
|
|
|
|
status &= PCI_STATUS_ERROR_BITS;
|
|
if (status)
|
|
pci_write_config_word(pdev, PCI_STATUS, status);
|
|
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
|
|
|
|
#ifdef CONFIG_HAS_IOMEM
|
|
static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
|
|
bool write_combine)
|
|
{
|
|
struct resource *res = &pdev->resource[bar];
|
|
resource_size_t start = res->start;
|
|
resource_size_t size = resource_size(res);
|
|
|
|
/*
|
|
* Make sure the BAR is actually a memory resource, not an IO resource
|
|
*/
|
|
if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
|
|
pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
|
|
return NULL;
|
|
}
|
|
|
|
if (write_combine)
|
|
return ioremap_wc(start, size);
|
|
|
|
return ioremap(start, size);
|
|
}
|
|
|
|
void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
|
|
{
|
|
return __pci_ioremap_resource(pdev, bar, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_ioremap_bar);
|
|
|
|
void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
|
|
{
|
|
return __pci_ioremap_resource(pdev, bar, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
|
|
#endif
|
|
|
|
/**
|
|
* pci_dev_str_match_path - test if a path string matches a device
|
|
* @dev: the PCI device to test
|
|
* @path: string to match the device against
|
|
* @endptr: pointer to the string after the match
|
|
*
|
|
* Test if a string (typically from a kernel parameter) formatted as a
|
|
* path of device/function addresses matches a PCI device. The string must
|
|
* be of the form:
|
|
*
|
|
* [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
|
|
*
|
|
* A path for a device can be obtained using 'lspci -t'. Using a path
|
|
* is more robust against bus renumbering than using only a single bus,
|
|
* device and function address.
|
|
*
|
|
* Returns 1 if the string matches the device, 0 if it does not and
|
|
* a negative error code if it fails to parse the string.
|
|
*/
|
|
static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
|
|
const char **endptr)
|
|
{
|
|
int ret;
|
|
unsigned int seg, bus, slot, func;
|
|
char *wpath, *p;
|
|
char end;
|
|
|
|
*endptr = strchrnul(path, ';');
|
|
|
|
wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
|
|
if (!wpath)
|
|
return -ENOMEM;
|
|
|
|
while (1) {
|
|
p = strrchr(wpath, '/');
|
|
if (!p)
|
|
break;
|
|
ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
|
|
if (ret != 2) {
|
|
ret = -EINVAL;
|
|
goto free_and_exit;
|
|
}
|
|
|
|
if (dev->devfn != PCI_DEVFN(slot, func)) {
|
|
ret = 0;
|
|
goto free_and_exit;
|
|
}
|
|
|
|
/*
|
|
* Note: we don't need to get a reference to the upstream
|
|
* bridge because we hold a reference to the top level
|
|
* device which should hold a reference to the bridge,
|
|
* and so on.
|
|
*/
|
|
dev = pci_upstream_bridge(dev);
|
|
if (!dev) {
|
|
ret = 0;
|
|
goto free_and_exit;
|
|
}
|
|
|
|
*p = 0;
|
|
}
|
|
|
|
ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
|
|
&func, &end);
|
|
if (ret != 4) {
|
|
seg = 0;
|
|
ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
|
|
if (ret != 3) {
|
|
ret = -EINVAL;
|
|
goto free_and_exit;
|
|
}
|
|
}
|
|
|
|
ret = (seg == pci_domain_nr(dev->bus) &&
|
|
bus == dev->bus->number &&
|
|
dev->devfn == PCI_DEVFN(slot, func));
|
|
|
|
free_and_exit:
|
|
kfree(wpath);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* pci_dev_str_match - test if a string matches a device
|
|
* @dev: the PCI device to test
|
|
* @p: string to match the device against
|
|
* @endptr: pointer to the string after the match
|
|
*
|
|
* Test if a string (typically from a kernel parameter) matches a specified
|
|
* PCI device. The string may be of one of the following formats:
|
|
*
|
|
* [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
|
|
* pci:<vendor>:<device>[:<subvendor>:<subdevice>]
|
|
*
|
|
* The first format specifies a PCI bus/device/function address which
|
|
* may change if new hardware is inserted, if motherboard firmware changes,
|
|
* or due to changes caused in kernel parameters. If the domain is
|
|
* left unspecified, it is taken to be 0. In order to be robust against
|
|
* bus renumbering issues, a path of PCI device/function numbers may be used
|
|
* to address the specific device. The path for a device can be determined
|
|
* through the use of 'lspci -t'.
|
|
*
|
|
* The second format matches devices using IDs in the configuration
|
|
* space which may match multiple devices in the system. A value of 0
|
|
* for any field will match all devices. (Note: this differs from
|
|
* in-kernel code that uses PCI_ANY_ID which is ~0; this is for
|
|
* legacy reasons and convenience so users don't have to specify
|
|
* FFFFFFFFs on the command line.)
|
|
*
|
|
* Returns 1 if the string matches the device, 0 if it does not and
|
|
* a negative error code if the string cannot be parsed.
|
|
*/
|
|
static int pci_dev_str_match(struct pci_dev *dev, const char *p,
|
|
const char **endptr)
|
|
{
|
|
int ret;
|
|
int count;
|
|
unsigned short vendor, device, subsystem_vendor, subsystem_device;
|
|
|
|
if (strncmp(p, "pci:", 4) == 0) {
|
|
/* PCI vendor/device (subvendor/subdevice) IDs are specified */
|
|
p += 4;
|
|
ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
|
|
&subsystem_vendor, &subsystem_device, &count);
|
|
if (ret != 4) {
|
|
ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
|
|
if (ret != 2)
|
|
return -EINVAL;
|
|
|
|
subsystem_vendor = 0;
|
|
subsystem_device = 0;
|
|
}
|
|
|
|
p += count;
|
|
|
|
if ((!vendor || vendor == dev->vendor) &&
|
|
(!device || device == dev->device) &&
|
|
(!subsystem_vendor ||
|
|
subsystem_vendor == dev->subsystem_vendor) &&
|
|
(!subsystem_device ||
|
|
subsystem_device == dev->subsystem_device))
|
|
goto found;
|
|
} else {
|
|
/*
|
|
* PCI Bus, Device, Function IDs are specified
|
|
* (optionally, may include a path of devfns following it)
|
|
*/
|
|
ret = pci_dev_str_match_path(dev, p, &p);
|
|
if (ret < 0)
|
|
return ret;
|
|
else if (ret)
|
|
goto found;
|
|
}
|
|
|
|
*endptr = p;
|
|
return 0;
|
|
|
|
found:
|
|
*endptr = p;
|
|
return 1;
|
|
}
|
|
|
|
static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
|
|
u8 pos, int cap, int *ttl)
|
|
{
|
|
u8 id;
|
|
u16 ent;
|
|
|
|
pci_bus_read_config_byte(bus, devfn, pos, &pos);
|
|
|
|
while ((*ttl)--) {
|
|
if (pos < 0x40)
|
|
break;
|
|
pos &= ~3;
|
|
pci_bus_read_config_word(bus, devfn, pos, &ent);
|
|
|
|
id = ent & 0xff;
|
|
if (id == 0xff)
|
|
break;
|
|
if (id == cap)
|
|
return pos;
|
|
pos = (ent >> 8);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
|
|
u8 pos, int cap)
|
|
{
|
|
int ttl = PCI_FIND_CAP_TTL;
|
|
|
|
return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
|
|
}
|
|
|
|
u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
|
|
{
|
|
return __pci_find_next_cap(dev->bus, dev->devfn,
|
|
pos + PCI_CAP_LIST_NEXT, cap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_find_next_capability);
|
|
|
|
static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
|
|
unsigned int devfn, u8 hdr_type)
|
|
{
|
|
u16 status;
|
|
|
|
pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
|
|
if (!(status & PCI_STATUS_CAP_LIST))
|
|
return 0;
|
|
|
|
switch (hdr_type) {
|
|
case PCI_HEADER_TYPE_NORMAL:
|
|
case PCI_HEADER_TYPE_BRIDGE:
|
|
return PCI_CAPABILITY_LIST;
|
|
case PCI_HEADER_TYPE_CARDBUS:
|
|
return PCI_CB_CAPABILITY_LIST;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pci_find_capability - query for devices' capabilities
|
|
* @dev: PCI device to query
|
|
* @cap: capability code
|
|
*
|
|
* Tell if a device supports a given PCI capability.
|
|
* Returns the address of the requested capability structure within the
|
|
* device's PCI configuration space or 0 in case the device does not
|
|
* support it. Possible values for @cap include:
|
|
*
|
|
* %PCI_CAP_ID_PM Power Management
|
|
* %PCI_CAP_ID_AGP Accelerated Graphics Port
|
|
* %PCI_CAP_ID_VPD Vital Product Data
|
|
* %PCI_CAP_ID_SLOTID Slot Identification
|
|
* %PCI_CAP_ID_MSI Message Signalled Interrupts
|
|
* %PCI_CAP_ID_CHSWP CompactPCI HotSwap
|
|
* %PCI_CAP_ID_PCIX PCI-X
|
|
* %PCI_CAP_ID_EXP PCI Express
|
|
*/
|
|
u8 pci_find_capability(struct pci_dev *dev, int cap)
|
|
{
|
|
u8 pos;
|
|
|
|
pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
|
|
if (pos)
|
|
pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
|
|
|
|
return pos;
|
|
}
|
|
EXPORT_SYMBOL(pci_find_capability);
|
|
|
|
/**
|
|
* pci_bus_find_capability - query for devices' capabilities
|
|
* @bus: the PCI bus to query
|
|
* @devfn: PCI device to query
|
|
* @cap: capability code
|
|
*
|
|
* Like pci_find_capability() but works for PCI devices that do not have a
|
|
* pci_dev structure set up yet.
|
|
*
|
|
* Returns the address of the requested capability structure within the
|
|
* device's PCI configuration space or 0 in case the device does not
|
|
* support it.
|
|
*/
|
|
u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
|
|
{
|
|
u8 hdr_type, pos;
|
|
|
|
pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
|
|
|
|
pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
|
|
if (pos)
|
|
pos = __pci_find_next_cap(bus, devfn, pos, cap);
|
|
|
|
return pos;
|
|
}
|
|
EXPORT_SYMBOL(pci_bus_find_capability);
|
|
|
|
/**
|
|
* pci_find_next_ext_capability - Find an extended capability
|
|
* @dev: PCI device to query
|
|
* @start: address at which to start looking (0 to start at beginning of list)
|
|
* @cap: capability code
|
|
*
|
|
* Returns the address of the next matching extended capability structure
|
|
* within the device's PCI configuration space or 0 if the device does
|
|
* not support it. Some capabilities can occur several times, e.g., the
|
|
* vendor-specific capability, and this provides a way to find them all.
|
|
*/
|
|
u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
|
|
{
|
|
u32 header;
|
|
int ttl;
|
|
u16 pos = PCI_CFG_SPACE_SIZE;
|
|
|
|
/* minimum 8 bytes per capability */
|
|
ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
|
|
|
|
if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
|
|
return 0;
|
|
|
|
if (start)
|
|
pos = start;
|
|
|
|
if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
|
|
return 0;
|
|
|
|
/*
|
|
* If we have no capabilities, this is indicated by cap ID,
|
|
* cap version and next pointer all being 0.
|
|
*/
|
|
if (header == 0)
|
|
return 0;
|
|
|
|
while (ttl-- > 0) {
|
|
if (PCI_EXT_CAP_ID(header) == cap && pos != start)
|
|
return pos;
|
|
|
|
pos = PCI_EXT_CAP_NEXT(header);
|
|
if (pos < PCI_CFG_SPACE_SIZE)
|
|
break;
|
|
|
|
if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
|
|
|
|
/**
|
|
* pci_find_ext_capability - Find an extended capability
|
|
* @dev: PCI device to query
|
|
* @cap: capability code
|
|
*
|
|
* Returns the address of the requested extended capability structure
|
|
* within the device's PCI configuration space or 0 if the device does
|
|
* not support it. Possible values for @cap include:
|
|
*
|
|
* %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
|
|
* %PCI_EXT_CAP_ID_VC Virtual Channel
|
|
* %PCI_EXT_CAP_ID_DSN Device Serial Number
|
|
* %PCI_EXT_CAP_ID_PWR Power Budgeting
|
|
*/
|
|
u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
|
|
{
|
|
return pci_find_next_ext_capability(dev, 0, cap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_find_ext_capability);
|
|
|
|
/**
|
|
* pci_get_dsn - Read and return the 8-byte Device Serial Number
|
|
* @dev: PCI device to query
|
|
*
|
|
* Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
|
|
* Number.
|
|
*
|
|
* Returns the DSN, or zero if the capability does not exist.
|
|
*/
|
|
u64 pci_get_dsn(struct pci_dev *dev)
|
|
{
|
|
u32 dword;
|
|
u64 dsn;
|
|
int pos;
|
|
|
|
pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
|
|
if (!pos)
|
|
return 0;
|
|
|
|
/*
|
|
* The Device Serial Number is two dwords offset 4 bytes from the
|
|
* capability position. The specification says that the first dword is
|
|
* the lower half, and the second dword is the upper half.
|
|
*/
|
|
pos += 4;
|
|
pci_read_config_dword(dev, pos, &dword);
|
|
dsn = (u64)dword;
|
|
pci_read_config_dword(dev, pos + 4, &dword);
|
|
dsn |= ((u64)dword) << 32;
|
|
|
|
return dsn;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_get_dsn);
|
|
|
|
static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
|
|
{
|
|
int rc, ttl = PCI_FIND_CAP_TTL;
|
|
u8 cap, mask;
|
|
|
|
if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
|
|
mask = HT_3BIT_CAP_MASK;
|
|
else
|
|
mask = HT_5BIT_CAP_MASK;
|
|
|
|
pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
|
|
PCI_CAP_ID_HT, &ttl);
|
|
while (pos) {
|
|
rc = pci_read_config_byte(dev, pos + 3, &cap);
|
|
if (rc != PCIBIOS_SUCCESSFUL)
|
|
return 0;
|
|
|
|
if ((cap & mask) == ht_cap)
|
|
return pos;
|
|
|
|
pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
|
|
pos + PCI_CAP_LIST_NEXT,
|
|
PCI_CAP_ID_HT, &ttl);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pci_find_next_ht_capability - query a device's HyperTransport capabilities
|
|
* @dev: PCI device to query
|
|
* @pos: Position from which to continue searching
|
|
* @ht_cap: HyperTransport capability code
|
|
*
|
|
* To be used in conjunction with pci_find_ht_capability() to search for
|
|
* all capabilities matching @ht_cap. @pos should always be a value returned
|
|
* from pci_find_ht_capability().
|
|
*
|
|
* NB. To be 100% safe against broken PCI devices, the caller should take
|
|
* steps to avoid an infinite loop.
|
|
*/
|
|
u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
|
|
{
|
|
return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
|
|
|
|
/**
|
|
* pci_find_ht_capability - query a device's HyperTransport capabilities
|
|
* @dev: PCI device to query
|
|
* @ht_cap: HyperTransport capability code
|
|
*
|
|
* Tell if a device supports a given HyperTransport capability.
|
|
* Returns an address within the device's PCI configuration space
|
|
* or 0 in case the device does not support the request capability.
|
|
* The address points to the PCI capability, of type PCI_CAP_ID_HT,
|
|
* which has a HyperTransport capability matching @ht_cap.
|
|
*/
|
|
u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
|
|
{
|
|
u8 pos;
|
|
|
|
pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
|
|
if (pos)
|
|
pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
|
|
|
|
return pos;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_find_ht_capability);
|
|
|
|
/**
|
|
* pci_find_vsec_capability - Find a vendor-specific extended capability
|
|
* @dev: PCI device to query
|
|
* @vendor: Vendor ID for which capability is defined
|
|
* @cap: Vendor-specific capability ID
|
|
*
|
|
* If @dev has Vendor ID @vendor, search for a VSEC capability with
|
|
* VSEC ID @cap. If found, return the capability offset in
|
|
* config space; otherwise return 0.
|
|
*/
|
|
u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
|
|
{
|
|
u16 vsec = 0;
|
|
u32 header;
|
|
int ret;
|
|
|
|
if (vendor != dev->vendor)
|
|
return 0;
|
|
|
|
while ((vsec = pci_find_next_ext_capability(dev, vsec,
|
|
PCI_EXT_CAP_ID_VNDR))) {
|
|
ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
|
|
if (ret != PCIBIOS_SUCCESSFUL)
|
|
continue;
|
|
|
|
if (PCI_VNDR_HEADER_ID(header) == cap)
|
|
return vsec;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
|
|
|
|
/**
|
|
* pci_find_dvsec_capability - Find DVSEC for vendor
|
|
* @dev: PCI device to query
|
|
* @vendor: Vendor ID to match for the DVSEC
|
|
* @dvsec: Designated Vendor-specific capability ID
|
|
*
|
|
* If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
|
|
* offset in config space; otherwise return 0.
|
|
*/
|
|
u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
|
|
{
|
|
int pos;
|
|
|
|
pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
|
|
if (!pos)
|
|
return 0;
|
|
|
|
while (pos) {
|
|
u16 v, id;
|
|
|
|
pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
|
|
pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
|
|
if (vendor == v && dvsec == id)
|
|
return pos;
|
|
|
|
pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
|
|
|
|
/**
|
|
* pci_find_parent_resource - return resource region of parent bus of given
|
|
* region
|
|
* @dev: PCI device structure contains resources to be searched
|
|
* @res: child resource record for which parent is sought
|
|
*
|
|
* For given resource region of given device, return the resource region of
|
|
* parent bus the given region is contained in.
|
|
*/
|
|
struct resource *pci_find_parent_resource(const struct pci_dev *dev,
|
|
struct resource *res)
|
|
{
|
|
const struct pci_bus *bus = dev->bus;
|
|
struct resource *r;
|
|
|
|
pci_bus_for_each_resource(bus, r) {
|
|
if (!r)
|
|
continue;
|
|
if (resource_contains(r, res)) {
|
|
|
|
/*
|
|
* If the window is prefetchable but the BAR is
|
|
* not, the allocator made a mistake.
|
|
*/
|
|
if (r->flags & IORESOURCE_PREFETCH &&
|
|
!(res->flags & IORESOURCE_PREFETCH))
|
|
return NULL;
|
|
|
|
/*
|
|
* If we're below a transparent bridge, there may
|
|
* be both a positively-decoded aperture and a
|
|
* subtractively-decoded region that contain the BAR.
|
|
* We want the positively-decoded one, so this depends
|
|
* on pci_bus_for_each_resource() giving us those
|
|
* first.
|
|
*/
|
|
return r;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(pci_find_parent_resource);
|
|
|
|
/**
|
|
* pci_find_resource - Return matching PCI device resource
|
|
* @dev: PCI device to query
|
|
* @res: Resource to look for
|
|
*
|
|
* Goes over standard PCI resources (BARs) and checks if the given resource
|
|
* is partially or fully contained in any of them. In that case the
|
|
* matching resource is returned, %NULL otherwise.
|
|
*/
|
|
struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < PCI_STD_NUM_BARS; i++) {
|
|
struct resource *r = &dev->resource[i];
|
|
|
|
if (r->start && resource_contains(r, res))
|
|
return r;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(pci_find_resource);
|
|
|
|
/**
|
|
* pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
|
|
* @dev: the PCI device to operate on
|
|
* @pos: config space offset of status word
|
|
* @mask: mask of bit(s) to care about in status word
|
|
*
|
|
* Return 1 when mask bit(s) in status word clear, 0 otherwise.
|
|
*/
|
|
int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
|
|
{
|
|
int i;
|
|
|
|
/* Wait for Transaction Pending bit clean */
|
|
for (i = 0; i < 4; i++) {
|
|
u16 status;
|
|
if (i)
|
|
msleep((1 << (i - 1)) * 100);
|
|
|
|
pci_read_config_word(dev, pos, &status);
|
|
if (!(status & mask))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pci_acs_enable;
|
|
|
|
/**
|
|
* pci_request_acs - ask for ACS to be enabled if supported
|
|
*/
|
|
void pci_request_acs(void)
|
|
{
|
|
pci_acs_enable = 1;
|
|
}
|
|
|
|
static const char *disable_acs_redir_param;
|
|
|
|
/**
|
|
* pci_disable_acs_redir - disable ACS redirect capabilities
|
|
* @dev: the PCI device
|
|
*
|
|
* For only devices specified in the disable_acs_redir parameter.
|
|
*/
|
|
static void pci_disable_acs_redir(struct pci_dev *dev)
|
|
{
|
|
int ret = 0;
|
|
const char *p;
|
|
int pos;
|
|
u16 ctrl;
|
|
|
|
if (!disable_acs_redir_param)
|
|
return;
|
|
|
|
p = disable_acs_redir_param;
|
|
while (*p) {
|
|
ret = pci_dev_str_match(dev, p, &p);
|
|
if (ret < 0) {
|
|
pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
|
|
disable_acs_redir_param);
|
|
|
|
break;
|
|
} else if (ret == 1) {
|
|
/* Found a match */
|
|
break;
|
|
}
|
|
|
|
if (*p != ';' && *p != ',') {
|
|
/* End of param or invalid format */
|
|
break;
|
|
}
|
|
p++;
|
|
}
|
|
|
|
if (ret != 1)
|
|
return;
|
|
|
|
if (!pci_dev_specific_disable_acs_redir(dev))
|
|
return;
|
|
|
|
pos = dev->acs_cap;
|
|
if (!pos) {
|
|
pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
|
|
return;
|
|
}
|
|
|
|
pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
|
|
|
|
/* P2P Request & Completion Redirect */
|
|
ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
|
|
|
|
pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
|
|
|
|
pci_info(dev, "disabled ACS redirect\n");
|
|
}
|
|
|
|
/**
|
|
* pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
|
|
* @dev: the PCI device
|
|
*/
|
|
static void pci_std_enable_acs(struct pci_dev *dev)
|
|
{
|
|
int pos;
|
|
u16 cap;
|
|
u16 ctrl;
|
|
|
|
pos = dev->acs_cap;
|
|
if (!pos)
|
|
return;
|
|
|
|
pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
|
|
pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
|
|
|
|
/* Source Validation */
|
|
ctrl |= (cap & PCI_ACS_SV);
|
|
|
|
/* P2P Request Redirect */
|
|
ctrl |= (cap & PCI_ACS_RR);
|
|
|
|
/* P2P Completion Redirect */
|
|
ctrl |= (cap & PCI_ACS_CR);
|
|
|
|
/* Upstream Forwarding */
|
|
ctrl |= (cap & PCI_ACS_UF);
|
|
|
|
/* Enable Translation Blocking for external devices and noats */
|
|
if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
|
|
ctrl |= (cap & PCI_ACS_TB);
|
|
|
|
pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
|
|
}
|
|
|
|
/**
|
|
* pci_enable_acs - enable ACS if hardware support it
|
|
* @dev: the PCI device
|
|
*/
|
|
static void pci_enable_acs(struct pci_dev *dev)
|
|
{
|
|
if (!pci_acs_enable)
|
|
goto disable_acs_redir;
|
|
|
|
if (!pci_dev_specific_enable_acs(dev))
|
|
goto disable_acs_redir;
|
|
|
|
pci_std_enable_acs(dev);
|
|
|
|
disable_acs_redir:
|
|
/*
|
|
* Note: pci_disable_acs_redir() must be called even if ACS was not
|
|
* enabled by the kernel because it may have been enabled by
|
|
* platform firmware. So if we are told to disable it, we should
|
|
* always disable it after setting the kernel's default
|
|
* preferences.
|
|
*/
|
|
pci_disable_acs_redir(dev);
|
|
}
|
|
|
|
/**
|
|
* pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
|
|
* @dev: PCI device to have its BARs restored
|
|
*
|
|
* Restore the BAR values for a given device, so as to make it
|
|
* accessible by its driver.
|
|
*/
|
|
static void pci_restore_bars(struct pci_dev *dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
|
|
pci_update_resource(dev, i);
|
|
}
|
|
|
|
static inline bool platform_pci_power_manageable(struct pci_dev *dev)
|
|
{
|
|
if (pci_use_mid_pm())
|
|
return true;
|
|
|
|
return acpi_pci_power_manageable(dev);
|
|
}
|
|
|
|
static inline int platform_pci_set_power_state(struct pci_dev *dev,
|
|
pci_power_t t)
|
|
{
|
|
if (pci_use_mid_pm())
|
|
return mid_pci_set_power_state(dev, t);
|
|
|
|
return acpi_pci_set_power_state(dev, t);
|
|
}
|
|
|
|
static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
|
|
{
|
|
if (pci_use_mid_pm())
|
|
return mid_pci_get_power_state(dev);
|
|
|
|
return acpi_pci_get_power_state(dev);
|
|
}
|
|
|
|
static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
|
|
{
|
|
if (!pci_use_mid_pm())
|
|
acpi_pci_refresh_power_state(dev);
|
|
}
|
|
|
|
static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
|
|
{
|
|
if (pci_use_mid_pm())
|
|
return PCI_POWER_ERROR;
|
|
|
|
return acpi_pci_choose_state(dev);
|
|
}
|
|
|
|
static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
|
|
{
|
|
if (pci_use_mid_pm())
|
|
return PCI_POWER_ERROR;
|
|
|
|
return acpi_pci_wakeup(dev, enable);
|
|
}
|
|
|
|
static inline bool platform_pci_need_resume(struct pci_dev *dev)
|
|
{
|
|
if (pci_use_mid_pm())
|
|
return false;
|
|
|
|
return acpi_pci_need_resume(dev);
|
|
}
|
|
|
|
static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
|
|
{
|
|
if (pci_use_mid_pm())
|
|
return false;
|
|
|
|
return acpi_pci_bridge_d3(dev);
|
|
}
|
|
|
|
/**
|
|
* pci_update_current_state - Read power state of given device and cache it
|
|
* @dev: PCI device to handle.
|
|
* @state: State to cache in case the device doesn't have the PM capability
|
|
*
|
|
* The power state is read from the PMCSR register, which however is
|
|
* inaccessible in D3cold. The platform firmware is therefore queried first
|
|
* to detect accessibility of the register. In case the platform firmware
|
|
* reports an incorrect state or the device isn't power manageable by the
|
|
* platform at all, we try to detect D3cold by testing accessibility of the
|
|
* vendor ID in config space.
|
|
*/
|
|
void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
|
|
{
|
|
if (platform_pci_get_power_state(dev) == PCI_D3cold) {
|
|
dev->current_state = PCI_D3cold;
|
|
} else if (dev->pm_cap) {
|
|
u16 pmcsr;
|
|
|
|
pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
|
|
if (PCI_POSSIBLE_ERROR(pmcsr)) {
|
|
dev->current_state = PCI_D3cold;
|
|
return;
|
|
}
|
|
dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
|
|
} else {
|
|
dev->current_state = state;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* pci_refresh_power_state - Refresh the given device's power state data
|
|
* @dev: Target PCI device.
|
|
*
|
|
* Ask the platform to refresh the devices power state information and invoke
|
|
* pci_update_current_state() to update its current PCI power state.
|
|
*/
|
|
void pci_refresh_power_state(struct pci_dev *dev)
|
|
{
|
|
platform_pci_refresh_power_state(dev);
|
|
pci_update_current_state(dev, dev->current_state);
|
|
}
|
|
|
|
/**
|
|
* pci_platform_power_transition - Use platform to change device power state
|
|
* @dev: PCI device to handle.
|
|
* @state: State to put the device into.
|
|
*/
|
|
int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
|
|
{
|
|
int error;
|
|
|
|
error = platform_pci_set_power_state(dev, state);
|
|
if (!error)
|
|
pci_update_current_state(dev, state);
|
|
else if (!dev->pm_cap) /* Fall back to PCI_D0 */
|
|
dev->current_state = PCI_D0;
|
|
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_platform_power_transition);
|
|
|
|
static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
|
|
{
|
|
pm_request_resume(&pci_dev->dev);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pci_resume_bus - Walk given bus and runtime resume devices on it
|
|
* @bus: Top bus of the subtree to walk.
|
|
*/
|
|
void pci_resume_bus(struct pci_bus *bus)
|
|
{
|
|
if (bus)
|
|
pci_walk_bus(bus, pci_resume_one, NULL);
|
|
}
|
|
|
|
static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
|
|
{
|
|
int delay = 1;
|
|
bool retrain = false;
|
|
struct pci_dev *bridge;
|
|
|
|
if (pci_is_pcie(dev)) {
|
|
bridge = pci_upstream_bridge(dev);
|
|
if (bridge)
|
|
retrain = true;
|
|
}
|
|
|
|
/*
|
|
* After reset, the device should not silently discard config
|
|
* requests, but it may still indicate that it needs more time by
|
|
* responding to them with CRS completions. The Root Port will
|
|
* generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
|
|
* the read (except when CRS SV is enabled and the read was for the
|
|
* Vendor ID; in that case it synthesizes 0x0001 data).
|
|
*
|
|
* Wait for the device to return a non-CRS completion. Read the
|
|
* Command register instead of Vendor ID so we don't have to
|
|
* contend with the CRS SV value.
|
|
*/
|
|
for (;;) {
|
|
u32 id;
|
|
|
|
pci_read_config_dword(dev, PCI_COMMAND, &id);
|
|
if (!PCI_POSSIBLE_ERROR(id))
|
|
break;
|
|
|
|
if (delay > timeout) {
|
|
pci_warn(dev, "not ready %dms after %s; giving up\n",
|
|
delay - 1, reset_type);
|
|
return -ENOTTY;
|
|
}
|
|
|
|
if (delay > PCI_RESET_WAIT) {
|
|
if (retrain) {
|
|
retrain = false;
|
|
if (pcie_failed_link_retrain(bridge)) {
|
|
delay = 1;
|
|
continue;
|
|
}
|
|
}
|
|
pci_info(dev, "not ready %dms after %s; waiting\n",
|
|
delay - 1, reset_type);
|
|
}
|
|
|
|
msleep(delay);
|
|
delay *= 2;
|
|
}
|
|
|
|
if (delay > PCI_RESET_WAIT)
|
|
pci_info(dev, "ready %dms after %s\n", delay - 1,
|
|
reset_type);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pci_power_up - Put the given device into D0
|
|
* @dev: PCI device to power up
|
|
*
|
|
* On success, return 0 or 1, depending on whether or not it is necessary to
|
|
* restore the device's BARs subsequently (1 is returned in that case).
|
|
*
|
|
* On failure, return a negative error code. Always return failure if @dev
|
|
* lacks a Power Management Capability, even if the platform was able to
|
|
* put the device in D0 via non-PCI means.
|
|
*/
|
|
int pci_power_up(struct pci_dev *dev)
|
|
{
|
|
bool need_restore;
|
|
pci_power_t state;
|
|
u16 pmcsr;
|
|
|
|
platform_pci_set_power_state(dev, PCI_D0);
|
|
|
|
if (!dev->pm_cap) {
|
|
state = platform_pci_get_power_state(dev);
|
|
if (state == PCI_UNKNOWN)
|
|
dev->current_state = PCI_D0;
|
|
else
|
|
dev->current_state = state;
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
|
|
if (PCI_POSSIBLE_ERROR(pmcsr)) {
|
|
pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
|
|
pci_power_name(dev->current_state));
|
|
dev->current_state = PCI_D3cold;
|
|
return -EIO;
|
|
}
|
|
|
|
state = pmcsr & PCI_PM_CTRL_STATE_MASK;
|
|
|
|
need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
|
|
!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
|
|
|
|
if (state == PCI_D0)
|
|
goto end;
|
|
|
|
/*
|
|
* Force the entire word to 0. This doesn't affect PME_Status, disables
|
|
* PME_En, and sets PowerState to 0.
|
|
*/
|
|
pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
|
|
|
|
/* Mandatory transition delays; see PCI PM 1.2. */
|
|
if (state == PCI_D3hot)
|
|
pci_dev_d3_sleep(dev);
|
|
else if (state == PCI_D2)
|
|
udelay(PCI_PM_D2_DELAY);
|
|
|
|
end:
|
|
dev->current_state = PCI_D0;
|
|
if (need_restore)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pci_set_full_power_state - Put a PCI device into D0 and update its state
|
|
* @dev: PCI device to power up
|
|
*
|
|
* Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
|
|
* to confirm the state change, restore its BARs if they might be lost and
|
|
* reconfigure ASPM in accordance with the new power state.
|
|
*
|
|
* If pci_restore_state() is going to be called right after a power state change
|
|
* to D0, it is more efficient to use pci_power_up() directly instead of this
|
|
* function.
|
|
*/
|
|
static int pci_set_full_power_state(struct pci_dev *dev)
|
|
{
|
|
u16 pmcsr;
|
|
int ret;
|
|
|
|
ret = pci_power_up(dev);
|
|
if (ret < 0) {
|
|
if (dev->current_state == PCI_D0)
|
|
return 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
|
|
dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
|
|
if (dev->current_state != PCI_D0) {
|
|
pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
|
|
pci_power_name(dev->current_state));
|
|
} else if (ret > 0) {
|
|
/*
|
|
* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
|
|
* INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
|
|
* from D3hot to D0 _may_ perform an internal reset, thereby
|
|
* going to "D0 Uninitialized" rather than "D0 Initialized".
|
|
* For example, at least some versions of the 3c905B and the
|
|
* 3c556B exhibit this behaviour.
|
|
*
|
|
* At least some laptop BIOSen (e.g. the Thinkpad T21) leave
|
|
* devices in a D3hot state at boot. Consequently, we need to
|
|
* restore at least the BARs so that the device will be
|
|
* accessible to its driver.
|
|
*/
|
|
pci_restore_bars(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __pci_dev_set_current_state - Set current state of a PCI device
|
|
* @dev: Device to handle
|
|
* @data: pointer to state to be set
|
|
*/
|
|
static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
|
|
{
|
|
pci_power_t state = *(pci_power_t *)data;
|
|
|
|
dev->current_state = state;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pci_bus_set_current_state - Walk given bus and set current state of devices
|
|
* @bus: Top bus of the subtree to walk.
|
|
* @state: state to be set
|
|
*/
|
|
void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
|
|
{
|
|
if (bus)
|
|
pci_walk_bus(bus, __pci_dev_set_current_state, &state);
|
|
}
|
|
|
|
/**
|
|
* pci_set_low_power_state - Put a PCI device into a low-power state.
|
|
* @dev: PCI device to handle.
|
|
* @state: PCI power state (D1, D2, D3hot) to put the device into.
|
|
*
|
|
* Use the device's PCI_PM_CTRL register to put it into a low-power state.
|
|
*
|
|
* RETURN VALUE:
|
|
* -EINVAL if the requested state is invalid.
|
|
* -EIO if device does not support PCI PM or its PM capabilities register has a
|
|
* wrong version, or device doesn't support the requested state.
|
|
* 0 if device already is in the requested state.
|
|
* 0 if device's power state has been successfully changed.
|
|
*/
|
|
static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
|
|
{
|
|
u16 pmcsr;
|
|
|
|
if (!dev->pm_cap)
|
|
return -EIO;
|
|
|
|
/*
|
|
* Validate transition: We can enter D0 from any state, but if
|
|
* we're already in a low-power state, we can only go deeper. E.g.,
|
|
* we can go from D1 to D3, but we can't go directly from D3 to D1;
|
|
* we'd have to go from D3 to D0, then to D1.
|
|
*/
|
|
if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
|
|
pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
|
|
pci_power_name(dev->current_state),
|
|
pci_power_name(state));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check if this device supports the desired state */
|
|
if ((state == PCI_D1 && !dev->d1_support)
|
|
|| (state == PCI_D2 && !dev->d2_support))
|
|
return -EIO;
|
|
|
|
pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
|
|
if (PCI_POSSIBLE_ERROR(pmcsr)) {
|
|
pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
|
|
pci_power_name(dev->current_state),
|
|
pci_power_name(state));
|
|
dev->current_state = PCI_D3cold;
|
|
return -EIO;
|
|
}
|
|
|
|
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
|
|
pmcsr |= state;
|
|
|
|
/* Enter specified state */
|
|
pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
|
|
|
|
/* Mandatory power management transition delays; see PCI PM 1.2. */
|
|
if (state == PCI_D3hot)
|
|
pci_dev_d3_sleep(dev);
|
|
else if (state == PCI_D2)
|
|
udelay(PCI_PM_D2_DELAY);
|
|
|
|
pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
|
|
dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
|
|
if (dev->current_state != state)
|
|
pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
|
|
pci_power_name(dev->current_state),
|
|
pci_power_name(state));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pci_set_power_state - Set the power state of a PCI device
|
|
* @dev: PCI device to handle.
|
|
* @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
|
|
*
|
|
* Transition a device to a new power state, using the platform firmware and/or
|
|
* the device's PCI PM registers.
|
|
*
|
|
* RETURN VALUE:
|
|
* -EINVAL if the requested state is invalid.
|
|
* -EIO if device does not support PCI PM or its PM capabilities register has a
|
|
* wrong version, or device doesn't support the requested state.
|
|
* 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
|
|
* 0 if device already is in the requested state.
|
|
* 0 if the transition is to D3 but D3 is not supported.
|
|
* 0 if device's power state has been successfully changed.
|
|
*/
|
|
int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
|
|
{
|
|
int error;
|
|
|
|
/* Bound the state we're entering */
|
|
if (state > PCI_D3cold)
|
|
state = PCI_D3cold;
|
|
else if (state < PCI_D0)
|
|
state = PCI_D0;
|
|
else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
|
|
|
|
/*
|
|
* If the device or the parent bridge do not support PCI
|
|
* PM, ignore the request if we're doing anything other
|
|
* than putting it into D0 (which would only happen on
|
|
* boot).
|
|
*/
|
|
return 0;
|
|
|
|
/* Check if we're already there */
|
|
if (dev->current_state == state)
|
|
return 0;
|
|
|
|
if (state == PCI_D0)
|
|
return pci_set_full_power_state(dev);
|
|
|
|
/*
|
|
* This device is quirked not to be put into D3, so don't put it in
|
|
* D3
|
|
*/
|
|
if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
|
|
return 0;
|
|
|
|
if (state == PCI_D3cold) {
|
|
/*
|
|
* To put the device in D3cold, put it into D3hot in the native
|
|
* way, then put it into D3cold using platform ops.
|
|
*/
|
|
error = pci_set_low_power_state(dev, PCI_D3hot);
|
|
|
|
if (pci_platform_power_transition(dev, PCI_D3cold))
|
|
return error;
|
|
|
|
/* Powering off a bridge may power off the whole hierarchy */
|
|
if (dev->current_state == PCI_D3cold)
|
|
pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
|
|
} else {
|
|
error = pci_set_low_power_state(dev, state);
|
|
|
|
if (pci_platform_power_transition(dev, state))
|
|
return error;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(pci_set_power_state);
|
|
|
|
#define PCI_EXP_SAVE_REGS 7
|
|
|
|
static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
|
|
u16 cap, bool extended)
|
|
{
|
|
struct pci_cap_saved_state *tmp;
|
|
|
|
hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
|
|
if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
|
|
return tmp;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
|
|
{
|
|
return _pci_find_saved_cap(dev, cap, false);
|
|
}
|
|
|
|
struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
|
|
{
|
|
return _pci_find_saved_cap(dev, cap, true);
|
|
}
|
|
|
|
static int pci_save_pcie_state(struct pci_dev *dev)
|
|
{
|
|
int i = 0;
|
|
struct pci_cap_saved_state *save_state;
|
|
u16 *cap;
|
|
|
|
if (!pci_is_pcie(dev))
|
|
return 0;
|
|
|
|
save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
|
|
if (!save_state) {
|
|
pci_err(dev, "buffer not found in %s\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cap = (u16 *)&save_state->cap.data[0];
|
|
pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
|
|
pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
|
|
pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
|
|
pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
|
|
pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
|
|
pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
|
|
pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
|
|
{
|
|
#ifdef CONFIG_PCIEASPM
|
|
struct pci_dev *bridge;
|
|
u32 ctl;
|
|
|
|
bridge = pci_upstream_bridge(dev);
|
|
if (bridge && bridge->ltr_path) {
|
|
pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
|
|
if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
|
|
pci_dbg(bridge, "re-enabling LTR\n");
|
|
pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
|
|
PCI_EXP_DEVCTL2_LTR_EN);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void pci_restore_pcie_state(struct pci_dev *dev)
|
|
{
|
|
int i = 0;
|
|
struct pci_cap_saved_state *save_state;
|
|
u16 *cap;
|
|
|
|
save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
|
|
if (!save_state)
|
|
return;
|
|
|
|
/*
|
|
* Downstream ports reset the LTR enable bit when link goes down.
|
|
* Check and re-configure the bit here before restoring device.
|
|
* PCIe r5.0, sec 7.5.3.16.
|
|
*/
|
|
pci_bridge_reconfigure_ltr(dev);
|
|
|
|
cap = (u16 *)&save_state->cap.data[0];
|
|
pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
|
|
pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
|
|
pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
|
|
pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
|
|
pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
|
|
pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
|
|
pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
|
|
}
|
|
|
|
static int pci_save_pcix_state(struct pci_dev *dev)
|
|
{
|
|
int pos;
|
|
struct pci_cap_saved_state *save_state;
|
|
|
|
pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
|
|
if (!pos)
|
|
return 0;
|
|
|
|
save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
|
|
if (!save_state) {
|
|
pci_err(dev, "buffer not found in %s\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pci_read_config_word(dev, pos + PCI_X_CMD,
|
|
(u16 *)save_state->cap.data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pci_restore_pcix_state(struct pci_dev *dev)
|
|
{
|
|
int i = 0, pos;
|
|
struct pci_cap_saved_state *save_state;
|
|
u16 *cap;
|
|
|
|
save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
|
|
pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
|
|
if (!save_state || !pos)
|
|
return;
|
|
cap = (u16 *)&save_state->cap.data[0];
|
|
|
|
pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
|
|
}
|
|
|
|
static void pci_save_ltr_state(struct pci_dev *dev)
|
|
{
|
|
int ltr;
|
|
struct pci_cap_saved_state *save_state;
|
|
u32 *cap;
|
|
|
|
if (!pci_is_pcie(dev))
|
|
return;
|
|
|
|
ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
|
|
if (!ltr)
|
|
return;
|
|
|
|
save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
|
|
if (!save_state) {
|
|
pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
|
|
return;
|
|
}
|
|
|
|
/* Some broken devices only support dword access to LTR */
|
|
cap = &save_state->cap.data[0];
|
|
pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
|
|
}
|
|
|
|
static void pci_restore_ltr_state(struct pci_dev *dev)
|
|
{
|
|
struct pci_cap_saved_state *save_state;
|
|
int ltr;
|
|
u32 *cap;
|
|
|
|
save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
|
|
ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
|
|
if (!save_state || !ltr)
|
|
return;
|
|
|
|
/* Some broken devices only support dword access to LTR */
|
|
cap = &save_state->cap.data[0];
|
|
pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
|
|
}
|
|
|
|
/**
|
|
* pci_save_state - save the PCI configuration space of a device before
|
|
* suspending
|
|
* @dev: PCI device that we're dealing with
|
|
*/
|
|
int pci_save_state(struct pci_dev *dev)
|
|
{
|
|
int i;
|
|
/* XXX: 100% dword access ok here? */
|
|
for (i = 0; i < 16; i++) {
|
|
pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
|
|
pci_dbg(dev, "save config %#04x: %#010x\n",
|
|
i * 4, dev->saved_config_space[i]);
|
|
}
|
|
dev->state_saved = true;
|
|
|
|
i = pci_save_pcie_state(dev);
|
|
if (i != 0)
|
|
return i;
|
|
|
|
i = pci_save_pcix_state(dev);
|
|
if (i != 0)
|
|
return i;
|
|
|
|
pci_save_ltr_state(dev);
|
|
pci_save_dpc_state(dev);
|
|
pci_save_aer_state(dev);
|
|
pci_save_ptm_state(dev);
|
|
return pci_save_vc_state(dev);
|
|
}
|
|
EXPORT_SYMBOL(pci_save_state);
|
|
|
|
static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
|
|
u32 saved_val, int retry, bool force)
|
|
{
|
|
u32 val;
|
|
|
|
pci_read_config_dword(pdev, offset, &val);
|
|
if (!force && val == saved_val)
|
|
return;
|
|
|
|
for (;;) {
|
|
pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
|
|
offset, val, saved_val);
|
|
pci_write_config_dword(pdev, offset, saved_val);
|
|
if (retry-- <= 0)
|
|
return;
|
|
|
|
pci_read_config_dword(pdev, offset, &val);
|
|
if (val == saved_val)
|
|
return;
|
|
|
|
mdelay(1);
|
|
}
|
|
}
|
|
|
|
static void pci_restore_config_space_range(struct pci_dev *pdev,
|
|
int start, int end, int retry,
|
|
bool force)
|
|
{
|
|
int index;
|
|
|
|
for (index = end; index >= start; index--)
|
|
pci_restore_config_dword(pdev, 4 * index,
|
|
pdev->saved_config_space[index],
|
|
retry, force);
|
|
}
|
|
|
|
static void pci_restore_config_space(struct pci_dev *pdev)
|
|
{
|
|
if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
|
|
pci_restore_config_space_range(pdev, 10, 15, 0, false);
|
|
/* Restore BARs before the command register. */
|
|
pci_restore_config_space_range(pdev, 4, 9, 10, false);
|
|
pci_restore_config_space_range(pdev, 0, 3, 0, false);
|
|
} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
|
|
pci_restore_config_space_range(pdev, 12, 15, 0, false);
|
|
|
|
/*
|
|
* Force rewriting of prefetch registers to avoid S3 resume
|
|
* issues on Intel PCI bridges that occur when these
|
|
* registers are not explicitly written.
|
|
*/
|
|
pci_restore_config_space_range(pdev, 9, 11, 0, true);
|
|
pci_restore_config_space_range(pdev, 0, 8, 0, false);
|
|
} else {
|
|
pci_restore_config_space_range(pdev, 0, 15, 0, false);
|
|
}
|
|
}
|
|
|
|
static void pci_restore_rebar_state(struct pci_dev *pdev)
|
|
{
|
|
unsigned int pos, nbars, i;
|
|
u32 ctrl;
|
|
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
|
|
if (!pos)
|
|
return;
|
|
|
|
pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
|
|
nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
|
|
|
|
for (i = 0; i < nbars; i++, pos += 8) {
|
|
struct resource *res;
|
|
int bar_idx, size;
|
|
|
|
pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
|
|
bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
|
|
res = pdev->resource + bar_idx;
|
|
size = pci_rebar_bytes_to_size(resource_size(res));
|
|
ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
|
|
ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
|
|
pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* pci_restore_state - Restore the saved state of a PCI device
|
|
* @dev: PCI device that we're dealing with
|
|
*/
|
|
void pci_restore_state(struct pci_dev *dev)
|
|
{
|
|
if (!dev->state_saved)
|
|
return;
|
|
|
|
/*
|
|
* Restore max latencies (in the LTR capability) before enabling
|
|
* LTR itself (in the PCIe capability).
|
|
*/
|
|
pci_restore_ltr_state(dev);
|
|
|
|
pci_restore_pcie_state(dev);
|
|
pci_restore_pasid_state(dev);
|
|
pci_restore_pri_state(dev);
|
|
pci_restore_ats_state(dev);
|
|
pci_restore_vc_state(dev);
|
|
pci_restore_rebar_state(dev);
|
|
pci_restore_dpc_state(dev);
|
|
pci_restore_ptm_state(dev);
|
|
|
|
pci_aer_clear_status(dev);
|
|
pci_restore_aer_state(dev);
|
|
|
|
pci_restore_config_space(dev);
|
|
|
|
pci_restore_pcix_state(dev);
|
|
pci_restore_msi_state(dev);
|
|
|
|
/* Restore ACS and IOV configuration state */
|
|
pci_enable_acs(dev);
|
|
pci_restore_iov_state(dev);
|
|
|
|
dev->state_saved = false;
|
|
}
|
|
EXPORT_SYMBOL(pci_restore_state);
|
|
|
|
struct pci_saved_state {
|
|
u32 config_space[16];
|
|
struct pci_cap_saved_data cap[];
|
|
};
|
|
|
|
/**
|
|
* pci_store_saved_state - Allocate and return an opaque struct containing
|
|
* the device saved state.
|
|
* @dev: PCI device that we're dealing with
|
|
*
|
|
* Return NULL if no state or error.
|
|
*/
|
|
struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
|
|
{
|
|
struct pci_saved_state *state;
|
|
struct pci_cap_saved_state *tmp;
|
|
struct pci_cap_saved_data *cap;
|
|
size_t size;
|
|
|
|
if (!dev->state_saved)
|
|
return NULL;
|
|
|
|
size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
|
|
|
|
hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
|
|
size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
|
|
|
|
state = kzalloc(size, GFP_KERNEL);
|
|
if (!state)
|
|
return NULL;
|
|
|
|
memcpy(state->config_space, dev->saved_config_space,
|
|
sizeof(state->config_space));
|
|
|
|
cap = state->cap;
|
|
hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
|
|
size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
|
|
memcpy(cap, &tmp->cap, len);
|
|
cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
|
|
}
|
|
/* Empty cap_save terminates list */
|
|
|
|
return state;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_store_saved_state);
|
|
|
|
/**
|
|
* pci_load_saved_state - Reload the provided save state into struct pci_dev.
|
|
* @dev: PCI device that we're dealing with
|
|
* @state: Saved state returned from pci_store_saved_state()
|
|
*/
|
|
int pci_load_saved_state(struct pci_dev *dev,
|
|
struct pci_saved_state *state)
|
|
{
|
|
struct pci_cap_saved_data *cap;
|
|
|
|
dev->state_saved = false;
|
|
|
|
if (!state)
|
|
return 0;
|
|
|
|
memcpy(dev->saved_config_space, state->config_space,
|
|
sizeof(state->config_space));
|
|
|
|
cap = state->cap;
|
|
while (cap->size) {
|
|
struct pci_cap_saved_state *tmp;
|
|
|
|
tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
|
|
if (!tmp || tmp->cap.size != cap->size)
|
|
return -EINVAL;
|
|
|
|
memcpy(tmp->cap.data, cap->data, tmp->cap.size);
|
|
cap = (struct pci_cap_saved_data *)((u8 *)cap +
|
|
sizeof(struct pci_cap_saved_data) + cap->size);
|
|
}
|
|
|
|
dev->state_saved = true;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_load_saved_state);
|
|
|
|
/**
|
|
* pci_load_and_free_saved_state - Reload the save state pointed to by state,
|
|
* and free the memory allocated for it.
|
|
* @dev: PCI device that we're dealing with
|
|
* @state: Pointer to saved state returned from pci_store_saved_state()
|
|
*/
|
|
int pci_load_and_free_saved_state(struct pci_dev *dev,
|
|
struct pci_saved_state **state)
|
|
{
|
|
int ret = pci_load_saved_state(dev, *state);
|
|
kfree(*state);
|
|
*state = NULL;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
|
|
|
|
int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
|
|
{
|
|
return pci_enable_resources(dev, bars);
|
|
}
|
|
|
|
static int do_pci_enable_device(struct pci_dev *dev, int bars)
|
|
{
|
|
int err;
|
|
struct pci_dev *bridge;
|
|
u16 cmd;
|
|
u8 pin;
|
|
|
|
err = pci_set_power_state(dev, PCI_D0);
|
|
if (err < 0 && err != -EIO)
|
|
return err;
|
|
|
|
bridge = pci_upstream_bridge(dev);
|
|
if (bridge)
|
|
pcie_aspm_powersave_config_link(bridge);
|
|
|
|
err = pcibios_enable_device(dev, bars);
|
|
if (err < 0)
|
|
return err;
|
|
pci_fixup_device(pci_fixup_enable, dev);
|
|
|
|
if (dev->msi_enabled || dev->msix_enabled)
|
|
return 0;
|
|
|
|
pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
|
|
if (pin) {
|
|
pci_read_config_word(dev, PCI_COMMAND, &cmd);
|
|
if (cmd & PCI_COMMAND_INTX_DISABLE)
|
|
pci_write_config_word(dev, PCI_COMMAND,
|
|
cmd & ~PCI_COMMAND_INTX_DISABLE);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pci_reenable_device - Resume abandoned device
|
|
* @dev: PCI device to be resumed
|
|
*
|
|
* NOTE: This function is a backend of pci_default_resume() and is not supposed
|
|
* to be called by normal code, write proper resume handler and use it instead.
|
|
*/
|
|
int pci_reenable_device(struct pci_dev *dev)
|
|
{
|
|
if (pci_is_enabled(dev))
|
|
return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(pci_reenable_device);
|
|
|
|
static void pci_enable_bridge(struct pci_dev *dev)
|
|
{
|
|
struct pci_dev *bridge;
|
|
int retval;
|
|
|
|
bridge = pci_upstream_bridge(dev);
|
|
if (bridge)
|
|
pci_enable_bridge(bridge);
|
|
|
|
if (pci_is_enabled(dev)) {
|
|
if (!dev->is_busmaster)
|
|
pci_set_master(dev);
|
|
return;
|
|
}
|
|
|
|
retval = pci_enable_device(dev);
|
|
if (retval)
|
|
pci_err(dev, "Error enabling bridge (%d), continuing\n",
|
|
retval);
|
|
pci_set_master(dev);
|
|
}
|
|
|
|
static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
|
|
{
|
|
struct pci_dev *bridge;
|
|
int err;
|
|
int i, bars = 0;
|
|
|
|
/*
|
|
* Power state could be unknown at this point, either due to a fresh
|
|
* boot or a device removal call. So get the current power state
|
|
* so that things like MSI message writing will behave as expected
|
|
* (e.g. if the device really is in D0 at enable time).
|
|
*/
|
|
pci_update_current_state(dev, dev->current_state);
|
|
|
|
if (atomic_inc_return(&dev->enable_cnt) > 1)
|
|
return 0; /* already enabled */
|
|
|
|
bridge = pci_upstream_bridge(dev);
|
|
if (bridge)
|
|
pci_enable_bridge(bridge);
|
|
|
|
/* only skip sriov related */
|
|
for (i = 0; i <= PCI_ROM_RESOURCE; i++)
|
|
if (dev->resource[i].flags & flags)
|
|
bars |= (1 << i);
|
|
for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
|
|
if (dev->resource[i].flags & flags)
|
|
bars |= (1 << i);
|
|
|
|
err = do_pci_enable_device(dev, bars);
|
|
if (err < 0)
|
|
atomic_dec(&dev->enable_cnt);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* pci_enable_device_io - Initialize a device for use with IO space
|
|
* @dev: PCI device to be initialized
|
|
*
|
|
* Initialize device before it's used by a driver. Ask low-level code
|
|
* to enable I/O resources. Wake up the device if it was suspended.
|
|
* Beware, this function can fail.
|
|
*/
|
|
int pci_enable_device_io(struct pci_dev *dev)
|
|
{
|
|
return pci_enable_device_flags(dev, IORESOURCE_IO);
|
|
}
|
|
EXPORT_SYMBOL(pci_enable_device_io);
|
|
|
|
/**
|
|
* pci_enable_device_mem - Initialize a device for use with Memory space
|
|
* @dev: PCI device to be initialized
|
|
*
|
|
* Initialize device before it's used by a driver. Ask low-level code
|
|
* to enable Memory resources. Wake up the device if it was suspended.
|
|
* Beware, this function can fail.
|
|
*/
|
|
int pci_enable_device_mem(struct pci_dev *dev)
|
|
{
|
|
return pci_enable_device_flags(dev, IORESOURCE_MEM);
|
|
}
|
|
EXPORT_SYMBOL(pci_enable_device_mem);
|
|
|
|
/**
|
|
* pci_enable_device - Initialize device before it's used by a driver.
|
|
* @dev: PCI device to be initialized
|
|
*
|
|
* Initialize device before it's used by a driver. Ask low-level code
|
|
* to enable I/O and memory. Wake up the device if it was suspended.
|
|
* Beware, this function can fail.
|
|
*
|
|
* Note we don't actually enable the device many times if we call
|
|
* this function repeatedly (we just increment the count).
|
|
*/
|
|
int pci_enable_device(struct pci_dev *dev)
|
|
{
|
|
return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
|
|
}
|
|
EXPORT_SYMBOL(pci_enable_device);
|
|
|
|
/*
|
|
* Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
|
|
* on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
|
|
* there's no need to track it separately. pci_devres is initialized
|
|
* when a device is enabled using managed PCI device enable interface.
|
|
*/
|
|
struct pci_devres {
|
|
unsigned int enabled:1;
|
|
unsigned int pinned:1;
|
|
unsigned int orig_intx:1;
|
|
unsigned int restore_intx:1;
|
|
unsigned int mwi:1;
|
|
u32 region_mask;
|
|
};
|
|
|
|
static void pcim_release(struct device *gendev, void *res)
|
|
{
|
|
struct pci_dev *dev = to_pci_dev(gendev);
|
|
struct pci_devres *this = res;
|
|
int i;
|
|
|
|
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
|
|
if (this->region_mask & (1 << i))
|
|
pci_release_region(dev, i);
|
|
|
|
if (this->mwi)
|
|
pci_clear_mwi(dev);
|
|
|
|
if (this->restore_intx)
|
|
pci_intx(dev, this->orig_intx);
|
|
|
|
if (this->enabled && !this->pinned)
|
|
pci_disable_device(dev);
|
|
}
|
|
|
|
static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
|
|
{
|
|
struct pci_devres *dr, *new_dr;
|
|
|
|
dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
|
|
if (dr)
|
|
return dr;
|
|
|
|
new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
|
|
if (!new_dr)
|
|
return NULL;
|
|
return devres_get(&pdev->dev, new_dr, NULL, NULL);
|
|
}
|
|
|
|
static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
|
|
{
|
|
if (pci_is_managed(pdev))
|
|
return devres_find(&pdev->dev, pcim_release, NULL, NULL);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* pcim_enable_device - Managed pci_enable_device()
|
|
* @pdev: PCI device to be initialized
|
|
*
|
|
* Managed pci_enable_device().
|
|
*/
|
|
int pcim_enable_device(struct pci_dev *pdev)
|
|
{
|
|
struct pci_devres *dr;
|
|
int rc;
|
|
|
|
dr = get_pci_dr(pdev);
|
|
if (unlikely(!dr))
|
|
return -ENOMEM;
|
|
if (dr->enabled)
|
|
return 0;
|
|
|
|
rc = pci_enable_device(pdev);
|
|
if (!rc) {
|
|
pdev->is_managed = 1;
|
|
dr->enabled = 1;
|
|
}
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(pcim_enable_device);
|
|
|
|
/**
|
|
* pcim_pin_device - Pin managed PCI device
|
|
* @pdev: PCI device to pin
|
|
*
|
|
* Pin managed PCI device @pdev. Pinned device won't be disabled on
|
|
* driver detach. @pdev must have been enabled with
|
|
* pcim_enable_device().
|
|
*/
|
|
void pcim_pin_device(struct pci_dev *pdev)
|
|
{
|
|
struct pci_devres *dr;
|
|
|
|
dr = find_pci_dr(pdev);
|
|
WARN_ON(!dr || !dr->enabled);
|
|
if (dr)
|
|
dr->pinned = 1;
|
|
}
|
|
EXPORT_SYMBOL(pcim_pin_device);
|
|
|
|
/*
|
|
* pcibios_device_add - provide arch specific hooks when adding device dev
|
|
* @dev: the PCI device being added
|
|
*
|
|
* Permits the platform to provide architecture specific functionality when
|
|
* devices are added. This is the default implementation. Architecture
|
|
* implementations can override this.
|
|
*/
|
|
int __weak pcibios_device_add(struct pci_dev *dev)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pcibios_release_device - provide arch specific hooks when releasing
|
|
* device dev
|
|
* @dev: the PCI device being released
|
|
*
|
|
* Permits the platform to provide architecture specific functionality when
|
|
* devices are released. This is the default implementation. Architecture
|
|
* implementations can override this.
|
|
*/
|
|
void __weak pcibios_release_device(struct pci_dev *dev) {}
|
|
|
|
/**
|
|
* pcibios_disable_device - disable arch specific PCI resources for device dev
|
|
* @dev: the PCI device to disable
|
|
*
|
|
* Disables architecture specific PCI resources for the device. This
|
|
* is the default implementation. Architecture implementations can
|
|
* override this.
|
|
*/
|
|
void __weak pcibios_disable_device(struct pci_dev *dev) {}
|
|
|
|
/**
|
|
* pcibios_penalize_isa_irq - penalize an ISA IRQ
|
|
* @irq: ISA IRQ to penalize
|
|
* @active: IRQ active or not
|
|
*
|
|
* Permits the platform to provide architecture-specific functionality when
|
|
* penalizing ISA IRQs. This is the default implementation. Architecture
|
|
* implementations can override this.
|
|
*/
|
|
void __weak pcibios_penalize_isa_irq(int irq, int active) {}
|
|
|
|
static void do_pci_disable_device(struct pci_dev *dev)
|
|
{
|
|
u16 pci_command;
|
|
|
|
pci_read_config_word(dev, PCI_COMMAND, &pci_command);
|
|
if (pci_command & PCI_COMMAND_MASTER) {
|
|
pci_command &= ~PCI_COMMAND_MASTER;
|
|
pci_write_config_word(dev, PCI_COMMAND, pci_command);
|
|
}
|
|
|
|
pcibios_disable_device(dev);
|
|
}
|
|
|
|
/**
|
|
* pci_disable_enabled_device - Disable device without updating enable_cnt
|
|
* @dev: PCI device to disable
|
|
*
|
|
* NOTE: This function is a backend of PCI power management routines and is
|
|
* not supposed to be called drivers.
|
|
*/
|
|
void pci_disable_enabled_device(struct pci_dev *dev)
|
|
{
|
|
if (pci_is_enabled(dev))
|
|
do_pci_disable_device(dev);
|
|
}
|
|
|
|
/**
|
|
* pci_disable_device - Disable PCI device after use
|
|
* @dev: PCI device to be disabled
|
|
*
|
|
* Signal to the system that the PCI device is not in use by the system
|
|
* anymore. This only involves disabling PCI bus-mastering, if active.
|
|
*
|
|
* Note we don't actually disable the device until all callers of
|
|
* pci_enable_device() have called pci_disable_device().
|
|
*/
|
|
void pci_disable_device(struct pci_dev *dev)
|
|
{
|
|
struct pci_devres *dr;
|
|
|
|
dr = find_pci_dr(dev);
|
|
if (dr)
|
|
dr->enabled = 0;
|
|
|
|
dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
|
|
"disabling already-disabled device");
|
|
|
|
if (atomic_dec_return(&dev->enable_cnt) != 0)
|
|
return;
|
|
|
|
do_pci_disable_device(dev);
|
|
|
|
dev->is_busmaster = 0;
|
|
}
|
|
EXPORT_SYMBOL(pci_disable_device);
|
|
|
|
/**
|
|
* pcibios_set_pcie_reset_state - set reset state for device dev
|
|
* @dev: the PCIe device reset
|
|
* @state: Reset state to enter into
|
|
*
|
|
* Set the PCIe reset state for the device. This is the default
|
|
* implementation. Architecture implementations can override this.
|
|
*/
|
|
int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
|
|
enum pcie_reset_state state)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* pci_set_pcie_reset_state - set reset state for device dev
|
|
* @dev: the PCIe device reset
|
|
* @state: Reset state to enter into
|
|
*
|
|
* Sets the PCI reset state for the device.
|
|
*/
|
|
int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
|
|
{
|
|
return pcibios_set_pcie_reset_state(dev, state);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
|
|
|
|
#ifdef CONFIG_PCIEAER
|
|
void pcie_clear_device_status(struct pci_dev *dev)
|
|
{
|
|
u16 sta;
|
|
|
|
pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
|
|
pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* pcie_clear_root_pme_status - Clear root port PME interrupt status.
|
|
* @dev: PCIe root port or event collector.
|
|
*/
|
|
void pcie_clear_root_pme_status(struct pci_dev *dev)
|
|
{
|
|
pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
|
|
}
|
|
|
|
/**
|
|
* pci_check_pme_status - Check if given device has generated PME.
|
|
* @dev: Device to check.
|
|
*
|
|
* Check the PME status of the device and if set, clear it and clear PME enable
|
|
* (if set). Return 'true' if PME status and PME enable were both set or
|
|
* 'false' otherwise.
|
|
*/
|
|
bool pci_check_pme_status(struct pci_dev *dev)
|
|
{
|
|
int pmcsr_pos;
|
|
u16 pmcsr;
|
|
bool ret = false;
|
|
|
|
if (!dev->pm_cap)
|
|
return false;
|
|
|
|
pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
|
|
pci_read_config_word(dev, pmcsr_pos, &pmcsr);
|
|
if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
|
|
return false;
|
|
|
|
/* Clear PME status. */
|
|
pmcsr |= PCI_PM_CTRL_PME_STATUS;
|
|
if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
|
|
/* Disable PME to avoid interrupt flood. */
|
|
pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
|
|
ret = true;
|
|
}
|
|
|
|
pci_write_config_word(dev, pmcsr_pos, pmcsr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
|
|
* @dev: Device to handle.
|
|
* @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
|
|
*
|
|
* Check if @dev has generated PME and queue a resume request for it in that
|
|
* case.
|
|
*/
|
|
static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
|
|
{
|
|
if (pme_poll_reset && dev->pme_poll)
|
|
dev->pme_poll = false;
|
|
|
|
if (pci_check_pme_status(dev)) {
|
|
pci_wakeup_event(dev);
|
|
pm_request_resume(&dev->dev);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
|
|
* @bus: Top bus of the subtree to walk.
|
|
*/
|
|
void pci_pme_wakeup_bus(struct pci_bus *bus)
|
|
{
|
|
if (bus)
|
|
pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
|
|
}
|
|
|
|
|
|
/**
|
|
* pci_pme_capable - check the capability of PCI device to generate PME#
|
|
* @dev: PCI device to handle.
|
|
* @state: PCI state from which device will issue PME#.
|
|
*/
|
|
bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
|
|
{
|
|
if (!dev->pm_cap)
|
|
return false;
|
|
|
|
return !!(dev->pme_support & (1 << state));
|
|
}
|
|
EXPORT_SYMBOL(pci_pme_capable);
|
|
|
|
static void pci_pme_list_scan(struct work_struct *work)
|
|
{
|
|
struct pci_pme_device *pme_dev, *n;
|
|
|
|
mutex_lock(&pci_pme_list_mutex);
|
|
list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
|
|
struct pci_dev *pdev = pme_dev->dev;
|
|
|
|
if (pdev->pme_poll) {
|
|
struct pci_dev *bridge = pdev->bus->self;
|
|
struct device *dev = &pdev->dev;
|
|
int pm_status;
|
|
|
|
/*
|
|
* If bridge is in low power state, the
|
|
* configuration space of subordinate devices
|
|
* may be not accessible
|
|
*/
|
|
if (bridge && bridge->current_state != PCI_D0)
|
|
continue;
|
|
|
|
/*
|
|
* If the device is in a low power state it
|
|
* should not be polled either.
|
|
*/
|
|
pm_status = pm_runtime_get_if_active(dev, true);
|
|
if (!pm_status)
|
|
continue;
|
|
|
|
if (pdev->current_state != PCI_D3cold)
|
|
pci_pme_wakeup(pdev, NULL);
|
|
|
|
if (pm_status > 0)
|
|
pm_runtime_put(dev);
|
|
} else {
|
|
list_del(&pme_dev->list);
|
|
kfree(pme_dev);
|
|
}
|
|
}
|
|
if (!list_empty(&pci_pme_list))
|
|
queue_delayed_work(system_freezable_wq, &pci_pme_work,
|
|
msecs_to_jiffies(PME_TIMEOUT));
|
|
mutex_unlock(&pci_pme_list_mutex);
|
|
}
|
|
|
|
static void __pci_pme_active(struct pci_dev *dev, bool enable)
|
|
{
|
|
u16 pmcsr;
|
|
|
|
if (!dev->pme_support)
|
|
return;
|
|
|
|
pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
|
|
/* Clear PME_Status by writing 1 to it and enable PME# */
|
|
pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
|
|
if (!enable)
|
|
pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
|
|
|
|
pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
|
|
}
|
|
|
|
/**
|
|
* pci_pme_restore - Restore PME configuration after config space restore.
|
|
* @dev: PCI device to update.
|
|
*/
|
|
void pci_pme_restore(struct pci_dev *dev)
|
|
{
|
|
u16 pmcsr;
|
|
|
|
if (!dev->pme_support)
|
|
return;
|
|
|
|
pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
|
|
if (dev->wakeup_prepared) {
|
|
pmcsr |= PCI_PM_CTRL_PME_ENABLE;
|
|
pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
|
|
} else {
|
|
pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
|
|
pmcsr |= PCI_PM_CTRL_PME_STATUS;
|
|
}
|
|
pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
|
|
}
|
|
|
|
/**
|
|
* pci_pme_active - enable or disable PCI device's PME# function
|
|
* @dev: PCI device to handle.
|
|
* @enable: 'true' to enable PME# generation; 'false' to disable it.
|
|
*
|
|
* The caller must verify that the device is capable of generating PME# before
|
|
* calling this function with @enable equal to 'true'.
|
|
*/
|
|
void pci_pme_active(struct pci_dev *dev, bool enable)
|
|
{
|
|
__pci_pme_active(dev, enable);
|
|
|
|
/*
|
|
* PCI (as opposed to PCIe) PME requires that the device have
|
|
* its PME# line hooked up correctly. Not all hardware vendors
|
|
* do this, so the PME never gets delivered and the device
|
|
* remains asleep. The easiest way around this is to
|
|
* periodically walk the list of suspended devices and check
|
|
* whether any have their PME flag set. The assumption is that
|
|
* we'll wake up often enough anyway that this won't be a huge
|
|
* hit, and the power savings from the devices will still be a
|
|
* win.
|
|
*
|
|
* Although PCIe uses in-band PME message instead of PME# line
|
|
* to report PME, PME does not work for some PCIe devices in
|
|
* reality. For example, there are devices that set their PME
|
|
* status bits, but don't really bother to send a PME message;
|
|
* there are PCI Express Root Ports that don't bother to
|
|
* trigger interrupts when they receive PME messages from the
|
|
* devices below. So PME poll is used for PCIe devices too.
|
|
*/
|
|
|
|
if (dev->pme_poll) {
|
|
struct pci_pme_device *pme_dev;
|
|
if (enable) {
|
|
pme_dev = kmalloc(sizeof(struct pci_pme_device),
|
|
GFP_KERNEL);
|
|
if (!pme_dev) {
|
|
pci_warn(dev, "can't enable PME#\n");
|
|
return;
|
|
}
|
|
pme_dev->dev = dev;
|
|
mutex_lock(&pci_pme_list_mutex);
|
|
list_add(&pme_dev->list, &pci_pme_list);
|
|
if (list_is_singular(&pci_pme_list))
|
|
queue_delayed_work(system_freezable_wq,
|
|
&pci_pme_work,
|
|
msecs_to_jiffies(PME_TIMEOUT));
|
|
mutex_unlock(&pci_pme_list_mutex);
|
|
} else {
|
|
mutex_lock(&pci_pme_list_mutex);
|
|
list_for_each_entry(pme_dev, &pci_pme_list, list) {
|
|
if (pme_dev->dev == dev) {
|
|
list_del(&pme_dev->list);
|
|
kfree(pme_dev);
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&pci_pme_list_mutex);
|
|
}
|
|
}
|
|
|
|
pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
|
|
}
|
|
EXPORT_SYMBOL(pci_pme_active);
|
|
|
|
/**
|
|
* __pci_enable_wake - enable PCI device as wakeup event source
|
|
* @dev: PCI device affected
|
|
* @state: PCI state from which device will issue wakeup events
|
|
* @enable: True to enable event generation; false to disable
|
|
*
|
|
* This enables the device as a wakeup event source, or disables it.
|
|
* When such events involves platform-specific hooks, those hooks are
|
|
* called automatically by this routine.
|
|
*
|
|
* Devices with legacy power management (no standard PCI PM capabilities)
|
|
* always require such platform hooks.
|
|
*
|
|
* RETURN VALUE:
|
|
* 0 is returned on success
|
|
* -EINVAL is returned if device is not supposed to wake up the system
|
|
* Error code depending on the platform is returned if both the platform and
|
|
* the native mechanism fail to enable the generation of wake-up events
|
|
*/
|
|
static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Bridges that are not power-manageable directly only signal
|
|
* wakeup on behalf of subordinate devices which is set up
|
|
* elsewhere, so skip them. However, bridges that are
|
|
* power-manageable may signal wakeup for themselves (for example,
|
|
* on a hotplug event) and they need to be covered here.
|
|
*/
|
|
if (!pci_power_manageable(dev))
|
|
return 0;
|
|
|
|
/* Don't do the same thing twice in a row for one device. */
|
|
if (!!enable == !!dev->wakeup_prepared)
|
|
return 0;
|
|
|
|
/*
|
|
* According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
|
|
* Anderson we should be doing PME# wake enable followed by ACPI wake
|
|
* enable. To disable wake-up we call the platform first, for symmetry.
|
|
*/
|
|
|
|
if (enable) {
|
|
int error;
|
|
|
|
/*
|
|
* Enable PME signaling if the device can signal PME from
|
|
* D3cold regardless of whether or not it can signal PME from
|
|
* the current target state, because that will allow it to
|
|
* signal PME when the hierarchy above it goes into D3cold and
|
|
* the device itself ends up in D3cold as a result of that.
|
|
*/
|
|
if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
|
|
pci_pme_active(dev, true);
|
|
else
|
|
ret = 1;
|
|
error = platform_pci_set_wakeup(dev, true);
|
|
if (ret)
|
|
ret = error;
|
|
if (!ret)
|
|
dev->wakeup_prepared = true;
|
|
} else {
|
|
platform_pci_set_wakeup(dev, false);
|
|
pci_pme_active(dev, false);
|
|
dev->wakeup_prepared = false;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* pci_enable_wake - change wakeup settings for a PCI device
|
|
* @pci_dev: Target device
|
|
* @state: PCI state from which device will issue wakeup events
|
|
* @enable: Whether or not to enable event generation
|
|
*
|
|
* If @enable is set, check device_may_wakeup() for the device before calling
|
|
* __pci_enable_wake() for it.
|
|
*/
|
|
int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
|
|
{
|
|
if (enable && !device_may_wakeup(&pci_dev->dev))
|
|
return -EINVAL;
|
|
|
|
return __pci_enable_wake(pci_dev, state, enable);
|
|
}
|
|
EXPORT_SYMBOL(pci_enable_wake);
|
|
|
|
/**
|
|
* pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
|
|
* @dev: PCI device to prepare
|
|
* @enable: True to enable wake-up event generation; false to disable
|
|
*
|
|
* Many drivers want the device to wake up the system from D3_hot or D3_cold
|
|
* and this function allows them to set that up cleanly - pci_enable_wake()
|
|
* should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
|
|
* ordering constraints.
|
|
*
|
|
* This function only returns error code if the device is not allowed to wake
|
|
* up the system from sleep or it is not capable of generating PME# from both
|
|
* D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
|
|
*/
|
|
int pci_wake_from_d3(struct pci_dev *dev, bool enable)
|
|
{
|
|
return pci_pme_capable(dev, PCI_D3cold) ?
|
|
pci_enable_wake(dev, PCI_D3cold, enable) :
|
|
pci_enable_wake(dev, PCI_D3hot, enable);
|
|
}
|
|
EXPORT_SYMBOL(pci_wake_from_d3);
|
|
|
|
/**
|
|
* pci_target_state - find an appropriate low power state for a given PCI dev
|
|
* @dev: PCI device
|
|
* @wakeup: Whether or not wakeup functionality will be enabled for the device.
|
|
*
|
|
* Use underlying platform code to find a supported low power state for @dev.
|
|
* If the platform can't manage @dev, return the deepest state from which it
|
|
* can generate wake events, based on any available PME info.
|
|
*/
|
|
static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
|
|
{
|
|
if (platform_pci_power_manageable(dev)) {
|
|
/*
|
|
* Call the platform to find the target state for the device.
|
|
*/
|
|
pci_power_t state = platform_pci_choose_state(dev);
|
|
|
|
switch (state) {
|
|
case PCI_POWER_ERROR:
|
|
case PCI_UNKNOWN:
|
|
return PCI_D3hot;
|
|
|
|
case PCI_D1:
|
|
case PCI_D2:
|
|
if (pci_no_d1d2(dev))
|
|
return PCI_D3hot;
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
/*
|
|
* If the device is in D3cold even though it's not power-manageable by
|
|
* the platform, it may have been powered down by non-standard means.
|
|
* Best to let it slumber.
|
|
*/
|
|
if (dev->current_state == PCI_D3cold)
|
|
return PCI_D3cold;
|
|
else if (!dev->pm_cap)
|
|
return PCI_D0;
|
|
|
|
if (wakeup && dev->pme_support) {
|
|
pci_power_t state = PCI_D3hot;
|
|
|
|
/*
|
|
* Find the deepest state from which the device can generate
|
|
* PME#.
|
|
*/
|
|
while (state && !(dev->pme_support & (1 << state)))
|
|
state--;
|
|
|
|
if (state)
|
|
return state;
|
|
else if (dev->pme_support & 1)
|
|
return PCI_D0;
|
|
}
|
|
|
|
return PCI_D3hot;
|
|
}
|
|
|
|
/**
|
|
* pci_prepare_to_sleep - prepare PCI device for system-wide transition
|
|
* into a sleep state
|
|
* @dev: Device to handle.
|
|
*
|
|
* Choose the power state appropriate for the device depending on whether
|
|
* it can wake up the system and/or is power manageable by the platform
|
|
* (PCI_D3hot is the default) and put the device into that state.
|
|
*/
|
|
int pci_prepare_to_sleep(struct pci_dev *dev)
|
|
{
|
|
bool wakeup = device_may_wakeup(&dev->dev);
|
|
pci_power_t target_state = pci_target_state(dev, wakeup);
|
|
int error;
|
|
|
|
if (target_state == PCI_POWER_ERROR)
|
|
return -EIO;
|
|
|
|
pci_enable_wake(dev, target_state, wakeup);
|
|
|
|
error = pci_set_power_state(dev, target_state);
|
|
|
|
if (error)
|
|
pci_enable_wake(dev, target_state, false);
|
|
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL(pci_prepare_to_sleep);
|
|
|
|
/**
|
|
* pci_back_from_sleep - turn PCI device on during system-wide transition
|
|
* into working state
|
|
* @dev: Device to handle.
|
|
*
|
|
* Disable device's system wake-up capability and put it into D0.
|
|
*/
|
|
int pci_back_from_sleep(struct pci_dev *dev)
|
|
{
|
|
int ret = pci_set_power_state(dev, PCI_D0);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
pci_enable_wake(dev, PCI_D0, false);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(pci_back_from_sleep);
|
|
|
|
/**
|
|
* pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
|
|
* @dev: PCI device being suspended.
|
|
*
|
|
* Prepare @dev to generate wake-up events at run time and put it into a low
|
|
* power state.
|
|
*/
|
|
int pci_finish_runtime_suspend(struct pci_dev *dev)
|
|
{
|
|
pci_power_t target_state;
|
|
int error;
|
|
|
|
target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
|
|
if (target_state == PCI_POWER_ERROR)
|
|
return -EIO;
|
|
|
|
__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
|
|
|
|
error = pci_set_power_state(dev, target_state);
|
|
|
|
if (error)
|
|
pci_enable_wake(dev, target_state, false);
|
|
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* pci_dev_run_wake - Check if device can generate run-time wake-up events.
|
|
* @dev: Device to check.
|
|
*
|
|
* Return true if the device itself is capable of generating wake-up events
|
|
* (through the platform or using the native PCIe PME) or if the device supports
|
|
* PME and one of its upstream bridges can generate wake-up events.
|
|
*/
|
|
bool pci_dev_run_wake(struct pci_dev *dev)
|
|
{
|
|
struct pci_bus *bus = dev->bus;
|
|
|
|
if (!dev->pme_support)
|
|
return false;
|
|
|
|
/* PME-capable in principle, but not from the target power state */
|
|
if (!pci_pme_capable(dev, pci_target_state(dev, true)))
|
|
return false;
|
|
|
|
if (device_can_wakeup(&dev->dev))
|
|
return true;
|
|
|
|
while (bus->parent) {
|
|
struct pci_dev *bridge = bus->self;
|
|
|
|
if (device_can_wakeup(&bridge->dev))
|
|
return true;
|
|
|
|
bus = bus->parent;
|
|
}
|
|
|
|
/* We have reached the root bus. */
|
|
if (bus->bridge)
|
|
return device_can_wakeup(bus->bridge);
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_dev_run_wake);
|
|
|
|
/**
|
|
* pci_dev_need_resume - Check if it is necessary to resume the device.
|
|
* @pci_dev: Device to check.
|
|
*
|
|
* Return 'true' if the device is not runtime-suspended or it has to be
|
|
* reconfigured due to wakeup settings difference between system and runtime
|
|
* suspend, or the current power state of it is not suitable for the upcoming
|
|
* (system-wide) transition.
|
|
*/
|
|
bool pci_dev_need_resume(struct pci_dev *pci_dev)
|
|
{
|
|
struct device *dev = &pci_dev->dev;
|
|
pci_power_t target_state;
|
|
|
|
if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
|
|
return true;
|
|
|
|
target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
|
|
|
|
/*
|
|
* If the earlier platform check has not triggered, D3cold is just power
|
|
* removal on top of D3hot, so no need to resume the device in that
|
|
* case.
|
|
*/
|
|
return target_state != pci_dev->current_state &&
|
|
target_state != PCI_D3cold &&
|
|
pci_dev->current_state != PCI_D3hot;
|
|
}
|
|
|
|
/**
|
|
* pci_dev_adjust_pme - Adjust PME setting for a suspended device.
|
|
* @pci_dev: Device to check.
|
|
*
|
|
* If the device is suspended and it is not configured for system wakeup,
|
|
* disable PME for it to prevent it from waking up the system unnecessarily.
|
|
*
|
|
* Note that if the device's power state is D3cold and the platform check in
|
|
* pci_dev_need_resume() has not triggered, the device's configuration need not
|
|
* be changed.
|
|
*/
|
|
void pci_dev_adjust_pme(struct pci_dev *pci_dev)
|
|
{
|
|
struct device *dev = &pci_dev->dev;
|
|
|
|
spin_lock_irq(&dev->power.lock);
|
|
|
|
if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
|
|
pci_dev->current_state < PCI_D3cold)
|
|
__pci_pme_active(pci_dev, false);
|
|
|
|
spin_unlock_irq(&dev->power.lock);
|
|
}
|
|
|
|
/**
|
|
* pci_dev_complete_resume - Finalize resume from system sleep for a device.
|
|
* @pci_dev: Device to handle.
|
|
*
|
|
* If the device is runtime suspended and wakeup-capable, enable PME for it as
|
|
* it might have been disabled during the prepare phase of system suspend if
|
|
* the device was not configured for system wakeup.
|
|
*/
|
|
void pci_dev_complete_resume(struct pci_dev *pci_dev)
|
|
{
|
|
struct device *dev = &pci_dev->dev;
|
|
|
|
if (!pci_dev_run_wake(pci_dev))
|
|
return;
|
|
|
|
spin_lock_irq(&dev->power.lock);
|
|
|
|
if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
|
|
__pci_pme_active(pci_dev, true);
|
|
|
|
spin_unlock_irq(&dev->power.lock);
|
|
}
|
|
|
|
/**
|
|
* pci_choose_state - Choose the power state of a PCI device.
|
|
* @dev: Target PCI device.
|
|
* @state: Target state for the whole system.
|
|
*
|
|
* Returns PCI power state suitable for @dev and @state.
|
|
*/
|
|
pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
|
|
{
|
|
if (state.event == PM_EVENT_ON)
|
|
return PCI_D0;
|
|
|
|
return pci_target_state(dev, false);
|
|
}
|
|
EXPORT_SYMBOL(pci_choose_state);
|
|
|
|
void pci_config_pm_runtime_get(struct pci_dev *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct device *parent = dev->parent;
|
|
|
|
if (parent)
|
|
pm_runtime_get_sync(parent);
|
|
pm_runtime_get_noresume(dev);
|
|
/*
|
|
* pdev->current_state is set to PCI_D3cold during suspending,
|
|
* so wait until suspending completes
|
|
*/
|
|
pm_runtime_barrier(dev);
|
|
/*
|
|
* Only need to resume devices in D3cold, because config
|
|
* registers are still accessible for devices suspended but
|
|
* not in D3cold.
|
|
*/
|
|
if (pdev->current_state == PCI_D3cold)
|
|
pm_runtime_resume(dev);
|
|
}
|
|
|
|
void pci_config_pm_runtime_put(struct pci_dev *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct device *parent = dev->parent;
|
|
|
|
pm_runtime_put(dev);
|
|
if (parent)
|
|
pm_runtime_put_sync(parent);
|
|
}
|
|
|
|
static const struct dmi_system_id bridge_d3_blacklist[] = {
|
|
#ifdef CONFIG_X86
|
|
{
|
|
/*
|
|
* Gigabyte X299 root port is not marked as hotplug capable
|
|
* which allows Linux to power manage it. However, this
|
|
* confuses the BIOS SMI handler so don't power manage root
|
|
* ports on that system.
|
|
*/
|
|
.ident = "X299 DESIGNARE EX-CF",
|
|
.matches = {
|
|
DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
|
|
DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
|
|
},
|
|
},
|
|
{
|
|
/*
|
|
* Downstream device is not accessible after putting a root port
|
|
* into D3cold and back into D0 on Elo Continental Z2 board
|
|
*/
|
|
.ident = "Elo Continental Z2",
|
|
.matches = {
|
|
DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
|
|
DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
|
|
DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
|
|
},
|
|
},
|
|
#endif
|
|
{ }
|
|
};
|
|
|
|
/**
|
|
* pci_bridge_d3_possible - Is it possible to put the bridge into D3
|
|
* @bridge: Bridge to check
|
|
*
|
|
* This function checks if it is possible to move the bridge to D3.
|
|
* Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
|
|
*/
|
|
bool pci_bridge_d3_possible(struct pci_dev *bridge)
|
|
{
|
|
if (!pci_is_pcie(bridge))
|
|
return false;
|
|
|
|
switch (pci_pcie_type(bridge)) {
|
|
case PCI_EXP_TYPE_ROOT_PORT:
|
|
case PCI_EXP_TYPE_UPSTREAM:
|
|
case PCI_EXP_TYPE_DOWNSTREAM:
|
|
if (pci_bridge_d3_disable)
|
|
return false;
|
|
|
|
/*
|
|
* Hotplug ports handled by firmware in System Management Mode
|
|
* may not be put into D3 by the OS (Thunderbolt on non-Macs).
|
|
*/
|
|
if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
|
|
return false;
|
|
|
|
if (pci_bridge_d3_force)
|
|
return true;
|
|
|
|
/* Even the oldest 2010 Thunderbolt controller supports D3. */
|
|
if (bridge->is_thunderbolt)
|
|
return true;
|
|
|
|
/* Platform might know better if the bridge supports D3 */
|
|
if (platform_pci_bridge_d3(bridge))
|
|
return true;
|
|
|
|
/*
|
|
* Hotplug ports handled natively by the OS were not validated
|
|
* by vendors for runtime D3 at least until 2018 because there
|
|
* was no OS support.
|
|
*/
|
|
if (bridge->is_hotplug_bridge)
|
|
return false;
|
|
|
|
if (dmi_check_system(bridge_d3_blacklist))
|
|
return false;
|
|
|
|
/*
|
|
* It should be safe to put PCIe ports from 2015 or newer
|
|
* to D3.
|
|
*/
|
|
if (dmi_get_bios_year() >= 2015)
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
|
|
{
|
|
bool *d3cold_ok = data;
|
|
|
|
if (/* The device needs to be allowed to go D3cold ... */
|
|
dev->no_d3cold || !dev->d3cold_allowed ||
|
|
|
|
/* ... and if it is wakeup capable to do so from D3cold. */
|
|
(device_may_wakeup(&dev->dev) &&
|
|
!pci_pme_capable(dev, PCI_D3cold)) ||
|
|
|
|
/* If it is a bridge it must be allowed to go to D3. */
|
|
!pci_power_manageable(dev))
|
|
|
|
*d3cold_ok = false;
|
|
|
|
return !*d3cold_ok;
|
|
}
|
|
|
|
/*
|
|
* pci_bridge_d3_update - Update bridge D3 capabilities
|
|
* @dev: PCI device which is changed
|
|
*
|
|
* Update upstream bridge PM capabilities accordingly depending on if the
|
|
* device PM configuration was changed or the device is being removed. The
|
|
* change is also propagated upstream.
|
|
*/
|
|
void pci_bridge_d3_update(struct pci_dev *dev)
|
|
{
|
|
bool remove = !device_is_registered(&dev->dev);
|
|
struct pci_dev *bridge;
|
|
bool d3cold_ok = true;
|
|
|
|
bridge = pci_upstream_bridge(dev);
|
|
if (!bridge || !pci_bridge_d3_possible(bridge))
|
|
return;
|
|
|
|
/*
|
|
* If D3 is currently allowed for the bridge, removing one of its
|
|
* children won't change that.
|
|
*/
|
|
if (remove && bridge->bridge_d3)
|
|
return;
|
|
|
|
/*
|
|
* If D3 is currently allowed for the bridge and a child is added or
|
|
* changed, disallowance of D3 can only be caused by that child, so
|
|
* we only need to check that single device, not any of its siblings.
|
|
*
|
|
* If D3 is currently not allowed for the bridge, checking the device
|
|
* first may allow us to skip checking its siblings.
|
|
*/
|
|
if (!remove)
|
|
pci_dev_check_d3cold(dev, &d3cold_ok);
|
|
|
|
/*
|
|
* If D3 is currently not allowed for the bridge, this may be caused
|
|
* either by the device being changed/removed or any of its siblings,
|
|
* so we need to go through all children to find out if one of them
|
|
* continues to block D3.
|
|
*/
|
|
if (d3cold_ok && !bridge->bridge_d3)
|
|
pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
|
|
&d3cold_ok);
|
|
|
|
if (bridge->bridge_d3 != d3cold_ok) {
|
|
bridge->bridge_d3 = d3cold_ok;
|
|
/* Propagate change to upstream bridges */
|
|
pci_bridge_d3_update(bridge);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* pci_d3cold_enable - Enable D3cold for device
|
|
* @dev: PCI device to handle
|
|
*
|
|
* This function can be used in drivers to enable D3cold from the device
|
|
* they handle. It also updates upstream PCI bridge PM capabilities
|
|
* accordingly.
|
|
*/
|
|
void pci_d3cold_enable(struct pci_dev *dev)
|
|
{
|
|
if (dev->no_d3cold) {
|
|
dev->no_d3cold = false;
|
|
pci_bridge_d3_update(dev);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_d3cold_enable);
|
|
|
|
/**
|
|
* pci_d3cold_disable - Disable D3cold for device
|
|
* @dev: PCI device to handle
|
|
*
|
|
* This function can be used in drivers to disable D3cold from the device
|
|
* they handle. It also updates upstream PCI bridge PM capabilities
|
|
* accordingly.
|
|
*/
|
|
void pci_d3cold_disable(struct pci_dev *dev)
|
|
{
|
|
if (!dev->no_d3cold) {
|
|
dev->no_d3cold = true;
|
|
pci_bridge_d3_update(dev);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_d3cold_disable);
|
|
|
|
/**
|
|
* pci_pm_init - Initialize PM functions of given PCI device
|
|
* @dev: PCI device to handle.
|
|
*/
|
|
void pci_pm_init(struct pci_dev *dev)
|
|
{
|
|
int pm;
|
|
u16 status;
|
|
u16 pmc;
|
|
|
|
pm_runtime_forbid(&dev->dev);
|
|
pm_runtime_set_active(&dev->dev);
|
|
pm_runtime_enable(&dev->dev);
|
|
device_enable_async_suspend(&dev->dev);
|
|
dev->wakeup_prepared = false;
|
|
|
|
dev->pm_cap = 0;
|
|
dev->pme_support = 0;
|
|
|
|
/* find PCI PM capability in list */
|
|
pm = pci_find_capability(dev, PCI_CAP_ID_PM);
|
|
if (!pm)
|
|
return;
|
|
/* Check device's ability to generate PME# */
|
|
pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
|
|
|
|
if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
|
|
pci_err(dev, "unsupported PM cap regs version (%u)\n",
|
|
pmc & PCI_PM_CAP_VER_MASK);
|
|
return;
|
|
}
|
|
|
|
dev->pm_cap = pm;
|
|
dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
|
|
dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
|
|
dev->bridge_d3 = pci_bridge_d3_possible(dev);
|
|
dev->d3cold_allowed = true;
|
|
|
|
dev->d1_support = false;
|
|
dev->d2_support = false;
|
|
if (!pci_no_d1d2(dev)) {
|
|
if (pmc & PCI_PM_CAP_D1)
|
|
dev->d1_support = true;
|
|
if (pmc & PCI_PM_CAP_D2)
|
|
dev->d2_support = true;
|
|
|
|
if (dev->d1_support || dev->d2_support)
|
|
pci_info(dev, "supports%s%s\n",
|
|
dev->d1_support ? " D1" : "",
|
|
dev->d2_support ? " D2" : "");
|
|
}
|
|
|
|
pmc &= PCI_PM_CAP_PME_MASK;
|
|
if (pmc) {
|
|
pci_info(dev, "PME# supported from%s%s%s%s%s\n",
|
|
(pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
|
|
(pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
|
|
(pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
|
|
(pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
|
|
(pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
|
|
dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
|
|
dev->pme_poll = true;
|
|
/*
|
|
* Make device's PM flags reflect the wake-up capability, but
|
|
* let the user space enable it to wake up the system as needed.
|
|
*/
|
|
device_set_wakeup_capable(&dev->dev, true);
|
|
/* Disable the PME# generation functionality */
|
|
pci_pme_active(dev, false);
|
|
}
|
|
|
|
pci_read_config_word(dev, PCI_STATUS, &status);
|
|
if (status & PCI_STATUS_IMM_READY)
|
|
dev->imm_ready = 1;
|
|
}
|
|
|
|
static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
|
|
{
|
|
unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
|
|
|
|
switch (prop) {
|
|
case PCI_EA_P_MEM:
|
|
case PCI_EA_P_VF_MEM:
|
|
flags |= IORESOURCE_MEM;
|
|
break;
|
|
case PCI_EA_P_MEM_PREFETCH:
|
|
case PCI_EA_P_VF_MEM_PREFETCH:
|
|
flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
|
|
break;
|
|
case PCI_EA_P_IO:
|
|
flags |= IORESOURCE_IO;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return flags;
|
|
}
|
|
|
|
static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
|
|
u8 prop)
|
|
{
|
|
if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
|
|
return &dev->resource[bei];
|
|
#ifdef CONFIG_PCI_IOV
|
|
else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
|
|
(prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
|
|
return &dev->resource[PCI_IOV_RESOURCES +
|
|
bei - PCI_EA_BEI_VF_BAR0];
|
|
#endif
|
|
else if (bei == PCI_EA_BEI_ROM)
|
|
return &dev->resource[PCI_ROM_RESOURCE];
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/* Read an Enhanced Allocation (EA) entry */
|
|
static int pci_ea_read(struct pci_dev *dev, int offset)
|
|
{
|
|
struct resource *res;
|
|
int ent_size, ent_offset = offset;
|
|
resource_size_t start, end;
|
|
unsigned long flags;
|
|
u32 dw0, bei, base, max_offset;
|
|
u8 prop;
|
|
bool support_64 = (sizeof(resource_size_t) >= 8);
|
|
|
|
pci_read_config_dword(dev, ent_offset, &dw0);
|
|
ent_offset += 4;
|
|
|
|
/* Entry size field indicates DWORDs after 1st */
|
|
ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
|
|
|
|
if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
|
|
goto out;
|
|
|
|
bei = FIELD_GET(PCI_EA_BEI, dw0);
|
|
prop = FIELD_GET(PCI_EA_PP, dw0);
|
|
|
|
/*
|
|
* If the Property is in the reserved range, try the Secondary
|
|
* Property instead.
|
|
*/
|
|
if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
|
|
prop = FIELD_GET(PCI_EA_SP, dw0);
|
|
if (prop > PCI_EA_P_BRIDGE_IO)
|
|
goto out;
|
|
|
|
res = pci_ea_get_resource(dev, bei, prop);
|
|
if (!res) {
|
|
pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
|
|
goto out;
|
|
}
|
|
|
|
flags = pci_ea_flags(dev, prop);
|
|
if (!flags) {
|
|
pci_err(dev, "Unsupported EA properties: %#x\n", prop);
|
|
goto out;
|
|
}
|
|
|
|
/* Read Base */
|
|
pci_read_config_dword(dev, ent_offset, &base);
|
|
start = (base & PCI_EA_FIELD_MASK);
|
|
ent_offset += 4;
|
|
|
|
/* Read MaxOffset */
|
|
pci_read_config_dword(dev, ent_offset, &max_offset);
|
|
ent_offset += 4;
|
|
|
|
/* Read Base MSBs (if 64-bit entry) */
|
|
if (base & PCI_EA_IS_64) {
|
|
u32 base_upper;
|
|
|
|
pci_read_config_dword(dev, ent_offset, &base_upper);
|
|
ent_offset += 4;
|
|
|
|
flags |= IORESOURCE_MEM_64;
|
|
|
|
/* entry starts above 32-bit boundary, can't use */
|
|
if (!support_64 && base_upper)
|
|
goto out;
|
|
|
|
if (support_64)
|
|
start |= ((u64)base_upper << 32);
|
|
}
|
|
|
|
end = start + (max_offset | 0x03);
|
|
|
|
/* Read MaxOffset MSBs (if 64-bit entry) */
|
|
if (max_offset & PCI_EA_IS_64) {
|
|
u32 max_offset_upper;
|
|
|
|
pci_read_config_dword(dev, ent_offset, &max_offset_upper);
|
|
ent_offset += 4;
|
|
|
|
flags |= IORESOURCE_MEM_64;
|
|
|
|
/* entry too big, can't use */
|
|
if (!support_64 && max_offset_upper)
|
|
goto out;
|
|
|
|
if (support_64)
|
|
end += ((u64)max_offset_upper << 32);
|
|
}
|
|
|
|
if (end < start) {
|
|
pci_err(dev, "EA Entry crosses address boundary\n");
|
|
goto out;
|
|
}
|
|
|
|
if (ent_size != ent_offset - offset) {
|
|
pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
|
|
ent_size, ent_offset - offset);
|
|
goto out;
|
|
}
|
|
|
|
res->name = pci_name(dev);
|
|
res->start = start;
|
|
res->end = end;
|
|
res->flags = flags;
|
|
|
|
if (bei <= PCI_EA_BEI_BAR5)
|
|
pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
|
|
bei, res, prop);
|
|
else if (bei == PCI_EA_BEI_ROM)
|
|
pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
|
|
res, prop);
|
|
else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
|
|
pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
|
|
bei - PCI_EA_BEI_VF_BAR0, res, prop);
|
|
else
|
|
pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
|
|
bei, res, prop);
|
|
|
|
out:
|
|
return offset + ent_size;
|
|
}
|
|
|
|
/* Enhanced Allocation Initialization */
|
|
void pci_ea_init(struct pci_dev *dev)
|
|
{
|
|
int ea;
|
|
u8 num_ent;
|
|
int offset;
|
|
int i;
|
|
|
|
/* find PCI EA capability in list */
|
|
ea = pci_find_capability(dev, PCI_CAP_ID_EA);
|
|
if (!ea)
|
|
return;
|
|
|
|
/* determine the number of entries */
|
|
pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
|
|
&num_ent);
|
|
num_ent &= PCI_EA_NUM_ENT_MASK;
|
|
|
|
offset = ea + PCI_EA_FIRST_ENT;
|
|
|
|
/* Skip DWORD 2 for type 1 functions */
|
|
if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
|
|
offset += 4;
|
|
|
|
/* parse each EA entry */
|
|
for (i = 0; i < num_ent; ++i)
|
|
offset = pci_ea_read(dev, offset);
|
|
}
|
|
|
|
static void pci_add_saved_cap(struct pci_dev *pci_dev,
|
|
struct pci_cap_saved_state *new_cap)
|
|
{
|
|
hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
|
|
}
|
|
|
|
/**
|
|
* _pci_add_cap_save_buffer - allocate buffer for saving given
|
|
* capability registers
|
|
* @dev: the PCI device
|
|
* @cap: the capability to allocate the buffer for
|
|
* @extended: Standard or Extended capability ID
|
|
* @size: requested size of the buffer
|
|
*/
|
|
static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
|
|
bool extended, unsigned int size)
|
|
{
|
|
int pos;
|
|
struct pci_cap_saved_state *save_state;
|
|
|
|
if (extended)
|
|
pos = pci_find_ext_capability(dev, cap);
|
|
else
|
|
pos = pci_find_capability(dev, cap);
|
|
|
|
if (!pos)
|
|
return 0;
|
|
|
|
save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
|
|
if (!save_state)
|
|
return -ENOMEM;
|
|
|
|
save_state->cap.cap_nr = cap;
|
|
save_state->cap.cap_extended = extended;
|
|
save_state->cap.size = size;
|
|
pci_add_saved_cap(dev, save_state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
|
|
{
|
|
return _pci_add_cap_save_buffer(dev, cap, false, size);
|
|
}
|
|
|
|
int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
|
|
{
|
|
return _pci_add_cap_save_buffer(dev, cap, true, size);
|
|
}
|
|
|
|
/**
|
|
* pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
|
|
* @dev: the PCI device
|
|
*/
|
|
void pci_allocate_cap_save_buffers(struct pci_dev *dev)
|
|
{
|
|
int error;
|
|
|
|
error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
|
|
PCI_EXP_SAVE_REGS * sizeof(u16));
|
|
if (error)
|
|
pci_err(dev, "unable to preallocate PCI Express save buffer\n");
|
|
|
|
error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
|
|
if (error)
|
|
pci_err(dev, "unable to preallocate PCI-X save buffer\n");
|
|
|
|
error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
|
|
2 * sizeof(u16));
|
|
if (error)
|
|
pci_err(dev, "unable to allocate suspend buffer for LTR\n");
|
|
|
|
pci_allocate_vc_save_buffers(dev);
|
|
}
|
|
|
|
void pci_free_cap_save_buffers(struct pci_dev *dev)
|
|
{
|
|
struct pci_cap_saved_state *tmp;
|
|
struct hlist_node *n;
|
|
|
|
hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
|
|
kfree(tmp);
|
|
}
|
|
|
|
/**
|
|
* pci_configure_ari - enable or disable ARI forwarding
|
|
* @dev: the PCI device
|
|
*
|
|
* If @dev and its upstream bridge both support ARI, enable ARI in the
|
|
* bridge. Otherwise, disable ARI in the bridge.
|
|
*/
|
|
void pci_configure_ari(struct pci_dev *dev)
|
|
{
|
|
u32 cap;
|
|
struct pci_dev *bridge;
|
|
|
|
if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
|
|
return;
|
|
|
|
bridge = dev->bus->self;
|
|
if (!bridge)
|
|
return;
|
|
|
|
pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
|
|
if (!(cap & PCI_EXP_DEVCAP2_ARI))
|
|
return;
|
|
|
|
if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
|
|
pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
|
|
PCI_EXP_DEVCTL2_ARI);
|
|
bridge->ari_enabled = 1;
|
|
} else {
|
|
pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
|
|
PCI_EXP_DEVCTL2_ARI);
|
|
bridge->ari_enabled = 0;
|
|
}
|
|
}
|
|
|
|
static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
|
|
{
|
|
int pos;
|
|
u16 cap, ctrl;
|
|
|
|
pos = pdev->acs_cap;
|
|
if (!pos)
|
|
return false;
|
|
|
|
/*
|
|
* Except for egress control, capabilities are either required
|
|
* or only required if controllable. Features missing from the
|
|
* capability field can therefore be assumed as hard-wired enabled.
|
|
*/
|
|
pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
|
|
acs_flags &= (cap | PCI_ACS_EC);
|
|
|
|
pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
|
|
return (ctrl & acs_flags) == acs_flags;
|
|
}
|
|
|
|
/**
|
|
* pci_acs_enabled - test ACS against required flags for a given device
|
|
* @pdev: device to test
|
|
* @acs_flags: required PCI ACS flags
|
|
*
|
|
* Return true if the device supports the provided flags. Automatically
|
|
* filters out flags that are not implemented on multifunction devices.
|
|
*
|
|
* Note that this interface checks the effective ACS capabilities of the
|
|
* device rather than the actual capabilities. For instance, most single
|
|
* function endpoints are not required to support ACS because they have no
|
|
* opportunity for peer-to-peer access. We therefore return 'true'
|
|
* regardless of whether the device exposes an ACS capability. This makes
|
|
* it much easier for callers of this function to ignore the actual type
|
|
* or topology of the device when testing ACS support.
|
|
*/
|
|
bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
|
|
{
|
|
int ret;
|
|
|
|
ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
|
|
if (ret >= 0)
|
|
return ret > 0;
|
|
|
|
/*
|
|
* Conventional PCI and PCI-X devices never support ACS, either
|
|
* effectively or actually. The shared bus topology implies that
|
|
* any device on the bus can receive or snoop DMA.
|
|
*/
|
|
if (!pci_is_pcie(pdev))
|
|
return false;
|
|
|
|
switch (pci_pcie_type(pdev)) {
|
|
/*
|
|
* PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
|
|
* but since their primary interface is PCI/X, we conservatively
|
|
* handle them as we would a non-PCIe device.
|
|
*/
|
|
case PCI_EXP_TYPE_PCIE_BRIDGE:
|
|
/*
|
|
* PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
|
|
* applicable... must never implement an ACS Extended Capability...".
|
|
* This seems arbitrary, but we take a conservative interpretation
|
|
* of this statement.
|
|
*/
|
|
case PCI_EXP_TYPE_PCI_BRIDGE:
|
|
case PCI_EXP_TYPE_RC_EC:
|
|
return false;
|
|
/*
|
|
* PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
|
|
* implement ACS in order to indicate their peer-to-peer capabilities,
|
|
* regardless of whether they are single- or multi-function devices.
|
|
*/
|
|
case PCI_EXP_TYPE_DOWNSTREAM:
|
|
case PCI_EXP_TYPE_ROOT_PORT:
|
|
return pci_acs_flags_enabled(pdev, acs_flags);
|
|
/*
|
|
* PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
|
|
* implemented by the remaining PCIe types to indicate peer-to-peer
|
|
* capabilities, but only when they are part of a multifunction
|
|
* device. The footnote for section 6.12 indicates the specific
|
|
* PCIe types included here.
|
|
*/
|
|
case PCI_EXP_TYPE_ENDPOINT:
|
|
case PCI_EXP_TYPE_UPSTREAM:
|
|
case PCI_EXP_TYPE_LEG_END:
|
|
case PCI_EXP_TYPE_RC_END:
|
|
if (!pdev->multifunction)
|
|
break;
|
|
|
|
return pci_acs_flags_enabled(pdev, acs_flags);
|
|
}
|
|
|
|
/*
|
|
* PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
|
|
* to single function devices with the exception of downstream ports.
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
|
|
* @start: starting downstream device
|
|
* @end: ending upstream device or NULL to search to the root bus
|
|
* @acs_flags: required flags
|
|
*
|
|
* Walk up a device tree from start to end testing PCI ACS support. If
|
|
* any step along the way does not support the required flags, return false.
|
|
*/
|
|
bool pci_acs_path_enabled(struct pci_dev *start,
|
|
struct pci_dev *end, u16 acs_flags)
|
|
{
|
|
struct pci_dev *pdev, *parent = start;
|
|
|
|
do {
|
|
pdev = parent;
|
|
|
|
if (!pci_acs_enabled(pdev, acs_flags))
|
|
return false;
|
|
|
|
if (pci_is_root_bus(pdev->bus))
|
|
return (end == NULL);
|
|
|
|
parent = pdev->bus->self;
|
|
} while (pdev != end);
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* pci_acs_init - Initialize ACS if hardware supports it
|
|
* @dev: the PCI device
|
|
*/
|
|
void pci_acs_init(struct pci_dev *dev)
|
|
{
|
|
dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
|
|
|
|
/*
|
|
* Attempt to enable ACS regardless of capability because some Root
|
|
* Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
|
|
* the standard ACS capability but still support ACS via those
|
|
* quirks.
|
|
*/
|
|
pci_enable_acs(dev);
|
|
}
|
|
|
|
/**
|
|
* pci_rebar_find_pos - find position of resize ctrl reg for BAR
|
|
* @pdev: PCI device
|
|
* @bar: BAR to find
|
|
*
|
|
* Helper to find the position of the ctrl register for a BAR.
|
|
* Returns -ENOTSUPP if resizable BARs are not supported at all.
|
|
* Returns -ENOENT if no ctrl register for the BAR could be found.
|
|
*/
|
|
static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
|
|
{
|
|
unsigned int pos, nbars, i;
|
|
u32 ctrl;
|
|
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
|
|
if (!pos)
|
|
return -ENOTSUPP;
|
|
|
|
pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
|
|
nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
|
|
|
|
for (i = 0; i < nbars; i++, pos += 8) {
|
|
int bar_idx;
|
|
|
|
pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
|
|
bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
|
|
if (bar_idx == bar)
|
|
return pos;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
/**
|
|
* pci_rebar_get_possible_sizes - get possible sizes for BAR
|
|
* @pdev: PCI device
|
|
* @bar: BAR to query
|
|
*
|
|
* Get the possible sizes of a resizable BAR as bitmask defined in the spec
|
|
* (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
|
|
*/
|
|
u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
|
|
{
|
|
int pos;
|
|
u32 cap;
|
|
|
|
pos = pci_rebar_find_pos(pdev, bar);
|
|
if (pos < 0)
|
|
return 0;
|
|
|
|
pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
|
|
cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
|
|
|
|
/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
|
|
if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
|
|
bar == 0 && cap == 0x700)
|
|
return 0x3f00;
|
|
|
|
return cap;
|
|
}
|
|
EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
|
|
|
|
/**
|
|
* pci_rebar_get_current_size - get the current size of a BAR
|
|
* @pdev: PCI device
|
|
* @bar: BAR to set size to
|
|
*
|
|
* Read the size of a BAR from the resizable BAR config.
|
|
* Returns size if found or negative error code.
|
|
*/
|
|
int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
|
|
{
|
|
int pos;
|
|
u32 ctrl;
|
|
|
|
pos = pci_rebar_find_pos(pdev, bar);
|
|
if (pos < 0)
|
|
return pos;
|
|
|
|
pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
|
|
return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
|
|
}
|
|
|
|
/**
|
|
* pci_rebar_set_size - set a new size for a BAR
|
|
* @pdev: PCI device
|
|
* @bar: BAR to set size to
|
|
* @size: new size as defined in the spec (0=1MB, 19=512GB)
|
|
*
|
|
* Set the new size of a BAR as defined in the spec.
|
|
* Returns zero if resizing was successful, error code otherwise.
|
|
*/
|
|
int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
|
|
{
|
|
int pos;
|
|
u32 ctrl;
|
|
|
|
pos = pci_rebar_find_pos(pdev, bar);
|
|
if (pos < 0)
|
|
return pos;
|
|
|
|
pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
|
|
ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
|
|
ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
|
|
pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
|
|
* @dev: the PCI device
|
|
* @cap_mask: mask of desired AtomicOp sizes, including one or more of:
|
|
* PCI_EXP_DEVCAP2_ATOMIC_COMP32
|
|
* PCI_EXP_DEVCAP2_ATOMIC_COMP64
|
|
* PCI_EXP_DEVCAP2_ATOMIC_COMP128
|
|
*
|
|
* Return 0 if all upstream bridges support AtomicOp routing, egress
|
|
* blocking is disabled on all upstream ports, and the root port supports
|
|
* the requested completion capabilities (32-bit, 64-bit and/or 128-bit
|
|
* AtomicOp completion), or negative otherwise.
|
|
*/
|
|
int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
|
|
{
|
|
struct pci_bus *bus = dev->bus;
|
|
struct pci_dev *bridge;
|
|
u32 cap, ctl2;
|
|
|
|
/*
|
|
* Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
|
|
* in Device Control 2 is reserved in VFs and the PF value applies
|
|
* to all associated VFs.
|
|
*/
|
|
if (dev->is_virtfn)
|
|
return -EINVAL;
|
|
|
|
if (!pci_is_pcie(dev))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Per PCIe r4.0, sec 6.15, endpoints and root ports may be
|
|
* AtomicOp requesters. For now, we only support endpoints as
|
|
* requesters and root ports as completers. No endpoints as
|
|
* completers, and no peer-to-peer.
|
|
*/
|
|
|
|
switch (pci_pcie_type(dev)) {
|
|
case PCI_EXP_TYPE_ENDPOINT:
|
|
case PCI_EXP_TYPE_LEG_END:
|
|
case PCI_EXP_TYPE_RC_END:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
while (bus->parent) {
|
|
bridge = bus->self;
|
|
|
|
pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
|
|
|
|
switch (pci_pcie_type(bridge)) {
|
|
/* Ensure switch ports support AtomicOp routing */
|
|
case PCI_EXP_TYPE_UPSTREAM:
|
|
case PCI_EXP_TYPE_DOWNSTREAM:
|
|
if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
|
|
return -EINVAL;
|
|
break;
|
|
|
|
/* Ensure root port supports all the sizes we care about */
|
|
case PCI_EXP_TYPE_ROOT_PORT:
|
|
if ((cap & cap_mask) != cap_mask)
|
|
return -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* Ensure upstream ports don't block AtomicOps on egress */
|
|
if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
|
|
pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
|
|
&ctl2);
|
|
if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
|
|
return -EINVAL;
|
|
}
|
|
|
|
bus = bus->parent;
|
|
}
|
|
|
|
pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
|
|
PCI_EXP_DEVCTL2_ATOMIC_REQ);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
|
|
|
|
/**
|
|
* pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
|
|
* @dev: the PCI device
|
|
* @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
|
|
*
|
|
* Perform INTx swizzling for a device behind one level of bridge. This is
|
|
* required by section 9.1 of the PCI-to-PCI bridge specification for devices
|
|
* behind bridges on add-in cards. For devices with ARI enabled, the slot
|
|
* number is always 0 (see the Implementation Note in section 2.2.8.1 of
|
|
* the PCI Express Base Specification, Revision 2.1)
|
|
*/
|
|
u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
|
|
{
|
|
int slot;
|
|
|
|
if (pci_ari_enabled(dev->bus))
|
|
slot = 0;
|
|
else
|
|
slot = PCI_SLOT(dev->devfn);
|
|
|
|
return (((pin - 1) + slot) % 4) + 1;
|
|
}
|
|
|
|
int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
|
|
{
|
|
u8 pin;
|
|
|
|
pin = dev->pin;
|
|
if (!pin)
|
|
return -1;
|
|
|
|
while (!pci_is_root_bus(dev->bus)) {
|
|
pin = pci_swizzle_interrupt_pin(dev, pin);
|
|
dev = dev->bus->self;
|
|
}
|
|
*bridge = dev;
|
|
return pin;
|
|
}
|
|
|
|
/**
|
|
* pci_common_swizzle - swizzle INTx all the way to root bridge
|
|
* @dev: the PCI device
|
|
* @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
|
|
*
|
|
* Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
|
|
* bridges all the way up to a PCI root bus.
|
|
*/
|
|
u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
|
|
{
|
|
u8 pin = *pinp;
|
|
|
|
while (!pci_is_root_bus(dev->bus)) {
|
|
pin = pci_swizzle_interrupt_pin(dev, pin);
|
|
dev = dev->bus->self;
|
|
}
|
|
*pinp = pin;
|
|
return PCI_SLOT(dev->devfn);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_common_swizzle);
|
|
|
|
/**
|
|
* pci_release_region - Release a PCI bar
|
|
* @pdev: PCI device whose resources were previously reserved by
|
|
* pci_request_region()
|
|
* @bar: BAR to release
|
|
*
|
|
* Releases the PCI I/O and memory resources previously reserved by a
|
|
* successful call to pci_request_region(). Call this function only
|
|
* after all use of the PCI regions has ceased.
|
|
*/
|
|
void pci_release_region(struct pci_dev *pdev, int bar)
|
|
{
|
|
struct pci_devres *dr;
|
|
|
|
if (pci_resource_len(pdev, bar) == 0)
|
|
return;
|
|
if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
|
|
release_region(pci_resource_start(pdev, bar),
|
|
pci_resource_len(pdev, bar));
|
|
else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
|
|
release_mem_region(pci_resource_start(pdev, bar),
|
|
pci_resource_len(pdev, bar));
|
|
|
|
dr = find_pci_dr(pdev);
|
|
if (dr)
|
|
dr->region_mask &= ~(1 << bar);
|
|
}
|
|
EXPORT_SYMBOL(pci_release_region);
|
|
|
|
/**
|
|
* __pci_request_region - Reserved PCI I/O and memory resource
|
|
* @pdev: PCI device whose resources are to be reserved
|
|
* @bar: BAR to be reserved
|
|
* @res_name: Name to be associated with resource.
|
|
* @exclusive: whether the region access is exclusive or not
|
|
*
|
|
* Mark the PCI region associated with PCI device @pdev BAR @bar as
|
|
* being reserved by owner @res_name. Do not access any
|
|
* address inside the PCI regions unless this call returns
|
|
* successfully.
|
|
*
|
|
* If @exclusive is set, then the region is marked so that userspace
|
|
* is explicitly not allowed to map the resource via /dev/mem or
|
|
* sysfs MMIO access.
|
|
*
|
|
* Returns 0 on success, or %EBUSY on error. A warning
|
|
* message is also printed on failure.
|
|
*/
|
|
static int __pci_request_region(struct pci_dev *pdev, int bar,
|
|
const char *res_name, int exclusive)
|
|
{
|
|
struct pci_devres *dr;
|
|
|
|
if (pci_resource_len(pdev, bar) == 0)
|
|
return 0;
|
|
|
|
if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
|
|
if (!request_region(pci_resource_start(pdev, bar),
|
|
pci_resource_len(pdev, bar), res_name))
|
|
goto err_out;
|
|
} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
|
|
if (!__request_mem_region(pci_resource_start(pdev, bar),
|
|
pci_resource_len(pdev, bar), res_name,
|
|
exclusive))
|
|
goto err_out;
|
|
}
|
|
|
|
dr = find_pci_dr(pdev);
|
|
if (dr)
|
|
dr->region_mask |= 1 << bar;
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
|
|
&pdev->resource[bar]);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/**
|
|
* pci_request_region - Reserve PCI I/O and memory resource
|
|
* @pdev: PCI device whose resources are to be reserved
|
|
* @bar: BAR to be reserved
|
|
* @res_name: Name to be associated with resource
|
|
*
|
|
* Mark the PCI region associated with PCI device @pdev BAR @bar as
|
|
* being reserved by owner @res_name. Do not access any
|
|
* address inside the PCI regions unless this call returns
|
|
* successfully.
|
|
*
|
|
* Returns 0 on success, or %EBUSY on error. A warning
|
|
* message is also printed on failure.
|
|
*/
|
|
int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
|
|
{
|
|
return __pci_request_region(pdev, bar, res_name, 0);
|
|
}
|
|
EXPORT_SYMBOL(pci_request_region);
|
|
|
|
/**
|
|
* pci_release_selected_regions - Release selected PCI I/O and memory resources
|
|
* @pdev: PCI device whose resources were previously reserved
|
|
* @bars: Bitmask of BARs to be released
|
|
*
|
|
* Release selected PCI I/O and memory resources previously reserved.
|
|
* Call this function only after all use of the PCI regions has ceased.
|
|
*/
|
|
void pci_release_selected_regions(struct pci_dev *pdev, int bars)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < PCI_STD_NUM_BARS; i++)
|
|
if (bars & (1 << i))
|
|
pci_release_region(pdev, i);
|
|
}
|
|
EXPORT_SYMBOL(pci_release_selected_regions);
|
|
|
|
static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
|
|
const char *res_name, int excl)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < PCI_STD_NUM_BARS; i++)
|
|
if (bars & (1 << i))
|
|
if (__pci_request_region(pdev, i, res_name, excl))
|
|
goto err_out;
|
|
return 0;
|
|
|
|
err_out:
|
|
while (--i >= 0)
|
|
if (bars & (1 << i))
|
|
pci_release_region(pdev, i);
|
|
|
|
return -EBUSY;
|
|
}
|
|
|
|
|
|
/**
|
|
* pci_request_selected_regions - Reserve selected PCI I/O and memory resources
|
|
* @pdev: PCI device whose resources are to be reserved
|
|
* @bars: Bitmask of BARs to be requested
|
|
* @res_name: Name to be associated with resource
|
|
*/
|
|
int pci_request_selected_regions(struct pci_dev *pdev, int bars,
|
|
const char *res_name)
|
|
{
|
|
return __pci_request_selected_regions(pdev, bars, res_name, 0);
|
|
}
|
|
EXPORT_SYMBOL(pci_request_selected_regions);
|
|
|
|
int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
|
|
const char *res_name)
|
|
{
|
|
return __pci_request_selected_regions(pdev, bars, res_name,
|
|
IORESOURCE_EXCLUSIVE);
|
|
}
|
|
EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
|
|
|
|
/**
|
|
* pci_release_regions - Release reserved PCI I/O and memory resources
|
|
* @pdev: PCI device whose resources were previously reserved by
|
|
* pci_request_regions()
|
|
*
|
|
* Releases all PCI I/O and memory resources previously reserved by a
|
|
* successful call to pci_request_regions(). Call this function only
|
|
* after all use of the PCI regions has ceased.
|
|
*/
|
|
|
|
void pci_release_regions(struct pci_dev *pdev)
|
|
{
|
|
pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
|
|
}
|
|
EXPORT_SYMBOL(pci_release_regions);
|
|
|
|
/**
|
|
* pci_request_regions - Reserve PCI I/O and memory resources
|
|
* @pdev: PCI device whose resources are to be reserved
|
|
* @res_name: Name to be associated with resource.
|
|
*
|
|
* Mark all PCI regions associated with PCI device @pdev as
|
|
* being reserved by owner @res_name. Do not access any
|
|
* address inside the PCI regions unless this call returns
|
|
* successfully.
|
|
*
|
|
* Returns 0 on success, or %EBUSY on error. A warning
|
|
* message is also printed on failure.
|
|
*/
|
|
int pci_request_regions(struct pci_dev *pdev, const char *res_name)
|
|
{
|
|
return pci_request_selected_regions(pdev,
|
|
((1 << PCI_STD_NUM_BARS) - 1), res_name);
|
|
}
|
|
EXPORT_SYMBOL(pci_request_regions);
|
|
|
|
/**
|
|
* pci_request_regions_exclusive - Reserve PCI I/O and memory resources
|
|
* @pdev: PCI device whose resources are to be reserved
|
|
* @res_name: Name to be associated with resource.
|
|
*
|
|
* Mark all PCI regions associated with PCI device @pdev as being reserved
|
|
* by owner @res_name. Do not access any address inside the PCI regions
|
|
* unless this call returns successfully.
|
|
*
|
|
* pci_request_regions_exclusive() will mark the region so that /dev/mem
|
|
* and the sysfs MMIO access will not be allowed.
|
|
*
|
|
* Returns 0 on success, or %EBUSY on error. A warning message is also
|
|
* printed on failure.
|
|
*/
|
|
int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
|
|
{
|
|
return pci_request_selected_regions_exclusive(pdev,
|
|
((1 << PCI_STD_NUM_BARS) - 1), res_name);
|
|
}
|
|
EXPORT_SYMBOL(pci_request_regions_exclusive);
|
|
|
|
/*
|
|
* Record the PCI IO range (expressed as CPU physical address + size).
|
|
* Return a negative value if an error has occurred, zero otherwise
|
|
*/
|
|
int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
|
|
resource_size_t size)
|
|
{
|
|
int ret = 0;
|
|
#ifdef PCI_IOBASE
|
|
struct logic_pio_hwaddr *range;
|
|
|
|
if (!size || addr + size < addr)
|
|
return -EINVAL;
|
|
|
|
range = kzalloc(sizeof(*range), GFP_ATOMIC);
|
|
if (!range)
|
|
return -ENOMEM;
|
|
|
|
range->fwnode = fwnode;
|
|
range->size = size;
|
|
range->hw_start = addr;
|
|
range->flags = LOGIC_PIO_CPU_MMIO;
|
|
|
|
ret = logic_pio_register_range(range);
|
|
if (ret)
|
|
kfree(range);
|
|
|
|
/* Ignore duplicates due to deferred probing */
|
|
if (ret == -EEXIST)
|
|
ret = 0;
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
phys_addr_t pci_pio_to_address(unsigned long pio)
|
|
{
|
|
#ifdef PCI_IOBASE
|
|
if (pio < MMIO_UPPER_LIMIT)
|
|
return logic_pio_to_hwaddr(pio);
|
|
#endif
|
|
|
|
return (phys_addr_t) OF_BAD_ADDR;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_pio_to_address);
|
|
|
|
unsigned long __weak pci_address_to_pio(phys_addr_t address)
|
|
{
|
|
#ifdef PCI_IOBASE
|
|
return logic_pio_trans_cpuaddr(address);
|
|
#else
|
|
if (address > IO_SPACE_LIMIT)
|
|
return (unsigned long)-1;
|
|
|
|
return (unsigned long) address;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* pci_remap_iospace - Remap the memory mapped I/O space
|
|
* @res: Resource describing the I/O space
|
|
* @phys_addr: physical address of range to be mapped
|
|
*
|
|
* Remap the memory mapped I/O space described by the @res and the CPU
|
|
* physical address @phys_addr into virtual address space. Only
|
|
* architectures that have memory mapped IO functions defined (and the
|
|
* PCI_IOBASE value defined) should call this function.
|
|
*/
|
|
#ifndef pci_remap_iospace
|
|
int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
|
|
{
|
|
#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
|
|
unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
|
|
|
|
if (!(res->flags & IORESOURCE_IO))
|
|
return -EINVAL;
|
|
|
|
if (res->end > IO_SPACE_LIMIT)
|
|
return -EINVAL;
|
|
|
|
return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
|
|
pgprot_device(PAGE_KERNEL));
|
|
#else
|
|
/*
|
|
* This architecture does not have memory mapped I/O space,
|
|
* so this function should never be called
|
|
*/
|
|
WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
|
|
return -ENODEV;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(pci_remap_iospace);
|
|
#endif
|
|
|
|
/**
|
|
* pci_unmap_iospace - Unmap the memory mapped I/O space
|
|
* @res: resource to be unmapped
|
|
*
|
|
* Unmap the CPU virtual address @res from virtual address space. Only
|
|
* architectures that have memory mapped IO functions defined (and the
|
|
* PCI_IOBASE value defined) should call this function.
|
|
*/
|
|
void pci_unmap_iospace(struct resource *res)
|
|
{
|
|
#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
|
|
unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
|
|
|
|
vunmap_range(vaddr, vaddr + resource_size(res));
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(pci_unmap_iospace);
|
|
|
|
static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
|
|
{
|
|
struct resource **res = ptr;
|
|
|
|
pci_unmap_iospace(*res);
|
|
}
|
|
|
|
/**
|
|
* devm_pci_remap_iospace - Managed pci_remap_iospace()
|
|
* @dev: Generic device to remap IO address for
|
|
* @res: Resource describing the I/O space
|
|
* @phys_addr: physical address of range to be mapped
|
|
*
|
|
* Managed pci_remap_iospace(). Map is automatically unmapped on driver
|
|
* detach.
|
|
*/
|
|
int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
|
|
phys_addr_t phys_addr)
|
|
{
|
|
const struct resource **ptr;
|
|
int error;
|
|
|
|
ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
|
|
if (!ptr)
|
|
return -ENOMEM;
|
|
|
|
error = pci_remap_iospace(res, phys_addr);
|
|
if (error) {
|
|
devres_free(ptr);
|
|
} else {
|
|
*ptr = res;
|
|
devres_add(dev, ptr);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL(devm_pci_remap_iospace);
|
|
|
|
/**
|
|
* devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
|
|
* @dev: Generic device to remap IO address for
|
|
* @offset: Resource address to map
|
|
* @size: Size of map
|
|
*
|
|
* Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
|
|
* detach.
|
|
*/
|
|
void __iomem *devm_pci_remap_cfgspace(struct device *dev,
|
|
resource_size_t offset,
|
|
resource_size_t size)
|
|
{
|
|
void __iomem **ptr, *addr;
|
|
|
|
ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
|
|
if (!ptr)
|
|
return NULL;
|
|
|
|
addr = pci_remap_cfgspace(offset, size);
|
|
if (addr) {
|
|
*ptr = addr;
|
|
devres_add(dev, ptr);
|
|
} else
|
|
devres_free(ptr);
|
|
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(devm_pci_remap_cfgspace);
|
|
|
|
/**
|
|
* devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
|
|
* @dev: generic device to handle the resource for
|
|
* @res: configuration space resource to be handled
|
|
*
|
|
* Checks that a resource is a valid memory region, requests the memory
|
|
* region and ioremaps with pci_remap_cfgspace() API that ensures the
|
|
* proper PCI configuration space memory attributes are guaranteed.
|
|
*
|
|
* All operations are managed and will be undone on driver detach.
|
|
*
|
|
* Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
|
|
* on failure. Usage example::
|
|
*
|
|
* res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
* base = devm_pci_remap_cfg_resource(&pdev->dev, res);
|
|
* if (IS_ERR(base))
|
|
* return PTR_ERR(base);
|
|
*/
|
|
void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
|
|
struct resource *res)
|
|
{
|
|
resource_size_t size;
|
|
const char *name;
|
|
void __iomem *dest_ptr;
|
|
|
|
BUG_ON(!dev);
|
|
|
|
if (!res || resource_type(res) != IORESOURCE_MEM) {
|
|
dev_err(dev, "invalid resource\n");
|
|
return IOMEM_ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
size = resource_size(res);
|
|
|
|
if (res->name)
|
|
name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
|
|
res->name);
|
|
else
|
|
name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
|
|
if (!name)
|
|
return IOMEM_ERR_PTR(-ENOMEM);
|
|
|
|
if (!devm_request_mem_region(dev, res->start, size, name)) {
|
|
dev_err(dev, "can't request region for resource %pR\n", res);
|
|
return IOMEM_ERR_PTR(-EBUSY);
|
|
}
|
|
|
|
dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
|
|
if (!dest_ptr) {
|
|
dev_err(dev, "ioremap failed for resource %pR\n", res);
|
|
devm_release_mem_region(dev, res->start, size);
|
|
dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
return dest_ptr;
|
|
}
|
|
EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
|
|
|
|
static void __pci_set_master(struct pci_dev *dev, bool enable)
|
|
{
|
|
u16 old_cmd, cmd;
|
|
|
|
pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
|
|
if (enable)
|
|
cmd = old_cmd | PCI_COMMAND_MASTER;
|
|
else
|
|
cmd = old_cmd & ~PCI_COMMAND_MASTER;
|
|
if (cmd != old_cmd) {
|
|
pci_dbg(dev, "%s bus mastering\n",
|
|
enable ? "enabling" : "disabling");
|
|
pci_write_config_word(dev, PCI_COMMAND, cmd);
|
|
}
|
|
dev->is_busmaster = enable;
|
|
}
|
|
|
|
/**
|
|
* pcibios_setup - process "pci=" kernel boot arguments
|
|
* @str: string used to pass in "pci=" kernel boot arguments
|
|
*
|
|
* Process kernel boot arguments. This is the default implementation.
|
|
* Architecture specific implementations can override this as necessary.
|
|
*/
|
|
char * __weak __init pcibios_setup(char *str)
|
|
{
|
|
return str;
|
|
}
|
|
|
|
/**
|
|
* pcibios_set_master - enable PCI bus-mastering for device dev
|
|
* @dev: the PCI device to enable
|
|
*
|
|
* Enables PCI bus-mastering for the device. This is the default
|
|
* implementation. Architecture specific implementations can override
|
|
* this if necessary.
|
|
*/
|
|
void __weak pcibios_set_master(struct pci_dev *dev)
|
|
{
|
|
u8 lat;
|
|
|
|
/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
|
|
if (pci_is_pcie(dev))
|
|
return;
|
|
|
|
pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
|
|
if (lat < 16)
|
|
lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
|
|
else if (lat > pcibios_max_latency)
|
|
lat = pcibios_max_latency;
|
|
else
|
|
return;
|
|
|
|
pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
|
|
}
|
|
|
|
/**
|
|
* pci_set_master - enables bus-mastering for device dev
|
|
* @dev: the PCI device to enable
|
|
*
|
|
* Enables bus-mastering on the device and calls pcibios_set_master()
|
|
* to do the needed arch specific settings.
|
|
*/
|
|
void pci_set_master(struct pci_dev *dev)
|
|
{
|
|
__pci_set_master(dev, true);
|
|
pcibios_set_master(dev);
|
|
}
|
|
EXPORT_SYMBOL(pci_set_master);
|
|
|
|
/**
|
|
* pci_clear_master - disables bus-mastering for device dev
|
|
* @dev: the PCI device to disable
|
|
*/
|
|
void pci_clear_master(struct pci_dev *dev)
|
|
{
|
|
__pci_set_master(dev, false);
|
|
}
|
|
EXPORT_SYMBOL(pci_clear_master);
|
|
|
|
/**
|
|
* pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
|
|
* @dev: the PCI device for which MWI is to be enabled
|
|
*
|
|
* Helper function for pci_set_mwi.
|
|
* Originally copied from drivers/net/acenic.c.
|
|
* Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
|
|
*
|
|
* RETURNS: An appropriate -ERRNO error value on error, or zero for success.
|
|
*/
|
|
int pci_set_cacheline_size(struct pci_dev *dev)
|
|
{
|
|
u8 cacheline_size;
|
|
|
|
if (!pci_cache_line_size)
|
|
return -EINVAL;
|
|
|
|
/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
|
|
equal to or multiple of the right value. */
|
|
pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
|
|
if (cacheline_size >= pci_cache_line_size &&
|
|
(cacheline_size % pci_cache_line_size) == 0)
|
|
return 0;
|
|
|
|
/* Write the correct value. */
|
|
pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
|
|
/* Read it back. */
|
|
pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
|
|
if (cacheline_size == pci_cache_line_size)
|
|
return 0;
|
|
|
|
pci_dbg(dev, "cache line size of %d is not supported\n",
|
|
pci_cache_line_size << 2);
|
|
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
|
|
|
|
/**
|
|
* pci_set_mwi - enables memory-write-invalidate PCI transaction
|
|
* @dev: the PCI device for which MWI is enabled
|
|
*
|
|
* Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
|
|
*
|
|
* RETURNS: An appropriate -ERRNO error value on error, or zero for success.
|
|
*/
|
|
int pci_set_mwi(struct pci_dev *dev)
|
|
{
|
|
#ifdef PCI_DISABLE_MWI
|
|
return 0;
|
|
#else
|
|
int rc;
|
|
u16 cmd;
|
|
|
|
rc = pci_set_cacheline_size(dev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
pci_read_config_word(dev, PCI_COMMAND, &cmd);
|
|
if (!(cmd & PCI_COMMAND_INVALIDATE)) {
|
|
pci_dbg(dev, "enabling Mem-Wr-Inval\n");
|
|
cmd |= PCI_COMMAND_INVALIDATE;
|
|
pci_write_config_word(dev, PCI_COMMAND, cmd);
|
|
}
|
|
return 0;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(pci_set_mwi);
|
|
|
|
/**
|
|
* pcim_set_mwi - a device-managed pci_set_mwi()
|
|
* @dev: the PCI device for which MWI is enabled
|
|
*
|
|
* Managed pci_set_mwi().
|
|
*
|
|
* RETURNS: An appropriate -ERRNO error value on error, or zero for success.
|
|
*/
|
|
int pcim_set_mwi(struct pci_dev *dev)
|
|
{
|
|
struct pci_devres *dr;
|
|
|
|
dr = find_pci_dr(dev);
|
|
if (!dr)
|
|
return -ENOMEM;
|
|
|
|
dr->mwi = 1;
|
|
return pci_set_mwi(dev);
|
|
}
|
|
EXPORT_SYMBOL(pcim_set_mwi);
|
|
|
|
/**
|
|
* pci_try_set_mwi - enables memory-write-invalidate PCI transaction
|
|
* @dev: the PCI device for which MWI is enabled
|
|
*
|
|
* Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
|
|
* Callers are not required to check the return value.
|
|
*
|
|
* RETURNS: An appropriate -ERRNO error value on error, or zero for success.
|
|
*/
|
|
int pci_try_set_mwi(struct pci_dev *dev)
|
|
{
|
|
#ifdef PCI_DISABLE_MWI
|
|
return 0;
|
|
#else
|
|
return pci_set_mwi(dev);
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(pci_try_set_mwi);
|
|
|
|
/**
|
|
* pci_clear_mwi - disables Memory-Write-Invalidate for device dev
|
|
* @dev: the PCI device to disable
|
|
*
|
|
* Disables PCI Memory-Write-Invalidate transaction on the device
|
|
*/
|
|
void pci_clear_mwi(struct pci_dev *dev)
|
|
{
|
|
#ifndef PCI_DISABLE_MWI
|
|
u16 cmd;
|
|
|
|
pci_read_config_word(dev, PCI_COMMAND, &cmd);
|
|
if (cmd & PCI_COMMAND_INVALIDATE) {
|
|
cmd &= ~PCI_COMMAND_INVALIDATE;
|
|
pci_write_config_word(dev, PCI_COMMAND, cmd);
|
|
}
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(pci_clear_mwi);
|
|
|
|
/**
|
|
* pci_disable_parity - disable parity checking for device
|
|
* @dev: the PCI device to operate on
|
|
*
|
|
* Disable parity checking for device @dev
|
|
*/
|
|
void pci_disable_parity(struct pci_dev *dev)
|
|
{
|
|
u16 cmd;
|
|
|
|
pci_read_config_word(dev, PCI_COMMAND, &cmd);
|
|
if (cmd & PCI_COMMAND_PARITY) {
|
|
cmd &= ~PCI_COMMAND_PARITY;
|
|
pci_write_config_word(dev, PCI_COMMAND, cmd);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* pci_intx - enables/disables PCI INTx for device dev
|
|
* @pdev: the PCI device to operate on
|
|
* @enable: boolean: whether to enable or disable PCI INTx
|
|
*
|
|
* Enables/disables PCI INTx for device @pdev
|
|
*/
|
|
void pci_intx(struct pci_dev *pdev, int enable)
|
|
{
|
|
u16 pci_command, new;
|
|
|
|
pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
|
|
|
|
if (enable)
|
|
new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
|
|
else
|
|
new = pci_command | PCI_COMMAND_INTX_DISABLE;
|
|
|
|
if (new != pci_command) {
|
|
struct pci_devres *dr;
|
|
|
|
pci_write_config_word(pdev, PCI_COMMAND, new);
|
|
|
|
dr = find_pci_dr(pdev);
|
|
if (dr && !dr->restore_intx) {
|
|
dr->restore_intx = 1;
|
|
dr->orig_intx = !enable;
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_intx);
|
|
|
|
static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
|
|
{
|
|
struct pci_bus *bus = dev->bus;
|
|
bool mask_updated = true;
|
|
u32 cmd_status_dword;
|
|
u16 origcmd, newcmd;
|
|
unsigned long flags;
|
|
bool irq_pending;
|
|
|
|
/*
|
|
* We do a single dword read to retrieve both command and status.
|
|
* Document assumptions that make this possible.
|
|
*/
|
|
BUILD_BUG_ON(PCI_COMMAND % 4);
|
|
BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
|
|
|
|
raw_spin_lock_irqsave(&pci_lock, flags);
|
|
|
|
bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
|
|
|
|
irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
|
|
|
|
/*
|
|
* Check interrupt status register to see whether our device
|
|
* triggered the interrupt (when masking) or the next IRQ is
|
|
* already pending (when unmasking).
|
|
*/
|
|
if (mask != irq_pending) {
|
|
mask_updated = false;
|
|
goto done;
|
|
}
|
|
|
|
origcmd = cmd_status_dword;
|
|
newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
|
|
if (mask)
|
|
newcmd |= PCI_COMMAND_INTX_DISABLE;
|
|
if (newcmd != origcmd)
|
|
bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
|
|
|
|
done:
|
|
raw_spin_unlock_irqrestore(&pci_lock, flags);
|
|
|
|
return mask_updated;
|
|
}
|
|
|
|
/**
|
|
* pci_check_and_mask_intx - mask INTx on pending interrupt
|
|
* @dev: the PCI device to operate on
|
|
*
|
|
* Check if the device dev has its INTx line asserted, mask it and return
|
|
* true in that case. False is returned if no interrupt was pending.
|
|
*/
|
|
bool pci_check_and_mask_intx(struct pci_dev *dev)
|
|
{
|
|
return pci_check_and_set_intx_mask(dev, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
|
|
|
|
/**
|
|
* pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
|
|
* @dev: the PCI device to operate on
|
|
*
|
|
* Check if the device dev has its INTx line asserted, unmask it if not and
|
|
* return true. False is returned and the mask remains active if there was
|
|
* still an interrupt pending.
|
|
*/
|
|
bool pci_check_and_unmask_intx(struct pci_dev *dev)
|
|
{
|
|
return pci_check_and_set_intx_mask(dev, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
|
|
|
|
/**
|
|
* pci_wait_for_pending_transaction - wait for pending transaction
|
|
* @dev: the PCI device to operate on
|
|
*
|
|
* Return 0 if transaction is pending 1 otherwise.
|
|
*/
|
|
int pci_wait_for_pending_transaction(struct pci_dev *dev)
|
|
{
|
|
if (!pci_is_pcie(dev))
|
|
return 1;
|
|
|
|
return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
|
|
PCI_EXP_DEVSTA_TRPND);
|
|
}
|
|
EXPORT_SYMBOL(pci_wait_for_pending_transaction);
|
|
|
|
/**
|
|
* pcie_flr - initiate a PCIe function level reset
|
|
* @dev: device to reset
|
|
*
|
|
* Initiate a function level reset unconditionally on @dev without
|
|
* checking any flags and DEVCAP
|
|
*/
|
|
int pcie_flr(struct pci_dev *dev)
|
|
{
|
|
if (!pci_wait_for_pending_transaction(dev))
|
|
pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
|
|
|
|
pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
|
|
|
|
if (dev->imm_ready)
|
|
return 0;
|
|
|
|
/*
|
|
* Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
|
|
* 100ms, but may silently discard requests while the FLR is in
|
|
* progress. Wait 100ms before trying to access the device.
|
|
*/
|
|
msleep(100);
|
|
|
|
return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pcie_flr);
|
|
|
|
/**
|
|
* pcie_reset_flr - initiate a PCIe function level reset
|
|
* @dev: device to reset
|
|
* @probe: if true, return 0 if device can be reset this way
|
|
*
|
|
* Initiate a function level reset on @dev.
|
|
*/
|
|
int pcie_reset_flr(struct pci_dev *dev, bool probe)
|
|
{
|
|
if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
|
|
return -ENOTTY;
|
|
|
|
if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
|
|
return -ENOTTY;
|
|
|
|
if (probe)
|
|
return 0;
|
|
|
|
return pcie_flr(dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pcie_reset_flr);
|
|
|
|
static int pci_af_flr(struct pci_dev *dev, bool probe)
|
|
{
|
|
int pos;
|
|
u8 cap;
|
|
|
|
pos = pci_find_capability(dev, PCI_CAP_ID_AF);
|
|
if (!pos)
|
|
return -ENOTTY;
|
|
|
|
if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
|
|
return -ENOTTY;
|
|
|
|
pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
|
|
if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
|
|
return -ENOTTY;
|
|
|
|
if (probe)
|
|
return 0;
|
|
|
|
/*
|
|
* Wait for Transaction Pending bit to clear. A word-aligned test
|
|
* is used, so we use the control offset rather than status and shift
|
|
* the test bit to match.
|
|
*/
|
|
if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
|
|
PCI_AF_STATUS_TP << 8))
|
|
pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
|
|
|
|
pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
|
|
|
|
if (dev->imm_ready)
|
|
return 0;
|
|
|
|
/*
|
|
* Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
|
|
* updated 27 July 2006; a device must complete an FLR within
|
|
* 100ms, but may silently discard requests while the FLR is in
|
|
* progress. Wait 100ms before trying to access the device.
|
|
*/
|
|
msleep(100);
|
|
|
|
return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
|
|
}
|
|
|
|
/**
|
|
* pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
|
|
* @dev: Device to reset.
|
|
* @probe: if true, return 0 if the device can be reset this way.
|
|
*
|
|
* If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
|
|
* unset, it will be reinitialized internally when going from PCI_D3hot to
|
|
* PCI_D0. If that's the case and the device is not in a low-power state
|
|
* already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
|
|
*
|
|
* NOTE: This causes the caller to sleep for twice the device power transition
|
|
* cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
|
|
* by default (i.e. unless the @dev's d3hot_delay field has a different value).
|
|
* Moreover, only devices in D0 can be reset by this function.
|
|
*/
|
|
static int pci_pm_reset(struct pci_dev *dev, bool probe)
|
|
{
|
|
u16 csr;
|
|
|
|
if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
|
|
return -ENOTTY;
|
|
|
|
pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
|
|
if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
|
|
return -ENOTTY;
|
|
|
|
if (probe)
|
|
return 0;
|
|
|
|
if (dev->current_state != PCI_D0)
|
|
return -EINVAL;
|
|
|
|
csr &= ~PCI_PM_CTRL_STATE_MASK;
|
|
csr |= PCI_D3hot;
|
|
pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
|
|
pci_dev_d3_sleep(dev);
|
|
|
|
csr &= ~PCI_PM_CTRL_STATE_MASK;
|
|
csr |= PCI_D0;
|
|
pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
|
|
pci_dev_d3_sleep(dev);
|
|
|
|
return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
|
|
}
|
|
|
|
/**
|
|
* pcie_wait_for_link_status - Wait for link status change
|
|
* @pdev: Device whose link to wait for.
|
|
* @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
|
|
* @active: Waiting for active or inactive?
|
|
*
|
|
* Return 0 if successful, or -ETIMEDOUT if status has not changed within
|
|
* PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
|
|
*/
|
|
static int pcie_wait_for_link_status(struct pci_dev *pdev,
|
|
bool use_lt, bool active)
|
|
{
|
|
u16 lnksta_mask, lnksta_match;
|
|
unsigned long end_jiffies;
|
|
u16 lnksta;
|
|
|
|
lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
|
|
lnksta_match = active ? lnksta_mask : 0;
|
|
|
|
end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
|
|
do {
|
|
pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
|
|
if ((lnksta & lnksta_mask) == lnksta_match)
|
|
return 0;
|
|
msleep(1);
|
|
} while (time_before(jiffies, end_jiffies));
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/**
|
|
* pcie_retrain_link - Request a link retrain and wait for it to complete
|
|
* @pdev: Device whose link to retrain.
|
|
* @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
|
|
*
|
|
* Retrain completion status is retrieved from the Link Status Register
|
|
* according to @use_lt. It is not verified whether the use of the DLLLA
|
|
* bit is valid.
|
|
*
|
|
* Return 0 if successful, or -ETIMEDOUT if training has not completed
|
|
* within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
|
|
*/
|
|
int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
|
|
{
|
|
int rc;
|
|
|
|
/*
|
|
* Ensure the updated LNKCTL parameters are used during link
|
|
* training by checking that there is no ongoing link training to
|
|
* avoid LTSSM race as recommended in Implementation Note at the
|
|
* end of PCIe r6.0.1 sec 7.5.3.7.
|
|
*/
|
|
rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
|
|
if (rc)
|
|
return rc;
|
|
|
|
pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
|
|
if (pdev->clear_retrain_link) {
|
|
/*
|
|
* Due to an erratum in some devices the Retrain Link bit
|
|
* needs to be cleared again manually to allow the link
|
|
* training to succeed.
|
|
*/
|
|
pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
|
|
}
|
|
|
|
return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
|
|
}
|
|
|
|
/**
|
|
* pcie_wait_for_link_delay - Wait until link is active or inactive
|
|
* @pdev: Bridge device
|
|
* @active: waiting for active or inactive?
|
|
* @delay: Delay to wait after link has become active (in ms)
|
|
*
|
|
* Use this to wait till link becomes active or inactive.
|
|
*/
|
|
static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
|
|
int delay)
|
|
{
|
|
int rc;
|
|
|
|
/*
|
|
* Some controllers might not implement link active reporting. In this
|
|
* case, we wait for 1000 ms + any delay requested by the caller.
|
|
*/
|
|
if (!pdev->link_active_reporting) {
|
|
msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
|
|
* after which we should expect an link active if the reset was
|
|
* successful. If so, software must wait a minimum 100ms before sending
|
|
* configuration requests to devices downstream this port.
|
|
*
|
|
* If the link fails to activate, either the device was physically
|
|
* removed or the link is permanently failed.
|
|
*/
|
|
if (active)
|
|
msleep(20);
|
|
rc = pcie_wait_for_link_status(pdev, false, active);
|
|
if (active) {
|
|
if (rc)
|
|
rc = pcie_failed_link_retrain(pdev);
|
|
if (rc)
|
|
return false;
|
|
|
|
msleep(delay);
|
|
return true;
|
|
}
|
|
|
|
if (rc)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* pcie_wait_for_link - Wait until link is active or inactive
|
|
* @pdev: Bridge device
|
|
* @active: waiting for active or inactive?
|
|
*
|
|
* Use this to wait till link becomes active or inactive.
|
|
*/
|
|
bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
|
|
{
|
|
return pcie_wait_for_link_delay(pdev, active, 100);
|
|
}
|
|
|
|
/*
|
|
* Find maximum D3cold delay required by all the devices on the bus. The
|
|
* spec says 100 ms, but firmware can lower it and we allow drivers to
|
|
* increase it as well.
|
|
*
|
|
* Called with @pci_bus_sem locked for reading.
|
|
*/
|
|
static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
|
|
{
|
|
const struct pci_dev *pdev;
|
|
int min_delay = 100;
|
|
int max_delay = 0;
|
|
|
|
list_for_each_entry(pdev, &bus->devices, bus_list) {
|
|
if (pdev->d3cold_delay < min_delay)
|
|
min_delay = pdev->d3cold_delay;
|
|
if (pdev->d3cold_delay > max_delay)
|
|
max_delay = pdev->d3cold_delay;
|
|
}
|
|
|
|
return max(min_delay, max_delay);
|
|
}
|
|
|
|
/**
|
|
* pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
|
|
* @dev: PCI bridge
|
|
* @reset_type: reset type in human-readable form
|
|
*
|
|
* Handle necessary delays before access to the devices on the secondary
|
|
* side of the bridge are permitted after D3cold to D0 transition
|
|
* or Conventional Reset.
|
|
*
|
|
* For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
|
|
* conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
|
|
* 4.3.2.
|
|
*
|
|
* Return 0 on success or -ENOTTY if the first device on the secondary bus
|
|
* failed to become accessible.
|
|
*/
|
|
int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
|
|
{
|
|
struct pci_dev *child;
|
|
int delay;
|
|
|
|
if (pci_dev_is_disconnected(dev))
|
|
return 0;
|
|
|
|
if (!pci_is_bridge(dev))
|
|
return 0;
|
|
|
|
down_read(&pci_bus_sem);
|
|
|
|
/*
|
|
* We only deal with devices that are present currently on the bus.
|
|
* For any hot-added devices the access delay is handled in pciehp
|
|
* board_added(). In case of ACPI hotplug the firmware is expected
|
|
* to configure the devices before OS is notified.
|
|
*/
|
|
if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
|
|
up_read(&pci_bus_sem);
|
|
return 0;
|
|
}
|
|
|
|
/* Take d3cold_delay requirements into account */
|
|
delay = pci_bus_max_d3cold_delay(dev->subordinate);
|
|
if (!delay) {
|
|
up_read(&pci_bus_sem);
|
|
return 0;
|
|
}
|
|
|
|
child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
|
|
bus_list);
|
|
up_read(&pci_bus_sem);
|
|
|
|
/*
|
|
* Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
|
|
* accessing the device after reset (that is 1000 ms + 100 ms).
|
|
*/
|
|
if (!pci_is_pcie(dev)) {
|
|
pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
|
|
msleep(1000 + delay);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For PCIe downstream and root ports that do not support speeds
|
|
* greater than 5 GT/s need to wait minimum 100 ms. For higher
|
|
* speeds (gen3) we need to wait first for the data link layer to
|
|
* become active.
|
|
*
|
|
* However, 100 ms is the minimum and the PCIe spec says the
|
|
* software must allow at least 1s before it can determine that the
|
|
* device that did not respond is a broken device. Also device can
|
|
* take longer than that to respond if it indicates so through Request
|
|
* Retry Status completions.
|
|
*
|
|
* Therefore we wait for 100 ms and check for the device presence
|
|
* until the timeout expires.
|
|
*/
|
|
if (!pcie_downstream_port(dev))
|
|
return 0;
|
|
|
|
if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
|
|
u16 status;
|
|
|
|
pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
|
|
msleep(delay);
|
|
|
|
if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
|
|
return 0;
|
|
|
|
/*
|
|
* If the port supports active link reporting we now check
|
|
* whether the link is active and if not bail out early with
|
|
* the assumption that the device is not present anymore.
|
|
*/
|
|
if (!dev->link_active_reporting)
|
|
return -ENOTTY;
|
|
|
|
pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
|
|
if (!(status & PCI_EXP_LNKSTA_DLLLA))
|
|
return -ENOTTY;
|
|
|
|
return pci_dev_wait(child, reset_type,
|
|
PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
|
|
}
|
|
|
|
pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
|
|
delay);
|
|
if (!pcie_wait_for_link_delay(dev, true, delay)) {
|
|
/* Did not train, no need to wait any further */
|
|
pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
|
|
return -ENOTTY;
|
|
}
|
|
|
|
return pci_dev_wait(child, reset_type,
|
|
PCIE_RESET_READY_POLL_MS - delay);
|
|
}
|
|
|
|
void pci_reset_secondary_bus(struct pci_dev *dev)
|
|
{
|
|
u16 ctrl;
|
|
|
|
pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
|
|
ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
|
|
pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
|
|
|
|
/*
|
|
* PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
|
|
* this to 2ms to ensure that we meet the minimum requirement.
|
|
*/
|
|
msleep(2);
|
|
|
|
ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
|
|
pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
|
|
}
|
|
|
|
void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
|
|
{
|
|
pci_reset_secondary_bus(dev);
|
|
}
|
|
|
|
/**
|
|
* pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
|
|
* @dev: Bridge device
|
|
*
|
|
* Use the bridge control register to assert reset on the secondary bus.
|
|
* Devices on the secondary bus are left in power-on state.
|
|
*/
|
|
int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
|
|
{
|
|
pcibios_reset_secondary_bus(dev);
|
|
|
|
return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
|
|
|
|
static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
|
|
{
|
|
struct pci_dev *pdev;
|
|
|
|
if (pci_is_root_bus(dev->bus) || dev->subordinate ||
|
|
!dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
|
|
return -ENOTTY;
|
|
|
|
list_for_each_entry(pdev, &dev->bus->devices, bus_list)
|
|
if (pdev != dev)
|
|
return -ENOTTY;
|
|
|
|
if (probe)
|
|
return 0;
|
|
|
|
return pci_bridge_secondary_bus_reset(dev->bus->self);
|
|
}
|
|
|
|
static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
|
|
{
|
|
int rc = -ENOTTY;
|
|
|
|
if (!hotplug || !try_module_get(hotplug->owner))
|
|
return rc;
|
|
|
|
if (hotplug->ops->reset_slot)
|
|
rc = hotplug->ops->reset_slot(hotplug, probe);
|
|
|
|
module_put(hotplug->owner);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
|
|
{
|
|
if (dev->multifunction || dev->subordinate || !dev->slot ||
|
|
dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
|
|
return -ENOTTY;
|
|
|
|
return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
|
|
}
|
|
|
|
static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
|
|
{
|
|
int rc;
|
|
|
|
rc = pci_dev_reset_slot_function(dev, probe);
|
|
if (rc != -ENOTTY)
|
|
return rc;
|
|
return pci_parent_bus_reset(dev, probe);
|
|
}
|
|
|
|
void pci_dev_lock(struct pci_dev *dev)
|
|
{
|
|
/* block PM suspend, driver probe, etc. */
|
|
device_lock(&dev->dev);
|
|
pci_cfg_access_lock(dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_dev_lock);
|
|
|
|
/* Return 1 on successful lock, 0 on contention */
|
|
int pci_dev_trylock(struct pci_dev *dev)
|
|
{
|
|
if (device_trylock(&dev->dev)) {
|
|
if (pci_cfg_access_trylock(dev))
|
|
return 1;
|
|
device_unlock(&dev->dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_dev_trylock);
|
|
|
|
void pci_dev_unlock(struct pci_dev *dev)
|
|
{
|
|
pci_cfg_access_unlock(dev);
|
|
device_unlock(&dev->dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_dev_unlock);
|
|
|
|
static void pci_dev_save_and_disable(struct pci_dev *dev)
|
|
{
|
|
const struct pci_error_handlers *err_handler =
|
|
dev->driver ? dev->driver->err_handler : NULL;
|
|
|
|
/*
|
|
* dev->driver->err_handler->reset_prepare() is protected against
|
|
* races with ->remove() by the device lock, which must be held by
|
|
* the caller.
|
|
*/
|
|
if (err_handler && err_handler->reset_prepare)
|
|
err_handler->reset_prepare(dev);
|
|
|
|
/*
|
|
* Wake-up device prior to save. PM registers default to D0 after
|
|
* reset and a simple register restore doesn't reliably return
|
|
* to a non-D0 state anyway.
|
|
*/
|
|
pci_set_power_state(dev, PCI_D0);
|
|
|
|
pci_save_state(dev);
|
|
/*
|
|
* Disable the device by clearing the Command register, except for
|
|
* INTx-disable which is set. This not only disables MMIO and I/O port
|
|
* BARs, but also prevents the device from being Bus Master, preventing
|
|
* DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
|
|
* compliant devices, INTx-disable prevents legacy interrupts.
|
|
*/
|
|
pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
|
|
}
|
|
|
|
static void pci_dev_restore(struct pci_dev *dev)
|
|
{
|
|
const struct pci_error_handlers *err_handler =
|
|
dev->driver ? dev->driver->err_handler : NULL;
|
|
|
|
pci_restore_state(dev);
|
|
|
|
/*
|
|
* dev->driver->err_handler->reset_done() is protected against
|
|
* races with ->remove() by the device lock, which must be held by
|
|
* the caller.
|
|
*/
|
|
if (err_handler && err_handler->reset_done)
|
|
err_handler->reset_done(dev);
|
|
}
|
|
|
|
/* dev->reset_methods[] is a 0-terminated list of indices into this array */
|
|
static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
|
|
{ },
|
|
{ pci_dev_specific_reset, .name = "device_specific" },
|
|
{ pci_dev_acpi_reset, .name = "acpi" },
|
|
{ pcie_reset_flr, .name = "flr" },
|
|
{ pci_af_flr, .name = "af_flr" },
|
|
{ pci_pm_reset, .name = "pm" },
|
|
{ pci_reset_bus_function, .name = "bus" },
|
|
};
|
|
|
|
static ssize_t reset_method_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
ssize_t len = 0;
|
|
int i, m;
|
|
|
|
for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
|
|
m = pdev->reset_methods[i];
|
|
if (!m)
|
|
break;
|
|
|
|
len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
|
|
pci_reset_fn_methods[m].name);
|
|
}
|
|
|
|
if (len)
|
|
len += sysfs_emit_at(buf, len, "\n");
|
|
|
|
return len;
|
|
}
|
|
|
|
static int reset_method_lookup(const char *name)
|
|
{
|
|
int m;
|
|
|
|
for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
|
|
if (sysfs_streq(name, pci_reset_fn_methods[m].name))
|
|
return m;
|
|
}
|
|
|
|
return 0; /* not found */
|
|
}
|
|
|
|
static ssize_t reset_method_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
char *options, *name;
|
|
int m, n;
|
|
u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
|
|
|
|
if (sysfs_streq(buf, "")) {
|
|
pdev->reset_methods[0] = 0;
|
|
pci_warn(pdev, "All device reset methods disabled by user");
|
|
return count;
|
|
}
|
|
|
|
if (sysfs_streq(buf, "default")) {
|
|
pci_init_reset_methods(pdev);
|
|
return count;
|
|
}
|
|
|
|
options = kstrndup(buf, count, GFP_KERNEL);
|
|
if (!options)
|
|
return -ENOMEM;
|
|
|
|
n = 0;
|
|
while ((name = strsep(&options, " ")) != NULL) {
|
|
if (sysfs_streq(name, ""))
|
|
continue;
|
|
|
|
name = strim(name);
|
|
|
|
m = reset_method_lookup(name);
|
|
if (!m) {
|
|
pci_err(pdev, "Invalid reset method '%s'", name);
|
|
goto error;
|
|
}
|
|
|
|
if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
|
|
pci_err(pdev, "Unsupported reset method '%s'", name);
|
|
goto error;
|
|
}
|
|
|
|
if (n == PCI_NUM_RESET_METHODS - 1) {
|
|
pci_err(pdev, "Too many reset methods\n");
|
|
goto error;
|
|
}
|
|
|
|
reset_methods[n++] = m;
|
|
}
|
|
|
|
reset_methods[n] = 0;
|
|
|
|
/* Warn if dev-specific supported but not highest priority */
|
|
if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
|
|
reset_methods[0] != 1)
|
|
pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
|
|
memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
|
|
kfree(options);
|
|
return count;
|
|
|
|
error:
|
|
/* Leave previous methods unchanged */
|
|
kfree(options);
|
|
return -EINVAL;
|
|
}
|
|
static DEVICE_ATTR_RW(reset_method);
|
|
|
|
static struct attribute *pci_dev_reset_method_attrs[] = {
|
|
&dev_attr_reset_method.attr,
|
|
NULL,
|
|
};
|
|
|
|
static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
|
|
struct attribute *a, int n)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
|
|
|
|
if (!pci_reset_supported(pdev))
|
|
return 0;
|
|
|
|
return a->mode;
|
|
}
|
|
|
|
const struct attribute_group pci_dev_reset_method_attr_group = {
|
|
.attrs = pci_dev_reset_method_attrs,
|
|
.is_visible = pci_dev_reset_method_attr_is_visible,
|
|
};
|
|
|
|
/**
|
|
* __pci_reset_function_locked - reset a PCI device function while holding
|
|
* the @dev mutex lock.
|
|
* @dev: PCI device to reset
|
|
*
|
|
* Some devices allow an individual function to be reset without affecting
|
|
* other functions in the same device. The PCI device must be responsive
|
|
* to PCI config space in order to use this function.
|
|
*
|
|
* The device function is presumed to be unused and the caller is holding
|
|
* the device mutex lock when this function is called.
|
|
*
|
|
* Resetting the device will make the contents of PCI configuration space
|
|
* random, so any caller of this must be prepared to reinitialise the
|
|
* device including MSI, bus mastering, BARs, decoding IO and memory spaces,
|
|
* etc.
|
|
*
|
|
* Returns 0 if the device function was successfully reset or negative if the
|
|
* device doesn't support resetting a single function.
|
|
*/
|
|
int __pci_reset_function_locked(struct pci_dev *dev)
|
|
{
|
|
int i, m, rc;
|
|
|
|
might_sleep();
|
|
|
|
/*
|
|
* A reset method returns -ENOTTY if it doesn't support this device and
|
|
* we should try the next method.
|
|
*
|
|
* If it returns 0 (success), we're finished. If it returns any other
|
|
* error, we're also finished: this indicates that further reset
|
|
* mechanisms might be broken on the device.
|
|
*/
|
|
for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
|
|
m = dev->reset_methods[i];
|
|
if (!m)
|
|
return -ENOTTY;
|
|
|
|
rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
|
|
if (!rc)
|
|
return 0;
|
|
if (rc != -ENOTTY)
|
|
return rc;
|
|
}
|
|
|
|
return -ENOTTY;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
|
|
|
|
/**
|
|
* pci_init_reset_methods - check whether device can be safely reset
|
|
* and store supported reset mechanisms.
|
|
* @dev: PCI device to check for reset mechanisms
|
|
*
|
|
* Some devices allow an individual function to be reset without affecting
|
|
* other functions in the same device. The PCI device must be in D0-D3hot
|
|
* state.
|
|
*
|
|
* Stores reset mechanisms supported by device in reset_methods byte array
|
|
* which is a member of struct pci_dev.
|
|
*/
|
|
void pci_init_reset_methods(struct pci_dev *dev)
|
|
{
|
|
int m, i, rc;
|
|
|
|
BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
|
|
|
|
might_sleep();
|
|
|
|
i = 0;
|
|
for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
|
|
rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
|
|
if (!rc)
|
|
dev->reset_methods[i++] = m;
|
|
else if (rc != -ENOTTY)
|
|
break;
|
|
}
|
|
|
|
dev->reset_methods[i] = 0;
|
|
}
|
|
|
|
/**
|
|
* pci_reset_function - quiesce and reset a PCI device function
|
|
* @dev: PCI device to reset
|
|
*
|
|
* Some devices allow an individual function to be reset without affecting
|
|
* other functions in the same device. The PCI device must be responsive
|
|
* to PCI config space in order to use this function.
|
|
*
|
|
* This function does not just reset the PCI portion of a device, but
|
|
* clears all the state associated with the device. This function differs
|
|
* from __pci_reset_function_locked() in that it saves and restores device state
|
|
* over the reset and takes the PCI device lock.
|
|
*
|
|
* Returns 0 if the device function was successfully reset or negative if the
|
|
* device doesn't support resetting a single function.
|
|
*/
|
|
int pci_reset_function(struct pci_dev *dev)
|
|
{
|
|
int rc;
|
|
|
|
if (!pci_reset_supported(dev))
|
|
return -ENOTTY;
|
|
|
|
pci_dev_lock(dev);
|
|
pci_dev_save_and_disable(dev);
|
|
|
|
rc = __pci_reset_function_locked(dev);
|
|
|
|
pci_dev_restore(dev);
|
|
pci_dev_unlock(dev);
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_reset_function);
|
|
|
|
/**
|
|
* pci_reset_function_locked - quiesce and reset a PCI device function
|
|
* @dev: PCI device to reset
|
|
*
|
|
* Some devices allow an individual function to be reset without affecting
|
|
* other functions in the same device. The PCI device must be responsive
|
|
* to PCI config space in order to use this function.
|
|
*
|
|
* This function does not just reset the PCI portion of a device, but
|
|
* clears all the state associated with the device. This function differs
|
|
* from __pci_reset_function_locked() in that it saves and restores device state
|
|
* over the reset. It also differs from pci_reset_function() in that it
|
|
* requires the PCI device lock to be held.
|
|
*
|
|
* Returns 0 if the device function was successfully reset or negative if the
|
|
* device doesn't support resetting a single function.
|
|
*/
|
|
int pci_reset_function_locked(struct pci_dev *dev)
|
|
{
|
|
int rc;
|
|
|
|
if (!pci_reset_supported(dev))
|
|
return -ENOTTY;
|
|
|
|
pci_dev_save_and_disable(dev);
|
|
|
|
rc = __pci_reset_function_locked(dev);
|
|
|
|
pci_dev_restore(dev);
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_reset_function_locked);
|
|
|
|
/**
|
|
* pci_try_reset_function - quiesce and reset a PCI device function
|
|
* @dev: PCI device to reset
|
|
*
|
|
* Same as above, except return -EAGAIN if unable to lock device.
|
|
*/
|
|
int pci_try_reset_function(struct pci_dev *dev)
|
|
{
|
|
int rc;
|
|
|
|
if (!pci_reset_supported(dev))
|
|
return -ENOTTY;
|
|
|
|
if (!pci_dev_trylock(dev))
|
|
return -EAGAIN;
|
|
|
|
pci_dev_save_and_disable(dev);
|
|
rc = __pci_reset_function_locked(dev);
|
|
pci_dev_restore(dev);
|
|
pci_dev_unlock(dev);
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_try_reset_function);
|
|
|
|
/* Do any devices on or below this bus prevent a bus reset? */
|
|
static bool pci_bus_resettable(struct pci_bus *bus)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
|
|
if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
|
|
return false;
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
|
|
(dev->subordinate && !pci_bus_resettable(dev->subordinate)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Lock devices from the top of the tree down */
|
|
static void pci_bus_lock(struct pci_bus *bus)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
pci_dev_lock(dev);
|
|
if (dev->subordinate)
|
|
pci_bus_lock(dev->subordinate);
|
|
}
|
|
}
|
|
|
|
/* Unlock devices from the bottom of the tree up */
|
|
static void pci_bus_unlock(struct pci_bus *bus)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
if (dev->subordinate)
|
|
pci_bus_unlock(dev->subordinate);
|
|
pci_dev_unlock(dev);
|
|
}
|
|
}
|
|
|
|
/* Return 1 on successful lock, 0 on contention */
|
|
static int pci_bus_trylock(struct pci_bus *bus)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
if (!pci_dev_trylock(dev))
|
|
goto unlock;
|
|
if (dev->subordinate) {
|
|
if (!pci_bus_trylock(dev->subordinate)) {
|
|
pci_dev_unlock(dev);
|
|
goto unlock;
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
|
|
unlock:
|
|
list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
|
|
if (dev->subordinate)
|
|
pci_bus_unlock(dev->subordinate);
|
|
pci_dev_unlock(dev);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Do any devices on or below this slot prevent a bus reset? */
|
|
static bool pci_slot_resettable(struct pci_slot *slot)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
if (slot->bus->self &&
|
|
(slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
|
|
return false;
|
|
|
|
list_for_each_entry(dev, &slot->bus->devices, bus_list) {
|
|
if (!dev->slot || dev->slot != slot)
|
|
continue;
|
|
if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
|
|
(dev->subordinate && !pci_bus_resettable(dev->subordinate)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Lock devices from the top of the tree down */
|
|
static void pci_slot_lock(struct pci_slot *slot)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
list_for_each_entry(dev, &slot->bus->devices, bus_list) {
|
|
if (!dev->slot || dev->slot != slot)
|
|
continue;
|
|
pci_dev_lock(dev);
|
|
if (dev->subordinate)
|
|
pci_bus_lock(dev->subordinate);
|
|
}
|
|
}
|
|
|
|
/* Unlock devices from the bottom of the tree up */
|
|
static void pci_slot_unlock(struct pci_slot *slot)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
list_for_each_entry(dev, &slot->bus->devices, bus_list) {
|
|
if (!dev->slot || dev->slot != slot)
|
|
continue;
|
|
if (dev->subordinate)
|
|
pci_bus_unlock(dev->subordinate);
|
|
pci_dev_unlock(dev);
|
|
}
|
|
}
|
|
|
|
/* Return 1 on successful lock, 0 on contention */
|
|
static int pci_slot_trylock(struct pci_slot *slot)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
list_for_each_entry(dev, &slot->bus->devices, bus_list) {
|
|
if (!dev->slot || dev->slot != slot)
|
|
continue;
|
|
if (!pci_dev_trylock(dev))
|
|
goto unlock;
|
|
if (dev->subordinate) {
|
|
if (!pci_bus_trylock(dev->subordinate)) {
|
|
pci_dev_unlock(dev);
|
|
goto unlock;
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
|
|
unlock:
|
|
list_for_each_entry_continue_reverse(dev,
|
|
&slot->bus->devices, bus_list) {
|
|
if (!dev->slot || dev->slot != slot)
|
|
continue;
|
|
if (dev->subordinate)
|
|
pci_bus_unlock(dev->subordinate);
|
|
pci_dev_unlock(dev);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Save and disable devices from the top of the tree down while holding
|
|
* the @dev mutex lock for the entire tree.
|
|
*/
|
|
static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
pci_dev_save_and_disable(dev);
|
|
if (dev->subordinate)
|
|
pci_bus_save_and_disable_locked(dev->subordinate);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Restore devices from top of the tree down while holding @dev mutex lock
|
|
* for the entire tree. Parent bridges need to be restored before we can
|
|
* get to subordinate devices.
|
|
*/
|
|
static void pci_bus_restore_locked(struct pci_bus *bus)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
pci_dev_restore(dev);
|
|
if (dev->subordinate)
|
|
pci_bus_restore_locked(dev->subordinate);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Save and disable devices from the top of the tree down while holding
|
|
* the @dev mutex lock for the entire tree.
|
|
*/
|
|
static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
list_for_each_entry(dev, &slot->bus->devices, bus_list) {
|
|
if (!dev->slot || dev->slot != slot)
|
|
continue;
|
|
pci_dev_save_and_disable(dev);
|
|
if (dev->subordinate)
|
|
pci_bus_save_and_disable_locked(dev->subordinate);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Restore devices from top of the tree down while holding @dev mutex lock
|
|
* for the entire tree. Parent bridges need to be restored before we can
|
|
* get to subordinate devices.
|
|
*/
|
|
static void pci_slot_restore_locked(struct pci_slot *slot)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
list_for_each_entry(dev, &slot->bus->devices, bus_list) {
|
|
if (!dev->slot || dev->slot != slot)
|
|
continue;
|
|
pci_dev_restore(dev);
|
|
if (dev->subordinate)
|
|
pci_bus_restore_locked(dev->subordinate);
|
|
}
|
|
}
|
|
|
|
static int pci_slot_reset(struct pci_slot *slot, bool probe)
|
|
{
|
|
int rc;
|
|
|
|
if (!slot || !pci_slot_resettable(slot))
|
|
return -ENOTTY;
|
|
|
|
if (!probe)
|
|
pci_slot_lock(slot);
|
|
|
|
might_sleep();
|
|
|
|
rc = pci_reset_hotplug_slot(slot->hotplug, probe);
|
|
|
|
if (!probe)
|
|
pci_slot_unlock(slot);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* pci_probe_reset_slot - probe whether a PCI slot can be reset
|
|
* @slot: PCI slot to probe
|
|
*
|
|
* Return 0 if slot can be reset, negative if a slot reset is not supported.
|
|
*/
|
|
int pci_probe_reset_slot(struct pci_slot *slot)
|
|
{
|
|
return pci_slot_reset(slot, PCI_RESET_PROBE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
|
|
|
|
/**
|
|
* __pci_reset_slot - Try to reset a PCI slot
|
|
* @slot: PCI slot to reset
|
|
*
|
|
* A PCI bus may host multiple slots, each slot may support a reset mechanism
|
|
* independent of other slots. For instance, some slots may support slot power
|
|
* control. In the case of a 1:1 bus to slot architecture, this function may
|
|
* wrap the bus reset to avoid spurious slot related events such as hotplug.
|
|
* Generally a slot reset should be attempted before a bus reset. All of the
|
|
* function of the slot and any subordinate buses behind the slot are reset
|
|
* through this function. PCI config space of all devices in the slot and
|
|
* behind the slot is saved before and restored after reset.
|
|
*
|
|
* Same as above except return -EAGAIN if the slot cannot be locked
|
|
*/
|
|
static int __pci_reset_slot(struct pci_slot *slot)
|
|
{
|
|
int rc;
|
|
|
|
rc = pci_slot_reset(slot, PCI_RESET_PROBE);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (pci_slot_trylock(slot)) {
|
|
pci_slot_save_and_disable_locked(slot);
|
|
might_sleep();
|
|
rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
|
|
pci_slot_restore_locked(slot);
|
|
pci_slot_unlock(slot);
|
|
} else
|
|
rc = -EAGAIN;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int pci_bus_reset(struct pci_bus *bus, bool probe)
|
|
{
|
|
int ret;
|
|
|
|
if (!bus->self || !pci_bus_resettable(bus))
|
|
return -ENOTTY;
|
|
|
|
if (probe)
|
|
return 0;
|
|
|
|
pci_bus_lock(bus);
|
|
|
|
might_sleep();
|
|
|
|
ret = pci_bridge_secondary_bus_reset(bus->self);
|
|
|
|
pci_bus_unlock(bus);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* pci_bus_error_reset - reset the bridge's subordinate bus
|
|
* @bridge: The parent device that connects to the bus to reset
|
|
*
|
|
* This function will first try to reset the slots on this bus if the method is
|
|
* available. If slot reset fails or is not available, this will fall back to a
|
|
* secondary bus reset.
|
|
*/
|
|
int pci_bus_error_reset(struct pci_dev *bridge)
|
|
{
|
|
struct pci_bus *bus = bridge->subordinate;
|
|
struct pci_slot *slot;
|
|
|
|
if (!bus)
|
|
return -ENOTTY;
|
|
|
|
mutex_lock(&pci_slot_mutex);
|
|
if (list_empty(&bus->slots))
|
|
goto bus_reset;
|
|
|
|
list_for_each_entry(slot, &bus->slots, list)
|
|
if (pci_probe_reset_slot(slot))
|
|
goto bus_reset;
|
|
|
|
list_for_each_entry(slot, &bus->slots, list)
|
|
if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
|
|
goto bus_reset;
|
|
|
|
mutex_unlock(&pci_slot_mutex);
|
|
return 0;
|
|
bus_reset:
|
|
mutex_unlock(&pci_slot_mutex);
|
|
return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
|
|
}
|
|
|
|
/**
|
|
* pci_probe_reset_bus - probe whether a PCI bus can be reset
|
|
* @bus: PCI bus to probe
|
|
*
|
|
* Return 0 if bus can be reset, negative if a bus reset is not supported.
|
|
*/
|
|
int pci_probe_reset_bus(struct pci_bus *bus)
|
|
{
|
|
return pci_bus_reset(bus, PCI_RESET_PROBE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
|
|
|
|
/**
|
|
* __pci_reset_bus - Try to reset a PCI bus
|
|
* @bus: top level PCI bus to reset
|
|
*
|
|
* Same as above except return -EAGAIN if the bus cannot be locked
|
|
*/
|
|
static int __pci_reset_bus(struct pci_bus *bus)
|
|
{
|
|
int rc;
|
|
|
|
rc = pci_bus_reset(bus, PCI_RESET_PROBE);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (pci_bus_trylock(bus)) {
|
|
pci_bus_save_and_disable_locked(bus);
|
|
might_sleep();
|
|
rc = pci_bridge_secondary_bus_reset(bus->self);
|
|
pci_bus_restore_locked(bus);
|
|
pci_bus_unlock(bus);
|
|
} else
|
|
rc = -EAGAIN;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* pci_reset_bus - Try to reset a PCI bus
|
|
* @pdev: top level PCI device to reset via slot/bus
|
|
*
|
|
* Same as above except return -EAGAIN if the bus cannot be locked
|
|
*/
|
|
int pci_reset_bus(struct pci_dev *pdev)
|
|
{
|
|
return (!pci_probe_reset_slot(pdev->slot)) ?
|
|
__pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_reset_bus);
|
|
|
|
/**
|
|
* pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
|
|
* @dev: PCI device to query
|
|
*
|
|
* Returns mmrbc: maximum designed memory read count in bytes or
|
|
* appropriate error value.
|
|
*/
|
|
int pcix_get_max_mmrbc(struct pci_dev *dev)
|
|
{
|
|
int cap;
|
|
u32 stat;
|
|
|
|
cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
|
|
if (!cap)
|
|
return -EINVAL;
|
|
|
|
if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
|
|
return -EINVAL;
|
|
|
|
return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
|
|
}
|
|
EXPORT_SYMBOL(pcix_get_max_mmrbc);
|
|
|
|
/**
|
|
* pcix_get_mmrbc - get PCI-X maximum memory read byte count
|
|
* @dev: PCI device to query
|
|
*
|
|
* Returns mmrbc: maximum memory read count in bytes or appropriate error
|
|
* value.
|
|
*/
|
|
int pcix_get_mmrbc(struct pci_dev *dev)
|
|
{
|
|
int cap;
|
|
u16 cmd;
|
|
|
|
cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
|
|
if (!cap)
|
|
return -EINVAL;
|
|
|
|
if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
|
|
return -EINVAL;
|
|
|
|
return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
|
|
}
|
|
EXPORT_SYMBOL(pcix_get_mmrbc);
|
|
|
|
/**
|
|
* pcix_set_mmrbc - set PCI-X maximum memory read byte count
|
|
* @dev: PCI device to query
|
|
* @mmrbc: maximum memory read count in bytes
|
|
* valid values are 512, 1024, 2048, 4096
|
|
*
|
|
* If possible sets maximum memory read byte count, some bridges have errata
|
|
* that prevent this.
|
|
*/
|
|
int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
|
|
{
|
|
int cap;
|
|
u32 stat, v, o;
|
|
u16 cmd;
|
|
|
|
if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
|
|
return -EINVAL;
|
|
|
|
v = ffs(mmrbc) - 10;
|
|
|
|
cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
|
|
if (!cap)
|
|
return -EINVAL;
|
|
|
|
if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
|
|
return -EINVAL;
|
|
|
|
if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
|
|
return -E2BIG;
|
|
|
|
if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
|
|
return -EINVAL;
|
|
|
|
o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
|
|
if (o != v) {
|
|
if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
|
|
return -EIO;
|
|
|
|
cmd &= ~PCI_X_CMD_MAX_READ;
|
|
cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
|
|
if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(pcix_set_mmrbc);
|
|
|
|
/**
|
|
* pcie_get_readrq - get PCI Express read request size
|
|
* @dev: PCI device to query
|
|
*
|
|
* Returns maximum memory read request in bytes or appropriate error value.
|
|
*/
|
|
int pcie_get_readrq(struct pci_dev *dev)
|
|
{
|
|
u16 ctl;
|
|
|
|
pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
|
|
|
|
return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
|
|
}
|
|
EXPORT_SYMBOL(pcie_get_readrq);
|
|
|
|
/**
|
|
* pcie_set_readrq - set PCI Express maximum memory read request
|
|
* @dev: PCI device to query
|
|
* @rq: maximum memory read count in bytes
|
|
* valid values are 128, 256, 512, 1024, 2048, 4096
|
|
*
|
|
* If possible sets maximum memory read request in bytes
|
|
*/
|
|
int pcie_set_readrq(struct pci_dev *dev, int rq)
|
|
{
|
|
u16 v;
|
|
int ret;
|
|
struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
|
|
|
|
if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If using the "performance" PCIe config, we clamp the read rq
|
|
* size to the max packet size to keep the host bridge from
|
|
* generating requests larger than we can cope with.
|
|
*/
|
|
if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
|
|
int mps = pcie_get_mps(dev);
|
|
|
|
if (mps < rq)
|
|
rq = mps;
|
|
}
|
|
|
|
v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
|
|
|
|
if (bridge->no_inc_mrrs) {
|
|
int max_mrrs = pcie_get_readrq(dev);
|
|
|
|
if (rq > max_mrrs) {
|
|
pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
|
|
PCI_EXP_DEVCTL_READRQ, v);
|
|
|
|
return pcibios_err_to_errno(ret);
|
|
}
|
|
EXPORT_SYMBOL(pcie_set_readrq);
|
|
|
|
/**
|
|
* pcie_get_mps - get PCI Express maximum payload size
|
|
* @dev: PCI device to query
|
|
*
|
|
* Returns maximum payload size in bytes
|
|
*/
|
|
int pcie_get_mps(struct pci_dev *dev)
|
|
{
|
|
u16 ctl;
|
|
|
|
pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
|
|
|
|
return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
|
|
}
|
|
EXPORT_SYMBOL(pcie_get_mps);
|
|
|
|
/**
|
|
* pcie_set_mps - set PCI Express maximum payload size
|
|
* @dev: PCI device to query
|
|
* @mps: maximum payload size in bytes
|
|
* valid values are 128, 256, 512, 1024, 2048, 4096
|
|
*
|
|
* If possible sets maximum payload size
|
|
*/
|
|
int pcie_set_mps(struct pci_dev *dev, int mps)
|
|
{
|
|
u16 v;
|
|
int ret;
|
|
|
|
if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
|
|
return -EINVAL;
|
|
|
|
v = ffs(mps) - 8;
|
|
if (v > dev->pcie_mpss)
|
|
return -EINVAL;
|
|
v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
|
|
|
|
ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
|
|
PCI_EXP_DEVCTL_PAYLOAD, v);
|
|
|
|
return pcibios_err_to_errno(ret);
|
|
}
|
|
EXPORT_SYMBOL(pcie_set_mps);
|
|
|
|
/**
|
|
* pcie_bandwidth_available - determine minimum link settings of a PCIe
|
|
* device and its bandwidth limitation
|
|
* @dev: PCI device to query
|
|
* @limiting_dev: storage for device causing the bandwidth limitation
|
|
* @speed: storage for speed of limiting device
|
|
* @width: storage for width of limiting device
|
|
*
|
|
* Walk up the PCI device chain and find the point where the minimum
|
|
* bandwidth is available. Return the bandwidth available there and (if
|
|
* limiting_dev, speed, and width pointers are supplied) information about
|
|
* that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
|
|
* raw bandwidth.
|
|
*/
|
|
u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
|
|
enum pci_bus_speed *speed,
|
|
enum pcie_link_width *width)
|
|
{
|
|
u16 lnksta;
|
|
enum pci_bus_speed next_speed;
|
|
enum pcie_link_width next_width;
|
|
u32 bw, next_bw;
|
|
|
|
if (speed)
|
|
*speed = PCI_SPEED_UNKNOWN;
|
|
if (width)
|
|
*width = PCIE_LNK_WIDTH_UNKNOWN;
|
|
|
|
bw = 0;
|
|
|
|
while (dev) {
|
|
pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
|
|
|
|
next_speed = pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS,
|
|
lnksta)];
|
|
next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
|
|
|
|
next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
|
|
|
|
/* Check if current device limits the total bandwidth */
|
|
if (!bw || next_bw <= bw) {
|
|
bw = next_bw;
|
|
|
|
if (limiting_dev)
|
|
*limiting_dev = dev;
|
|
if (speed)
|
|
*speed = next_speed;
|
|
if (width)
|
|
*width = next_width;
|
|
}
|
|
|
|
dev = pci_upstream_bridge(dev);
|
|
}
|
|
|
|
return bw;
|
|
}
|
|
EXPORT_SYMBOL(pcie_bandwidth_available);
|
|
|
|
/**
|
|
* pcie_get_speed_cap - query for the PCI device's link speed capability
|
|
* @dev: PCI device to query
|
|
*
|
|
* Query the PCI device speed capability. Return the maximum link speed
|
|
* supported by the device.
|
|
*/
|
|
enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
|
|
{
|
|
u32 lnkcap2, lnkcap;
|
|
|
|
/*
|
|
* Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
|
|
* implementation note there recommends using the Supported Link
|
|
* Speeds Vector in Link Capabilities 2 when supported.
|
|
*
|
|
* Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
|
|
* should use the Supported Link Speeds field in Link Capabilities,
|
|
* where only 2.5 GT/s and 5.0 GT/s speeds were defined.
|
|
*/
|
|
pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
|
|
|
|
/* PCIe r3.0-compliant */
|
|
if (lnkcap2)
|
|
return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
|
|
|
|
pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
|
|
if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
|
|
return PCIE_SPEED_5_0GT;
|
|
else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
|
|
return PCIE_SPEED_2_5GT;
|
|
|
|
return PCI_SPEED_UNKNOWN;
|
|
}
|
|
EXPORT_SYMBOL(pcie_get_speed_cap);
|
|
|
|
/**
|
|
* pcie_get_width_cap - query for the PCI device's link width capability
|
|
* @dev: PCI device to query
|
|
*
|
|
* Query the PCI device width capability. Return the maximum link width
|
|
* supported by the device.
|
|
*/
|
|
enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
|
|
{
|
|
u32 lnkcap;
|
|
|
|
pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
|
|
if (lnkcap)
|
|
return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
|
|
|
|
return PCIE_LNK_WIDTH_UNKNOWN;
|
|
}
|
|
EXPORT_SYMBOL(pcie_get_width_cap);
|
|
|
|
/**
|
|
* pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
|
|
* @dev: PCI device
|
|
* @speed: storage for link speed
|
|
* @width: storage for link width
|
|
*
|
|
* Calculate a PCI device's link bandwidth by querying for its link speed
|
|
* and width, multiplying them, and applying encoding overhead. The result
|
|
* is in Mb/s, i.e., megabits/second of raw bandwidth.
|
|
*/
|
|
u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
|
|
enum pcie_link_width *width)
|
|
{
|
|
*speed = pcie_get_speed_cap(dev);
|
|
*width = pcie_get_width_cap(dev);
|
|
|
|
if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
|
|
return 0;
|
|
|
|
return *width * PCIE_SPEED2MBS_ENC(*speed);
|
|
}
|
|
|
|
/**
|
|
* __pcie_print_link_status - Report the PCI device's link speed and width
|
|
* @dev: PCI device to query
|
|
* @verbose: Print info even when enough bandwidth is available
|
|
*
|
|
* If the available bandwidth at the device is less than the device is
|
|
* capable of, report the device's maximum possible bandwidth and the
|
|
* upstream link that limits its performance. If @verbose, always print
|
|
* the available bandwidth, even if the device isn't constrained.
|
|
*/
|
|
void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
|
|
{
|
|
enum pcie_link_width width, width_cap;
|
|
enum pci_bus_speed speed, speed_cap;
|
|
struct pci_dev *limiting_dev = NULL;
|
|
u32 bw_avail, bw_cap;
|
|
|
|
bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
|
|
bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
|
|
|
|
if (bw_avail >= bw_cap && verbose)
|
|
pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
|
|
bw_cap / 1000, bw_cap % 1000,
|
|
pci_speed_string(speed_cap), width_cap);
|
|
else if (bw_avail < bw_cap)
|
|
pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
|
|
bw_avail / 1000, bw_avail % 1000,
|
|
pci_speed_string(speed), width,
|
|
limiting_dev ? pci_name(limiting_dev) : "<unknown>",
|
|
bw_cap / 1000, bw_cap % 1000,
|
|
pci_speed_string(speed_cap), width_cap);
|
|
}
|
|
|
|
/**
|
|
* pcie_print_link_status - Report the PCI device's link speed and width
|
|
* @dev: PCI device to query
|
|
*
|
|
* Report the available bandwidth at the device.
|
|
*/
|
|
void pcie_print_link_status(struct pci_dev *dev)
|
|
{
|
|
__pcie_print_link_status(dev, true);
|
|
}
|
|
EXPORT_SYMBOL(pcie_print_link_status);
|
|
|
|
/**
|
|
* pci_select_bars - Make BAR mask from the type of resource
|
|
* @dev: the PCI device for which BAR mask is made
|
|
* @flags: resource type mask to be selected
|
|
*
|
|
* This helper routine makes bar mask from the type of resource.
|
|
*/
|
|
int pci_select_bars(struct pci_dev *dev, unsigned long flags)
|
|
{
|
|
int i, bars = 0;
|
|
for (i = 0; i < PCI_NUM_RESOURCES; i++)
|
|
if (pci_resource_flags(dev, i) & flags)
|
|
bars |= (1 << i);
|
|
return bars;
|
|
}
|
|
EXPORT_SYMBOL(pci_select_bars);
|
|
|
|
/* Some architectures require additional programming to enable VGA */
|
|
static arch_set_vga_state_t arch_set_vga_state;
|
|
|
|
void __init pci_register_set_vga_state(arch_set_vga_state_t func)
|
|
{
|
|
arch_set_vga_state = func; /* NULL disables */
|
|
}
|
|
|
|
static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
|
|
unsigned int command_bits, u32 flags)
|
|
{
|
|
if (arch_set_vga_state)
|
|
return arch_set_vga_state(dev, decode, command_bits,
|
|
flags);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pci_set_vga_state - set VGA decode state on device and parents if requested
|
|
* @dev: the PCI device
|
|
* @decode: true = enable decoding, false = disable decoding
|
|
* @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
|
|
* @flags: traverse ancestors and change bridges
|
|
* CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
|
|
*/
|
|
int pci_set_vga_state(struct pci_dev *dev, bool decode,
|
|
unsigned int command_bits, u32 flags)
|
|
{
|
|
struct pci_bus *bus;
|
|
struct pci_dev *bridge;
|
|
u16 cmd;
|
|
int rc;
|
|
|
|
WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
|
|
|
|
/* ARCH specific VGA enables */
|
|
rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
|
|
pci_read_config_word(dev, PCI_COMMAND, &cmd);
|
|
if (decode)
|
|
cmd |= command_bits;
|
|
else
|
|
cmd &= ~command_bits;
|
|
pci_write_config_word(dev, PCI_COMMAND, cmd);
|
|
}
|
|
|
|
if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
|
|
return 0;
|
|
|
|
bus = dev->bus;
|
|
while (bus) {
|
|
bridge = bus->self;
|
|
if (bridge) {
|
|
pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
|
|
&cmd);
|
|
if (decode)
|
|
cmd |= PCI_BRIDGE_CTL_VGA;
|
|
else
|
|
cmd &= ~PCI_BRIDGE_CTL_VGA;
|
|
pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
|
|
cmd);
|
|
}
|
|
bus = bus->parent;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_ACPI
|
|
bool pci_pr3_present(struct pci_dev *pdev)
|
|
{
|
|
struct acpi_device *adev;
|
|
|
|
if (acpi_disabled)
|
|
return false;
|
|
|
|
adev = ACPI_COMPANION(&pdev->dev);
|
|
if (!adev)
|
|
return false;
|
|
|
|
return adev->power.flags.power_resources &&
|
|
acpi_has_method(adev->handle, "_PR3");
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_pr3_present);
|
|
#endif
|
|
|
|
/**
|
|
* pci_add_dma_alias - Add a DMA devfn alias for a device
|
|
* @dev: the PCI device for which alias is added
|
|
* @devfn_from: alias slot and function
|
|
* @nr_devfns: number of subsequent devfns to alias
|
|
*
|
|
* This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
|
|
* which is used to program permissible bus-devfn source addresses for DMA
|
|
* requests in an IOMMU. These aliases factor into IOMMU group creation
|
|
* and are useful for devices generating DMA requests beyond or different
|
|
* from their logical bus-devfn. Examples include device quirks where the
|
|
* device simply uses the wrong devfn, as well as non-transparent bridges
|
|
* where the alias may be a proxy for devices in another domain.
|
|
*
|
|
* IOMMU group creation is performed during device discovery or addition,
|
|
* prior to any potential DMA mapping and therefore prior to driver probing
|
|
* (especially for userspace assigned devices where IOMMU group definition
|
|
* cannot be left as a userspace activity). DMA aliases should therefore
|
|
* be configured via quirks, such as the PCI fixup header quirk.
|
|
*/
|
|
void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
|
|
unsigned int nr_devfns)
|
|
{
|
|
int devfn_to;
|
|
|
|
nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
|
|
devfn_to = devfn_from + nr_devfns - 1;
|
|
|
|
if (!dev->dma_alias_mask)
|
|
dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
|
|
if (!dev->dma_alias_mask) {
|
|
pci_warn(dev, "Unable to allocate DMA alias mask\n");
|
|
return;
|
|
}
|
|
|
|
bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
|
|
|
|
if (nr_devfns == 1)
|
|
pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
|
|
PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
|
|
else if (nr_devfns > 1)
|
|
pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
|
|
PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
|
|
PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
|
|
}
|
|
|
|
bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
|
|
{
|
|
return (dev1->dma_alias_mask &&
|
|
test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
|
|
(dev2->dma_alias_mask &&
|
|
test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
|
|
pci_real_dma_dev(dev1) == dev2 ||
|
|
pci_real_dma_dev(dev2) == dev1;
|
|
}
|
|
|
|
bool pci_device_is_present(struct pci_dev *pdev)
|
|
{
|
|
u32 v;
|
|
|
|
/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
|
|
pdev = pci_physfn(pdev);
|
|
if (pci_dev_is_disconnected(pdev))
|
|
return false;
|
|
return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_device_is_present);
|
|
|
|
void pci_ignore_hotplug(struct pci_dev *dev)
|
|
{
|
|
struct pci_dev *bridge = dev->bus->self;
|
|
|
|
dev->ignore_hotplug = 1;
|
|
/* Propagate the "ignore hotplug" setting to the parent bridge. */
|
|
if (bridge)
|
|
bridge->ignore_hotplug = 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
|
|
|
|
/**
|
|
* pci_real_dma_dev - Get PCI DMA device for PCI device
|
|
* @dev: the PCI device that may have a PCI DMA alias
|
|
*
|
|
* Permits the platform to provide architecture-specific functionality to
|
|
* devices needing to alias DMA to another PCI device on another PCI bus. If
|
|
* the PCI device is on the same bus, it is recommended to use
|
|
* pci_add_dma_alias(). This is the default implementation. Architecture
|
|
* implementations can override this.
|
|
*/
|
|
struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
|
|
{
|
|
return dev;
|
|
}
|
|
|
|
resource_size_t __weak pcibios_default_alignment(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Arches that don't want to expose struct resource to userland as-is in
|
|
* sysfs and /proc can implement their own pci_resource_to_user().
|
|
*/
|
|
void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
|
|
const struct resource *rsrc,
|
|
resource_size_t *start, resource_size_t *end)
|
|
{
|
|
*start = rsrc->start;
|
|
*end = rsrc->end;
|
|
}
|
|
|
|
static char *resource_alignment_param;
|
|
static DEFINE_SPINLOCK(resource_alignment_lock);
|
|
|
|
/**
|
|
* pci_specified_resource_alignment - get resource alignment specified by user.
|
|
* @dev: the PCI device to get
|
|
* @resize: whether or not to change resources' size when reassigning alignment
|
|
*
|
|
* RETURNS: Resource alignment if it is specified.
|
|
* Zero if it is not specified.
|
|
*/
|
|
static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
|
|
bool *resize)
|
|
{
|
|
int align_order, count;
|
|
resource_size_t align = pcibios_default_alignment();
|
|
const char *p;
|
|
int ret;
|
|
|
|
spin_lock(&resource_alignment_lock);
|
|
p = resource_alignment_param;
|
|
if (!p || !*p)
|
|
goto out;
|
|
if (pci_has_flag(PCI_PROBE_ONLY)) {
|
|
align = 0;
|
|
pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
|
|
goto out;
|
|
}
|
|
|
|
while (*p) {
|
|
count = 0;
|
|
if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
|
|
p[count] == '@') {
|
|
p += count + 1;
|
|
if (align_order > 63) {
|
|
pr_err("PCI: Invalid requested alignment (order %d)\n",
|
|
align_order);
|
|
align_order = PAGE_SHIFT;
|
|
}
|
|
} else {
|
|
align_order = PAGE_SHIFT;
|
|
}
|
|
|
|
ret = pci_dev_str_match(dev, p, &p);
|
|
if (ret == 1) {
|
|
*resize = true;
|
|
align = 1ULL << align_order;
|
|
break;
|
|
} else if (ret < 0) {
|
|
pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
|
|
p);
|
|
break;
|
|
}
|
|
|
|
if (*p != ';' && *p != ',') {
|
|
/* End of param or invalid format */
|
|
break;
|
|
}
|
|
p++;
|
|
}
|
|
out:
|
|
spin_unlock(&resource_alignment_lock);
|
|
return align;
|
|
}
|
|
|
|
static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
|
|
resource_size_t align, bool resize)
|
|
{
|
|
struct resource *r = &dev->resource[bar];
|
|
resource_size_t size;
|
|
|
|
if (!(r->flags & IORESOURCE_MEM))
|
|
return;
|
|
|
|
if (r->flags & IORESOURCE_PCI_FIXED) {
|
|
pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
|
|
bar, r, (unsigned long long)align);
|
|
return;
|
|
}
|
|
|
|
size = resource_size(r);
|
|
if (size >= align)
|
|
return;
|
|
|
|
/*
|
|
* Increase the alignment of the resource. There are two ways we
|
|
* can do this:
|
|
*
|
|
* 1) Increase the size of the resource. BARs are aligned on their
|
|
* size, so when we reallocate space for this resource, we'll
|
|
* allocate it with the larger alignment. This also prevents
|
|
* assignment of any other BARs inside the alignment region, so
|
|
* if we're requesting page alignment, this means no other BARs
|
|
* will share the page.
|
|
*
|
|
* The disadvantage is that this makes the resource larger than
|
|
* the hardware BAR, which may break drivers that compute things
|
|
* based on the resource size, e.g., to find registers at a
|
|
* fixed offset before the end of the BAR.
|
|
*
|
|
* 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
|
|
* set r->start to the desired alignment. By itself this
|
|
* doesn't prevent other BARs being put inside the alignment
|
|
* region, but if we realign *every* resource of every device in
|
|
* the system, none of them will share an alignment region.
|
|
*
|
|
* When the user has requested alignment for only some devices via
|
|
* the "pci=resource_alignment" argument, "resize" is true and we
|
|
* use the first method. Otherwise we assume we're aligning all
|
|
* devices and we use the second.
|
|
*/
|
|
|
|
pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
|
|
bar, r, (unsigned long long)align);
|
|
|
|
if (resize) {
|
|
r->start = 0;
|
|
r->end = align - 1;
|
|
} else {
|
|
r->flags &= ~IORESOURCE_SIZEALIGN;
|
|
r->flags |= IORESOURCE_STARTALIGN;
|
|
r->start = align;
|
|
r->end = r->start + size - 1;
|
|
}
|
|
r->flags |= IORESOURCE_UNSET;
|
|
}
|
|
|
|
/*
|
|
* This function disables memory decoding and releases memory resources
|
|
* of the device specified by kernel's boot parameter 'pci=resource_alignment='.
|
|
* It also rounds up size to specified alignment.
|
|
* Later on, the kernel will assign page-aligned memory resource back
|
|
* to the device.
|
|
*/
|
|
void pci_reassigndev_resource_alignment(struct pci_dev *dev)
|
|
{
|
|
int i;
|
|
struct resource *r;
|
|
resource_size_t align;
|
|
u16 command;
|
|
bool resize = false;
|
|
|
|
/*
|
|
* VF BARs are read-only zero according to SR-IOV spec r1.1, sec
|
|
* 3.4.1.11. Their resources are allocated from the space
|
|
* described by the VF BARx register in the PF's SR-IOV capability.
|
|
* We can't influence their alignment here.
|
|
*/
|
|
if (dev->is_virtfn)
|
|
return;
|
|
|
|
/* check if specified PCI is target device to reassign */
|
|
align = pci_specified_resource_alignment(dev, &resize);
|
|
if (!align)
|
|
return;
|
|
|
|
if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
|
|
(dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
|
|
pci_warn(dev, "Can't reassign resources to host bridge\n");
|
|
return;
|
|
}
|
|
|
|
pci_read_config_word(dev, PCI_COMMAND, &command);
|
|
command &= ~PCI_COMMAND_MEMORY;
|
|
pci_write_config_word(dev, PCI_COMMAND, command);
|
|
|
|
for (i = 0; i <= PCI_ROM_RESOURCE; i++)
|
|
pci_request_resource_alignment(dev, i, align, resize);
|
|
|
|
/*
|
|
* Need to disable bridge's resource window,
|
|
* to enable the kernel to reassign new resource
|
|
* window later on.
|
|
*/
|
|
if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
|
|
for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
|
|
r = &dev->resource[i];
|
|
if (!(r->flags & IORESOURCE_MEM))
|
|
continue;
|
|
r->flags |= IORESOURCE_UNSET;
|
|
r->end = resource_size(r) - 1;
|
|
r->start = 0;
|
|
}
|
|
pci_disable_bridge_window(dev);
|
|
}
|
|
}
|
|
|
|
static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
|
|
{
|
|
size_t count = 0;
|
|
|
|
spin_lock(&resource_alignment_lock);
|
|
if (resource_alignment_param)
|
|
count = sysfs_emit(buf, "%s\n", resource_alignment_param);
|
|
spin_unlock(&resource_alignment_lock);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t resource_alignment_store(const struct bus_type *bus,
|
|
const char *buf, size_t count)
|
|
{
|
|
char *param, *old, *end;
|
|
|
|
if (count >= (PAGE_SIZE - 1))
|
|
return -EINVAL;
|
|
|
|
param = kstrndup(buf, count, GFP_KERNEL);
|
|
if (!param)
|
|
return -ENOMEM;
|
|
|
|
end = strchr(param, '\n');
|
|
if (end)
|
|
*end = '\0';
|
|
|
|
spin_lock(&resource_alignment_lock);
|
|
old = resource_alignment_param;
|
|
if (strlen(param)) {
|
|
resource_alignment_param = param;
|
|
} else {
|
|
kfree(param);
|
|
resource_alignment_param = NULL;
|
|
}
|
|
spin_unlock(&resource_alignment_lock);
|
|
|
|
kfree(old);
|
|
|
|
return count;
|
|
}
|
|
|
|
static BUS_ATTR_RW(resource_alignment);
|
|
|
|
static int __init pci_resource_alignment_sysfs_init(void)
|
|
{
|
|
return bus_create_file(&pci_bus_type,
|
|
&bus_attr_resource_alignment);
|
|
}
|
|
late_initcall(pci_resource_alignment_sysfs_init);
|
|
|
|
static void pci_no_domains(void)
|
|
{
|
|
#ifdef CONFIG_PCI_DOMAINS
|
|
pci_domains_supported = 0;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_PCI_DOMAINS_GENERIC
|
|
static DEFINE_IDA(pci_domain_nr_static_ida);
|
|
static DEFINE_IDA(pci_domain_nr_dynamic_ida);
|
|
|
|
static void of_pci_reserve_static_domain_nr(void)
|
|
{
|
|
struct device_node *np;
|
|
int domain_nr;
|
|
|
|
for_each_node_by_type(np, "pci") {
|
|
domain_nr = of_get_pci_domain_nr(np);
|
|
if (domain_nr < 0)
|
|
continue;
|
|
/*
|
|
* Permanently allocate domain_nr in dynamic_ida
|
|
* to prevent it from dynamic allocation.
|
|
*/
|
|
ida_alloc_range(&pci_domain_nr_dynamic_ida,
|
|
domain_nr, domain_nr, GFP_KERNEL);
|
|
}
|
|
}
|
|
|
|
static int of_pci_bus_find_domain_nr(struct device *parent)
|
|
{
|
|
static bool static_domains_reserved = false;
|
|
int domain_nr;
|
|
|
|
/* On the first call scan device tree for static allocations. */
|
|
if (!static_domains_reserved) {
|
|
of_pci_reserve_static_domain_nr();
|
|
static_domains_reserved = true;
|
|
}
|
|
|
|
if (parent) {
|
|
/*
|
|
* If domain is in DT, allocate it in static IDA. This
|
|
* prevents duplicate static allocations in case of errors
|
|
* in DT.
|
|
*/
|
|
domain_nr = of_get_pci_domain_nr(parent->of_node);
|
|
if (domain_nr >= 0)
|
|
return ida_alloc_range(&pci_domain_nr_static_ida,
|
|
domain_nr, domain_nr,
|
|
GFP_KERNEL);
|
|
}
|
|
|
|
/*
|
|
* If domain was not specified in DT, choose a free ID from dynamic
|
|
* allocations. All domain numbers from DT are permanently in
|
|
* dynamic allocations to prevent assigning them to other DT nodes
|
|
* without static domain.
|
|
*/
|
|
return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
|
|
}
|
|
|
|
static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
|
|
{
|
|
if (bus->domain_nr < 0)
|
|
return;
|
|
|
|
/* Release domain from IDA where it was allocated. */
|
|
if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
|
|
ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
|
|
else
|
|
ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
|
|
}
|
|
|
|
int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
|
|
{
|
|
return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
|
|
acpi_pci_bus_find_domain_nr(bus);
|
|
}
|
|
|
|
void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
|
|
{
|
|
if (!acpi_disabled)
|
|
return;
|
|
of_pci_bus_release_domain_nr(bus, parent);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* pci_ext_cfg_avail - can we access extended PCI config space?
|
|
*
|
|
* Returns 1 if we can access PCI extended config space (offsets
|
|
* greater than 0xff). This is the default implementation. Architecture
|
|
* implementations can override this.
|
|
*/
|
|
int __weak pci_ext_cfg_avail(void)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
void __weak pci_fixup_cardbus(struct pci_bus *bus)
|
|
{
|
|
}
|
|
EXPORT_SYMBOL(pci_fixup_cardbus);
|
|
|
|
static int __init pci_setup(char *str)
|
|
{
|
|
while (str) {
|
|
char *k = strchr(str, ',');
|
|
if (k)
|
|
*k++ = 0;
|
|
if (*str && (str = pcibios_setup(str)) && *str) {
|
|
if (!strcmp(str, "nomsi")) {
|
|
pci_no_msi();
|
|
} else if (!strncmp(str, "noats", 5)) {
|
|
pr_info("PCIe: ATS is disabled\n");
|
|
pcie_ats_disabled = true;
|
|
} else if (!strcmp(str, "noaer")) {
|
|
pci_no_aer();
|
|
} else if (!strcmp(str, "earlydump")) {
|
|
pci_early_dump = true;
|
|
} else if (!strncmp(str, "realloc=", 8)) {
|
|
pci_realloc_get_opt(str + 8);
|
|
} else if (!strncmp(str, "realloc", 7)) {
|
|
pci_realloc_get_opt("on");
|
|
} else if (!strcmp(str, "nodomains")) {
|
|
pci_no_domains();
|
|
} else if (!strncmp(str, "noari", 5)) {
|
|
pcie_ari_disabled = true;
|
|
} else if (!strncmp(str, "cbiosize=", 9)) {
|
|
pci_cardbus_io_size = memparse(str + 9, &str);
|
|
} else if (!strncmp(str, "cbmemsize=", 10)) {
|
|
pci_cardbus_mem_size = memparse(str + 10, &str);
|
|
} else if (!strncmp(str, "resource_alignment=", 19)) {
|
|
resource_alignment_param = str + 19;
|
|
} else if (!strncmp(str, "ecrc=", 5)) {
|
|
pcie_ecrc_get_policy(str + 5);
|
|
} else if (!strncmp(str, "hpiosize=", 9)) {
|
|
pci_hotplug_io_size = memparse(str + 9, &str);
|
|
} else if (!strncmp(str, "hpmmiosize=", 11)) {
|
|
pci_hotplug_mmio_size = memparse(str + 11, &str);
|
|
} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
|
|
pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
|
|
} else if (!strncmp(str, "hpmemsize=", 10)) {
|
|
pci_hotplug_mmio_size = memparse(str + 10, &str);
|
|
pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
|
|
} else if (!strncmp(str, "hpbussize=", 10)) {
|
|
pci_hotplug_bus_size =
|
|
simple_strtoul(str + 10, &str, 0);
|
|
if (pci_hotplug_bus_size > 0xff)
|
|
pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
|
|
} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
|
|
pcie_bus_config = PCIE_BUS_TUNE_OFF;
|
|
} else if (!strncmp(str, "pcie_bus_safe", 13)) {
|
|
pcie_bus_config = PCIE_BUS_SAFE;
|
|
} else if (!strncmp(str, "pcie_bus_perf", 13)) {
|
|
pcie_bus_config = PCIE_BUS_PERFORMANCE;
|
|
} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
|
|
pcie_bus_config = PCIE_BUS_PEER2PEER;
|
|
} else if (!strncmp(str, "pcie_scan_all", 13)) {
|
|
pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
|
|
} else if (!strncmp(str, "disable_acs_redir=", 18)) {
|
|
disable_acs_redir_param = str + 18;
|
|
} else {
|
|
pr_err("PCI: Unknown option `%s'\n", str);
|
|
}
|
|
}
|
|
str = k;
|
|
}
|
|
return 0;
|
|
}
|
|
early_param("pci", pci_setup);
|
|
|
|
/*
|
|
* 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
|
|
* in pci_setup(), above, to point to data in the __initdata section which
|
|
* will be freed after the init sequence is complete. We can't allocate memory
|
|
* in pci_setup() because some architectures do not have any memory allocation
|
|
* service available during an early_param() call. So we allocate memory and
|
|
* copy the variable here before the init section is freed.
|
|
*
|
|
*/
|
|
static int __init pci_realloc_setup_params(void)
|
|
{
|
|
resource_alignment_param = kstrdup(resource_alignment_param,
|
|
GFP_KERNEL);
|
|
disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
|
|
|
|
return 0;
|
|
}
|
|
pure_initcall(pci_realloc_setup_params);
|