mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 05:32:00 +00:00
530886897c
Printed Opcodes may be missing leading zeros: Bluetooth: hci0: Opcode 0x c03 failed: -110 Fix this by always printing leading zeros: Bluetooth: hci0: Opcode 0x0c03 failed: -110 Fixes:d0b137062b
("Bluetooth: hci_sync: Rework init stages") Fixes:6a98e3836f
("Bluetooth: Add helper for serialized HCI command execution") Signed-off-by: Marcel Ziswiler <marcel.ziswiler@toradex.com> Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
6564 lines
170 KiB
C
6564 lines
170 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
||
/*
|
||
* BlueZ - Bluetooth protocol stack for Linux
|
||
*
|
||
* Copyright (C) 2021 Intel Corporation
|
||
* Copyright 2023 NXP
|
||
*/
|
||
|
||
#include <linux/property.h>
|
||
|
||
#include <net/bluetooth/bluetooth.h>
|
||
#include <net/bluetooth/hci_core.h>
|
||
#include <net/bluetooth/mgmt.h>
|
||
|
||
#include "hci_request.h"
|
||
#include "hci_codec.h"
|
||
#include "hci_debugfs.h"
|
||
#include "smp.h"
|
||
#include "eir.h"
|
||
#include "msft.h"
|
||
#include "aosp.h"
|
||
#include "leds.h"
|
||
|
||
static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
|
||
struct sk_buff *skb)
|
||
{
|
||
bt_dev_dbg(hdev, "result 0x%2.2x", result);
|
||
|
||
if (hdev->req_status != HCI_REQ_PEND)
|
||
return;
|
||
|
||
hdev->req_result = result;
|
||
hdev->req_status = HCI_REQ_DONE;
|
||
|
||
if (skb) {
|
||
struct sock *sk = hci_skb_sk(skb);
|
||
|
||
/* Drop sk reference if set */
|
||
if (sk)
|
||
sock_put(sk);
|
||
|
||
hdev->req_skb = skb_get(skb);
|
||
}
|
||
|
||
wake_up_interruptible(&hdev->req_wait_q);
|
||
}
|
||
|
||
static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
|
||
u32 plen, const void *param,
|
||
struct sock *sk)
|
||
{
|
||
int len = HCI_COMMAND_HDR_SIZE + plen;
|
||
struct hci_command_hdr *hdr;
|
||
struct sk_buff *skb;
|
||
|
||
skb = bt_skb_alloc(len, GFP_ATOMIC);
|
||
if (!skb)
|
||
return NULL;
|
||
|
||
hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
|
||
hdr->opcode = cpu_to_le16(opcode);
|
||
hdr->plen = plen;
|
||
|
||
if (plen)
|
||
skb_put_data(skb, param, plen);
|
||
|
||
bt_dev_dbg(hdev, "skb len %d", skb->len);
|
||
|
||
hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
|
||
hci_skb_opcode(skb) = opcode;
|
||
|
||
/* Grab a reference if command needs to be associated with a sock (e.g.
|
||
* likely mgmt socket that initiated the command).
|
||
*/
|
||
if (sk) {
|
||
hci_skb_sk(skb) = sk;
|
||
sock_hold(sk);
|
||
}
|
||
|
||
return skb;
|
||
}
|
||
|
||
static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
|
||
const void *param, u8 event, struct sock *sk)
|
||
{
|
||
struct hci_dev *hdev = req->hdev;
|
||
struct sk_buff *skb;
|
||
|
||
bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
|
||
|
||
/* If an error occurred during request building, there is no point in
|
||
* queueing the HCI command. We can simply return.
|
||
*/
|
||
if (req->err)
|
||
return;
|
||
|
||
skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
|
||
if (!skb) {
|
||
bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
|
||
opcode);
|
||
req->err = -ENOMEM;
|
||
return;
|
||
}
|
||
|
||
if (skb_queue_empty(&req->cmd_q))
|
||
bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
|
||
|
||
hci_skb_event(skb) = event;
|
||
|
||
skb_queue_tail(&req->cmd_q, skb);
|
||
}
|
||
|
||
static int hci_cmd_sync_run(struct hci_request *req)
|
||
{
|
||
struct hci_dev *hdev = req->hdev;
|
||
struct sk_buff *skb;
|
||
unsigned long flags;
|
||
|
||
bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
|
||
|
||
/* If an error occurred during request building, remove all HCI
|
||
* commands queued on the HCI request queue.
|
||
*/
|
||
if (req->err) {
|
||
skb_queue_purge(&req->cmd_q);
|
||
return req->err;
|
||
}
|
||
|
||
/* Do not allow empty requests */
|
||
if (skb_queue_empty(&req->cmd_q))
|
||
return -ENODATA;
|
||
|
||
skb = skb_peek_tail(&req->cmd_q);
|
||
bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
|
||
bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
|
||
|
||
spin_lock_irqsave(&hdev->cmd_q.lock, flags);
|
||
skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
|
||
spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
|
||
|
||
queue_work(hdev->workqueue, &hdev->cmd_work);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* This function requires the caller holds hdev->req_lock. */
|
||
struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
|
||
const void *param, u8 event, u32 timeout,
|
||
struct sock *sk)
|
||
{
|
||
struct hci_request req;
|
||
struct sk_buff *skb;
|
||
int err = 0;
|
||
|
||
bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode);
|
||
|
||
hci_req_init(&req, hdev);
|
||
|
||
hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
|
||
|
||
hdev->req_status = HCI_REQ_PEND;
|
||
|
||
err = hci_cmd_sync_run(&req);
|
||
if (err < 0)
|
||
return ERR_PTR(err);
|
||
|
||
err = wait_event_interruptible_timeout(hdev->req_wait_q,
|
||
hdev->req_status != HCI_REQ_PEND,
|
||
timeout);
|
||
|
||
if (err == -ERESTARTSYS)
|
||
return ERR_PTR(-EINTR);
|
||
|
||
switch (hdev->req_status) {
|
||
case HCI_REQ_DONE:
|
||
err = -bt_to_errno(hdev->req_result);
|
||
break;
|
||
|
||
case HCI_REQ_CANCELED:
|
||
err = -hdev->req_result;
|
||
break;
|
||
|
||
default:
|
||
err = -ETIMEDOUT;
|
||
break;
|
||
}
|
||
|
||
hdev->req_status = 0;
|
||
hdev->req_result = 0;
|
||
skb = hdev->req_skb;
|
||
hdev->req_skb = NULL;
|
||
|
||
bt_dev_dbg(hdev, "end: err %d", err);
|
||
|
||
if (err < 0) {
|
||
kfree_skb(skb);
|
||
return ERR_PTR(err);
|
||
}
|
||
|
||
return skb;
|
||
}
|
||
EXPORT_SYMBOL(__hci_cmd_sync_sk);
|
||
|
||
/* This function requires the caller holds hdev->req_lock. */
|
||
struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
|
||
const void *param, u32 timeout)
|
||
{
|
||
return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
|
||
}
|
||
EXPORT_SYMBOL(__hci_cmd_sync);
|
||
|
||
/* Send HCI command and wait for command complete event */
|
||
struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
|
||
const void *param, u32 timeout)
|
||
{
|
||
struct sk_buff *skb;
|
||
|
||
if (!test_bit(HCI_UP, &hdev->flags))
|
||
return ERR_PTR(-ENETDOWN);
|
||
|
||
bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
|
||
|
||
hci_req_sync_lock(hdev);
|
||
skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
|
||
hci_req_sync_unlock(hdev);
|
||
|
||
return skb;
|
||
}
|
||
EXPORT_SYMBOL(hci_cmd_sync);
|
||
|
||
/* This function requires the caller holds hdev->req_lock. */
|
||
struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
|
||
const void *param, u8 event, u32 timeout)
|
||
{
|
||
return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
|
||
NULL);
|
||
}
|
||
EXPORT_SYMBOL(__hci_cmd_sync_ev);
|
||
|
||
/* This function requires the caller holds hdev->req_lock. */
|
||
int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
|
||
const void *param, u8 event, u32 timeout,
|
||
struct sock *sk)
|
||
{
|
||
struct sk_buff *skb;
|
||
u8 status;
|
||
|
||
skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
|
||
if (IS_ERR(skb)) {
|
||
if (!event)
|
||
bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode,
|
||
PTR_ERR(skb));
|
||
return PTR_ERR(skb);
|
||
}
|
||
|
||
/* If command return a status event skb will be set to NULL as there are
|
||
* no parameters, in case of failure IS_ERR(skb) would have be set to
|
||
* the actual error would be found with PTR_ERR(skb).
|
||
*/
|
||
if (!skb)
|
||
return 0;
|
||
|
||
status = skb->data[0];
|
||
|
||
kfree_skb(skb);
|
||
|
||
return status;
|
||
}
|
||
EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
|
||
|
||
int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
|
||
const void *param, u32 timeout)
|
||
{
|
||
return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
|
||
NULL);
|
||
}
|
||
EXPORT_SYMBOL(__hci_cmd_sync_status);
|
||
|
||
static void hci_cmd_sync_work(struct work_struct *work)
|
||
{
|
||
struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
/* Dequeue all entries and run them */
|
||
while (1) {
|
||
struct hci_cmd_sync_work_entry *entry;
|
||
|
||
mutex_lock(&hdev->cmd_sync_work_lock);
|
||
entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
|
||
struct hci_cmd_sync_work_entry,
|
||
list);
|
||
if (entry)
|
||
list_del(&entry->list);
|
||
mutex_unlock(&hdev->cmd_sync_work_lock);
|
||
|
||
if (!entry)
|
||
break;
|
||
|
||
bt_dev_dbg(hdev, "entry %p", entry);
|
||
|
||
if (entry->func) {
|
||
int err;
|
||
|
||
hci_req_sync_lock(hdev);
|
||
err = entry->func(hdev, entry->data);
|
||
if (entry->destroy)
|
||
entry->destroy(hdev, entry->data, err);
|
||
hci_req_sync_unlock(hdev);
|
||
}
|
||
|
||
kfree(entry);
|
||
}
|
||
}
|
||
|
||
static void hci_cmd_sync_cancel_work(struct work_struct *work)
|
||
{
|
||
struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
|
||
|
||
cancel_delayed_work_sync(&hdev->cmd_timer);
|
||
cancel_delayed_work_sync(&hdev->ncmd_timer);
|
||
atomic_set(&hdev->cmd_cnt, 1);
|
||
|
||
wake_up_interruptible(&hdev->req_wait_q);
|
||
}
|
||
|
||
static int hci_scan_disable_sync(struct hci_dev *hdev);
|
||
static int scan_disable_sync(struct hci_dev *hdev, void *data)
|
||
{
|
||
return hci_scan_disable_sync(hdev);
|
||
}
|
||
|
||
static int hci_inquiry_sync(struct hci_dev *hdev, u8 length);
|
||
static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data)
|
||
{
|
||
return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN);
|
||
}
|
||
|
||
static void le_scan_disable(struct work_struct *work)
|
||
{
|
||
struct hci_dev *hdev = container_of(work, struct hci_dev,
|
||
le_scan_disable.work);
|
||
int status;
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
hci_dev_lock(hdev);
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
|
||
goto _return;
|
||
|
||
cancel_delayed_work(&hdev->le_scan_restart);
|
||
|
||
status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL);
|
||
if (status) {
|
||
bt_dev_err(hdev, "failed to disable LE scan: %d", status);
|
||
goto _return;
|
||
}
|
||
|
||
hdev->discovery.scan_start = 0;
|
||
|
||
/* If we were running LE only scan, change discovery state. If
|
||
* we were running both LE and BR/EDR inquiry simultaneously,
|
||
* and BR/EDR inquiry is already finished, stop discovery,
|
||
* otherwise BR/EDR inquiry will stop discovery when finished.
|
||
* If we will resolve remote device name, do not change
|
||
* discovery state.
|
||
*/
|
||
|
||
if (hdev->discovery.type == DISCOV_TYPE_LE)
|
||
goto discov_stopped;
|
||
|
||
if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
|
||
goto _return;
|
||
|
||
if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
|
||
if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
|
||
hdev->discovery.state != DISCOVERY_RESOLVING)
|
||
goto discov_stopped;
|
||
|
||
goto _return;
|
||
}
|
||
|
||
status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL);
|
||
if (status) {
|
||
bt_dev_err(hdev, "inquiry failed: status %d", status);
|
||
goto discov_stopped;
|
||
}
|
||
|
||
goto _return;
|
||
|
||
discov_stopped:
|
||
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
|
||
|
||
_return:
|
||
hci_dev_unlock(hdev);
|
||
}
|
||
|
||
static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
|
||
u8 filter_dup);
|
||
static int hci_le_scan_restart_sync(struct hci_dev *hdev)
|
||
{
|
||
/* If controller is not scanning we are done. */
|
||
if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
|
||
return 0;
|
||
|
||
if (hdev->scanning_paused) {
|
||
bt_dev_dbg(hdev, "Scanning is paused for suspend");
|
||
return 0;
|
||
}
|
||
|
||
hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
|
||
return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE,
|
||
LE_SCAN_FILTER_DUP_ENABLE);
|
||
}
|
||
|
||
static void le_scan_restart(struct work_struct *work)
|
||
{
|
||
struct hci_dev *hdev = container_of(work, struct hci_dev,
|
||
le_scan_restart.work);
|
||
unsigned long timeout, duration, scan_start, now;
|
||
int status;
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
status = hci_le_scan_restart_sync(hdev);
|
||
if (status) {
|
||
bt_dev_err(hdev, "failed to restart LE scan: status %d",
|
||
status);
|
||
return;
|
||
}
|
||
|
||
hci_dev_lock(hdev);
|
||
|
||
if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
|
||
!hdev->discovery.scan_start)
|
||
goto unlock;
|
||
|
||
/* When the scan was started, hdev->le_scan_disable has been queued
|
||
* after duration from scan_start. During scan restart this job
|
||
* has been canceled, and we need to queue it again after proper
|
||
* timeout, to make sure that scan does not run indefinitely.
|
||
*/
|
||
duration = hdev->discovery.scan_duration;
|
||
scan_start = hdev->discovery.scan_start;
|
||
now = jiffies;
|
||
if (now - scan_start <= duration) {
|
||
int elapsed;
|
||
|
||
if (now >= scan_start)
|
||
elapsed = now - scan_start;
|
||
else
|
||
elapsed = ULONG_MAX - scan_start + now;
|
||
|
||
timeout = duration - elapsed;
|
||
} else {
|
||
timeout = 0;
|
||
}
|
||
|
||
queue_delayed_work(hdev->req_workqueue,
|
||
&hdev->le_scan_disable, timeout);
|
||
|
||
unlock:
|
||
hci_dev_unlock(hdev);
|
||
}
|
||
|
||
static int reenable_adv_sync(struct hci_dev *hdev, void *data)
|
||
{
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
|
||
list_empty(&hdev->adv_instances))
|
||
return 0;
|
||
|
||
if (hdev->cur_adv_instance) {
|
||
return hci_schedule_adv_instance_sync(hdev,
|
||
hdev->cur_adv_instance,
|
||
true);
|
||
} else {
|
||
if (ext_adv_capable(hdev)) {
|
||
hci_start_ext_adv_sync(hdev, 0x00);
|
||
} else {
|
||
hci_update_adv_data_sync(hdev, 0x00);
|
||
hci_update_scan_rsp_data_sync(hdev, 0x00);
|
||
hci_enable_advertising_sync(hdev);
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void reenable_adv(struct work_struct *work)
|
||
{
|
||
struct hci_dev *hdev = container_of(work, struct hci_dev,
|
||
reenable_adv_work);
|
||
int status;
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
hci_dev_lock(hdev);
|
||
|
||
status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL);
|
||
if (status)
|
||
bt_dev_err(hdev, "failed to reenable ADV: %d", status);
|
||
|
||
hci_dev_unlock(hdev);
|
||
}
|
||
|
||
static void cancel_adv_timeout(struct hci_dev *hdev)
|
||
{
|
||
if (hdev->adv_instance_timeout) {
|
||
hdev->adv_instance_timeout = 0;
|
||
cancel_delayed_work(&hdev->adv_instance_expire);
|
||
}
|
||
}
|
||
|
||
/* For a single instance:
|
||
* - force == true: The instance will be removed even when its remaining
|
||
* lifetime is not zero.
|
||
* - force == false: the instance will be deactivated but kept stored unless
|
||
* the remaining lifetime is zero.
|
||
*
|
||
* For instance == 0x00:
|
||
* - force == true: All instances will be removed regardless of their timeout
|
||
* setting.
|
||
* - force == false: Only instances that have a timeout will be removed.
|
||
*/
|
||
int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk,
|
||
u8 instance, bool force)
|
||
{
|
||
struct adv_info *adv_instance, *n, *next_instance = NULL;
|
||
int err;
|
||
u8 rem_inst;
|
||
|
||
/* Cancel any timeout concerning the removed instance(s). */
|
||
if (!instance || hdev->cur_adv_instance == instance)
|
||
cancel_adv_timeout(hdev);
|
||
|
||
/* Get the next instance to advertise BEFORE we remove
|
||
* the current one. This can be the same instance again
|
||
* if there is only one instance.
|
||
*/
|
||
if (instance && hdev->cur_adv_instance == instance)
|
||
next_instance = hci_get_next_instance(hdev, instance);
|
||
|
||
if (instance == 0x00) {
|
||
list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
|
||
list) {
|
||
if (!(force || adv_instance->timeout))
|
||
continue;
|
||
|
||
rem_inst = adv_instance->instance;
|
||
err = hci_remove_adv_instance(hdev, rem_inst);
|
||
if (!err)
|
||
mgmt_advertising_removed(sk, hdev, rem_inst);
|
||
}
|
||
} else {
|
||
adv_instance = hci_find_adv_instance(hdev, instance);
|
||
|
||
if (force || (adv_instance && adv_instance->timeout &&
|
||
!adv_instance->remaining_time)) {
|
||
/* Don't advertise a removed instance. */
|
||
if (next_instance &&
|
||
next_instance->instance == instance)
|
||
next_instance = NULL;
|
||
|
||
err = hci_remove_adv_instance(hdev, instance);
|
||
if (!err)
|
||
mgmt_advertising_removed(sk, hdev, instance);
|
||
}
|
||
}
|
||
|
||
if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
|
||
return 0;
|
||
|
||
if (next_instance && !ext_adv_capable(hdev))
|
||
return hci_schedule_adv_instance_sync(hdev,
|
||
next_instance->instance,
|
||
false);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data)
|
||
{
|
||
u8 instance = *(u8 *)data;
|
||
|
||
kfree(data);
|
||
|
||
hci_clear_adv_instance_sync(hdev, NULL, instance, false);
|
||
|
||
if (list_empty(&hdev->adv_instances))
|
||
return hci_disable_advertising_sync(hdev);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void adv_timeout_expire(struct work_struct *work)
|
||
{
|
||
u8 *inst_ptr;
|
||
struct hci_dev *hdev = container_of(work, struct hci_dev,
|
||
adv_instance_expire.work);
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
hci_dev_lock(hdev);
|
||
|
||
hdev->adv_instance_timeout = 0;
|
||
|
||
if (hdev->cur_adv_instance == 0x00)
|
||
goto unlock;
|
||
|
||
inst_ptr = kmalloc(1, GFP_KERNEL);
|
||
if (!inst_ptr)
|
||
goto unlock;
|
||
|
||
*inst_ptr = hdev->cur_adv_instance;
|
||
hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL);
|
||
|
||
unlock:
|
||
hci_dev_unlock(hdev);
|
||
}
|
||
|
||
void hci_cmd_sync_init(struct hci_dev *hdev)
|
||
{
|
||
INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
|
||
INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
|
||
mutex_init(&hdev->cmd_sync_work_lock);
|
||
mutex_init(&hdev->unregister_lock);
|
||
|
||
INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
|
||
INIT_WORK(&hdev->reenable_adv_work, reenable_adv);
|
||
INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable);
|
||
INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart);
|
||
INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
|
||
}
|
||
|
||
void hci_cmd_sync_clear(struct hci_dev *hdev)
|
||
{
|
||
struct hci_cmd_sync_work_entry *entry, *tmp;
|
||
|
||
cancel_work_sync(&hdev->cmd_sync_work);
|
||
cancel_work_sync(&hdev->reenable_adv_work);
|
||
|
||
mutex_lock(&hdev->cmd_sync_work_lock);
|
||
list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
|
||
if (entry->destroy)
|
||
entry->destroy(hdev, entry->data, -ECANCELED);
|
||
|
||
list_del(&entry->list);
|
||
kfree(entry);
|
||
}
|
||
mutex_unlock(&hdev->cmd_sync_work_lock);
|
||
}
|
||
|
||
void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
|
||
{
|
||
bt_dev_dbg(hdev, "err 0x%2.2x", err);
|
||
|
||
if (hdev->req_status == HCI_REQ_PEND) {
|
||
hdev->req_result = err;
|
||
hdev->req_status = HCI_REQ_CANCELED;
|
||
|
||
cancel_delayed_work_sync(&hdev->cmd_timer);
|
||
cancel_delayed_work_sync(&hdev->ncmd_timer);
|
||
atomic_set(&hdev->cmd_cnt, 1);
|
||
|
||
wake_up_interruptible(&hdev->req_wait_q);
|
||
}
|
||
}
|
||
|
||
void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
|
||
{
|
||
bt_dev_dbg(hdev, "err 0x%2.2x", err);
|
||
|
||
if (hdev->req_status == HCI_REQ_PEND) {
|
||
hdev->req_result = err;
|
||
hdev->req_status = HCI_REQ_CANCELED;
|
||
|
||
queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
|
||
}
|
||
}
|
||
EXPORT_SYMBOL(hci_cmd_sync_cancel);
|
||
|
||
/* Submit HCI command to be run in as cmd_sync_work:
|
||
*
|
||
* - hdev must _not_ be unregistered
|
||
*/
|
||
int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
|
||
void *data, hci_cmd_sync_work_destroy_t destroy)
|
||
{
|
||
struct hci_cmd_sync_work_entry *entry;
|
||
int err = 0;
|
||
|
||
mutex_lock(&hdev->unregister_lock);
|
||
if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
|
||
err = -ENODEV;
|
||
goto unlock;
|
||
}
|
||
|
||
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
|
||
if (!entry) {
|
||
err = -ENOMEM;
|
||
goto unlock;
|
||
}
|
||
entry->func = func;
|
||
entry->data = data;
|
||
entry->destroy = destroy;
|
||
|
||
mutex_lock(&hdev->cmd_sync_work_lock);
|
||
list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
|
||
mutex_unlock(&hdev->cmd_sync_work_lock);
|
||
|
||
queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
|
||
|
||
unlock:
|
||
mutex_unlock(&hdev->unregister_lock);
|
||
return err;
|
||
}
|
||
EXPORT_SYMBOL(hci_cmd_sync_submit);
|
||
|
||
/* Queue HCI command:
|
||
*
|
||
* - hdev must be running
|
||
*/
|
||
int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
|
||
void *data, hci_cmd_sync_work_destroy_t destroy)
|
||
{
|
||
/* Only queue command if hdev is running which means it had been opened
|
||
* and is either on init phase or is already up.
|
||
*/
|
||
if (!test_bit(HCI_RUNNING, &hdev->flags))
|
||
return -ENETDOWN;
|
||
|
||
return hci_cmd_sync_submit(hdev, func, data, destroy);
|
||
}
|
||
EXPORT_SYMBOL(hci_cmd_sync_queue);
|
||
|
||
int hci_update_eir_sync(struct hci_dev *hdev)
|
||
{
|
||
struct hci_cp_write_eir cp;
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
if (!hdev_is_powered(hdev))
|
||
return 0;
|
||
|
||
if (!lmp_ext_inq_capable(hdev))
|
||
return 0;
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
|
||
return 0;
|
||
|
||
if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
|
||
return 0;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
eir_create(hdev, cp.data);
|
||
|
||
if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
|
||
return 0;
|
||
|
||
memcpy(hdev->eir, cp.data, sizeof(cp.data));
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
|
||
HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static u8 get_service_classes(struct hci_dev *hdev)
|
||
{
|
||
struct bt_uuid *uuid;
|
||
u8 val = 0;
|
||
|
||
list_for_each_entry(uuid, &hdev->uuids, list)
|
||
val |= uuid->svc_hint;
|
||
|
||
return val;
|
||
}
|
||
|
||
int hci_update_class_sync(struct hci_dev *hdev)
|
||
{
|
||
u8 cod[3];
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
if (!hdev_is_powered(hdev))
|
||
return 0;
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
|
||
return 0;
|
||
|
||
if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
|
||
return 0;
|
||
|
||
cod[0] = hdev->minor_class;
|
||
cod[1] = hdev->major_class;
|
||
cod[2] = get_service_classes(hdev);
|
||
|
||
if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
|
||
cod[1] |= 0x20;
|
||
|
||
if (memcmp(cod, hdev->dev_class, 3) == 0)
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
|
||
sizeof(cod), cod, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
|
||
{
|
||
/* If there is no connection we are OK to advertise. */
|
||
if (hci_conn_num(hdev, LE_LINK) == 0)
|
||
return true;
|
||
|
||
/* Check le_states if there is any connection in peripheral role. */
|
||
if (hdev->conn_hash.le_num_peripheral > 0) {
|
||
/* Peripheral connection state and non connectable mode
|
||
* bit 20.
|
||
*/
|
||
if (!connectable && !(hdev->le_states[2] & 0x10))
|
||
return false;
|
||
|
||
/* Peripheral connection state and connectable mode bit 38
|
||
* and scannable bit 21.
|
||
*/
|
||
if (connectable && (!(hdev->le_states[4] & 0x40) ||
|
||
!(hdev->le_states[2] & 0x20)))
|
||
return false;
|
||
}
|
||
|
||
/* Check le_states if there is any connection in central role. */
|
||
if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
|
||
/* Central connection state and non connectable mode bit 18. */
|
||
if (!connectable && !(hdev->le_states[2] & 0x02))
|
||
return false;
|
||
|
||
/* Central connection state and connectable mode bit 35 and
|
||
* scannable 19.
|
||
*/
|
||
if (connectable && (!(hdev->le_states[4] & 0x08) ||
|
||
!(hdev->le_states[2] & 0x08)))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
|
||
{
|
||
/* If privacy is not enabled don't use RPA */
|
||
if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
|
||
return false;
|
||
|
||
/* If basic privacy mode is enabled use RPA */
|
||
if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
|
||
return true;
|
||
|
||
/* If limited privacy mode is enabled don't use RPA if we're
|
||
* both discoverable and bondable.
|
||
*/
|
||
if ((flags & MGMT_ADV_FLAG_DISCOV) &&
|
||
hci_dev_test_flag(hdev, HCI_BONDABLE))
|
||
return false;
|
||
|
||
/* We're neither bondable nor discoverable in the limited
|
||
* privacy mode, therefore use RPA.
|
||
*/
|
||
return true;
|
||
}
|
||
|
||
static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
|
||
{
|
||
/* If we're advertising or initiating an LE connection we can't
|
||
* go ahead and change the random address at this time. This is
|
||
* because the eventual initiator address used for the
|
||
* subsequently created connection will be undefined (some
|
||
* controllers use the new address and others the one we had
|
||
* when the operation started).
|
||
*
|
||
* In this kind of scenario skip the update and let the random
|
||
* address be updated at the next cycle.
|
||
*/
|
||
if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
|
||
hci_lookup_le_connect(hdev)) {
|
||
bt_dev_dbg(hdev, "Deferring random address update");
|
||
hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
|
||
return 0;
|
||
}
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
|
||
6, rpa, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
|
||
bool rpa, u8 *own_addr_type)
|
||
{
|
||
int err;
|
||
|
||
/* If privacy is enabled use a resolvable private address. If
|
||
* current RPA has expired or there is something else than
|
||
* the current RPA in use, then generate a new one.
|
||
*/
|
||
if (rpa) {
|
||
/* If Controller supports LL Privacy use own address type is
|
||
* 0x03
|
||
*/
|
||
if (use_ll_privacy(hdev))
|
||
*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
|
||
else
|
||
*own_addr_type = ADDR_LE_DEV_RANDOM;
|
||
|
||
/* Check if RPA is valid */
|
||
if (rpa_valid(hdev))
|
||
return 0;
|
||
|
||
err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
|
||
if (err < 0) {
|
||
bt_dev_err(hdev, "failed to generate new RPA");
|
||
return err;
|
||
}
|
||
|
||
err = hci_set_random_addr_sync(hdev, &hdev->rpa);
|
||
if (err)
|
||
return err;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* In case of required privacy without resolvable private address,
|
||
* use an non-resolvable private address. This is useful for active
|
||
* scanning and non-connectable advertising.
|
||
*/
|
||
if (require_privacy) {
|
||
bdaddr_t nrpa;
|
||
|
||
while (true) {
|
||
/* The non-resolvable private address is generated
|
||
* from random six bytes with the two most significant
|
||
* bits cleared.
|
||
*/
|
||
get_random_bytes(&nrpa, 6);
|
||
nrpa.b[5] &= 0x3f;
|
||
|
||
/* The non-resolvable private address shall not be
|
||
* equal to the public address.
|
||
*/
|
||
if (bacmp(&hdev->bdaddr, &nrpa))
|
||
break;
|
||
}
|
||
|
||
*own_addr_type = ADDR_LE_DEV_RANDOM;
|
||
|
||
return hci_set_random_addr_sync(hdev, &nrpa);
|
||
}
|
||
|
||
/* If forcing static address is in use or there is no public
|
||
* address use the static address as random address (but skip
|
||
* the HCI command if the current random address is already the
|
||
* static one.
|
||
*
|
||
* In case BR/EDR has been disabled on a dual-mode controller
|
||
* and a static address has been configured, then use that
|
||
* address instead of the public BR/EDR address.
|
||
*/
|
||
if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
|
||
!bacmp(&hdev->bdaddr, BDADDR_ANY) ||
|
||
(!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
|
||
bacmp(&hdev->static_addr, BDADDR_ANY))) {
|
||
*own_addr_type = ADDR_LE_DEV_RANDOM;
|
||
if (bacmp(&hdev->static_addr, &hdev->random_addr))
|
||
return hci_set_random_addr_sync(hdev,
|
||
&hdev->static_addr);
|
||
return 0;
|
||
}
|
||
|
||
/* Neither privacy nor static address is being used so use a
|
||
* public address.
|
||
*/
|
||
*own_addr_type = ADDR_LE_DEV_PUBLIC;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
|
||
{
|
||
struct hci_cp_le_set_ext_adv_enable *cp;
|
||
struct hci_cp_ext_adv_set *set;
|
||
u8 data[sizeof(*cp) + sizeof(*set) * 1];
|
||
u8 size;
|
||
|
||
/* If request specifies an instance that doesn't exist, fail */
|
||
if (instance > 0) {
|
||
struct adv_info *adv;
|
||
|
||
adv = hci_find_adv_instance(hdev, instance);
|
||
if (!adv)
|
||
return -EINVAL;
|
||
|
||
/* If not enabled there is nothing to do */
|
||
if (!adv->enabled)
|
||
return 0;
|
||
}
|
||
|
||
memset(data, 0, sizeof(data));
|
||
|
||
cp = (void *)data;
|
||
set = (void *)cp->data;
|
||
|
||
/* Instance 0x00 indicates all advertising instances will be disabled */
|
||
cp->num_of_sets = !!instance;
|
||
cp->enable = 0x00;
|
||
|
||
set->handle = instance;
|
||
|
||
size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
|
||
size, data, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
|
||
bdaddr_t *random_addr)
|
||
{
|
||
struct hci_cp_le_set_adv_set_rand_addr cp;
|
||
int err;
|
||
|
||
if (!instance) {
|
||
/* Instance 0x00 doesn't have an adv_info, instead it uses
|
||
* hdev->random_addr to track its address so whenever it needs
|
||
* to be updated this also set the random address since
|
||
* hdev->random_addr is shared with scan state machine.
|
||
*/
|
||
err = hci_set_random_addr_sync(hdev, random_addr);
|
||
if (err)
|
||
return err;
|
||
}
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
cp.handle = instance;
|
||
bacpy(&cp.bdaddr, random_addr);
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
|
||
{
|
||
struct hci_cp_le_set_ext_adv_params cp;
|
||
bool connectable;
|
||
u32 flags;
|
||
bdaddr_t random_addr;
|
||
u8 own_addr_type;
|
||
int err;
|
||
struct adv_info *adv;
|
||
bool secondary_adv;
|
||
|
||
if (instance > 0) {
|
||
adv = hci_find_adv_instance(hdev, instance);
|
||
if (!adv)
|
||
return -EINVAL;
|
||
} else {
|
||
adv = NULL;
|
||
}
|
||
|
||
/* Updating parameters of an active instance will return a
|
||
* Command Disallowed error, so we must first disable the
|
||
* instance if it is active.
|
||
*/
|
||
if (adv && !adv->pending) {
|
||
err = hci_disable_ext_adv_instance_sync(hdev, instance);
|
||
if (err)
|
||
return err;
|
||
}
|
||
|
||
flags = hci_adv_instance_flags(hdev, instance);
|
||
|
||
/* If the "connectable" instance flag was not set, then choose between
|
||
* ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
|
||
*/
|
||
connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
|
||
mgmt_get_connectable(hdev);
|
||
|
||
if (!is_advertising_allowed(hdev, connectable))
|
||
return -EPERM;
|
||
|
||
/* Set require_privacy to true only when non-connectable
|
||
* advertising is used. In that case it is fine to use a
|
||
* non-resolvable private address.
|
||
*/
|
||
err = hci_get_random_address(hdev, !connectable,
|
||
adv_use_rpa(hdev, flags), adv,
|
||
&own_addr_type, &random_addr);
|
||
if (err < 0)
|
||
return err;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
if (adv) {
|
||
hci_cpu_to_le24(adv->min_interval, cp.min_interval);
|
||
hci_cpu_to_le24(adv->max_interval, cp.max_interval);
|
||
cp.tx_power = adv->tx_power;
|
||
} else {
|
||
hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
|
||
hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
|
||
cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
|
||
}
|
||
|
||
secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
|
||
|
||
if (connectable) {
|
||
if (secondary_adv)
|
||
cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
|
||
else
|
||
cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
|
||
} else if (hci_adv_instance_is_scannable(hdev, instance) ||
|
||
(flags & MGMT_ADV_PARAM_SCAN_RSP)) {
|
||
if (secondary_adv)
|
||
cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
|
||
else
|
||
cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
|
||
} else {
|
||
if (secondary_adv)
|
||
cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
|
||
else
|
||
cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
|
||
}
|
||
|
||
/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
|
||
* contains the peer’s Identity Address and the Peer_Address_Type
|
||
* parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
|
||
* These parameters are used to locate the corresponding local IRK in
|
||
* the resolving list; this IRK is used to generate their own address
|
||
* used in the advertisement.
|
||
*/
|
||
if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
|
||
hci_copy_identity_address(hdev, &cp.peer_addr,
|
||
&cp.peer_addr_type);
|
||
|
||
cp.own_addr_type = own_addr_type;
|
||
cp.channel_map = hdev->le_adv_channel_map;
|
||
cp.handle = instance;
|
||
|
||
if (flags & MGMT_ADV_FLAG_SEC_2M) {
|
||
cp.primary_phy = HCI_ADV_PHY_1M;
|
||
cp.secondary_phy = HCI_ADV_PHY_2M;
|
||
} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
|
||
cp.primary_phy = HCI_ADV_PHY_CODED;
|
||
cp.secondary_phy = HCI_ADV_PHY_CODED;
|
||
} else {
|
||
/* In all other cases use 1M */
|
||
cp.primary_phy = HCI_ADV_PHY_1M;
|
||
cp.secondary_phy = HCI_ADV_PHY_1M;
|
||
}
|
||
|
||
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
if (err)
|
||
return err;
|
||
|
||
if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
|
||
own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
|
||
bacmp(&random_addr, BDADDR_ANY)) {
|
||
/* Check if random address need to be updated */
|
||
if (adv) {
|
||
if (!bacmp(&random_addr, &adv->random_addr))
|
||
return 0;
|
||
} else {
|
||
if (!bacmp(&random_addr, &hdev->random_addr))
|
||
return 0;
|
||
}
|
||
|
||
return hci_set_adv_set_random_addr_sync(hdev, instance,
|
||
&random_addr);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
|
||
{
|
||
struct {
|
||
struct hci_cp_le_set_ext_scan_rsp_data cp;
|
||
u8 data[HCI_MAX_EXT_AD_LENGTH];
|
||
} pdu;
|
||
u8 len;
|
||
struct adv_info *adv = NULL;
|
||
int err;
|
||
|
||
memset(&pdu, 0, sizeof(pdu));
|
||
|
||
if (instance) {
|
||
adv = hci_find_adv_instance(hdev, instance);
|
||
if (!adv || !adv->scan_rsp_changed)
|
||
return 0;
|
||
}
|
||
|
||
len = eir_create_scan_rsp(hdev, instance, pdu.data);
|
||
|
||
pdu.cp.handle = instance;
|
||
pdu.cp.length = len;
|
||
pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
|
||
pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
|
||
|
||
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
|
||
sizeof(pdu.cp) + len, &pdu.cp,
|
||
HCI_CMD_TIMEOUT);
|
||
if (err)
|
||
return err;
|
||
|
||
if (adv) {
|
||
adv->scan_rsp_changed = false;
|
||
} else {
|
||
memcpy(hdev->scan_rsp_data, pdu.data, len);
|
||
hdev->scan_rsp_data_len = len;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
|
||
{
|
||
struct hci_cp_le_set_scan_rsp_data cp;
|
||
u8 len;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
len = eir_create_scan_rsp(hdev, instance, cp.data);
|
||
|
||
if (hdev->scan_rsp_data_len == len &&
|
||
!memcmp(cp.data, hdev->scan_rsp_data, len))
|
||
return 0;
|
||
|
||
memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
|
||
hdev->scan_rsp_data_len = len;
|
||
|
||
cp.length = len;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
|
||
{
|
||
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
|
||
return 0;
|
||
|
||
if (ext_adv_capable(hdev))
|
||
return hci_set_ext_scan_rsp_data_sync(hdev, instance);
|
||
|
||
return __hci_set_scan_rsp_data_sync(hdev, instance);
|
||
}
|
||
|
||
int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
|
||
{
|
||
struct hci_cp_le_set_ext_adv_enable *cp;
|
||
struct hci_cp_ext_adv_set *set;
|
||
u8 data[sizeof(*cp) + sizeof(*set) * 1];
|
||
struct adv_info *adv;
|
||
|
||
if (instance > 0) {
|
||
adv = hci_find_adv_instance(hdev, instance);
|
||
if (!adv)
|
||
return -EINVAL;
|
||
/* If already enabled there is nothing to do */
|
||
if (adv->enabled)
|
||
return 0;
|
||
} else {
|
||
adv = NULL;
|
||
}
|
||
|
||
cp = (void *)data;
|
||
set = (void *)cp->data;
|
||
|
||
memset(cp, 0, sizeof(*cp));
|
||
|
||
cp->enable = 0x01;
|
||
cp->num_of_sets = 0x01;
|
||
|
||
memset(set, 0, sizeof(*set));
|
||
|
||
set->handle = instance;
|
||
|
||
/* Set duration per instance since controller is responsible for
|
||
* scheduling it.
|
||
*/
|
||
if (adv && adv->timeout) {
|
||
u16 duration = adv->timeout * MSEC_PER_SEC;
|
||
|
||
/* Time = N * 10 ms */
|
||
set->duration = cpu_to_le16(duration / 10);
|
||
}
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
|
||
sizeof(*cp) +
|
||
sizeof(*set) * cp->num_of_sets,
|
||
data, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
|
||
{
|
||
int err;
|
||
|
||
err = hci_setup_ext_adv_instance_sync(hdev, instance);
|
||
if (err)
|
||
return err;
|
||
|
||
err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
|
||
if (err)
|
||
return err;
|
||
|
||
return hci_enable_ext_advertising_sync(hdev, instance);
|
||
}
|
||
|
||
int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
|
||
{
|
||
struct hci_cp_le_set_per_adv_enable cp;
|
||
struct adv_info *adv = NULL;
|
||
|
||
/* If periodic advertising already disabled there is nothing to do. */
|
||
adv = hci_find_adv_instance(hdev, instance);
|
||
if (!adv || !adv->periodic || !adv->enabled)
|
||
return 0;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
cp.enable = 0x00;
|
||
cp.handle = instance;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance,
|
||
u16 min_interval, u16 max_interval)
|
||
{
|
||
struct hci_cp_le_set_per_adv_params cp;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
if (!min_interval)
|
||
min_interval = DISCOV_LE_PER_ADV_INT_MIN;
|
||
|
||
if (!max_interval)
|
||
max_interval = DISCOV_LE_PER_ADV_INT_MAX;
|
||
|
||
cp.handle = instance;
|
||
cp.min_interval = cpu_to_le16(min_interval);
|
||
cp.max_interval = cpu_to_le16(max_interval);
|
||
cp.periodic_properties = 0x0000;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance)
|
||
{
|
||
struct {
|
||
struct hci_cp_le_set_per_adv_data cp;
|
||
u8 data[HCI_MAX_PER_AD_LENGTH];
|
||
} pdu;
|
||
u8 len;
|
||
|
||
memset(&pdu, 0, sizeof(pdu));
|
||
|
||
if (instance) {
|
||
struct adv_info *adv = hci_find_adv_instance(hdev, instance);
|
||
|
||
if (!adv || !adv->periodic)
|
||
return 0;
|
||
}
|
||
|
||
len = eir_create_per_adv_data(hdev, instance, pdu.data);
|
||
|
||
pdu.cp.length = len;
|
||
pdu.cp.handle = instance;
|
||
pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA,
|
||
sizeof(pdu.cp) + len, &pdu,
|
||
HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
|
||
{
|
||
struct hci_cp_le_set_per_adv_enable cp;
|
||
struct adv_info *adv = NULL;
|
||
|
||
/* If periodic advertising already enabled there is nothing to do. */
|
||
adv = hci_find_adv_instance(hdev, instance);
|
||
if (adv && adv->periodic && adv->enabled)
|
||
return 0;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
cp.enable = 0x01;
|
||
cp.handle = instance;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Checks if periodic advertising data contains a Basic Announcement and if it
|
||
* does generates a Broadcast ID and add Broadcast Announcement.
|
||
*/
|
||
static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv)
|
||
{
|
||
u8 bid[3];
|
||
u8 ad[4 + 3];
|
||
|
||
/* Skip if NULL adv as instance 0x00 is used for general purpose
|
||
* advertising so it cannot used for the likes of Broadcast Announcement
|
||
* as it can be overwritten at any point.
|
||
*/
|
||
if (!adv)
|
||
return 0;
|
||
|
||
/* Check if PA data doesn't contains a Basic Audio Announcement then
|
||
* there is nothing to do.
|
||
*/
|
||
if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len,
|
||
0x1851, NULL))
|
||
return 0;
|
||
|
||
/* Check if advertising data already has a Broadcast Announcement since
|
||
* the process may want to control the Broadcast ID directly and in that
|
||
* case the kernel shall no interfere.
|
||
*/
|
||
if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852,
|
||
NULL))
|
||
return 0;
|
||
|
||
/* Generate Broadcast ID */
|
||
get_random_bytes(bid, sizeof(bid));
|
||
eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid));
|
||
hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL);
|
||
|
||
return hci_update_adv_data_sync(hdev, adv->instance);
|
||
}
|
||
|
||
int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len,
|
||
u8 *data, u32 flags, u16 min_interval,
|
||
u16 max_interval, u16 sync_interval)
|
||
{
|
||
struct adv_info *adv = NULL;
|
||
int err;
|
||
bool added = false;
|
||
|
||
hci_disable_per_advertising_sync(hdev, instance);
|
||
|
||
if (instance) {
|
||
adv = hci_find_adv_instance(hdev, instance);
|
||
/* Create an instance if that could not be found */
|
||
if (!adv) {
|
||
adv = hci_add_per_instance(hdev, instance, flags,
|
||
data_len, data,
|
||
sync_interval,
|
||
sync_interval);
|
||
if (IS_ERR(adv))
|
||
return PTR_ERR(adv);
|
||
adv->pending = false;
|
||
added = true;
|
||
}
|
||
}
|
||
|
||
/* Start advertising */
|
||
err = hci_start_ext_adv_sync(hdev, instance);
|
||
if (err < 0)
|
||
goto fail;
|
||
|
||
err = hci_adv_bcast_annoucement(hdev, adv);
|
||
if (err < 0)
|
||
goto fail;
|
||
|
||
err = hci_set_per_adv_params_sync(hdev, instance, min_interval,
|
||
max_interval);
|
||
if (err < 0)
|
||
goto fail;
|
||
|
||
err = hci_set_per_adv_data_sync(hdev, instance);
|
||
if (err < 0)
|
||
goto fail;
|
||
|
||
err = hci_enable_per_advertising_sync(hdev, instance);
|
||
if (err < 0)
|
||
goto fail;
|
||
|
||
return 0;
|
||
|
||
fail:
|
||
if (added)
|
||
hci_remove_adv_instance(hdev, instance);
|
||
|
||
return err;
|
||
}
|
||
|
||
static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
|
||
{
|
||
int err;
|
||
|
||
if (ext_adv_capable(hdev))
|
||
return hci_start_ext_adv_sync(hdev, instance);
|
||
|
||
err = hci_update_adv_data_sync(hdev, instance);
|
||
if (err)
|
||
return err;
|
||
|
||
err = hci_update_scan_rsp_data_sync(hdev, instance);
|
||
if (err)
|
||
return err;
|
||
|
||
return hci_enable_advertising_sync(hdev);
|
||
}
|
||
|
||
int hci_enable_advertising_sync(struct hci_dev *hdev)
|
||
{
|
||
struct adv_info *adv_instance;
|
||
struct hci_cp_le_set_adv_param cp;
|
||
u8 own_addr_type, enable = 0x01;
|
||
bool connectable;
|
||
u16 adv_min_interval, adv_max_interval;
|
||
u32 flags;
|
||
u8 status;
|
||
|
||
if (ext_adv_capable(hdev))
|
||
return hci_enable_ext_advertising_sync(hdev,
|
||
hdev->cur_adv_instance);
|
||
|
||
flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
|
||
adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
|
||
|
||
/* If the "connectable" instance flag was not set, then choose between
|
||
* ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
|
||
*/
|
||
connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
|
||
mgmt_get_connectable(hdev);
|
||
|
||
if (!is_advertising_allowed(hdev, connectable))
|
||
return -EINVAL;
|
||
|
||
status = hci_disable_advertising_sync(hdev);
|
||
if (status)
|
||
return status;
|
||
|
||
/* Clear the HCI_LE_ADV bit temporarily so that the
|
||
* hci_update_random_address knows that it's safe to go ahead
|
||
* and write a new random address. The flag will be set back on
|
||
* as soon as the SET_ADV_ENABLE HCI command completes.
|
||
*/
|
||
hci_dev_clear_flag(hdev, HCI_LE_ADV);
|
||
|
||
/* Set require_privacy to true only when non-connectable
|
||
* advertising is used. In that case it is fine to use a
|
||
* non-resolvable private address.
|
||
*/
|
||
status = hci_update_random_address_sync(hdev, !connectable,
|
||
adv_use_rpa(hdev, flags),
|
||
&own_addr_type);
|
||
if (status)
|
||
return status;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
if (adv_instance) {
|
||
adv_min_interval = adv_instance->min_interval;
|
||
adv_max_interval = adv_instance->max_interval;
|
||
} else {
|
||
adv_min_interval = hdev->le_adv_min_interval;
|
||
adv_max_interval = hdev->le_adv_max_interval;
|
||
}
|
||
|
||
if (connectable) {
|
||
cp.type = LE_ADV_IND;
|
||
} else {
|
||
if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
|
||
cp.type = LE_ADV_SCAN_IND;
|
||
else
|
||
cp.type = LE_ADV_NONCONN_IND;
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
|
||
hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
|
||
adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
|
||
adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
|
||
}
|
||
}
|
||
|
||
cp.min_interval = cpu_to_le16(adv_min_interval);
|
||
cp.max_interval = cpu_to_le16(adv_max_interval);
|
||
cp.own_address_type = own_addr_type;
|
||
cp.channel_map = hdev->le_adv_channel_map;
|
||
|
||
status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
if (status)
|
||
return status;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
|
||
sizeof(enable), &enable, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int enable_advertising_sync(struct hci_dev *hdev, void *data)
|
||
{
|
||
return hci_enable_advertising_sync(hdev);
|
||
}
|
||
|
||
int hci_enable_advertising(struct hci_dev *hdev)
|
||
{
|
||
if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
|
||
list_empty(&hdev->adv_instances))
|
||
return 0;
|
||
|
||
return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
|
||
}
|
||
|
||
int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
|
||
struct sock *sk)
|
||
{
|
||
int err;
|
||
|
||
if (!ext_adv_capable(hdev))
|
||
return 0;
|
||
|
||
err = hci_disable_ext_adv_instance_sync(hdev, instance);
|
||
if (err)
|
||
return err;
|
||
|
||
/* If request specifies an instance that doesn't exist, fail */
|
||
if (instance > 0 && !hci_find_adv_instance(hdev, instance))
|
||
return -EINVAL;
|
||
|
||
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
|
||
sizeof(instance), &instance, 0,
|
||
HCI_CMD_TIMEOUT, sk);
|
||
}
|
||
|
||
static int remove_ext_adv_sync(struct hci_dev *hdev, void *data)
|
||
{
|
||
struct adv_info *adv = data;
|
||
u8 instance = 0;
|
||
|
||
if (adv)
|
||
instance = adv->instance;
|
||
|
||
return hci_remove_ext_adv_instance_sync(hdev, instance, NULL);
|
||
}
|
||
|
||
int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance)
|
||
{
|
||
struct adv_info *adv = NULL;
|
||
|
||
if (instance) {
|
||
adv = hci_find_adv_instance(hdev, instance);
|
||
if (!adv)
|
||
return -EINVAL;
|
||
}
|
||
|
||
return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL);
|
||
}
|
||
|
||
int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason)
|
||
{
|
||
struct hci_cp_le_term_big cp;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
cp.handle = handle;
|
||
cp.reason = reason;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
|
||
{
|
||
struct {
|
||
struct hci_cp_le_set_ext_adv_data cp;
|
||
u8 data[HCI_MAX_EXT_AD_LENGTH];
|
||
} pdu;
|
||
u8 len;
|
||
struct adv_info *adv = NULL;
|
||
int err;
|
||
|
||
memset(&pdu, 0, sizeof(pdu));
|
||
|
||
if (instance) {
|
||
adv = hci_find_adv_instance(hdev, instance);
|
||
if (!adv || !adv->adv_data_changed)
|
||
return 0;
|
||
}
|
||
|
||
len = eir_create_adv_data(hdev, instance, pdu.data);
|
||
|
||
pdu.cp.length = len;
|
||
pdu.cp.handle = instance;
|
||
pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
|
||
pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
|
||
|
||
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
|
||
sizeof(pdu.cp) + len, &pdu.cp,
|
||
HCI_CMD_TIMEOUT);
|
||
if (err)
|
||
return err;
|
||
|
||
/* Update data if the command succeed */
|
||
if (adv) {
|
||
adv->adv_data_changed = false;
|
||
} else {
|
||
memcpy(hdev->adv_data, pdu.data, len);
|
||
hdev->adv_data_len = len;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
|
||
{
|
||
struct hci_cp_le_set_adv_data cp;
|
||
u8 len;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
len = eir_create_adv_data(hdev, instance, cp.data);
|
||
|
||
/* There's nothing to do if the data hasn't changed */
|
||
if (hdev->adv_data_len == len &&
|
||
memcmp(cp.data, hdev->adv_data, len) == 0)
|
||
return 0;
|
||
|
||
memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
|
||
hdev->adv_data_len = len;
|
||
|
||
cp.length = len;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
|
||
{
|
||
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
|
||
return 0;
|
||
|
||
if (ext_adv_capable(hdev))
|
||
return hci_set_ext_adv_data_sync(hdev, instance);
|
||
|
||
return hci_set_adv_data_sync(hdev, instance);
|
||
}
|
||
|
||
int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
|
||
bool force)
|
||
{
|
||
struct adv_info *adv = NULL;
|
||
u16 timeout;
|
||
|
||
if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
|
||
return -EPERM;
|
||
|
||
if (hdev->adv_instance_timeout)
|
||
return -EBUSY;
|
||
|
||
adv = hci_find_adv_instance(hdev, instance);
|
||
if (!adv)
|
||
return -ENOENT;
|
||
|
||
/* A zero timeout means unlimited advertising. As long as there is
|
||
* only one instance, duration should be ignored. We still set a timeout
|
||
* in case further instances are being added later on.
|
||
*
|
||
* If the remaining lifetime of the instance is more than the duration
|
||
* then the timeout corresponds to the duration, otherwise it will be
|
||
* reduced to the remaining instance lifetime.
|
||
*/
|
||
if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
|
||
timeout = adv->duration;
|
||
else
|
||
timeout = adv->remaining_time;
|
||
|
||
/* The remaining time is being reduced unless the instance is being
|
||
* advertised without time limit.
|
||
*/
|
||
if (adv->timeout)
|
||
adv->remaining_time = adv->remaining_time - timeout;
|
||
|
||
/* Only use work for scheduling instances with legacy advertising */
|
||
if (!ext_adv_capable(hdev)) {
|
||
hdev->adv_instance_timeout = timeout;
|
||
queue_delayed_work(hdev->req_workqueue,
|
||
&hdev->adv_instance_expire,
|
||
msecs_to_jiffies(timeout * 1000));
|
||
}
|
||
|
||
/* If we're just re-scheduling the same instance again then do not
|
||
* execute any HCI commands. This happens when a single instance is
|
||
* being advertised.
|
||
*/
|
||
if (!force && hdev->cur_adv_instance == instance &&
|
||
hci_dev_test_flag(hdev, HCI_LE_ADV))
|
||
return 0;
|
||
|
||
hdev->cur_adv_instance = instance;
|
||
|
||
return hci_start_adv_sync(hdev, instance);
|
||
}
|
||
|
||
static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
|
||
{
|
||
int err;
|
||
|
||
if (!ext_adv_capable(hdev))
|
||
return 0;
|
||
|
||
/* Disable instance 0x00 to disable all instances */
|
||
err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
|
||
if (err)
|
||
return err;
|
||
|
||
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
|
||
0, NULL, 0, HCI_CMD_TIMEOUT, sk);
|
||
}
|
||
|
||
static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
|
||
{
|
||
struct adv_info *adv, *n;
|
||
int err = 0;
|
||
|
||
if (ext_adv_capable(hdev))
|
||
/* Remove all existing sets */
|
||
err = hci_clear_adv_sets_sync(hdev, sk);
|
||
if (ext_adv_capable(hdev))
|
||
return err;
|
||
|
||
/* This is safe as long as there is no command send while the lock is
|
||
* held.
|
||
*/
|
||
hci_dev_lock(hdev);
|
||
|
||
/* Cleanup non-ext instances */
|
||
list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
|
||
u8 instance = adv->instance;
|
||
int err;
|
||
|
||
if (!(force || adv->timeout))
|
||
continue;
|
||
|
||
err = hci_remove_adv_instance(hdev, instance);
|
||
if (!err)
|
||
mgmt_advertising_removed(sk, hdev, instance);
|
||
}
|
||
|
||
hci_dev_unlock(hdev);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
|
||
struct sock *sk)
|
||
{
|
||
int err = 0;
|
||
|
||
/* If we use extended advertising, instance has to be removed first. */
|
||
if (ext_adv_capable(hdev))
|
||
err = hci_remove_ext_adv_instance_sync(hdev, instance, sk);
|
||
if (ext_adv_capable(hdev))
|
||
return err;
|
||
|
||
/* This is safe as long as there is no command send while the lock is
|
||
* held.
|
||
*/
|
||
hci_dev_lock(hdev);
|
||
|
||
err = hci_remove_adv_instance(hdev, instance);
|
||
if (!err)
|
||
mgmt_advertising_removed(sk, hdev, instance);
|
||
|
||
hci_dev_unlock(hdev);
|
||
|
||
return err;
|
||
}
|
||
|
||
/* For a single instance:
|
||
* - force == true: The instance will be removed even when its remaining
|
||
* lifetime is not zero.
|
||
* - force == false: the instance will be deactivated but kept stored unless
|
||
* the remaining lifetime is zero.
|
||
*
|
||
* For instance == 0x00:
|
||
* - force == true: All instances will be removed regardless of their timeout
|
||
* setting.
|
||
* - force == false: Only instances that have a timeout will be removed.
|
||
*/
|
||
int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
|
||
u8 instance, bool force)
|
||
{
|
||
struct adv_info *next = NULL;
|
||
int err;
|
||
|
||
/* Cancel any timeout concerning the removed instance(s). */
|
||
if (!instance || hdev->cur_adv_instance == instance)
|
||
cancel_adv_timeout(hdev);
|
||
|
||
/* Get the next instance to advertise BEFORE we remove
|
||
* the current one. This can be the same instance again
|
||
* if there is only one instance.
|
||
*/
|
||
if (hdev->cur_adv_instance == instance)
|
||
next = hci_get_next_instance(hdev, instance);
|
||
|
||
if (!instance) {
|
||
err = hci_clear_adv_sync(hdev, sk, force);
|
||
if (err)
|
||
return err;
|
||
} else {
|
||
struct adv_info *adv = hci_find_adv_instance(hdev, instance);
|
||
|
||
if (force || (adv && adv->timeout && !adv->remaining_time)) {
|
||
/* Don't advertise a removed instance. */
|
||
if (next && next->instance == instance)
|
||
next = NULL;
|
||
|
||
err = hci_remove_adv_sync(hdev, instance, sk);
|
||
if (err)
|
||
return err;
|
||
}
|
||
}
|
||
|
||
if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
|
||
return 0;
|
||
|
||
if (next && !ext_adv_capable(hdev))
|
||
hci_schedule_adv_instance_sync(hdev, next->instance, false);
|
||
|
||
return 0;
|
||
}
|
||
|
||
int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
|
||
{
|
||
struct hci_cp_read_rssi cp;
|
||
|
||
cp.handle = handle;
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
|
||
{
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
|
||
sizeof(*cp), cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
|
||
{
|
||
struct hci_cp_read_tx_power cp;
|
||
|
||
cp.handle = handle;
|
||
cp.type = type;
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
int hci_disable_advertising_sync(struct hci_dev *hdev)
|
||
{
|
||
u8 enable = 0x00;
|
||
int err = 0;
|
||
|
||
/* If controller is not advertising we are done. */
|
||
if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
|
||
return 0;
|
||
|
||
if (ext_adv_capable(hdev))
|
||
err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
|
||
if (ext_adv_capable(hdev))
|
||
return err;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
|
||
sizeof(enable), &enable, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
|
||
u8 filter_dup)
|
||
{
|
||
struct hci_cp_le_set_ext_scan_enable cp;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
cp.enable = val;
|
||
|
||
if (hci_dev_test_flag(hdev, HCI_MESH))
|
||
cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
|
||
else
|
||
cp.filter_dup = filter_dup;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
|
||
u8 filter_dup)
|
||
{
|
||
struct hci_cp_le_set_scan_enable cp;
|
||
|
||
if (use_ext_scan(hdev))
|
||
return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
cp.enable = val;
|
||
|
||
if (val && hci_dev_test_flag(hdev, HCI_MESH))
|
||
cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
|
||
else
|
||
cp.filter_dup = filter_dup;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
|
||
{
|
||
if (!use_ll_privacy(hdev))
|
||
return 0;
|
||
|
||
/* If controller is not/already resolving we are done. */
|
||
if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
|
||
sizeof(val), &val, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_scan_disable_sync(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
|
||
/* If controller is not scanning we are done. */
|
||
if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
|
||
return 0;
|
||
|
||
if (hdev->scanning_paused) {
|
||
bt_dev_dbg(hdev, "Scanning is paused for suspend");
|
||
return 0;
|
||
}
|
||
|
||
err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
|
||
if (err) {
|
||
bt_dev_err(hdev, "Unable to disable scanning: %d", err);
|
||
return err;
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
static bool scan_use_rpa(struct hci_dev *hdev)
|
||
{
|
||
return hci_dev_test_flag(hdev, HCI_PRIVACY);
|
||
}
|
||
|
||
static void hci_start_interleave_scan(struct hci_dev *hdev)
|
||
{
|
||
hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
|
||
queue_delayed_work(hdev->req_workqueue,
|
||
&hdev->interleave_scan, 0);
|
||
}
|
||
|
||
static bool is_interleave_scanning(struct hci_dev *hdev)
|
||
{
|
||
return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
|
||
}
|
||
|
||
static void cancel_interleave_scan(struct hci_dev *hdev)
|
||
{
|
||
bt_dev_dbg(hdev, "cancelling interleave scan");
|
||
|
||
cancel_delayed_work_sync(&hdev->interleave_scan);
|
||
|
||
hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
|
||
}
|
||
|
||
/* Return true if interleave_scan wasn't started until exiting this function,
|
||
* otherwise, return false
|
||
*/
|
||
static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
|
||
{
|
||
/* Do interleaved scan only if all of the following are true:
|
||
* - There is at least one ADV monitor
|
||
* - At least one pending LE connection or one device to be scanned for
|
||
* - Monitor offloading is not supported
|
||
* If so, we should alternate between allowlist scan and one without
|
||
* any filters to save power.
|
||
*/
|
||
bool use_interleaving = hci_is_adv_monitoring(hdev) &&
|
||
!(list_empty(&hdev->pend_le_conns) &&
|
||
list_empty(&hdev->pend_le_reports)) &&
|
||
hci_get_adv_monitor_offload_ext(hdev) ==
|
||
HCI_ADV_MONITOR_EXT_NONE;
|
||
bool is_interleaving = is_interleave_scanning(hdev);
|
||
|
||
if (use_interleaving && !is_interleaving) {
|
||
hci_start_interleave_scan(hdev);
|
||
bt_dev_dbg(hdev, "starting interleave scan");
|
||
return true;
|
||
}
|
||
|
||
if (!use_interleaving && is_interleaving)
|
||
cancel_interleave_scan(hdev);
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Removes connection to resolve list if needed.*/
|
||
static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
|
||
bdaddr_t *bdaddr, u8 bdaddr_type)
|
||
{
|
||
struct hci_cp_le_del_from_resolv_list cp;
|
||
struct bdaddr_list_with_irk *entry;
|
||
|
||
if (!use_ll_privacy(hdev))
|
||
return 0;
|
||
|
||
/* Check if the IRK has been programmed */
|
||
entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
|
||
bdaddr_type);
|
||
if (!entry)
|
||
return 0;
|
||
|
||
cp.bdaddr_type = bdaddr_type;
|
||
bacpy(&cp.bdaddr, bdaddr);
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
|
||
bdaddr_t *bdaddr, u8 bdaddr_type)
|
||
{
|
||
struct hci_cp_le_del_from_accept_list cp;
|
||
int err;
|
||
|
||
/* Check if device is on accept list before removing it */
|
||
if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
|
||
return 0;
|
||
|
||
cp.bdaddr_type = bdaddr_type;
|
||
bacpy(&cp.bdaddr, bdaddr);
|
||
|
||
/* Ignore errors when removing from resolving list as that is likely
|
||
* that the device was never added.
|
||
*/
|
||
hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
|
||
|
||
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
if (err) {
|
||
bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
|
||
return err;
|
||
}
|
||
|
||
bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
|
||
cp.bdaddr_type);
|
||
|
||
return 0;
|
||
}
|
||
|
||
struct conn_params {
|
||
bdaddr_t addr;
|
||
u8 addr_type;
|
||
hci_conn_flags_t flags;
|
||
u8 privacy_mode;
|
||
};
|
||
|
||
/* Adds connection to resolve list if needed.
|
||
* Setting params to NULL programs local hdev->irk
|
||
*/
|
||
static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
|
||
struct conn_params *params)
|
||
{
|
||
struct hci_cp_le_add_to_resolv_list cp;
|
||
struct smp_irk *irk;
|
||
struct bdaddr_list_with_irk *entry;
|
||
struct hci_conn_params *p;
|
||
|
||
if (!use_ll_privacy(hdev))
|
||
return 0;
|
||
|
||
/* Attempt to program local identity address, type and irk if params is
|
||
* NULL.
|
||
*/
|
||
if (!params) {
|
||
if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
|
||
return 0;
|
||
|
||
hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
|
||
memcpy(cp.peer_irk, hdev->irk, 16);
|
||
goto done;
|
||
}
|
||
|
||
irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type);
|
||
if (!irk)
|
||
return 0;
|
||
|
||
/* Check if the IK has _not_ been programmed yet. */
|
||
entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
|
||
¶ms->addr,
|
||
params->addr_type);
|
||
if (entry)
|
||
return 0;
|
||
|
||
cp.bdaddr_type = params->addr_type;
|
||
bacpy(&cp.bdaddr, ¶ms->addr);
|
||
memcpy(cp.peer_irk, irk->val, 16);
|
||
|
||
/* Default privacy mode is always Network */
|
||
params->privacy_mode = HCI_NETWORK_PRIVACY;
|
||
|
||
rcu_read_lock();
|
||
p = hci_pend_le_action_lookup(&hdev->pend_le_conns,
|
||
¶ms->addr, params->addr_type);
|
||
if (!p)
|
||
p = hci_pend_le_action_lookup(&hdev->pend_le_reports,
|
||
¶ms->addr, params->addr_type);
|
||
if (p)
|
||
WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY);
|
||
rcu_read_unlock();
|
||
|
||
done:
|
||
if (hci_dev_test_flag(hdev, HCI_PRIVACY))
|
||
memcpy(cp.local_irk, hdev->irk, 16);
|
||
else
|
||
memset(cp.local_irk, 0, 16);
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Set Device Privacy Mode. */
|
||
static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
|
||
struct conn_params *params)
|
||
{
|
||
struct hci_cp_le_set_privacy_mode cp;
|
||
struct smp_irk *irk;
|
||
|
||
/* If device privacy mode has already been set there is nothing to do */
|
||
if (params->privacy_mode == HCI_DEVICE_PRIVACY)
|
||
return 0;
|
||
|
||
/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
|
||
* indicates that LL Privacy has been enabled and
|
||
* HCI_OP_LE_SET_PRIVACY_MODE is supported.
|
||
*/
|
||
if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
|
||
return 0;
|
||
|
||
irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type);
|
||
if (!irk)
|
||
return 0;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
cp.bdaddr_type = irk->addr_type;
|
||
bacpy(&cp.bdaddr, &irk->bdaddr);
|
||
cp.mode = HCI_DEVICE_PRIVACY;
|
||
|
||
/* Note: params->privacy_mode is not updated since it is a copy */
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Adds connection to allow list if needed, if the device uses RPA (has IRK)
|
||
* this attempts to program the device in the resolving list as well and
|
||
* properly set the privacy mode.
|
||
*/
|
||
static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
|
||
struct conn_params *params,
|
||
u8 *num_entries)
|
||
{
|
||
struct hci_cp_le_add_to_accept_list cp;
|
||
int err;
|
||
|
||
/* During suspend, only wakeable devices can be in acceptlist */
|
||
if (hdev->suspended &&
|
||
!(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
|
||
return 0;
|
||
|
||
/* Select filter policy to accept all advertising */
|
||
if (*num_entries >= hdev->le_accept_list_size)
|
||
return -ENOSPC;
|
||
|
||
/* Accept list can not be used with RPAs */
|
||
if (!use_ll_privacy(hdev) &&
|
||
hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type))
|
||
return -EINVAL;
|
||
|
||
/* Attempt to program the device in the resolving list first to avoid
|
||
* having to rollback in case it fails since the resolving list is
|
||
* dynamic it can probably be smaller than the accept list.
|
||
*/
|
||
err = hci_le_add_resolve_list_sync(hdev, params);
|
||
if (err) {
|
||
bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
|
||
return err;
|
||
}
|
||
|
||
/* Set Privacy Mode */
|
||
err = hci_le_set_privacy_mode_sync(hdev, params);
|
||
if (err) {
|
||
bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
|
||
return err;
|
||
}
|
||
|
||
/* Check if already in accept list */
|
||
if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr,
|
||
params->addr_type))
|
||
return 0;
|
||
|
||
*num_entries += 1;
|
||
cp.bdaddr_type = params->addr_type;
|
||
bacpy(&cp.bdaddr, ¶ms->addr);
|
||
|
||
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
if (err) {
|
||
bt_dev_err(hdev, "Unable to add to allow list: %d", err);
|
||
/* Rollback the device from the resolving list */
|
||
hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
|
||
return err;
|
||
}
|
||
|
||
bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
|
||
cp.bdaddr_type);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* This function disables/pause all advertising instances */
|
||
static int hci_pause_advertising_sync(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
int old_state;
|
||
|
||
/* If already been paused there is nothing to do. */
|
||
if (hdev->advertising_paused)
|
||
return 0;
|
||
|
||
bt_dev_dbg(hdev, "Pausing directed advertising");
|
||
|
||
/* Stop directed advertising */
|
||
old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
|
||
if (old_state) {
|
||
/* When discoverable timeout triggers, then just make sure
|
||
* the limited discoverable flag is cleared. Even in the case
|
||
* of a timeout triggered from general discoverable, it is
|
||
* safe to unconditionally clear the flag.
|
||
*/
|
||
hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
|
||
hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
|
||
hdev->discov_timeout = 0;
|
||
}
|
||
|
||
bt_dev_dbg(hdev, "Pausing advertising instances");
|
||
|
||
/* Call to disable any advertisements active on the controller.
|
||
* This will succeed even if no advertisements are configured.
|
||
*/
|
||
err = hci_disable_advertising_sync(hdev);
|
||
if (err)
|
||
return err;
|
||
|
||
/* If we are using software rotation, pause the loop */
|
||
if (!ext_adv_capable(hdev))
|
||
cancel_adv_timeout(hdev);
|
||
|
||
hdev->advertising_paused = true;
|
||
hdev->advertising_old_state = old_state;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* This function enables all user advertising instances */
|
||
static int hci_resume_advertising_sync(struct hci_dev *hdev)
|
||
{
|
||
struct adv_info *adv, *tmp;
|
||
int err;
|
||
|
||
/* If advertising has not been paused there is nothing to do. */
|
||
if (!hdev->advertising_paused)
|
||
return 0;
|
||
|
||
/* Resume directed advertising */
|
||
hdev->advertising_paused = false;
|
||
if (hdev->advertising_old_state) {
|
||
hci_dev_set_flag(hdev, HCI_ADVERTISING);
|
||
hdev->advertising_old_state = 0;
|
||
}
|
||
|
||
bt_dev_dbg(hdev, "Resuming advertising instances");
|
||
|
||
if (ext_adv_capable(hdev)) {
|
||
/* Call for each tracked instance to be re-enabled */
|
||
list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
|
||
err = hci_enable_ext_advertising_sync(hdev,
|
||
adv->instance);
|
||
if (!err)
|
||
continue;
|
||
|
||
/* If the instance cannot be resumed remove it */
|
||
hci_remove_ext_adv_instance_sync(hdev, adv->instance,
|
||
NULL);
|
||
}
|
||
} else {
|
||
/* Schedule for most recent instance to be restarted and begin
|
||
* the software rotation loop
|
||
*/
|
||
err = hci_schedule_adv_instance_sync(hdev,
|
||
hdev->cur_adv_instance,
|
||
true);
|
||
}
|
||
|
||
hdev->advertising_paused = false;
|
||
|
||
return err;
|
||
}
|
||
|
||
static int hci_pause_addr_resolution(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
|
||
if (!use_ll_privacy(hdev))
|
||
return 0;
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
|
||
return 0;
|
||
|
||
/* Cannot disable addr resolution if scanning is enabled or
|
||
* when initiating an LE connection.
|
||
*/
|
||
if (hci_dev_test_flag(hdev, HCI_LE_SCAN) ||
|
||
hci_lookup_le_connect(hdev)) {
|
||
bt_dev_err(hdev, "Command not allowed when scan/LE connect");
|
||
return -EPERM;
|
||
}
|
||
|
||
/* Cannot disable addr resolution if advertising is enabled. */
|
||
err = hci_pause_advertising_sync(hdev);
|
||
if (err) {
|
||
bt_dev_err(hdev, "Pause advertising failed: %d", err);
|
||
return err;
|
||
}
|
||
|
||
err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
|
||
if (err)
|
||
bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
|
||
err);
|
||
|
||
/* Return if address resolution is disabled and RPA is not used. */
|
||
if (!err && scan_use_rpa(hdev))
|
||
return 0;
|
||
|
||
hci_resume_advertising_sync(hdev);
|
||
return err;
|
||
}
|
||
|
||
struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
|
||
bool extended, struct sock *sk)
|
||
{
|
||
u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
|
||
HCI_OP_READ_LOCAL_OOB_DATA;
|
||
|
||
return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
|
||
}
|
||
|
||
static struct conn_params *conn_params_copy(struct list_head *list, size_t *n)
|
||
{
|
||
struct hci_conn_params *params;
|
||
struct conn_params *p;
|
||
size_t i;
|
||
|
||
rcu_read_lock();
|
||
|
||
i = 0;
|
||
list_for_each_entry_rcu(params, list, action)
|
||
++i;
|
||
*n = i;
|
||
|
||
rcu_read_unlock();
|
||
|
||
p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL);
|
||
if (!p)
|
||
return NULL;
|
||
|
||
rcu_read_lock();
|
||
|
||
i = 0;
|
||
list_for_each_entry_rcu(params, list, action) {
|
||
/* Racing adds are handled in next scan update */
|
||
if (i >= *n)
|
||
break;
|
||
|
||
/* No hdev->lock, but: addr, addr_type are immutable.
|
||
* privacy_mode is only written by us or in
|
||
* hci_cc_le_set_privacy_mode that we wait for.
|
||
* We should be idempotent so MGMT updating flags
|
||
* while we are processing is OK.
|
||
*/
|
||
bacpy(&p[i].addr, ¶ms->addr);
|
||
p[i].addr_type = params->addr_type;
|
||
p[i].flags = READ_ONCE(params->flags);
|
||
p[i].privacy_mode = READ_ONCE(params->privacy_mode);
|
||
++i;
|
||
}
|
||
|
||
rcu_read_unlock();
|
||
|
||
*n = i;
|
||
return p;
|
||
}
|
||
|
||
/* Device must not be scanning when updating the accept list.
|
||
*
|
||
* Update is done using the following sequence:
|
||
*
|
||
* use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
|
||
* Remove Devices From Accept List ->
|
||
* (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
|
||
* Add Devices to Accept List ->
|
||
* (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
|
||
* use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
|
||
* Enable Scanning
|
||
*
|
||
* In case of failure advertising shall be restored to its original state and
|
||
* return would disable accept list since either accept or resolving list could
|
||
* not be programmed.
|
||
*
|
||
*/
|
||
static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
|
||
{
|
||
struct conn_params *params;
|
||
struct bdaddr_list *b, *t;
|
||
u8 num_entries = 0;
|
||
bool pend_conn, pend_report;
|
||
u8 filter_policy;
|
||
size_t i, n;
|
||
int err;
|
||
|
||
/* Pause advertising if resolving list can be used as controllers
|
||
* cannot accept resolving list modifications while advertising.
|
||
*/
|
||
if (use_ll_privacy(hdev)) {
|
||
err = hci_pause_advertising_sync(hdev);
|
||
if (err) {
|
||
bt_dev_err(hdev, "pause advertising failed: %d", err);
|
||
return 0x00;
|
||
}
|
||
}
|
||
|
||
/* Disable address resolution while reprogramming accept list since
|
||
* devices that do have an IRK will be programmed in the resolving list
|
||
* when LL Privacy is enabled.
|
||
*/
|
||
err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
|
||
if (err) {
|
||
bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
|
||
goto done;
|
||
}
|
||
|
||
/* Go through the current accept list programmed into the
|
||
* controller one by one and check if that address is connected or is
|
||
* still in the list of pending connections or list of devices to
|
||
* report. If not present in either list, then remove it from
|
||
* the controller.
|
||
*/
|
||
list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
|
||
if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
|
||
continue;
|
||
|
||
/* Pointers not dereferenced, no locks needed */
|
||
pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
|
||
&b->bdaddr,
|
||
b->bdaddr_type);
|
||
pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
|
||
&b->bdaddr,
|
||
b->bdaddr_type);
|
||
|
||
/* If the device is not likely to connect or report,
|
||
* remove it from the acceptlist.
|
||
*/
|
||
if (!pend_conn && !pend_report) {
|
||
hci_le_del_accept_list_sync(hdev, &b->bdaddr,
|
||
b->bdaddr_type);
|
||
continue;
|
||
}
|
||
|
||
num_entries++;
|
||
}
|
||
|
||
/* Since all no longer valid accept list entries have been
|
||
* removed, walk through the list of pending connections
|
||
* and ensure that any new device gets programmed into
|
||
* the controller.
|
||
*
|
||
* If the list of the devices is larger than the list of
|
||
* available accept list entries in the controller, then
|
||
* just abort and return filer policy value to not use the
|
||
* accept list.
|
||
*
|
||
* The list and params may be mutated while we wait for events,
|
||
* so make a copy and iterate it.
|
||
*/
|
||
|
||
params = conn_params_copy(&hdev->pend_le_conns, &n);
|
||
if (!params) {
|
||
err = -ENOMEM;
|
||
goto done;
|
||
}
|
||
|
||
for (i = 0; i < n; ++i) {
|
||
err = hci_le_add_accept_list_sync(hdev, ¶ms[i],
|
||
&num_entries);
|
||
if (err) {
|
||
kvfree(params);
|
||
goto done;
|
||
}
|
||
}
|
||
|
||
kvfree(params);
|
||
|
||
/* After adding all new pending connections, walk through
|
||
* the list of pending reports and also add these to the
|
||
* accept list if there is still space. Abort if space runs out.
|
||
*/
|
||
|
||
params = conn_params_copy(&hdev->pend_le_reports, &n);
|
||
if (!params) {
|
||
err = -ENOMEM;
|
||
goto done;
|
||
}
|
||
|
||
for (i = 0; i < n; ++i) {
|
||
err = hci_le_add_accept_list_sync(hdev, ¶ms[i],
|
||
&num_entries);
|
||
if (err) {
|
||
kvfree(params);
|
||
goto done;
|
||
}
|
||
}
|
||
|
||
kvfree(params);
|
||
|
||
/* Use the allowlist unless the following conditions are all true:
|
||
* - We are not currently suspending
|
||
* - There are 1 or more ADV monitors registered and it's not offloaded
|
||
* - Interleaved scanning is not currently using the allowlist
|
||
*/
|
||
if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
|
||
hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
|
||
hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
|
||
err = -EINVAL;
|
||
|
||
done:
|
||
filter_policy = err ? 0x00 : 0x01;
|
||
|
||
/* Enable address resolution when LL Privacy is enabled. */
|
||
err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
|
||
if (err)
|
||
bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
|
||
|
||
/* Resume advertising if it was paused */
|
||
if (use_ll_privacy(hdev))
|
||
hci_resume_advertising_sync(hdev);
|
||
|
||
/* Select filter policy to use accept list */
|
||
return filter_policy;
|
||
}
|
||
|
||
static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
|
||
u16 interval, u16 window,
|
||
u8 own_addr_type, u8 filter_policy)
|
||
{
|
||
struct hci_cp_le_set_ext_scan_params *cp;
|
||
struct hci_cp_le_scan_phy_params *phy;
|
||
u8 data[sizeof(*cp) + sizeof(*phy) * 2];
|
||
u8 num_phy = 0;
|
||
|
||
cp = (void *)data;
|
||
phy = (void *)cp->data;
|
||
|
||
memset(data, 0, sizeof(data));
|
||
|
||
cp->own_addr_type = own_addr_type;
|
||
cp->filter_policy = filter_policy;
|
||
|
||
if (scan_1m(hdev) || scan_2m(hdev)) {
|
||
cp->scanning_phys |= LE_SCAN_PHY_1M;
|
||
|
||
phy->type = type;
|
||
phy->interval = cpu_to_le16(interval);
|
||
phy->window = cpu_to_le16(window);
|
||
|
||
num_phy++;
|
||
phy++;
|
||
}
|
||
|
||
if (scan_coded(hdev)) {
|
||
cp->scanning_phys |= LE_SCAN_PHY_CODED;
|
||
|
||
phy->type = type;
|
||
phy->interval = cpu_to_le16(interval);
|
||
phy->window = cpu_to_le16(window);
|
||
|
||
num_phy++;
|
||
phy++;
|
||
}
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
|
||
sizeof(*cp) + sizeof(*phy) * num_phy,
|
||
data, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
|
||
u16 interval, u16 window,
|
||
u8 own_addr_type, u8 filter_policy)
|
||
{
|
||
struct hci_cp_le_set_scan_param cp;
|
||
|
||
if (use_ext_scan(hdev))
|
||
return hci_le_set_ext_scan_param_sync(hdev, type, interval,
|
||
window, own_addr_type,
|
||
filter_policy);
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
cp.type = type;
|
||
cp.interval = cpu_to_le16(interval);
|
||
cp.window = cpu_to_le16(window);
|
||
cp.own_address_type = own_addr_type;
|
||
cp.filter_policy = filter_policy;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
|
||
u16 window, u8 own_addr_type, u8 filter_policy,
|
||
u8 filter_dup)
|
||
{
|
||
int err;
|
||
|
||
if (hdev->scanning_paused) {
|
||
bt_dev_dbg(hdev, "Scanning is paused for suspend");
|
||
return 0;
|
||
}
|
||
|
||
err = hci_le_set_scan_param_sync(hdev, type, interval, window,
|
||
own_addr_type, filter_policy);
|
||
if (err)
|
||
return err;
|
||
|
||
return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
|
||
}
|
||
|
||
static int hci_passive_scan_sync(struct hci_dev *hdev)
|
||
{
|
||
u8 own_addr_type;
|
||
u8 filter_policy;
|
||
u16 window, interval;
|
||
u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE;
|
||
int err;
|
||
|
||
if (hdev->scanning_paused) {
|
||
bt_dev_dbg(hdev, "Scanning is paused for suspend");
|
||
return 0;
|
||
}
|
||
|
||
err = hci_scan_disable_sync(hdev);
|
||
if (err) {
|
||
bt_dev_err(hdev, "disable scanning failed: %d", err);
|
||
return err;
|
||
}
|
||
|
||
/* Set require_privacy to false since no SCAN_REQ are send
|
||
* during passive scanning. Not using an non-resolvable address
|
||
* here is important so that peer devices using direct
|
||
* advertising with our address will be correctly reported
|
||
* by the controller.
|
||
*/
|
||
if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
|
||
&own_addr_type))
|
||
return 0;
|
||
|
||
if (hdev->enable_advmon_interleave_scan &&
|
||
hci_update_interleaved_scan_sync(hdev))
|
||
return 0;
|
||
|
||
bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
|
||
|
||
/* Adding or removing entries from the accept list must
|
||
* happen before enabling scanning. The controller does
|
||
* not allow accept list modification while scanning.
|
||
*/
|
||
filter_policy = hci_update_accept_list_sync(hdev);
|
||
|
||
/* When the controller is using random resolvable addresses and
|
||
* with that having LE privacy enabled, then controllers with
|
||
* Extended Scanner Filter Policies support can now enable support
|
||
* for handling directed advertising.
|
||
*
|
||
* So instead of using filter polices 0x00 (no acceptlist)
|
||
* and 0x01 (acceptlist enabled) use the new filter policies
|
||
* 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
|
||
*/
|
||
if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
|
||
(hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
|
||
filter_policy |= 0x02;
|
||
|
||
if (hdev->suspended) {
|
||
window = hdev->le_scan_window_suspend;
|
||
interval = hdev->le_scan_int_suspend;
|
||
} else if (hci_is_le_conn_scanning(hdev)) {
|
||
window = hdev->le_scan_window_connect;
|
||
interval = hdev->le_scan_int_connect;
|
||
} else if (hci_is_adv_monitoring(hdev)) {
|
||
window = hdev->le_scan_window_adv_monitor;
|
||
interval = hdev->le_scan_int_adv_monitor;
|
||
} else {
|
||
window = hdev->le_scan_window;
|
||
interval = hdev->le_scan_interval;
|
||
}
|
||
|
||
/* Disable all filtering for Mesh */
|
||
if (hci_dev_test_flag(hdev, HCI_MESH)) {
|
||
filter_policy = 0;
|
||
filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
|
||
}
|
||
|
||
bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
|
||
|
||
return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
|
||
own_addr_type, filter_policy, filter_dups);
|
||
}
|
||
|
||
/* This function controls the passive scanning based on hdev->pend_le_conns
|
||
* list. If there are pending LE connection we start the background scanning,
|
||
* otherwise we stop it in the following sequence:
|
||
*
|
||
* If there are devices to scan:
|
||
*
|
||
* Disable Scanning -> Update Accept List ->
|
||
* use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
|
||
* Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
|
||
* Enable Scanning
|
||
*
|
||
* Otherwise:
|
||
*
|
||
* Disable Scanning
|
||
*/
|
||
int hci_update_passive_scan_sync(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
|
||
if (!test_bit(HCI_UP, &hdev->flags) ||
|
||
test_bit(HCI_INIT, &hdev->flags) ||
|
||
hci_dev_test_flag(hdev, HCI_SETUP) ||
|
||
hci_dev_test_flag(hdev, HCI_CONFIG) ||
|
||
hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
|
||
hci_dev_test_flag(hdev, HCI_UNREGISTER))
|
||
return 0;
|
||
|
||
/* No point in doing scanning if LE support hasn't been enabled */
|
||
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
|
||
return 0;
|
||
|
||
/* If discovery is active don't interfere with it */
|
||
if (hdev->discovery.state != DISCOVERY_STOPPED)
|
||
return 0;
|
||
|
||
/* Reset RSSI and UUID filters when starting background scanning
|
||
* since these filters are meant for service discovery only.
|
||
*
|
||
* The Start Discovery and Start Service Discovery operations
|
||
* ensure to set proper values for RSSI threshold and UUID
|
||
* filter list. So it is safe to just reset them here.
|
||
*/
|
||
hci_discovery_filter_clear(hdev);
|
||
|
||
bt_dev_dbg(hdev, "ADV monitoring is %s",
|
||
hci_is_adv_monitoring(hdev) ? "on" : "off");
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_MESH) &&
|
||
list_empty(&hdev->pend_le_conns) &&
|
||
list_empty(&hdev->pend_le_reports) &&
|
||
!hci_is_adv_monitoring(hdev) &&
|
||
!hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
|
||
/* If there is no pending LE connections or devices
|
||
* to be scanned for or no ADV monitors, we should stop the
|
||
* background scanning.
|
||
*/
|
||
|
||
bt_dev_dbg(hdev, "stopping background scanning");
|
||
|
||
err = hci_scan_disable_sync(hdev);
|
||
if (err)
|
||
bt_dev_err(hdev, "stop background scanning failed: %d",
|
||
err);
|
||
} else {
|
||
/* If there is at least one pending LE connection, we should
|
||
* keep the background scan running.
|
||
*/
|
||
|
||
/* If controller is connecting, we should not start scanning
|
||
* since some controllers are not able to scan and connect at
|
||
* the same time.
|
||
*/
|
||
if (hci_lookup_le_connect(hdev))
|
||
return 0;
|
||
|
||
bt_dev_dbg(hdev, "start background scanning");
|
||
|
||
err = hci_passive_scan_sync(hdev);
|
||
if (err)
|
||
bt_dev_err(hdev, "start background scanning failed: %d",
|
||
err);
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
static int update_scan_sync(struct hci_dev *hdev, void *data)
|
||
{
|
||
return hci_update_scan_sync(hdev);
|
||
}
|
||
|
||
int hci_update_scan(struct hci_dev *hdev)
|
||
{
|
||
return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
|
||
}
|
||
|
||
static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
|
||
{
|
||
return hci_update_passive_scan_sync(hdev);
|
||
}
|
||
|
||
int hci_update_passive_scan(struct hci_dev *hdev)
|
||
{
|
||
/* Only queue if it would have any effect */
|
||
if (!test_bit(HCI_UP, &hdev->flags) ||
|
||
test_bit(HCI_INIT, &hdev->flags) ||
|
||
hci_dev_test_flag(hdev, HCI_SETUP) ||
|
||
hci_dev_test_flag(hdev, HCI_CONFIG) ||
|
||
hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
|
||
hci_dev_test_flag(hdev, HCI_UNREGISTER))
|
||
return 0;
|
||
|
||
return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
|
||
}
|
||
|
||
int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
|
||
{
|
||
int err;
|
||
|
||
if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
|
||
return 0;
|
||
|
||
err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
|
||
sizeof(val), &val, HCI_CMD_TIMEOUT);
|
||
|
||
if (!err) {
|
||
if (val) {
|
||
hdev->features[1][0] |= LMP_HOST_SC;
|
||
hci_dev_set_flag(hdev, HCI_SC_ENABLED);
|
||
} else {
|
||
hdev->features[1][0] &= ~LMP_HOST_SC;
|
||
hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
|
||
}
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
|
||
{
|
||
int err;
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
|
||
lmp_host_ssp_capable(hdev))
|
||
return 0;
|
||
|
||
if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
|
||
__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
|
||
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
|
||
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
|
||
if (err)
|
||
return err;
|
||
|
||
return hci_write_sc_support_sync(hdev, 0x01);
|
||
}
|
||
|
||
int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
|
||
{
|
||
struct hci_cp_write_le_host_supported cp;
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
|
||
!lmp_bredr_capable(hdev))
|
||
return 0;
|
||
|
||
/* Check first if we already have the right host state
|
||
* (host features set)
|
||
*/
|
||
if (le == lmp_host_le_capable(hdev) &&
|
||
simul == lmp_host_le_br_capable(hdev))
|
||
return 0;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
cp.le = le;
|
||
cp.simul = simul;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_powered_update_adv_sync(struct hci_dev *hdev)
|
||
{
|
||
struct adv_info *adv, *tmp;
|
||
int err;
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
|
||
return 0;
|
||
|
||
/* If RPA Resolution has not been enable yet it means the
|
||
* resolving list is empty and we should attempt to program the
|
||
* local IRK in order to support using own_addr_type
|
||
* ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
|
||
*/
|
||
if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
|
||
hci_le_add_resolve_list_sync(hdev, NULL);
|
||
hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
|
||
}
|
||
|
||
/* Make sure the controller has a good default for
|
||
* advertising data. This also applies to the case
|
||
* where BR/EDR was toggled during the AUTO_OFF phase.
|
||
*/
|
||
if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
|
||
list_empty(&hdev->adv_instances)) {
|
||
if (ext_adv_capable(hdev)) {
|
||
err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
|
||
if (!err)
|
||
hci_update_scan_rsp_data_sync(hdev, 0x00);
|
||
} else {
|
||
err = hci_update_adv_data_sync(hdev, 0x00);
|
||
if (!err)
|
||
hci_update_scan_rsp_data_sync(hdev, 0x00);
|
||
}
|
||
|
||
if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
|
||
hci_enable_advertising_sync(hdev);
|
||
}
|
||
|
||
/* Call for each tracked instance to be scheduled */
|
||
list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
|
||
hci_schedule_adv_instance_sync(hdev, adv->instance, true);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int hci_write_auth_enable_sync(struct hci_dev *hdev)
|
||
{
|
||
u8 link_sec;
|
||
|
||
link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
|
||
if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
|
||
sizeof(link_sec), &link_sec,
|
||
HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
|
||
{
|
||
struct hci_cp_write_page_scan_activity cp;
|
||
u8 type;
|
||
int err = 0;
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
|
||
return 0;
|
||
|
||
if (hdev->hci_ver < BLUETOOTH_VER_1_2)
|
||
return 0;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
if (enable) {
|
||
type = PAGE_SCAN_TYPE_INTERLACED;
|
||
|
||
/* 160 msec page scan interval */
|
||
cp.interval = cpu_to_le16(0x0100);
|
||
} else {
|
||
type = hdev->def_page_scan_type;
|
||
cp.interval = cpu_to_le16(hdev->def_page_scan_int);
|
||
}
|
||
|
||
cp.window = cpu_to_le16(hdev->def_page_scan_window);
|
||
|
||
if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
|
||
__cpu_to_le16(hdev->page_scan_window) != cp.window) {
|
||
err = __hci_cmd_sync_status(hdev,
|
||
HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
if (err)
|
||
return err;
|
||
}
|
||
|
||
if (hdev->page_scan_type != type)
|
||
err = __hci_cmd_sync_status(hdev,
|
||
HCI_OP_WRITE_PAGE_SCAN_TYPE,
|
||
sizeof(type), &type,
|
||
HCI_CMD_TIMEOUT);
|
||
|
||
return err;
|
||
}
|
||
|
||
static bool disconnected_accept_list_entries(struct hci_dev *hdev)
|
||
{
|
||
struct bdaddr_list *b;
|
||
|
||
list_for_each_entry(b, &hdev->accept_list, list) {
|
||
struct hci_conn *conn;
|
||
|
||
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
|
||
if (!conn)
|
||
return true;
|
||
|
||
if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
|
||
{
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
|
||
sizeof(val), &val,
|
||
HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
int hci_update_scan_sync(struct hci_dev *hdev)
|
||
{
|
||
u8 scan;
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
|
||
return 0;
|
||
|
||
if (!hdev_is_powered(hdev))
|
||
return 0;
|
||
|
||
if (mgmt_powering_down(hdev))
|
||
return 0;
|
||
|
||
if (hdev->scanning_paused)
|
||
return 0;
|
||
|
||
if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
|
||
disconnected_accept_list_entries(hdev))
|
||
scan = SCAN_PAGE;
|
||
else
|
||
scan = SCAN_DISABLED;
|
||
|
||
if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
|
||
scan |= SCAN_INQUIRY;
|
||
|
||
if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
|
||
test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
|
||
return 0;
|
||
|
||
return hci_write_scan_enable_sync(hdev, scan);
|
||
}
|
||
|
||
int hci_update_name_sync(struct hci_dev *hdev)
|
||
{
|
||
struct hci_cp_write_local_name cp;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
|
||
sizeof(cp), &cp,
|
||
HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* This function perform powered update HCI command sequence after the HCI init
|
||
* sequence which end up resetting all states, the sequence is as follows:
|
||
*
|
||
* HCI_SSP_ENABLED(Enable SSP)
|
||
* HCI_LE_ENABLED(Enable LE)
|
||
* HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
|
||
* Update adv data)
|
||
* Enable Authentication
|
||
* lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
|
||
* Set Name -> Set EIR)
|
||
* HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address)
|
||
*/
|
||
int hci_powered_update_sync(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
|
||
/* Register the available SMP channels (BR/EDR and LE) only when
|
||
* successfully powering on the controller. This late
|
||
* registration is required so that LE SMP can clearly decide if
|
||
* the public address or static address is used.
|
||
*/
|
||
smp_register(hdev);
|
||
|
||
err = hci_write_ssp_mode_sync(hdev, 0x01);
|
||
if (err)
|
||
return err;
|
||
|
||
err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
|
||
if (err)
|
||
return err;
|
||
|
||
err = hci_powered_update_adv_sync(hdev);
|
||
if (err)
|
||
return err;
|
||
|
||
err = hci_write_auth_enable_sync(hdev);
|
||
if (err)
|
||
return err;
|
||
|
||
if (lmp_bredr_capable(hdev)) {
|
||
if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
|
||
hci_write_fast_connectable_sync(hdev, true);
|
||
else
|
||
hci_write_fast_connectable_sync(hdev, false);
|
||
hci_update_scan_sync(hdev);
|
||
hci_update_class_sync(hdev);
|
||
hci_update_name_sync(hdev);
|
||
hci_update_eir_sync(hdev);
|
||
}
|
||
|
||
/* If forcing static address is in use or there is no public
|
||
* address use the static address as random address (but skip
|
||
* the HCI command if the current random address is already the
|
||
* static one.
|
||
*
|
||
* In case BR/EDR has been disabled on a dual-mode controller
|
||
* and a static address has been configured, then use that
|
||
* address instead of the public BR/EDR address.
|
||
*/
|
||
if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
|
||
(!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
|
||
!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) {
|
||
if (bacmp(&hdev->static_addr, BDADDR_ANY))
|
||
return hci_set_random_addr_sync(hdev,
|
||
&hdev->static_addr);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
|
||
* (BD_ADDR) for a HCI device from
|
||
* a firmware node property.
|
||
* @hdev: The HCI device
|
||
*
|
||
* Search the firmware node for 'local-bd-address'.
|
||
*
|
||
* All-zero BD addresses are rejected, because those could be properties
|
||
* that exist in the firmware tables, but were not updated by the firmware. For
|
||
* example, the DTS could define 'local-bd-address', with zero BD addresses.
|
||
*/
|
||
static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
|
||
{
|
||
struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
|
||
bdaddr_t ba;
|
||
int ret;
|
||
|
||
ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
|
||
(u8 *)&ba, sizeof(ba));
|
||
if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
|
||
return;
|
||
|
||
bacpy(&hdev->public_addr, &ba);
|
||
}
|
||
|
||
struct hci_init_stage {
|
||
int (*func)(struct hci_dev *hdev);
|
||
};
|
||
|
||
/* Run init stage NULL terminated function table */
|
||
static int hci_init_stage_sync(struct hci_dev *hdev,
|
||
const struct hci_init_stage *stage)
|
||
{
|
||
size_t i;
|
||
|
||
for (i = 0; stage[i].func; i++) {
|
||
int err;
|
||
|
||
err = stage[i].func(hdev);
|
||
if (err)
|
||
return err;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Read Local Version */
|
||
static int hci_read_local_version_sync(struct hci_dev *hdev)
|
||
{
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read BD Address */
|
||
static int hci_read_bd_addr_sync(struct hci_dev *hdev)
|
||
{
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
#define HCI_INIT(_func) \
|
||
{ \
|
||
.func = _func, \
|
||
}
|
||
|
||
static const struct hci_init_stage hci_init0[] = {
|
||
/* HCI_OP_READ_LOCAL_VERSION */
|
||
HCI_INIT(hci_read_local_version_sync),
|
||
/* HCI_OP_READ_BD_ADDR */
|
||
HCI_INIT(hci_read_bd_addr_sync),
|
||
{}
|
||
};
|
||
|
||
int hci_reset_sync(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
|
||
set_bit(HCI_RESET, &hdev->flags);
|
||
|
||
err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
|
||
HCI_CMD_TIMEOUT);
|
||
if (err)
|
||
return err;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int hci_init0_sync(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
/* Reset */
|
||
if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
|
||
err = hci_reset_sync(hdev);
|
||
if (err)
|
||
return err;
|
||
}
|
||
|
||
return hci_init_stage_sync(hdev, hci_init0);
|
||
}
|
||
|
||
static int hci_unconf_init_sync(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
|
||
if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
|
||
return 0;
|
||
|
||
err = hci_init0_sync(hdev);
|
||
if (err < 0)
|
||
return err;
|
||
|
||
if (hci_dev_test_flag(hdev, HCI_SETUP))
|
||
hci_debugfs_create_basic(hdev);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Read Local Supported Features. */
|
||
static int hci_read_local_features_sync(struct hci_dev *hdev)
|
||
{
|
||
/* Not all AMP controllers support this command */
|
||
if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* BR Controller init stage 1 command sequence */
|
||
static const struct hci_init_stage br_init1[] = {
|
||
/* HCI_OP_READ_LOCAL_FEATURES */
|
||
HCI_INIT(hci_read_local_features_sync),
|
||
/* HCI_OP_READ_LOCAL_VERSION */
|
||
HCI_INIT(hci_read_local_version_sync),
|
||
/* HCI_OP_READ_BD_ADDR */
|
||
HCI_INIT(hci_read_bd_addr_sync),
|
||
{}
|
||
};
|
||
|
||
/* Read Local Commands */
|
||
static int hci_read_local_cmds_sync(struct hci_dev *hdev)
|
||
{
|
||
/* All Bluetooth 1.2 and later controllers should support the
|
||
* HCI command for reading the local supported commands.
|
||
*
|
||
* Unfortunately some controllers indicate Bluetooth 1.2 support,
|
||
* but do not have support for this command. If that is the case,
|
||
* the driver can quirk the behavior and skip reading the local
|
||
* supported commands.
|
||
*/
|
||
if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
|
||
!test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Read Local AMP Info */
|
||
static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
|
||
{
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read Data Blk size */
|
||
static int hci_read_data_block_size_sync(struct hci_dev *hdev)
|
||
{
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read Flow Control Mode */
|
||
static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
|
||
{
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read Location Data */
|
||
static int hci_read_location_data_sync(struct hci_dev *hdev)
|
||
{
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* AMP Controller init stage 1 command sequence */
|
||
static const struct hci_init_stage amp_init1[] = {
|
||
/* HCI_OP_READ_LOCAL_VERSION */
|
||
HCI_INIT(hci_read_local_version_sync),
|
||
/* HCI_OP_READ_LOCAL_COMMANDS */
|
||
HCI_INIT(hci_read_local_cmds_sync),
|
||
/* HCI_OP_READ_LOCAL_AMP_INFO */
|
||
HCI_INIT(hci_read_local_amp_info_sync),
|
||
/* HCI_OP_READ_DATA_BLOCK_SIZE */
|
||
HCI_INIT(hci_read_data_block_size_sync),
|
||
/* HCI_OP_READ_FLOW_CONTROL_MODE */
|
||
HCI_INIT(hci_read_flow_control_mode_sync),
|
||
/* HCI_OP_READ_LOCATION_DATA */
|
||
HCI_INIT(hci_read_location_data_sync),
|
||
{}
|
||
};
|
||
|
||
static int hci_init1_sync(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
/* Reset */
|
||
if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
|
||
err = hci_reset_sync(hdev);
|
||
if (err)
|
||
return err;
|
||
}
|
||
|
||
switch (hdev->dev_type) {
|
||
case HCI_PRIMARY:
|
||
hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
|
||
return hci_init_stage_sync(hdev, br_init1);
|
||
case HCI_AMP:
|
||
hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
|
||
return hci_init_stage_sync(hdev, amp_init1);
|
||
default:
|
||
bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* AMP Controller init stage 2 command sequence */
|
||
static const struct hci_init_stage amp_init2[] = {
|
||
/* HCI_OP_READ_LOCAL_FEATURES */
|
||
HCI_INIT(hci_read_local_features_sync),
|
||
{}
|
||
};
|
||
|
||
/* Read Buffer Size (ACL mtu, max pkt, etc.) */
|
||
static int hci_read_buffer_size_sync(struct hci_dev *hdev)
|
||
{
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read Class of Device */
|
||
static int hci_read_dev_class_sync(struct hci_dev *hdev)
|
||
{
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read Local Name */
|
||
static int hci_read_local_name_sync(struct hci_dev *hdev)
|
||
{
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read Voice Setting */
|
||
static int hci_read_voice_setting_sync(struct hci_dev *hdev)
|
||
{
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read Number of Supported IAC */
|
||
static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
|
||
{
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read Current IAC LAP */
|
||
static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
|
||
{
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
|
||
u8 cond_type, bdaddr_t *bdaddr,
|
||
u8 auto_accept)
|
||
{
|
||
struct hci_cp_set_event_filter cp;
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
|
||
return 0;
|
||
|
||
if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
|
||
return 0;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
cp.flt_type = flt_type;
|
||
|
||
if (flt_type != HCI_FLT_CLEAR_ALL) {
|
||
cp.cond_type = cond_type;
|
||
bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
|
||
cp.addr_conn_flt.auto_accept = auto_accept;
|
||
}
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
|
||
flt_type == HCI_FLT_CLEAR_ALL ?
|
||
sizeof(cp.flt_type) : sizeof(cp), &cp,
|
||
HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_clear_event_filter_sync(struct hci_dev *hdev)
|
||
{
|
||
if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
|
||
return 0;
|
||
|
||
/* In theory the state machine should not reach here unless
|
||
* a hci_set_event_filter_sync() call succeeds, but we do
|
||
* the check both for parity and as a future reminder.
|
||
*/
|
||
if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
|
||
return 0;
|
||
|
||
return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
|
||
BDADDR_ANY, 0x00);
|
||
}
|
||
|
||
/* Connection accept timeout ~20 secs */
|
||
static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
|
||
{
|
||
__le16 param = cpu_to_le16(0x7d00);
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
|
||
sizeof(param), ¶m, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* BR Controller init stage 2 command sequence */
|
||
static const struct hci_init_stage br_init2[] = {
|
||
/* HCI_OP_READ_BUFFER_SIZE */
|
||
HCI_INIT(hci_read_buffer_size_sync),
|
||
/* HCI_OP_READ_CLASS_OF_DEV */
|
||
HCI_INIT(hci_read_dev_class_sync),
|
||
/* HCI_OP_READ_LOCAL_NAME */
|
||
HCI_INIT(hci_read_local_name_sync),
|
||
/* HCI_OP_READ_VOICE_SETTING */
|
||
HCI_INIT(hci_read_voice_setting_sync),
|
||
/* HCI_OP_READ_NUM_SUPPORTED_IAC */
|
||
HCI_INIT(hci_read_num_supported_iac_sync),
|
||
/* HCI_OP_READ_CURRENT_IAC_LAP */
|
||
HCI_INIT(hci_read_current_iac_lap_sync),
|
||
/* HCI_OP_SET_EVENT_FLT */
|
||
HCI_INIT(hci_clear_event_filter_sync),
|
||
/* HCI_OP_WRITE_CA_TIMEOUT */
|
||
HCI_INIT(hci_write_ca_timeout_sync),
|
||
{}
|
||
};
|
||
|
||
static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
|
||
{
|
||
u8 mode = 0x01;
|
||
|
||
if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
|
||
return 0;
|
||
|
||
/* When SSP is available, then the host features page
|
||
* should also be available as well. However some
|
||
* controllers list the max_page as 0 as long as SSP
|
||
* has not been enabled. To achieve proper debugging
|
||
* output, force the minimum max_page to 1 at least.
|
||
*/
|
||
hdev->max_page = 0x01;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
|
||
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_write_eir_sync(struct hci_dev *hdev)
|
||
{
|
||
struct hci_cp_write_eir cp;
|
||
|
||
if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
|
||
return 0;
|
||
|
||
memset(hdev->eir, 0, sizeof(hdev->eir));
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
|
||
HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
|
||
{
|
||
u8 mode;
|
||
|
||
if (!lmp_inq_rssi_capable(hdev) &&
|
||
!test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
|
||
return 0;
|
||
|
||
/* If Extended Inquiry Result events are supported, then
|
||
* they are clearly preferred over Inquiry Result with RSSI
|
||
* events.
|
||
*/
|
||
mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
|
||
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
|
||
{
|
||
if (!lmp_inq_tx_pwr_capable(hdev))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
|
||
{
|
||
struct hci_cp_read_local_ext_features cp;
|
||
|
||
if (!lmp_ext_feat_capable(hdev))
|
||
return 0;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
cp.page = page;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
|
||
{
|
||
return hci_read_local_ext_features_sync(hdev, 0x01);
|
||
}
|
||
|
||
/* HCI Controller init stage 2 command sequence */
|
||
static const struct hci_init_stage hci_init2[] = {
|
||
/* HCI_OP_READ_LOCAL_COMMANDS */
|
||
HCI_INIT(hci_read_local_cmds_sync),
|
||
/* HCI_OP_WRITE_SSP_MODE */
|
||
HCI_INIT(hci_write_ssp_mode_1_sync),
|
||
/* HCI_OP_WRITE_EIR */
|
||
HCI_INIT(hci_write_eir_sync),
|
||
/* HCI_OP_WRITE_INQUIRY_MODE */
|
||
HCI_INIT(hci_write_inquiry_mode_sync),
|
||
/* HCI_OP_READ_INQ_RSP_TX_POWER */
|
||
HCI_INIT(hci_read_inq_rsp_tx_power_sync),
|
||
/* HCI_OP_READ_LOCAL_EXT_FEATURES */
|
||
HCI_INIT(hci_read_local_ext_features_1_sync),
|
||
/* HCI_OP_WRITE_AUTH_ENABLE */
|
||
HCI_INIT(hci_write_auth_enable_sync),
|
||
{}
|
||
};
|
||
|
||
/* Read LE Buffer Size */
|
||
static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
|
||
{
|
||
/* Use Read LE Buffer Size V2 if supported */
|
||
if (iso_capable(hdev) && hdev->commands[41] & 0x20)
|
||
return __hci_cmd_sync_status(hdev,
|
||
HCI_OP_LE_READ_BUFFER_SIZE_V2,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read LE Local Supported Features */
|
||
static int hci_le_read_local_features_sync(struct hci_dev *hdev)
|
||
{
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read LE Supported States */
|
||
static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
|
||
{
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* LE Controller init stage 2 command sequence */
|
||
static const struct hci_init_stage le_init2[] = {
|
||
/* HCI_OP_LE_READ_LOCAL_FEATURES */
|
||
HCI_INIT(hci_le_read_local_features_sync),
|
||
/* HCI_OP_LE_READ_BUFFER_SIZE */
|
||
HCI_INIT(hci_le_read_buffer_size_sync),
|
||
/* HCI_OP_LE_READ_SUPPORTED_STATES */
|
||
HCI_INIT(hci_le_read_supported_states_sync),
|
||
{}
|
||
};
|
||
|
||
static int hci_init2_sync(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
if (hdev->dev_type == HCI_AMP)
|
||
return hci_init_stage_sync(hdev, amp_init2);
|
||
|
||
err = hci_init_stage_sync(hdev, hci_init2);
|
||
if (err)
|
||
return err;
|
||
|
||
if (lmp_bredr_capable(hdev)) {
|
||
err = hci_init_stage_sync(hdev, br_init2);
|
||
if (err)
|
||
return err;
|
||
} else {
|
||
hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
|
||
}
|
||
|
||
if (lmp_le_capable(hdev)) {
|
||
err = hci_init_stage_sync(hdev, le_init2);
|
||
if (err)
|
||
return err;
|
||
/* LE-only controllers have LE implicitly enabled */
|
||
if (!lmp_bredr_capable(hdev))
|
||
hci_dev_set_flag(hdev, HCI_LE_ENABLED);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int hci_set_event_mask_sync(struct hci_dev *hdev)
|
||
{
|
||
/* The second byte is 0xff instead of 0x9f (two reserved bits
|
||
* disabled) since a Broadcom 1.2 dongle doesn't respond to the
|
||
* command otherwise.
|
||
*/
|
||
u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
|
||
|
||
/* CSR 1.1 dongles does not accept any bitfield so don't try to set
|
||
* any event mask for pre 1.2 devices.
|
||
*/
|
||
if (hdev->hci_ver < BLUETOOTH_VER_1_2)
|
||
return 0;
|
||
|
||
if (lmp_bredr_capable(hdev)) {
|
||
events[4] |= 0x01; /* Flow Specification Complete */
|
||
|
||
/* Don't set Disconnect Complete when suspended as that
|
||
* would wakeup the host when disconnecting due to
|
||
* suspend.
|
||
*/
|
||
if (hdev->suspended)
|
||
events[0] &= 0xef;
|
||
} else {
|
||
/* Use a different default for LE-only devices */
|
||
memset(events, 0, sizeof(events));
|
||
events[1] |= 0x20; /* Command Complete */
|
||
events[1] |= 0x40; /* Command Status */
|
||
events[1] |= 0x80; /* Hardware Error */
|
||
|
||
/* If the controller supports the Disconnect command, enable
|
||
* the corresponding event. In addition enable packet flow
|
||
* control related events.
|
||
*/
|
||
if (hdev->commands[0] & 0x20) {
|
||
/* Don't set Disconnect Complete when suspended as that
|
||
* would wakeup the host when disconnecting due to
|
||
* suspend.
|
||
*/
|
||
if (!hdev->suspended)
|
||
events[0] |= 0x10; /* Disconnection Complete */
|
||
events[2] |= 0x04; /* Number of Completed Packets */
|
||
events[3] |= 0x02; /* Data Buffer Overflow */
|
||
}
|
||
|
||
/* If the controller supports the Read Remote Version
|
||
* Information command, enable the corresponding event.
|
||
*/
|
||
if (hdev->commands[2] & 0x80)
|
||
events[1] |= 0x08; /* Read Remote Version Information
|
||
* Complete
|
||
*/
|
||
|
||
if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
|
||
events[0] |= 0x80; /* Encryption Change */
|
||
events[5] |= 0x80; /* Encryption Key Refresh Complete */
|
||
}
|
||
}
|
||
|
||
if (lmp_inq_rssi_capable(hdev) ||
|
||
test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
|
||
events[4] |= 0x02; /* Inquiry Result with RSSI */
|
||
|
||
if (lmp_ext_feat_capable(hdev))
|
||
events[4] |= 0x04; /* Read Remote Extended Features Complete */
|
||
|
||
if (lmp_esco_capable(hdev)) {
|
||
events[5] |= 0x08; /* Synchronous Connection Complete */
|
||
events[5] |= 0x10; /* Synchronous Connection Changed */
|
||
}
|
||
|
||
if (lmp_sniffsubr_capable(hdev))
|
||
events[5] |= 0x20; /* Sniff Subrating */
|
||
|
||
if (lmp_pause_enc_capable(hdev))
|
||
events[5] |= 0x80; /* Encryption Key Refresh Complete */
|
||
|
||
if (lmp_ext_inq_capable(hdev))
|
||
events[5] |= 0x40; /* Extended Inquiry Result */
|
||
|
||
if (lmp_no_flush_capable(hdev))
|
||
events[7] |= 0x01; /* Enhanced Flush Complete */
|
||
|
||
if (lmp_lsto_capable(hdev))
|
||
events[6] |= 0x80; /* Link Supervision Timeout Changed */
|
||
|
||
if (lmp_ssp_capable(hdev)) {
|
||
events[6] |= 0x01; /* IO Capability Request */
|
||
events[6] |= 0x02; /* IO Capability Response */
|
||
events[6] |= 0x04; /* User Confirmation Request */
|
||
events[6] |= 0x08; /* User Passkey Request */
|
||
events[6] |= 0x10; /* Remote OOB Data Request */
|
||
events[6] |= 0x20; /* Simple Pairing Complete */
|
||
events[7] |= 0x04; /* User Passkey Notification */
|
||
events[7] |= 0x08; /* Keypress Notification */
|
||
events[7] |= 0x10; /* Remote Host Supported
|
||
* Features Notification
|
||
*/
|
||
}
|
||
|
||
if (lmp_le_capable(hdev))
|
||
events[7] |= 0x20; /* LE Meta-Event */
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
|
||
sizeof(events), events, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
|
||
{
|
||
struct hci_cp_read_stored_link_key cp;
|
||
|
||
if (!(hdev->commands[6] & 0x20) ||
|
||
test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
|
||
return 0;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
bacpy(&cp.bdaddr, BDADDR_ANY);
|
||
cp.read_all = 0x01;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_setup_link_policy_sync(struct hci_dev *hdev)
|
||
{
|
||
struct hci_cp_write_def_link_policy cp;
|
||
u16 link_policy = 0;
|
||
|
||
if (!(hdev->commands[5] & 0x10))
|
||
return 0;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
if (lmp_rswitch_capable(hdev))
|
||
link_policy |= HCI_LP_RSWITCH;
|
||
if (lmp_hold_capable(hdev))
|
||
link_policy |= HCI_LP_HOLD;
|
||
if (lmp_sniff_capable(hdev))
|
||
link_policy |= HCI_LP_SNIFF;
|
||
if (lmp_park_capable(hdev))
|
||
link_policy |= HCI_LP_PARK;
|
||
|
||
cp.policy = cpu_to_le16(link_policy);
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
|
||
{
|
||
if (!(hdev->commands[8] & 0x01))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
|
||
{
|
||
if (!(hdev->commands[18] & 0x04) ||
|
||
!(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
|
||
test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
|
||
{
|
||
/* Some older Broadcom based Bluetooth 1.2 controllers do not
|
||
* support the Read Page Scan Type command. Check support for
|
||
* this command in the bit mask of supported commands.
|
||
*/
|
||
if (!(hdev->commands[13] & 0x01))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read features beyond page 1 if available */
|
||
static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
|
||
{
|
||
u8 page;
|
||
int err;
|
||
|
||
if (!lmp_ext_feat_capable(hdev))
|
||
return 0;
|
||
|
||
for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
|
||
page++) {
|
||
err = hci_read_local_ext_features_sync(hdev, page);
|
||
if (err)
|
||
return err;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* HCI Controller init stage 3 command sequence */
|
||
static const struct hci_init_stage hci_init3[] = {
|
||
/* HCI_OP_SET_EVENT_MASK */
|
||
HCI_INIT(hci_set_event_mask_sync),
|
||
/* HCI_OP_READ_STORED_LINK_KEY */
|
||
HCI_INIT(hci_read_stored_link_key_sync),
|
||
/* HCI_OP_WRITE_DEF_LINK_POLICY */
|
||
HCI_INIT(hci_setup_link_policy_sync),
|
||
/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
|
||
HCI_INIT(hci_read_page_scan_activity_sync),
|
||
/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
|
||
HCI_INIT(hci_read_def_err_data_reporting_sync),
|
||
/* HCI_OP_READ_PAGE_SCAN_TYPE */
|
||
HCI_INIT(hci_read_page_scan_type_sync),
|
||
/* HCI_OP_READ_LOCAL_EXT_FEATURES */
|
||
HCI_INIT(hci_read_local_ext_features_all_sync),
|
||
{}
|
||
};
|
||
|
||
static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
|
||
{
|
||
u8 events[8];
|
||
|
||
if (!lmp_le_capable(hdev))
|
||
return 0;
|
||
|
||
memset(events, 0, sizeof(events));
|
||
|
||
if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
|
||
events[0] |= 0x10; /* LE Long Term Key Request */
|
||
|
||
/* If controller supports the Connection Parameters Request
|
||
* Link Layer Procedure, enable the corresponding event.
|
||
*/
|
||
if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
|
||
/* LE Remote Connection Parameter Request */
|
||
events[0] |= 0x20;
|
||
|
||
/* If the controller supports the Data Length Extension
|
||
* feature, enable the corresponding event.
|
||
*/
|
||
if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
|
||
events[0] |= 0x40; /* LE Data Length Change */
|
||
|
||
/* If the controller supports LL Privacy feature or LE Extended Adv,
|
||
* enable the corresponding event.
|
||
*/
|
||
if (use_enhanced_conn_complete(hdev))
|
||
events[1] |= 0x02; /* LE Enhanced Connection Complete */
|
||
|
||
/* If the controller supports Extended Scanner Filter
|
||
* Policies, enable the corresponding event.
|
||
*/
|
||
if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
|
||
events[1] |= 0x04; /* LE Direct Advertising Report */
|
||
|
||
/* If the controller supports Channel Selection Algorithm #2
|
||
* feature, enable the corresponding event.
|
||
*/
|
||
if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
|
||
events[2] |= 0x08; /* LE Channel Selection Algorithm */
|
||
|
||
/* If the controller supports the LE Set Scan Enable command,
|
||
* enable the corresponding advertising report event.
|
||
*/
|
||
if (hdev->commands[26] & 0x08)
|
||
events[0] |= 0x02; /* LE Advertising Report */
|
||
|
||
/* If the controller supports the LE Create Connection
|
||
* command, enable the corresponding event.
|
||
*/
|
||
if (hdev->commands[26] & 0x10)
|
||
events[0] |= 0x01; /* LE Connection Complete */
|
||
|
||
/* If the controller supports the LE Connection Update
|
||
* command, enable the corresponding event.
|
||
*/
|
||
if (hdev->commands[27] & 0x04)
|
||
events[0] |= 0x04; /* LE Connection Update Complete */
|
||
|
||
/* If the controller supports the LE Read Remote Used Features
|
||
* command, enable the corresponding event.
|
||
*/
|
||
if (hdev->commands[27] & 0x20)
|
||
/* LE Read Remote Used Features Complete */
|
||
events[0] |= 0x08;
|
||
|
||
/* If the controller supports the LE Read Local P-256
|
||
* Public Key command, enable the corresponding event.
|
||
*/
|
||
if (hdev->commands[34] & 0x02)
|
||
/* LE Read Local P-256 Public Key Complete */
|
||
events[0] |= 0x80;
|
||
|
||
/* If the controller supports the LE Generate DHKey
|
||
* command, enable the corresponding event.
|
||
*/
|
||
if (hdev->commands[34] & 0x04)
|
||
events[1] |= 0x01; /* LE Generate DHKey Complete */
|
||
|
||
/* If the controller supports the LE Set Default PHY or
|
||
* LE Set PHY commands, enable the corresponding event.
|
||
*/
|
||
if (hdev->commands[35] & (0x20 | 0x40))
|
||
events[1] |= 0x08; /* LE PHY Update Complete */
|
||
|
||
/* If the controller supports LE Set Extended Scan Parameters
|
||
* and LE Set Extended Scan Enable commands, enable the
|
||
* corresponding event.
|
||
*/
|
||
if (use_ext_scan(hdev))
|
||
events[1] |= 0x10; /* LE Extended Advertising Report */
|
||
|
||
/* If the controller supports the LE Extended Advertising
|
||
* command, enable the corresponding event.
|
||
*/
|
||
if (ext_adv_capable(hdev))
|
||
events[2] |= 0x02; /* LE Advertising Set Terminated */
|
||
|
||
if (cis_capable(hdev)) {
|
||
events[3] |= 0x01; /* LE CIS Established */
|
||
if (cis_peripheral_capable(hdev))
|
||
events[3] |= 0x02; /* LE CIS Request */
|
||
}
|
||
|
||
if (bis_capable(hdev)) {
|
||
events[1] |= 0x20; /* LE PA Report */
|
||
events[1] |= 0x40; /* LE PA Sync Established */
|
||
events[3] |= 0x04; /* LE Create BIG Complete */
|
||
events[3] |= 0x08; /* LE Terminate BIG Complete */
|
||
events[3] |= 0x10; /* LE BIG Sync Established */
|
||
events[3] |= 0x20; /* LE BIG Sync Loss */
|
||
events[4] |= 0x02; /* LE BIG Info Advertising Report */
|
||
}
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
|
||
sizeof(events), events, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read LE Advertising Channel TX Power */
|
||
static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
|
||
{
|
||
if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
|
||
/* HCI TS spec forbids mixing of legacy and extended
|
||
* advertising commands wherein READ_ADV_TX_POWER is
|
||
* also included. So do not call it if extended adv
|
||
* is supported otherwise controller will return
|
||
* COMMAND_DISALLOWED for extended commands.
|
||
*/
|
||
return __hci_cmd_sync_status(hdev,
|
||
HCI_OP_LE_READ_ADV_TX_POWER,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Read LE Min/Max Tx Power*/
|
||
static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
|
||
{
|
||
if (!(hdev->commands[38] & 0x80) ||
|
||
test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read LE Accept List Size */
|
||
static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
|
||
{
|
||
if (!(hdev->commands[26] & 0x40))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Clear LE Accept List */
|
||
static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
|
||
{
|
||
if (!(hdev->commands[26] & 0x80))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
|
||
HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read LE Resolving List Size */
|
||
static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
|
||
{
|
||
if (!(hdev->commands[34] & 0x40))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Clear LE Resolving List */
|
||
static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
|
||
{
|
||
if (!(hdev->commands[34] & 0x20))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
|
||
HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Set RPA timeout */
|
||
static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
|
||
{
|
||
__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
|
||
|
||
if (!(hdev->commands[35] & 0x04) ||
|
||
test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
|
||
sizeof(timeout), &timeout,
|
||
HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read LE Maximum Data Length */
|
||
static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
|
||
{
|
||
if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
|
||
HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read LE Suggested Default Data Length */
|
||
static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
|
||
{
|
||
if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
|
||
HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read LE Number of Supported Advertising Sets */
|
||
static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
|
||
{
|
||
if (!ext_adv_capable(hdev))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev,
|
||
HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Write LE Host Supported */
|
||
static int hci_set_le_support_sync(struct hci_dev *hdev)
|
||
{
|
||
struct hci_cp_write_le_host_supported cp;
|
||
|
||
/* LE-only devices do not support explicit enablement */
|
||
if (!lmp_bredr_capable(hdev))
|
||
return 0;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
|
||
cp.le = 0x01;
|
||
cp.simul = 0x00;
|
||
}
|
||
|
||
if (cp.le == lmp_host_le_capable(hdev))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* LE Set Host Feature */
|
||
static int hci_le_set_host_feature_sync(struct hci_dev *hdev)
|
||
{
|
||
struct hci_cp_le_set_host_feature cp;
|
||
|
||
if (!cis_capable(hdev))
|
||
return 0;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
/* Connected Isochronous Channels (Host Support) */
|
||
cp.bit_number = 32;
|
||
cp.bit_value = 1;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* LE Controller init stage 3 command sequence */
|
||
static const struct hci_init_stage le_init3[] = {
|
||
/* HCI_OP_LE_SET_EVENT_MASK */
|
||
HCI_INIT(hci_le_set_event_mask_sync),
|
||
/* HCI_OP_LE_READ_ADV_TX_POWER */
|
||
HCI_INIT(hci_le_read_adv_tx_power_sync),
|
||
/* HCI_OP_LE_READ_TRANSMIT_POWER */
|
||
HCI_INIT(hci_le_read_tx_power_sync),
|
||
/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
|
||
HCI_INIT(hci_le_read_accept_list_size_sync),
|
||
/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
|
||
HCI_INIT(hci_le_clear_accept_list_sync),
|
||
/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
|
||
HCI_INIT(hci_le_read_resolv_list_size_sync),
|
||
/* HCI_OP_LE_CLEAR_RESOLV_LIST */
|
||
HCI_INIT(hci_le_clear_resolv_list_sync),
|
||
/* HCI_OP_LE_SET_RPA_TIMEOUT */
|
||
HCI_INIT(hci_le_set_rpa_timeout_sync),
|
||
/* HCI_OP_LE_READ_MAX_DATA_LEN */
|
||
HCI_INIT(hci_le_read_max_data_len_sync),
|
||
/* HCI_OP_LE_READ_DEF_DATA_LEN */
|
||
HCI_INIT(hci_le_read_def_data_len_sync),
|
||
/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
|
||
HCI_INIT(hci_le_read_num_support_adv_sets_sync),
|
||
/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
|
||
HCI_INIT(hci_set_le_support_sync),
|
||
/* HCI_OP_LE_SET_HOST_FEATURE */
|
||
HCI_INIT(hci_le_set_host_feature_sync),
|
||
{}
|
||
};
|
||
|
||
static int hci_init3_sync(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
err = hci_init_stage_sync(hdev, hci_init3);
|
||
if (err)
|
||
return err;
|
||
|
||
if (lmp_le_capable(hdev))
|
||
return hci_init_stage_sync(hdev, le_init3);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
|
||
{
|
||
struct hci_cp_delete_stored_link_key cp;
|
||
|
||
/* Some Broadcom based Bluetooth controllers do not support the
|
||
* Delete Stored Link Key command. They are clearly indicating its
|
||
* absence in the bit mask of supported commands.
|
||
*
|
||
* Check the supported commands and only if the command is marked
|
||
* as supported send it. If not supported assume that the controller
|
||
* does not have actual support for stored link keys which makes this
|
||
* command redundant anyway.
|
||
*
|
||
* Some controllers indicate that they support handling deleting
|
||
* stored link keys, but they don't. The quirk lets a driver
|
||
* just disable this command.
|
||
*/
|
||
if (!(hdev->commands[6] & 0x80) ||
|
||
test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
|
||
return 0;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
bacpy(&cp.bdaddr, BDADDR_ANY);
|
||
cp.delete_all = 0x01;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
|
||
{
|
||
u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
||
bool changed = false;
|
||
|
||
/* Set event mask page 2 if the HCI command for it is supported */
|
||
if (!(hdev->commands[22] & 0x04))
|
||
return 0;
|
||
|
||
/* If Connectionless Peripheral Broadcast central role is supported
|
||
* enable all necessary events for it.
|
||
*/
|
||
if (lmp_cpb_central_capable(hdev)) {
|
||
events[1] |= 0x40; /* Triggered Clock Capture */
|
||
events[1] |= 0x80; /* Synchronization Train Complete */
|
||
events[2] |= 0x08; /* Truncated Page Complete */
|
||
events[2] |= 0x20; /* CPB Channel Map Change */
|
||
changed = true;
|
||
}
|
||
|
||
/* If Connectionless Peripheral Broadcast peripheral role is supported
|
||
* enable all necessary events for it.
|
||
*/
|
||
if (lmp_cpb_peripheral_capable(hdev)) {
|
||
events[2] |= 0x01; /* Synchronization Train Received */
|
||
events[2] |= 0x02; /* CPB Receive */
|
||
events[2] |= 0x04; /* CPB Timeout */
|
||
events[2] |= 0x10; /* Peripheral Page Response Timeout */
|
||
changed = true;
|
||
}
|
||
|
||
/* Enable Authenticated Payload Timeout Expired event if supported */
|
||
if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
|
||
events[2] |= 0x80;
|
||
changed = true;
|
||
}
|
||
|
||
/* Some Broadcom based controllers indicate support for Set Event
|
||
* Mask Page 2 command, but then actually do not support it. Since
|
||
* the default value is all bits set to zero, the command is only
|
||
* required if the event mask has to be changed. In case no change
|
||
* to the event mask is needed, skip this command.
|
||
*/
|
||
if (!changed)
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
|
||
sizeof(events), events, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Read local codec list if the HCI command is supported */
|
||
static int hci_read_local_codecs_sync(struct hci_dev *hdev)
|
||
{
|
||
if (hdev->commands[45] & 0x04)
|
||
hci_read_supported_codecs_v2(hdev);
|
||
else if (hdev->commands[29] & 0x20)
|
||
hci_read_supported_codecs(hdev);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Read local pairing options if the HCI command is supported */
|
||
static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
|
||
{
|
||
if (!(hdev->commands[41] & 0x08))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Get MWS transport configuration if the HCI command is supported */
|
||
static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
|
||
{
|
||
if (!mws_transport_config_capable(hdev))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Check for Synchronization Train support */
|
||
static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
|
||
{
|
||
if (!lmp_sync_train_capable(hdev))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Enable Secure Connections if supported and configured */
|
||
static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
|
||
{
|
||
u8 support = 0x01;
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
|
||
!bredr_sc_enabled(hdev))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
|
||
sizeof(support), &support,
|
||
HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Set erroneous data reporting if supported to the wideband speech
|
||
* setting value
|
||
*/
|
||
static int hci_set_err_data_report_sync(struct hci_dev *hdev)
|
||
{
|
||
struct hci_cp_write_def_err_data_reporting cp;
|
||
bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
|
||
|
||
if (!(hdev->commands[18] & 0x08) ||
|
||
!(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
|
||
test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
|
||
return 0;
|
||
|
||
if (enabled == hdev->err_data_reporting)
|
||
return 0;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
|
||
ERR_DATA_REPORTING_DISABLED;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static const struct hci_init_stage hci_init4[] = {
|
||
/* HCI_OP_DELETE_STORED_LINK_KEY */
|
||
HCI_INIT(hci_delete_stored_link_key_sync),
|
||
/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
|
||
HCI_INIT(hci_set_event_mask_page_2_sync),
|
||
/* HCI_OP_READ_LOCAL_CODECS */
|
||
HCI_INIT(hci_read_local_codecs_sync),
|
||
/* HCI_OP_READ_LOCAL_PAIRING_OPTS */
|
||
HCI_INIT(hci_read_local_pairing_opts_sync),
|
||
/* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
|
||
HCI_INIT(hci_get_mws_transport_config_sync),
|
||
/* HCI_OP_READ_SYNC_TRAIN_PARAMS */
|
||
HCI_INIT(hci_read_sync_train_params_sync),
|
||
/* HCI_OP_WRITE_SC_SUPPORT */
|
||
HCI_INIT(hci_write_sc_support_1_sync),
|
||
/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
|
||
HCI_INIT(hci_set_err_data_report_sync),
|
||
{}
|
||
};
|
||
|
||
/* Set Suggested Default Data Length to maximum if supported */
|
||
static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
|
||
{
|
||
struct hci_cp_le_write_def_data_len cp;
|
||
|
||
if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
|
||
return 0;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
|
||
cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
/* Set Default PHY parameters if command is supported, enables all supported
|
||
* PHYs according to the LE Features bits.
|
||
*/
|
||
static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
|
||
{
|
||
struct hci_cp_le_set_default_phy cp;
|
||
|
||
if (!(hdev->commands[35] & 0x20)) {
|
||
/* If the command is not supported it means only 1M PHY is
|
||
* supported.
|
||
*/
|
||
hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
|
||
hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
|
||
return 0;
|
||
}
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
cp.all_phys = 0x00;
|
||
cp.tx_phys = HCI_LE_SET_PHY_1M;
|
||
cp.rx_phys = HCI_LE_SET_PHY_1M;
|
||
|
||
/* Enables 2M PHY if supported */
|
||
if (le_2m_capable(hdev)) {
|
||
cp.tx_phys |= HCI_LE_SET_PHY_2M;
|
||
cp.rx_phys |= HCI_LE_SET_PHY_2M;
|
||
}
|
||
|
||
/* Enables Coded PHY if supported */
|
||
if (le_coded_capable(hdev)) {
|
||
cp.tx_phys |= HCI_LE_SET_PHY_CODED;
|
||
cp.rx_phys |= HCI_LE_SET_PHY_CODED;
|
||
}
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static const struct hci_init_stage le_init4[] = {
|
||
/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
|
||
HCI_INIT(hci_le_set_write_def_data_len_sync),
|
||
/* HCI_OP_LE_SET_DEFAULT_PHY */
|
||
HCI_INIT(hci_le_set_default_phy_sync),
|
||
{}
|
||
};
|
||
|
||
static int hci_init4_sync(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
err = hci_init_stage_sync(hdev, hci_init4);
|
||
if (err)
|
||
return err;
|
||
|
||
if (lmp_le_capable(hdev))
|
||
return hci_init_stage_sync(hdev, le_init4);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int hci_init_sync(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
|
||
err = hci_init1_sync(hdev);
|
||
if (err < 0)
|
||
return err;
|
||
|
||
if (hci_dev_test_flag(hdev, HCI_SETUP))
|
||
hci_debugfs_create_basic(hdev);
|
||
|
||
err = hci_init2_sync(hdev);
|
||
if (err < 0)
|
||
return err;
|
||
|
||
/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
|
||
* BR/EDR/LE type controllers. AMP controllers only need the
|
||
* first two stages of init.
|
||
*/
|
||
if (hdev->dev_type != HCI_PRIMARY)
|
||
return 0;
|
||
|
||
err = hci_init3_sync(hdev);
|
||
if (err < 0)
|
||
return err;
|
||
|
||
err = hci_init4_sync(hdev);
|
||
if (err < 0)
|
||
return err;
|
||
|
||
/* This function is only called when the controller is actually in
|
||
* configured state. When the controller is marked as unconfigured,
|
||
* this initialization procedure is not run.
|
||
*
|
||
* It means that it is possible that a controller runs through its
|
||
* setup phase and then discovers missing settings. If that is the
|
||
* case, then this function will not be called. It then will only
|
||
* be called during the config phase.
|
||
*
|
||
* So only when in setup phase or config phase, create the debugfs
|
||
* entries and register the SMP channels.
|
||
*/
|
||
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
|
||
!hci_dev_test_flag(hdev, HCI_CONFIG))
|
||
return 0;
|
||
|
||
if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED))
|
||
return 0;
|
||
|
||
hci_debugfs_create_common(hdev);
|
||
|
||
if (lmp_bredr_capable(hdev))
|
||
hci_debugfs_create_bredr(hdev);
|
||
|
||
if (lmp_le_capable(hdev))
|
||
hci_debugfs_create_le(hdev);
|
||
|
||
return 0;
|
||
}
|
||
|
||
#define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
|
||
|
||
static const struct {
|
||
unsigned long quirk;
|
||
const char *desc;
|
||
} hci_broken_table[] = {
|
||
HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
|
||
"HCI Read Local Supported Commands not supported"),
|
||
HCI_QUIRK_BROKEN(STORED_LINK_KEY,
|
||
"HCI Delete Stored Link Key command is advertised, "
|
||
"but not supported."),
|
||
HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
|
||
"HCI Read Default Erroneous Data Reporting command is "
|
||
"advertised, but not supported."),
|
||
HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
|
||
"HCI Read Transmit Power Level command is advertised, "
|
||
"but not supported."),
|
||
HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
|
||
"HCI Set Event Filter command not supported."),
|
||
HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
|
||
"HCI Enhanced Setup Synchronous Connection command is "
|
||
"advertised, but not supported."),
|
||
HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT,
|
||
"HCI LE Set Random Private Address Timeout command is "
|
||
"advertised, but not supported."),
|
||
HCI_QUIRK_BROKEN(LE_CODED,
|
||
"HCI LE Coded PHY feature bit is set, "
|
||
"but its usage is not supported.")
|
||
};
|
||
|
||
/* This function handles hdev setup stage:
|
||
*
|
||
* Calls hdev->setup
|
||
* Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
|
||
*/
|
||
static int hci_dev_setup_sync(struct hci_dev *hdev)
|
||
{
|
||
int ret = 0;
|
||
bool invalid_bdaddr;
|
||
size_t i;
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
|
||
!test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks))
|
||
return 0;
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
hci_sock_dev_event(hdev, HCI_DEV_SETUP);
|
||
|
||
if (hdev->setup)
|
||
ret = hdev->setup(hdev);
|
||
|
||
for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
|
||
if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
|
||
bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
|
||
}
|
||
|
||
/* The transport driver can set the quirk to mark the
|
||
* BD_ADDR invalid before creating the HCI device or in
|
||
* its setup callback.
|
||
*/
|
||
invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) ||
|
||
test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
|
||
if (!ret) {
|
||
if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) &&
|
||
!bacmp(&hdev->public_addr, BDADDR_ANY))
|
||
hci_dev_get_bd_addr_from_property(hdev);
|
||
|
||
if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) &&
|
||
hdev->set_bdaddr) {
|
||
ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
|
||
if (!ret)
|
||
invalid_bdaddr = false;
|
||
}
|
||
}
|
||
|
||
/* The transport driver can set these quirks before
|
||
* creating the HCI device or in its setup callback.
|
||
*
|
||
* For the invalid BD_ADDR quirk it is possible that
|
||
* it becomes a valid address if the bootloader does
|
||
* provide it (see above).
|
||
*
|
||
* In case any of them is set, the controller has to
|
||
* start up as unconfigured.
|
||
*/
|
||
if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
|
||
invalid_bdaddr)
|
||
hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
|
||
|
||
/* For an unconfigured controller it is required to
|
||
* read at least the version information provided by
|
||
* the Read Local Version Information command.
|
||
*
|
||
* If the set_bdaddr driver callback is provided, then
|
||
* also the original Bluetooth public device address
|
||
* will be read using the Read BD Address command.
|
||
*/
|
||
if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
|
||
return hci_unconf_init_sync(hdev);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* This function handles hdev init stage:
|
||
*
|
||
* Calls hci_dev_setup_sync to perform setup stage
|
||
* Calls hci_init_sync to perform HCI command init sequence
|
||
*/
|
||
static int hci_dev_init_sync(struct hci_dev *hdev)
|
||
{
|
||
int ret;
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
atomic_set(&hdev->cmd_cnt, 1);
|
||
set_bit(HCI_INIT, &hdev->flags);
|
||
|
||
ret = hci_dev_setup_sync(hdev);
|
||
|
||
if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
|
||
/* If public address change is configured, ensure that
|
||
* the address gets programmed. If the driver does not
|
||
* support changing the public address, fail the power
|
||
* on procedure.
|
||
*/
|
||
if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
|
||
hdev->set_bdaddr)
|
||
ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
|
||
else
|
||
ret = -EADDRNOTAVAIL;
|
||
}
|
||
|
||
if (!ret) {
|
||
if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
|
||
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
|
||
ret = hci_init_sync(hdev);
|
||
if (!ret && hdev->post_init)
|
||
ret = hdev->post_init(hdev);
|
||
}
|
||
}
|
||
|
||
/* If the HCI Reset command is clearing all diagnostic settings,
|
||
* then they need to be reprogrammed after the init procedure
|
||
* completed.
|
||
*/
|
||
if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
|
||
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
|
||
hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
|
||
ret = hdev->set_diag(hdev, true);
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
|
||
msft_do_open(hdev);
|
||
aosp_do_open(hdev);
|
||
}
|
||
|
||
clear_bit(HCI_INIT, &hdev->flags);
|
||
|
||
return ret;
|
||
}
|
||
|
||
int hci_dev_open_sync(struct hci_dev *hdev)
|
||
{
|
||
int ret;
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
|
||
ret = -ENODEV;
|
||
goto done;
|
||
}
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
|
||
!hci_dev_test_flag(hdev, HCI_CONFIG)) {
|
||
/* Check for rfkill but allow the HCI setup stage to
|
||
* proceed (which in itself doesn't cause any RF activity).
|
||
*/
|
||
if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
|
||
ret = -ERFKILL;
|
||
goto done;
|
||
}
|
||
|
||
/* Check for valid public address or a configured static
|
||
* random address, but let the HCI setup proceed to
|
||
* be able to determine if there is a public address
|
||
* or not.
|
||
*
|
||
* In case of user channel usage, it is not important
|
||
* if a public address or static random address is
|
||
* available.
|
||
*
|
||
* This check is only valid for BR/EDR controllers
|
||
* since AMP controllers do not have an address.
|
||
*/
|
||
if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
|
||
hdev->dev_type == HCI_PRIMARY &&
|
||
!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
|
||
!bacmp(&hdev->static_addr, BDADDR_ANY)) {
|
||
ret = -EADDRNOTAVAIL;
|
||
goto done;
|
||
}
|
||
}
|
||
|
||
if (test_bit(HCI_UP, &hdev->flags)) {
|
||
ret = -EALREADY;
|
||
goto done;
|
||
}
|
||
|
||
if (hdev->open(hdev)) {
|
||
ret = -EIO;
|
||
goto done;
|
||
}
|
||
|
||
hci_devcd_reset(hdev);
|
||
|
||
set_bit(HCI_RUNNING, &hdev->flags);
|
||
hci_sock_dev_event(hdev, HCI_DEV_OPEN);
|
||
|
||
ret = hci_dev_init_sync(hdev);
|
||
if (!ret) {
|
||
hci_dev_hold(hdev);
|
||
hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
|
||
hci_adv_instances_set_rpa_expired(hdev, true);
|
||
set_bit(HCI_UP, &hdev->flags);
|
||
hci_sock_dev_event(hdev, HCI_DEV_UP);
|
||
hci_leds_update_powered(hdev, true);
|
||
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
|
||
!hci_dev_test_flag(hdev, HCI_CONFIG) &&
|
||
!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
|
||
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
|
||
hci_dev_test_flag(hdev, HCI_MGMT) &&
|
||
hdev->dev_type == HCI_PRIMARY) {
|
||
ret = hci_powered_update_sync(hdev);
|
||
mgmt_power_on(hdev, ret);
|
||
}
|
||
} else {
|
||
/* Init failed, cleanup */
|
||
flush_work(&hdev->tx_work);
|
||
|
||
/* Since hci_rx_work() is possible to awake new cmd_work
|
||
* it should be flushed first to avoid unexpected call of
|
||
* hci_cmd_work()
|
||
*/
|
||
flush_work(&hdev->rx_work);
|
||
flush_work(&hdev->cmd_work);
|
||
|
||
skb_queue_purge(&hdev->cmd_q);
|
||
skb_queue_purge(&hdev->rx_q);
|
||
|
||
if (hdev->flush)
|
||
hdev->flush(hdev);
|
||
|
||
if (hdev->sent_cmd) {
|
||
cancel_delayed_work_sync(&hdev->cmd_timer);
|
||
kfree_skb(hdev->sent_cmd);
|
||
hdev->sent_cmd = NULL;
|
||
}
|
||
|
||
clear_bit(HCI_RUNNING, &hdev->flags);
|
||
hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
|
||
|
||
hdev->close(hdev);
|
||
hdev->flags &= BIT(HCI_RAW);
|
||
}
|
||
|
||
done:
|
||
return ret;
|
||
}
|
||
|
||
/* This function requires the caller holds hdev->lock */
|
||
static void hci_pend_le_actions_clear(struct hci_dev *hdev)
|
||
{
|
||
struct hci_conn_params *p;
|
||
|
||
list_for_each_entry(p, &hdev->le_conn_params, list) {
|
||
hci_pend_le_list_del_init(p);
|
||
if (p->conn) {
|
||
hci_conn_drop(p->conn);
|
||
hci_conn_put(p->conn);
|
||
p->conn = NULL;
|
||
}
|
||
}
|
||
|
||
BT_DBG("All LE pending actions cleared");
|
||
}
|
||
|
||
static int hci_dev_shutdown(struct hci_dev *hdev)
|
||
{
|
||
int err = 0;
|
||
/* Similar to how we first do setup and then set the exclusive access
|
||
* bit for userspace, we must first unset userchannel and then clean up.
|
||
* Otherwise, the kernel can't properly use the hci channel to clean up
|
||
* the controller (some shutdown routines require sending additional
|
||
* commands to the controller for example).
|
||
*/
|
||
bool was_userchannel =
|
||
hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL);
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
|
||
test_bit(HCI_UP, &hdev->flags)) {
|
||
/* Execute vendor specific shutdown routine */
|
||
if (hdev->shutdown)
|
||
err = hdev->shutdown(hdev);
|
||
}
|
||
|
||
if (was_userchannel)
|
||
hci_dev_set_flag(hdev, HCI_USER_CHANNEL);
|
||
|
||
return err;
|
||
}
|
||
|
||
int hci_dev_close_sync(struct hci_dev *hdev)
|
||
{
|
||
bool auto_off;
|
||
int err = 0;
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
cancel_delayed_work(&hdev->power_off);
|
||
cancel_delayed_work(&hdev->ncmd_timer);
|
||
cancel_delayed_work(&hdev->le_scan_disable);
|
||
cancel_delayed_work(&hdev->le_scan_restart);
|
||
|
||
hci_request_cancel_all(hdev);
|
||
|
||
if (hdev->adv_instance_timeout) {
|
||
cancel_delayed_work_sync(&hdev->adv_instance_expire);
|
||
hdev->adv_instance_timeout = 0;
|
||
}
|
||
|
||
err = hci_dev_shutdown(hdev);
|
||
|
||
if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
|
||
cancel_delayed_work_sync(&hdev->cmd_timer);
|
||
return err;
|
||
}
|
||
|
||
hci_leds_update_powered(hdev, false);
|
||
|
||
/* Flush RX and TX works */
|
||
flush_work(&hdev->tx_work);
|
||
flush_work(&hdev->rx_work);
|
||
|
||
if (hdev->discov_timeout > 0) {
|
||
hdev->discov_timeout = 0;
|
||
hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
|
||
hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
|
||
}
|
||
|
||
if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
|
||
cancel_delayed_work(&hdev->service_cache);
|
||
|
||
if (hci_dev_test_flag(hdev, HCI_MGMT)) {
|
||
struct adv_info *adv_instance;
|
||
|
||
cancel_delayed_work_sync(&hdev->rpa_expired);
|
||
|
||
list_for_each_entry(adv_instance, &hdev->adv_instances, list)
|
||
cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
|
||
}
|
||
|
||
/* Avoid potential lockdep warnings from the *_flush() calls by
|
||
* ensuring the workqueue is empty up front.
|
||
*/
|
||
drain_workqueue(hdev->workqueue);
|
||
|
||
hci_dev_lock(hdev);
|
||
|
||
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
|
||
|
||
auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
|
||
|
||
if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
|
||
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
|
||
hci_dev_test_flag(hdev, HCI_MGMT))
|
||
__mgmt_power_off(hdev);
|
||
|
||
hci_inquiry_cache_flush(hdev);
|
||
hci_pend_le_actions_clear(hdev);
|
||
hci_conn_hash_flush(hdev);
|
||
/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
|
||
smp_unregister(hdev);
|
||
hci_dev_unlock(hdev);
|
||
|
||
hci_sock_dev_event(hdev, HCI_DEV_DOWN);
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
|
||
aosp_do_close(hdev);
|
||
msft_do_close(hdev);
|
||
}
|
||
|
||
if (hdev->flush)
|
||
hdev->flush(hdev);
|
||
|
||
/* Reset device */
|
||
skb_queue_purge(&hdev->cmd_q);
|
||
atomic_set(&hdev->cmd_cnt, 1);
|
||
if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
|
||
!auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
|
||
set_bit(HCI_INIT, &hdev->flags);
|
||
hci_reset_sync(hdev);
|
||
clear_bit(HCI_INIT, &hdev->flags);
|
||
}
|
||
|
||
/* flush cmd work */
|
||
flush_work(&hdev->cmd_work);
|
||
|
||
/* Drop queues */
|
||
skb_queue_purge(&hdev->rx_q);
|
||
skb_queue_purge(&hdev->cmd_q);
|
||
skb_queue_purge(&hdev->raw_q);
|
||
|
||
/* Drop last sent command */
|
||
if (hdev->sent_cmd) {
|
||
cancel_delayed_work_sync(&hdev->cmd_timer);
|
||
kfree_skb(hdev->sent_cmd);
|
||
hdev->sent_cmd = NULL;
|
||
}
|
||
|
||
clear_bit(HCI_RUNNING, &hdev->flags);
|
||
hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
|
||
|
||
/* After this point our queues are empty and no tasks are scheduled. */
|
||
hdev->close(hdev);
|
||
|
||
/* Clear flags */
|
||
hdev->flags &= BIT(HCI_RAW);
|
||
hci_dev_clear_volatile_flags(hdev);
|
||
|
||
/* Controller radio is available but is currently powered down */
|
||
hdev->amp_status = AMP_STATUS_POWERED_DOWN;
|
||
|
||
memset(hdev->eir, 0, sizeof(hdev->eir));
|
||
memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
|
||
bacpy(&hdev->random_addr, BDADDR_ANY);
|
||
hci_codec_list_clear(&hdev->local_codecs);
|
||
|
||
hci_dev_put(hdev);
|
||
return err;
|
||
}
|
||
|
||
/* This function perform power on HCI command sequence as follows:
|
||
*
|
||
* If controller is already up (HCI_UP) performs hci_powered_update_sync
|
||
* sequence otherwise run hci_dev_open_sync which will follow with
|
||
* hci_powered_update_sync after the init sequence is completed.
|
||
*/
|
||
static int hci_power_on_sync(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
|
||
if (test_bit(HCI_UP, &hdev->flags) &&
|
||
hci_dev_test_flag(hdev, HCI_MGMT) &&
|
||
hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
|
||
cancel_delayed_work(&hdev->power_off);
|
||
return hci_powered_update_sync(hdev);
|
||
}
|
||
|
||
err = hci_dev_open_sync(hdev);
|
||
if (err < 0)
|
||
return err;
|
||
|
||
/* During the HCI setup phase, a few error conditions are
|
||
* ignored and they need to be checked now. If they are still
|
||
* valid, it is important to return the device back off.
|
||
*/
|
||
if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
|
||
hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
|
||
(hdev->dev_type == HCI_PRIMARY &&
|
||
!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
|
||
!bacmp(&hdev->static_addr, BDADDR_ANY))) {
|
||
hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
|
||
hci_dev_close_sync(hdev);
|
||
} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
|
||
queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
|
||
HCI_AUTO_OFF_TIMEOUT);
|
||
}
|
||
|
||
if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
|
||
/* For unconfigured devices, set the HCI_RAW flag
|
||
* so that userspace can easily identify them.
|
||
*/
|
||
if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
|
||
set_bit(HCI_RAW, &hdev->flags);
|
||
|
||
/* For fully configured devices, this will send
|
||
* the Index Added event. For unconfigured devices,
|
||
* it will send Unconfigued Index Added event.
|
||
*
|
||
* Devices with HCI_QUIRK_RAW_DEVICE are ignored
|
||
* and no event will be send.
|
||
*/
|
||
mgmt_index_added(hdev);
|
||
} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
|
||
/* When the controller is now configured, then it
|
||
* is important to clear the HCI_RAW flag.
|
||
*/
|
||
if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
|
||
clear_bit(HCI_RAW, &hdev->flags);
|
||
|
||
/* Powering on the controller with HCI_CONFIG set only
|
||
* happens with the transition from unconfigured to
|
||
* configured. This will send the Index Added event.
|
||
*/
|
||
mgmt_index_added(hdev);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
|
||
{
|
||
struct hci_cp_remote_name_req_cancel cp;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
bacpy(&cp.bdaddr, addr);
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
int hci_stop_discovery_sync(struct hci_dev *hdev)
|
||
{
|
||
struct discovery_state *d = &hdev->discovery;
|
||
struct inquiry_entry *e;
|
||
int err;
|
||
|
||
bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
|
||
|
||
if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
|
||
if (test_bit(HCI_INQUIRY, &hdev->flags)) {
|
||
err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
if (err)
|
||
return err;
|
||
}
|
||
|
||
if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
|
||
cancel_delayed_work(&hdev->le_scan_disable);
|
||
cancel_delayed_work(&hdev->le_scan_restart);
|
||
|
||
err = hci_scan_disable_sync(hdev);
|
||
if (err)
|
||
return err;
|
||
}
|
||
|
||
} else {
|
||
err = hci_scan_disable_sync(hdev);
|
||
if (err)
|
||
return err;
|
||
}
|
||
|
||
/* Resume advertising if it was paused */
|
||
if (use_ll_privacy(hdev))
|
||
hci_resume_advertising_sync(hdev);
|
||
|
||
/* No further actions needed for LE-only discovery */
|
||
if (d->type == DISCOV_TYPE_LE)
|
||
return 0;
|
||
|
||
if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
|
||
e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
|
||
NAME_PENDING);
|
||
if (!e)
|
||
return 0;
|
||
|
||
return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
|
||
u8 reason)
|
||
{
|
||
struct hci_cp_disconn_phy_link cp;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
cp.phy_handle = HCI_PHY_HANDLE(handle);
|
||
cp.reason = reason;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
|
||
u8 reason)
|
||
{
|
||
struct hci_cp_disconnect cp;
|
||
|
||
if (conn->type == AMP_LINK)
|
||
return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
|
||
|
||
if (test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) {
|
||
/* This is a BIS connection, hci_conn_del will
|
||
* do the necessary cleanup.
|
||
*/
|
||
hci_dev_lock(hdev);
|
||
hci_conn_failed(conn, reason);
|
||
hci_dev_unlock(hdev);
|
||
|
||
return 0;
|
||
}
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
cp.handle = cpu_to_le16(conn->handle);
|
||
cp.reason = reason;
|
||
|
||
/* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
|
||
* reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
|
||
* used when suspending or powering off, where we don't want to wait
|
||
* for the peer's response.
|
||
*/
|
||
if (reason != HCI_ERROR_REMOTE_POWER_OFF)
|
||
return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
|
||
sizeof(cp), &cp,
|
||
HCI_EV_DISCONN_COMPLETE,
|
||
HCI_CMD_TIMEOUT, NULL);
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
|
||
HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
|
||
struct hci_conn *conn, u8 reason)
|
||
{
|
||
/* Return reason if scanning since the connection shall probably be
|
||
* cleanup directly.
|
||
*/
|
||
if (test_bit(HCI_CONN_SCANNING, &conn->flags))
|
||
return reason;
|
||
|
||
if (conn->role == HCI_ROLE_SLAVE ||
|
||
test_and_set_bit(HCI_CONN_CANCEL, &conn->flags))
|
||
return 0;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
|
||
0, NULL, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn,
|
||
u8 reason)
|
||
{
|
||
if (conn->type == LE_LINK)
|
||
return hci_le_connect_cancel_sync(hdev, conn, reason);
|
||
|
||
if (conn->type == ISO_LINK) {
|
||
/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
|
||
* page 1857:
|
||
*
|
||
* If this command is issued for a CIS on the Central and the
|
||
* CIS is successfully terminated before being established,
|
||
* then an HCI_LE_CIS_Established event shall also be sent for
|
||
* this CIS with the Status Operation Cancelled by Host (0x44).
|
||
*/
|
||
if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
|
||
return hci_disconnect_sync(hdev, conn, reason);
|
||
|
||
/* CIS with no Create CIS sent have nothing to cancel */
|
||
if (bacmp(&conn->dst, BDADDR_ANY))
|
||
return HCI_ERROR_LOCAL_HOST_TERM;
|
||
|
||
/* There is no way to cancel a BIS without terminating the BIG
|
||
* which is done later on connection cleanup.
|
||
*/
|
||
return 0;
|
||
}
|
||
|
||
if (hdev->hci_ver < BLUETOOTH_VER_1_2)
|
||
return 0;
|
||
|
||
/* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
|
||
* reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
|
||
* used when suspending or powering off, where we don't want to wait
|
||
* for the peer's response.
|
||
*/
|
||
if (reason != HCI_ERROR_REMOTE_POWER_OFF)
|
||
return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL,
|
||
6, &conn->dst,
|
||
HCI_EV_CONN_COMPLETE,
|
||
HCI_CMD_TIMEOUT, NULL);
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
|
||
6, &conn->dst, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
|
||
u8 reason)
|
||
{
|
||
struct hci_cp_reject_sync_conn_req cp;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
bacpy(&cp.bdaddr, &conn->dst);
|
||
cp.reason = reason;
|
||
|
||
/* SCO rejection has its own limited set of
|
||
* allowed error values (0x0D-0x0F).
|
||
*/
|
||
if (reason < 0x0d || reason > 0x0f)
|
||
cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn,
|
||
u8 reason)
|
||
{
|
||
struct hci_cp_le_reject_cis cp;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
cp.handle = cpu_to_le16(conn->handle);
|
||
cp.reason = reason;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
|
||
u8 reason)
|
||
{
|
||
struct hci_cp_reject_conn_req cp;
|
||
|
||
if (conn->type == ISO_LINK)
|
||
return hci_le_reject_cis_sync(hdev, conn, reason);
|
||
|
||
if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
|
||
return hci_reject_sco_sync(hdev, conn, reason);
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
bacpy(&cp.bdaddr, &conn->dst);
|
||
cp.reason = reason;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
|
||
{
|
||
int err = 0;
|
||
u16 handle = conn->handle;
|
||
bool disconnect = false;
|
||
struct hci_conn *c;
|
||
|
||
switch (conn->state) {
|
||
case BT_CONNECTED:
|
||
case BT_CONFIG:
|
||
err = hci_disconnect_sync(hdev, conn, reason);
|
||
break;
|
||
case BT_CONNECT:
|
||
err = hci_connect_cancel_sync(hdev, conn, reason);
|
||
break;
|
||
case BT_CONNECT2:
|
||
err = hci_reject_conn_sync(hdev, conn, reason);
|
||
break;
|
||
case BT_OPEN:
|
||
case BT_BOUND:
|
||
break;
|
||
default:
|
||
disconnect = true;
|
||
break;
|
||
}
|
||
|
||
hci_dev_lock(hdev);
|
||
|
||
/* Check if the connection has been cleaned up concurrently */
|
||
c = hci_conn_hash_lookup_handle(hdev, handle);
|
||
if (!c || c != conn) {
|
||
err = 0;
|
||
goto unlock;
|
||
}
|
||
|
||
/* Cleanup hci_conn object if it cannot be cancelled as it
|
||
* likelly means the controller and host stack are out of sync
|
||
* or in case of LE it was still scanning so it can be cleanup
|
||
* safely.
|
||
*/
|
||
if (disconnect) {
|
||
conn->state = BT_CLOSED;
|
||
hci_disconn_cfm(conn, reason);
|
||
hci_conn_del(conn);
|
||
} else {
|
||
hci_conn_failed(conn, reason);
|
||
}
|
||
|
||
unlock:
|
||
hci_dev_unlock(hdev);
|
||
return err;
|
||
}
|
||
|
||
static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
|
||
{
|
||
struct list_head *head = &hdev->conn_hash.list;
|
||
struct hci_conn *conn;
|
||
|
||
rcu_read_lock();
|
||
while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) {
|
||
/* Make sure the connection is not freed while unlocking */
|
||
conn = hci_conn_get(conn);
|
||
rcu_read_unlock();
|
||
/* Disregard possible errors since hci_conn_del shall have been
|
||
* called even in case of errors had occurred since it would
|
||
* then cause hci_conn_failed to be called which calls
|
||
* hci_conn_del internally.
|
||
*/
|
||
hci_abort_conn_sync(hdev, conn, reason);
|
||
hci_conn_put(conn);
|
||
rcu_read_lock();
|
||
}
|
||
rcu_read_unlock();
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* This function perform power off HCI command sequence as follows:
|
||
*
|
||
* Clear Advertising
|
||
* Stop Discovery
|
||
* Disconnect all connections
|
||
* hci_dev_close_sync
|
||
*/
|
||
static int hci_power_off_sync(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
|
||
/* If controller is already down there is nothing to do */
|
||
if (!test_bit(HCI_UP, &hdev->flags))
|
||
return 0;
|
||
|
||
if (test_bit(HCI_ISCAN, &hdev->flags) ||
|
||
test_bit(HCI_PSCAN, &hdev->flags)) {
|
||
err = hci_write_scan_enable_sync(hdev, 0x00);
|
||
if (err)
|
||
return err;
|
||
}
|
||
|
||
err = hci_clear_adv_sync(hdev, NULL, false);
|
||
if (err)
|
||
return err;
|
||
|
||
err = hci_stop_discovery_sync(hdev);
|
||
if (err)
|
||
return err;
|
||
|
||
/* Terminated due to Power Off */
|
||
err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
|
||
if (err)
|
||
return err;
|
||
|
||
return hci_dev_close_sync(hdev);
|
||
}
|
||
|
||
int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
|
||
{
|
||
if (val)
|
||
return hci_power_on_sync(hdev);
|
||
|
||
return hci_power_off_sync(hdev);
|
||
}
|
||
|
||
static int hci_write_iac_sync(struct hci_dev *hdev)
|
||
{
|
||
struct hci_cp_write_current_iac_lap cp;
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
|
||
return 0;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
|
||
/* Limited discoverable mode */
|
||
cp.num_iac = min_t(u8, hdev->num_iac, 2);
|
||
cp.iac_lap[0] = 0x00; /* LIAC */
|
||
cp.iac_lap[1] = 0x8b;
|
||
cp.iac_lap[2] = 0x9e;
|
||
cp.iac_lap[3] = 0x33; /* GIAC */
|
||
cp.iac_lap[4] = 0x8b;
|
||
cp.iac_lap[5] = 0x9e;
|
||
} else {
|
||
/* General discoverable mode */
|
||
cp.num_iac = 1;
|
||
cp.iac_lap[0] = 0x33; /* GIAC */
|
||
cp.iac_lap[1] = 0x8b;
|
||
cp.iac_lap[2] = 0x9e;
|
||
}
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
|
||
(cp.num_iac * 3) + 1, &cp,
|
||
HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
int hci_update_discoverable_sync(struct hci_dev *hdev)
|
||
{
|
||
int err = 0;
|
||
|
||
if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
|
||
err = hci_write_iac_sync(hdev);
|
||
if (err)
|
||
return err;
|
||
|
||
err = hci_update_scan_sync(hdev);
|
||
if (err)
|
||
return err;
|
||
|
||
err = hci_update_class_sync(hdev);
|
||
if (err)
|
||
return err;
|
||
}
|
||
|
||
/* Advertising instances don't use the global discoverable setting, so
|
||
* only update AD if advertising was enabled using Set Advertising.
|
||
*/
|
||
if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
|
||
err = hci_update_adv_data_sync(hdev, 0x00);
|
||
if (err)
|
||
return err;
|
||
|
||
/* Discoverable mode affects the local advertising
|
||
* address in limited privacy mode.
|
||
*/
|
||
if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
|
||
if (ext_adv_capable(hdev))
|
||
err = hci_start_ext_adv_sync(hdev, 0x00);
|
||
else
|
||
err = hci_enable_advertising_sync(hdev);
|
||
}
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
static int update_discoverable_sync(struct hci_dev *hdev, void *data)
|
||
{
|
||
return hci_update_discoverable_sync(hdev);
|
||
}
|
||
|
||
int hci_update_discoverable(struct hci_dev *hdev)
|
||
{
|
||
/* Only queue if it would have any effect */
|
||
if (hdev_is_powered(hdev) &&
|
||
hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
|
||
hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
|
||
hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
|
||
return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
|
||
NULL);
|
||
|
||
return 0;
|
||
}
|
||
|
||
int hci_update_connectable_sync(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
|
||
err = hci_update_scan_sync(hdev);
|
||
if (err)
|
||
return err;
|
||
|
||
/* If BR/EDR is not enabled and we disable advertising as a
|
||
* by-product of disabling connectable, we need to update the
|
||
* advertising flags.
|
||
*/
|
||
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
|
||
err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
|
||
|
||
/* Update the advertising parameters if necessary */
|
||
if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
|
||
!list_empty(&hdev->adv_instances)) {
|
||
if (ext_adv_capable(hdev))
|
||
err = hci_start_ext_adv_sync(hdev,
|
||
hdev->cur_adv_instance);
|
||
else
|
||
err = hci_enable_advertising_sync(hdev);
|
||
|
||
if (err)
|
||
return err;
|
||
}
|
||
|
||
return hci_update_passive_scan_sync(hdev);
|
||
}
|
||
|
||
static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
|
||
{
|
||
const u8 giac[3] = { 0x33, 0x8b, 0x9e };
|
||
const u8 liac[3] = { 0x00, 0x8b, 0x9e };
|
||
struct hci_cp_inquiry cp;
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
if (hci_dev_test_flag(hdev, HCI_INQUIRY))
|
||
return 0;
|
||
|
||
hci_dev_lock(hdev);
|
||
hci_inquiry_cache_flush(hdev);
|
||
hci_dev_unlock(hdev);
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
if (hdev->discovery.limited)
|
||
memcpy(&cp.lap, liac, sizeof(cp.lap));
|
||
else
|
||
memcpy(&cp.lap, giac, sizeof(cp.lap));
|
||
|
||
cp.length = length;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
|
||
{
|
||
u8 own_addr_type;
|
||
/* Accept list is not used for discovery */
|
||
u8 filter_policy = 0x00;
|
||
/* Default is to enable duplicates filter */
|
||
u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
|
||
int err;
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
/* If controller is scanning, it means the passive scanning is
|
||
* running. Thus, we should temporarily stop it in order to set the
|
||
* discovery scanning parameters.
|
||
*/
|
||
err = hci_scan_disable_sync(hdev);
|
||
if (err) {
|
||
bt_dev_err(hdev, "Unable to disable scanning: %d", err);
|
||
return err;
|
||
}
|
||
|
||
cancel_interleave_scan(hdev);
|
||
|
||
/* Pause address resolution for active scan and stop advertising if
|
||
* privacy is enabled.
|
||
*/
|
||
err = hci_pause_addr_resolution(hdev);
|
||
if (err)
|
||
goto failed;
|
||
|
||
/* All active scans will be done with either a resolvable private
|
||
* address (when privacy feature has been enabled) or non-resolvable
|
||
* private address.
|
||
*/
|
||
err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
|
||
&own_addr_type);
|
||
if (err < 0)
|
||
own_addr_type = ADDR_LE_DEV_PUBLIC;
|
||
|
||
if (hci_is_adv_monitoring(hdev)) {
|
||
/* Duplicate filter should be disabled when some advertisement
|
||
* monitor is activated, otherwise AdvMon can only receive one
|
||
* advertisement for one peer(*) during active scanning, and
|
||
* might report loss to these peers.
|
||
*
|
||
* Note that different controllers have different meanings of
|
||
* |duplicate|. Some of them consider packets with the same
|
||
* address as duplicate, and others consider packets with the
|
||
* same address and the same RSSI as duplicate. Although in the
|
||
* latter case we don't need to disable duplicate filter, but
|
||
* it is common to have active scanning for a short period of
|
||
* time, the power impact should be neglectable.
|
||
*/
|
||
filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
|
||
}
|
||
|
||
err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
|
||
hdev->le_scan_window_discovery,
|
||
own_addr_type, filter_policy, filter_dup);
|
||
if (!err)
|
||
return err;
|
||
|
||
failed:
|
||
/* Resume advertising if it was paused */
|
||
if (use_ll_privacy(hdev))
|
||
hci_resume_advertising_sync(hdev);
|
||
|
||
/* Resume passive scanning */
|
||
hci_update_passive_scan_sync(hdev);
|
||
return err;
|
||
}
|
||
|
||
static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
|
||
bt_dev_dbg(hdev, "");
|
||
|
||
err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
|
||
if (err)
|
||
return err;
|
||
|
||
return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
|
||
}
|
||
|
||
int hci_start_discovery_sync(struct hci_dev *hdev)
|
||
{
|
||
unsigned long timeout;
|
||
int err;
|
||
|
||
bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
|
||
|
||
switch (hdev->discovery.type) {
|
||
case DISCOV_TYPE_BREDR:
|
||
return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
|
||
case DISCOV_TYPE_INTERLEAVED:
|
||
/* When running simultaneous discovery, the LE scanning time
|
||
* should occupy the whole discovery time sine BR/EDR inquiry
|
||
* and LE scanning are scheduled by the controller.
|
||
*
|
||
* For interleaving discovery in comparison, BR/EDR inquiry
|
||
* and LE scanning are done sequentially with separate
|
||
* timeouts.
|
||
*/
|
||
if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
|
||
&hdev->quirks)) {
|
||
timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
|
||
/* During simultaneous discovery, we double LE scan
|
||
* interval. We must leave some time for the controller
|
||
* to do BR/EDR inquiry.
|
||
*/
|
||
err = hci_start_interleaved_discovery_sync(hdev);
|
||
break;
|
||
}
|
||
|
||
timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
|
||
err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
|
||
break;
|
||
case DISCOV_TYPE_LE:
|
||
timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
|
||
err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
|
||
break;
|
||
default:
|
||
return -EINVAL;
|
||
}
|
||
|
||
if (err)
|
||
return err;
|
||
|
||
bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
|
||
|
||
/* When service discovery is used and the controller has a
|
||
* strict duplicate filter, it is important to remember the
|
||
* start and duration of the scan. This is required for
|
||
* restarting scanning during the discovery phase.
|
||
*/
|
||
if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
|
||
hdev->discovery.result_filtering) {
|
||
hdev->discovery.scan_start = jiffies;
|
||
hdev->discovery.scan_duration = timeout;
|
||
}
|
||
|
||
queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
|
||
timeout);
|
||
return 0;
|
||
}
|
||
|
||
static void hci_suspend_monitor_sync(struct hci_dev *hdev)
|
||
{
|
||
switch (hci_get_adv_monitor_offload_ext(hdev)) {
|
||
case HCI_ADV_MONITOR_EXT_MSFT:
|
||
msft_suspend_sync(hdev);
|
||
break;
|
||
default:
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* This function disables discovery and mark it as paused */
|
||
static int hci_pause_discovery_sync(struct hci_dev *hdev)
|
||
{
|
||
int old_state = hdev->discovery.state;
|
||
int err;
|
||
|
||
/* If discovery already stopped/stopping/paused there nothing to do */
|
||
if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
|
||
hdev->discovery_paused)
|
||
return 0;
|
||
|
||
hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
|
||
err = hci_stop_discovery_sync(hdev);
|
||
if (err)
|
||
return err;
|
||
|
||
hdev->discovery_paused = true;
|
||
hdev->discovery_old_state = old_state;
|
||
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int hci_update_event_filter_sync(struct hci_dev *hdev)
|
||
{
|
||
struct bdaddr_list_with_flags *b;
|
||
u8 scan = SCAN_DISABLED;
|
||
bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
|
||
int err;
|
||
|
||
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
|
||
return 0;
|
||
|
||
/* Some fake CSR controllers lock up after setting this type of
|
||
* filter, so avoid sending the request altogether.
|
||
*/
|
||
if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
|
||
return 0;
|
||
|
||
/* Always clear event filter when starting */
|
||
hci_clear_event_filter_sync(hdev);
|
||
|
||
list_for_each_entry(b, &hdev->accept_list, list) {
|
||
if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
|
||
continue;
|
||
|
||
bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
|
||
|
||
err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
|
||
HCI_CONN_SETUP_ALLOW_BDADDR,
|
||
&b->bdaddr,
|
||
HCI_CONN_SETUP_AUTO_ON);
|
||
if (err)
|
||
bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
|
||
&b->bdaddr);
|
||
else
|
||
scan = SCAN_PAGE;
|
||
}
|
||
|
||
if (scan && !scanning)
|
||
hci_write_scan_enable_sync(hdev, scan);
|
||
else if (!scan && scanning)
|
||
hci_write_scan_enable_sync(hdev, scan);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* This function disables scan (BR and LE) and mark it as paused */
|
||
static int hci_pause_scan_sync(struct hci_dev *hdev)
|
||
{
|
||
if (hdev->scanning_paused)
|
||
return 0;
|
||
|
||
/* Disable page scan if enabled */
|
||
if (test_bit(HCI_PSCAN, &hdev->flags))
|
||
hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
|
||
|
||
hci_scan_disable_sync(hdev);
|
||
|
||
hdev->scanning_paused = true;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* This function performs the HCI suspend procedures in the follow order:
|
||
*
|
||
* Pause discovery (active scanning/inquiry)
|
||
* Pause Directed Advertising/Advertising
|
||
* Pause Scanning (passive scanning in case discovery was not active)
|
||
* Disconnect all connections
|
||
* Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
|
||
* otherwise:
|
||
* Update event mask (only set events that are allowed to wake up the host)
|
||
* Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
|
||
* Update passive scanning (lower duty cycle)
|
||
* Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
|
||
*/
|
||
int hci_suspend_sync(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
|
||
/* If marked as suspended there nothing to do */
|
||
if (hdev->suspended)
|
||
return 0;
|
||
|
||
/* Mark device as suspended */
|
||
hdev->suspended = true;
|
||
|
||
/* Pause discovery if not already stopped */
|
||
hci_pause_discovery_sync(hdev);
|
||
|
||
/* Pause other advertisements */
|
||
hci_pause_advertising_sync(hdev);
|
||
|
||
/* Suspend monitor filters */
|
||
hci_suspend_monitor_sync(hdev);
|
||
|
||
/* Prevent disconnects from causing scanning to be re-enabled */
|
||
hci_pause_scan_sync(hdev);
|
||
|
||
if (hci_conn_count(hdev)) {
|
||
/* Soft disconnect everything (power off) */
|
||
err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
|
||
if (err) {
|
||
/* Set state to BT_RUNNING so resume doesn't notify */
|
||
hdev->suspend_state = BT_RUNNING;
|
||
hci_resume_sync(hdev);
|
||
return err;
|
||
}
|
||
|
||
/* Update event mask so only the allowed event can wakeup the
|
||
* host.
|
||
*/
|
||
hci_set_event_mask_sync(hdev);
|
||
}
|
||
|
||
/* Only configure accept list if disconnect succeeded and wake
|
||
* isn't being prevented.
|
||
*/
|
||
if (!hdev->wakeup || !hdev->wakeup(hdev)) {
|
||
hdev->suspend_state = BT_SUSPEND_DISCONNECT;
|
||
return 0;
|
||
}
|
||
|
||
/* Unpause to take care of updating scanning params */
|
||
hdev->scanning_paused = false;
|
||
|
||
/* Enable event filter for paired devices */
|
||
hci_update_event_filter_sync(hdev);
|
||
|
||
/* Update LE passive scan if enabled */
|
||
hci_update_passive_scan_sync(hdev);
|
||
|
||
/* Pause scan changes again. */
|
||
hdev->scanning_paused = true;
|
||
|
||
hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* This function resumes discovery */
|
||
static int hci_resume_discovery_sync(struct hci_dev *hdev)
|
||
{
|
||
int err;
|
||
|
||
/* If discovery not paused there nothing to do */
|
||
if (!hdev->discovery_paused)
|
||
return 0;
|
||
|
||
hdev->discovery_paused = false;
|
||
|
||
hci_discovery_set_state(hdev, DISCOVERY_STARTING);
|
||
|
||
err = hci_start_discovery_sync(hdev);
|
||
|
||
hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
|
||
DISCOVERY_FINDING);
|
||
|
||
return err;
|
||
}
|
||
|
||
static void hci_resume_monitor_sync(struct hci_dev *hdev)
|
||
{
|
||
switch (hci_get_adv_monitor_offload_ext(hdev)) {
|
||
case HCI_ADV_MONITOR_EXT_MSFT:
|
||
msft_resume_sync(hdev);
|
||
break;
|
||
default:
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* This function resume scan and reset paused flag */
|
||
static int hci_resume_scan_sync(struct hci_dev *hdev)
|
||
{
|
||
if (!hdev->scanning_paused)
|
||
return 0;
|
||
|
||
hdev->scanning_paused = false;
|
||
|
||
hci_update_scan_sync(hdev);
|
||
|
||
/* Reset passive scanning to normal */
|
||
hci_update_passive_scan_sync(hdev);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* This function performs the HCI suspend procedures in the follow order:
|
||
*
|
||
* Restore event mask
|
||
* Clear event filter
|
||
* Update passive scanning (normal duty cycle)
|
||
* Resume Directed Advertising/Advertising
|
||
* Resume discovery (active scanning/inquiry)
|
||
*/
|
||
int hci_resume_sync(struct hci_dev *hdev)
|
||
{
|
||
/* If not marked as suspended there nothing to do */
|
||
if (!hdev->suspended)
|
||
return 0;
|
||
|
||
hdev->suspended = false;
|
||
|
||
/* Restore event mask */
|
||
hci_set_event_mask_sync(hdev);
|
||
|
||
/* Clear any event filters and restore scan state */
|
||
hci_clear_event_filter_sync(hdev);
|
||
|
||
/* Resume scanning */
|
||
hci_resume_scan_sync(hdev);
|
||
|
||
/* Resume monitor filters */
|
||
hci_resume_monitor_sync(hdev);
|
||
|
||
/* Resume other advertisements */
|
||
hci_resume_advertising_sync(hdev);
|
||
|
||
/* Resume discovery */
|
||
hci_resume_discovery_sync(hdev);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static bool conn_use_rpa(struct hci_conn *conn)
|
||
{
|
||
struct hci_dev *hdev = conn->hdev;
|
||
|
||
return hci_dev_test_flag(hdev, HCI_PRIVACY);
|
||
}
|
||
|
||
static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
|
||
struct hci_conn *conn)
|
||
{
|
||
struct hci_cp_le_set_ext_adv_params cp;
|
||
int err;
|
||
bdaddr_t random_addr;
|
||
u8 own_addr_type;
|
||
|
||
err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
|
||
&own_addr_type);
|
||
if (err)
|
||
return err;
|
||
|
||
/* Set require_privacy to false so that the remote device has a
|
||
* chance of identifying us.
|
||
*/
|
||
err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
|
||
&own_addr_type, &random_addr);
|
||
if (err)
|
||
return err;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
|
||
cp.channel_map = hdev->le_adv_channel_map;
|
||
cp.tx_power = HCI_TX_POWER_INVALID;
|
||
cp.primary_phy = HCI_ADV_PHY_1M;
|
||
cp.secondary_phy = HCI_ADV_PHY_1M;
|
||
cp.handle = 0x00; /* Use instance 0 for directed adv */
|
||
cp.own_addr_type = own_addr_type;
|
||
cp.peer_addr_type = conn->dst_type;
|
||
bacpy(&cp.peer_addr, &conn->dst);
|
||
|
||
/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
|
||
* advertising_event_property LE_LEGACY_ADV_DIRECT_IND
|
||
* does not supports advertising data when the advertising set already
|
||
* contains some, the controller shall return erroc code 'Invalid
|
||
* HCI Command Parameters(0x12).
|
||
* So it is required to remove adv set for handle 0x00. since we use
|
||
* instance 0 for directed adv.
|
||
*/
|
||
err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
|
||
if (err)
|
||
return err;
|
||
|
||
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
if (err)
|
||
return err;
|
||
|
||
/* Check if random address need to be updated */
|
||
if (own_addr_type == ADDR_LE_DEV_RANDOM &&
|
||
bacmp(&random_addr, BDADDR_ANY) &&
|
||
bacmp(&random_addr, &hdev->random_addr)) {
|
||
err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
|
||
&random_addr);
|
||
if (err)
|
||
return err;
|
||
}
|
||
|
||
return hci_enable_ext_advertising_sync(hdev, 0x00);
|
||
}
|
||
|
||
static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
|
||
struct hci_conn *conn)
|
||
{
|
||
struct hci_cp_le_set_adv_param cp;
|
||
u8 status;
|
||
u8 own_addr_type;
|
||
u8 enable;
|
||
|
||
if (ext_adv_capable(hdev))
|
||
return hci_le_ext_directed_advertising_sync(hdev, conn);
|
||
|
||
/* Clear the HCI_LE_ADV bit temporarily so that the
|
||
* hci_update_random_address knows that it's safe to go ahead
|
||
* and write a new random address. The flag will be set back on
|
||
* as soon as the SET_ADV_ENABLE HCI command completes.
|
||
*/
|
||
hci_dev_clear_flag(hdev, HCI_LE_ADV);
|
||
|
||
/* Set require_privacy to false so that the remote device has a
|
||
* chance of identifying us.
|
||
*/
|
||
status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
|
||
&own_addr_type);
|
||
if (status)
|
||
return status;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
/* Some controllers might reject command if intervals are not
|
||
* within range for undirected advertising.
|
||
* BCM20702A0 is known to be affected by this.
|
||
*/
|
||
cp.min_interval = cpu_to_le16(0x0020);
|
||
cp.max_interval = cpu_to_le16(0x0020);
|
||
|
||
cp.type = LE_ADV_DIRECT_IND;
|
||
cp.own_address_type = own_addr_type;
|
||
cp.direct_addr_type = conn->dst_type;
|
||
bacpy(&cp.direct_addr, &conn->dst);
|
||
cp.channel_map = hdev->le_adv_channel_map;
|
||
|
||
status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
if (status)
|
||
return status;
|
||
|
||
enable = 0x01;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
|
||
sizeof(enable), &enable, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
static void set_ext_conn_params(struct hci_conn *conn,
|
||
struct hci_cp_le_ext_conn_param *p)
|
||
{
|
||
struct hci_dev *hdev = conn->hdev;
|
||
|
||
memset(p, 0, sizeof(*p));
|
||
|
||
p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
|
||
p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
|
||
p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
|
||
p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
|
||
p->conn_latency = cpu_to_le16(conn->le_conn_latency);
|
||
p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
|
||
p->min_ce_len = cpu_to_le16(0x0000);
|
||
p->max_ce_len = cpu_to_le16(0x0000);
|
||
}
|
||
|
||
static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
|
||
struct hci_conn *conn, u8 own_addr_type)
|
||
{
|
||
struct hci_cp_le_ext_create_conn *cp;
|
||
struct hci_cp_le_ext_conn_param *p;
|
||
u8 data[sizeof(*cp) + sizeof(*p) * 3];
|
||
u32 plen;
|
||
|
||
cp = (void *)data;
|
||
p = (void *)cp->data;
|
||
|
||
memset(cp, 0, sizeof(*cp));
|
||
|
||
bacpy(&cp->peer_addr, &conn->dst);
|
||
cp->peer_addr_type = conn->dst_type;
|
||
cp->own_addr_type = own_addr_type;
|
||
|
||
plen = sizeof(*cp);
|
||
|
||
if (scan_1m(hdev)) {
|
||
cp->phys |= LE_SCAN_PHY_1M;
|
||
set_ext_conn_params(conn, p);
|
||
|
||
p++;
|
||
plen += sizeof(*p);
|
||
}
|
||
|
||
if (scan_2m(hdev)) {
|
||
cp->phys |= LE_SCAN_PHY_2M;
|
||
set_ext_conn_params(conn, p);
|
||
|
||
p++;
|
||
plen += sizeof(*p);
|
||
}
|
||
|
||
if (scan_coded(hdev)) {
|
||
cp->phys |= LE_SCAN_PHY_CODED;
|
||
set_ext_conn_params(conn, p);
|
||
|
||
plen += sizeof(*p);
|
||
}
|
||
|
||
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
|
||
plen, data,
|
||
HCI_EV_LE_ENHANCED_CONN_COMPLETE,
|
||
conn->conn_timeout, NULL);
|
||
}
|
||
|
||
int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
|
||
{
|
||
struct hci_cp_le_create_conn cp;
|
||
struct hci_conn_params *params;
|
||
u8 own_addr_type;
|
||
int err;
|
||
|
||
/* If requested to connect as peripheral use directed advertising */
|
||
if (conn->role == HCI_ROLE_SLAVE) {
|
||
/* If we're active scanning and simultaneous roles is not
|
||
* enabled simply reject the attempt.
|
||
*/
|
||
if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
|
||
hdev->le_scan_type == LE_SCAN_ACTIVE &&
|
||
!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
|
||
hci_conn_del(conn);
|
||
return -EBUSY;
|
||
}
|
||
|
||
/* Pause advertising while doing directed advertising. */
|
||
hci_pause_advertising_sync(hdev);
|
||
|
||
err = hci_le_directed_advertising_sync(hdev, conn);
|
||
goto done;
|
||
}
|
||
|
||
/* Disable advertising if simultaneous roles is not in use. */
|
||
if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
|
||
hci_pause_advertising_sync(hdev);
|
||
|
||
params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
|
||
if (params) {
|
||
conn->le_conn_min_interval = params->conn_min_interval;
|
||
conn->le_conn_max_interval = params->conn_max_interval;
|
||
conn->le_conn_latency = params->conn_latency;
|
||
conn->le_supv_timeout = params->supervision_timeout;
|
||
} else {
|
||
conn->le_conn_min_interval = hdev->le_conn_min_interval;
|
||
conn->le_conn_max_interval = hdev->le_conn_max_interval;
|
||
conn->le_conn_latency = hdev->le_conn_latency;
|
||
conn->le_supv_timeout = hdev->le_supv_timeout;
|
||
}
|
||
|
||
/* If controller is scanning, we stop it since some controllers are
|
||
* not able to scan and connect at the same time. Also set the
|
||
* HCI_LE_SCAN_INTERRUPTED flag so that the command complete
|
||
* handler for scan disabling knows to set the correct discovery
|
||
* state.
|
||
*/
|
||
if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
|
||
hci_scan_disable_sync(hdev);
|
||
hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
|
||
}
|
||
|
||
/* Update random address, but set require_privacy to false so
|
||
* that we never connect with an non-resolvable address.
|
||
*/
|
||
err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
|
||
&own_addr_type);
|
||
if (err)
|
||
goto done;
|
||
|
||
if (use_ext_conn(hdev)) {
|
||
err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
|
||
goto done;
|
||
}
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
|
||
cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
|
||
cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
|
||
|
||
bacpy(&cp.peer_addr, &conn->dst);
|
||
cp.peer_addr_type = conn->dst_type;
|
||
cp.own_address_type = own_addr_type;
|
||
cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
|
||
cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
|
||
cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
|
||
cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
|
||
cp.min_ce_len = cpu_to_le16(0x0000);
|
||
cp.max_ce_len = cpu_to_le16(0x0000);
|
||
|
||
/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
|
||
*
|
||
* If this event is unmasked and the HCI_LE_Connection_Complete event
|
||
* is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
|
||
* sent when a new connection has been created.
|
||
*/
|
||
err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
|
||
sizeof(cp), &cp,
|
||
use_enhanced_conn_complete(hdev) ?
|
||
HCI_EV_LE_ENHANCED_CONN_COMPLETE :
|
||
HCI_EV_LE_CONN_COMPLETE,
|
||
conn->conn_timeout, NULL);
|
||
|
||
done:
|
||
if (err == -ETIMEDOUT)
|
||
hci_le_connect_cancel_sync(hdev, conn, 0x00);
|
||
|
||
/* Re-enable advertising after the connection attempt is finished. */
|
||
hci_resume_advertising_sync(hdev);
|
||
return err;
|
||
}
|
||
|
||
int hci_le_create_cis_sync(struct hci_dev *hdev)
|
||
{
|
||
struct {
|
||
struct hci_cp_le_create_cis cp;
|
||
struct hci_cis cis[0x1f];
|
||
} cmd;
|
||
struct hci_conn *conn;
|
||
u8 cig = BT_ISO_QOS_CIG_UNSET;
|
||
|
||
/* The spec allows only one pending LE Create CIS command at a time. If
|
||
* the command is pending now, don't do anything. We check for pending
|
||
* connections after each CIS Established event.
|
||
*
|
||
* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
|
||
* page 2566:
|
||
*
|
||
* If the Host issues this command before all the
|
||
* HCI_LE_CIS_Established events from the previous use of the
|
||
* command have been generated, the Controller shall return the
|
||
* error code Command Disallowed (0x0C).
|
||
*
|
||
* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
|
||
* page 2567:
|
||
*
|
||
* When the Controller receives the HCI_LE_Create_CIS command, the
|
||
* Controller sends the HCI_Command_Status event to the Host. An
|
||
* HCI_LE_CIS_Established event will be generated for each CIS when it
|
||
* is established or if it is disconnected or considered lost before
|
||
* being established; until all the events are generated, the command
|
||
* remains pending.
|
||
*/
|
||
|
||
memset(&cmd, 0, sizeof(cmd));
|
||
|
||
hci_dev_lock(hdev);
|
||
|
||
rcu_read_lock();
|
||
|
||
/* Wait until previous Create CIS has completed */
|
||
list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
|
||
if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
|
||
goto done;
|
||
}
|
||
|
||
/* Find CIG with all CIS ready */
|
||
list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
|
||
struct hci_conn *link;
|
||
|
||
if (hci_conn_check_create_cis(conn))
|
||
continue;
|
||
|
||
cig = conn->iso_qos.ucast.cig;
|
||
|
||
list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) {
|
||
if (hci_conn_check_create_cis(link) > 0 &&
|
||
link->iso_qos.ucast.cig == cig &&
|
||
link->state != BT_CONNECTED) {
|
||
cig = BT_ISO_QOS_CIG_UNSET;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (cig != BT_ISO_QOS_CIG_UNSET)
|
||
break;
|
||
}
|
||
|
||
if (cig == BT_ISO_QOS_CIG_UNSET)
|
||
goto done;
|
||
|
||
list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
|
||
struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis];
|
||
|
||
if (hci_conn_check_create_cis(conn) ||
|
||
conn->iso_qos.ucast.cig != cig)
|
||
continue;
|
||
|
||
set_bit(HCI_CONN_CREATE_CIS, &conn->flags);
|
||
cis->acl_handle = cpu_to_le16(conn->parent->handle);
|
||
cis->cis_handle = cpu_to_le16(conn->handle);
|
||
cmd.cp.num_cis++;
|
||
|
||
if (cmd.cp.num_cis >= ARRAY_SIZE(cmd.cis))
|
||
break;
|
||
}
|
||
|
||
done:
|
||
rcu_read_unlock();
|
||
|
||
hci_dev_unlock(hdev);
|
||
|
||
if (!cmd.cp.num_cis)
|
||
return 0;
|
||
|
||
/* Wait for HCI_LE_CIS_Established */
|
||
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS,
|
||
sizeof(cmd.cp) + sizeof(cmd.cis[0]) *
|
||
cmd.cp.num_cis, &cmd,
|
||
HCI_EVT_LE_CIS_ESTABLISHED,
|
||
conn->conn_timeout, NULL);
|
||
}
|
||
|
||
int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
|
||
{
|
||
struct hci_cp_le_remove_cig cp;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
cp.cig_id = handle;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
|
||
&cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle)
|
||
{
|
||
struct hci_cp_le_big_term_sync cp;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
cp.handle = handle;
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle)
|
||
{
|
||
struct hci_cp_le_pa_term_sync cp;
|
||
|
||
memset(&cp, 0, sizeof(cp));
|
||
cp.handle = cpu_to_le16(handle);
|
||
|
||
return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC,
|
||
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
|
||
}
|
||
|
||
int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
|
||
bool use_rpa, struct adv_info *adv_instance,
|
||
u8 *own_addr_type, bdaddr_t *rand_addr)
|
||
{
|
||
int err;
|
||
|
||
bacpy(rand_addr, BDADDR_ANY);
|
||
|
||
/* If privacy is enabled use a resolvable private address. If
|
||
* current RPA has expired then generate a new one.
|
||
*/
|
||
if (use_rpa) {
|
||
/* If Controller supports LL Privacy use own address type is
|
||
* 0x03
|
||
*/
|
||
if (use_ll_privacy(hdev))
|
||
*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
|
||
else
|
||
*own_addr_type = ADDR_LE_DEV_RANDOM;
|
||
|
||
if (adv_instance) {
|
||
if (adv_rpa_valid(adv_instance))
|
||
return 0;
|
||
} else {
|
||
if (rpa_valid(hdev))
|
||
return 0;
|
||
}
|
||
|
||
err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
|
||
if (err < 0) {
|
||
bt_dev_err(hdev, "failed to generate new RPA");
|
||
return err;
|
||
}
|
||
|
||
bacpy(rand_addr, &hdev->rpa);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* In case of required privacy without resolvable private address,
|
||
* use an non-resolvable private address. This is useful for
|
||
* non-connectable advertising.
|
||
*/
|
||
if (require_privacy) {
|
||
bdaddr_t nrpa;
|
||
|
||
while (true) {
|
||
/* The non-resolvable private address is generated
|
||
* from random six bytes with the two most significant
|
||
* bits cleared.
|
||
*/
|
||
get_random_bytes(&nrpa, 6);
|
||
nrpa.b[5] &= 0x3f;
|
||
|
||
/* The non-resolvable private address shall not be
|
||
* equal to the public address.
|
||
*/
|
||
if (bacmp(&hdev->bdaddr, &nrpa))
|
||
break;
|
||
}
|
||
|
||
*own_addr_type = ADDR_LE_DEV_RANDOM;
|
||
bacpy(rand_addr, &nrpa);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* No privacy so use a public address. */
|
||
*own_addr_type = ADDR_LE_DEV_PUBLIC;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int _update_adv_data_sync(struct hci_dev *hdev, void *data)
|
||
{
|
||
u8 instance = PTR_UINT(data);
|
||
|
||
return hci_update_adv_data_sync(hdev, instance);
|
||
}
|
||
|
||
int hci_update_adv_data(struct hci_dev *hdev, u8 instance)
|
||
{
|
||
return hci_cmd_sync_queue(hdev, _update_adv_data_sync,
|
||
UINT_PTR(instance), NULL);
|
||
}
|