linux/tools/testing/radix-tree/test.c
Matthew Wilcox 268f42de71 radix-tree: delete radix_tree_range_tag_if_tagged()
This is an exceptionally complicated function with just one caller
(tag_pages_for_writeback).  We devote a large portion of the runtime of
the test suite to testing this one function which has one caller.  By
introducing the new function radix_tree_iter_tag_set(), we can eliminate
all of the complexity while keeping the performance.  The caller can now
use a fairly standard radix_tree_for_each() loop, and it doesn't need to
worry about tricksy things like 'start' wrapping.

The test suite continues to spend a large amount of time investigating
this function, but now it's testing the underlying primitives such as
radix_tree_iter_resume() and the radix_tree_for_each_tagged() iterator
which are also used by other parts of the kernel.

Link: http://lkml.kernel.org/r/1480369871-5271-57-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-14 16:04:10 -08:00

311 lines
7.0 KiB
C

#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/bitops.h>
#include "test.h"
struct item *
item_tag_set(struct radix_tree_root *root, unsigned long index, int tag)
{
return radix_tree_tag_set(root, index, tag);
}
struct item *
item_tag_clear(struct radix_tree_root *root, unsigned long index, int tag)
{
return radix_tree_tag_clear(root, index, tag);
}
int item_tag_get(struct radix_tree_root *root, unsigned long index, int tag)
{
return radix_tree_tag_get(root, index, tag);
}
int __item_insert(struct radix_tree_root *root, struct item *item)
{
return __radix_tree_insert(root, item->index, item->order, item);
}
int item_insert(struct radix_tree_root *root, unsigned long index)
{
return __item_insert(root, item_create(index, 0));
}
int item_insert_order(struct radix_tree_root *root, unsigned long index,
unsigned order)
{
return __item_insert(root, item_create(index, order));
}
void item_sanity(struct item *item, unsigned long index)
{
unsigned long mask;
assert(!radix_tree_is_internal_node(item));
assert(item->order < BITS_PER_LONG);
mask = (1UL << item->order) - 1;
assert((item->index | mask) == (index | mask));
}
int item_delete(struct radix_tree_root *root, unsigned long index)
{
struct item *item = radix_tree_delete(root, index);
if (item) {
item_sanity(item, index);
free(item);
return 1;
}
return 0;
}
struct item *item_create(unsigned long index, unsigned int order)
{
struct item *ret = malloc(sizeof(*ret));
ret->index = index;
ret->order = order;
return ret;
}
void item_check_present(struct radix_tree_root *root, unsigned long index)
{
struct item *item;
item = radix_tree_lookup(root, index);
assert(item != NULL);
item_sanity(item, index);
}
struct item *item_lookup(struct radix_tree_root *root, unsigned long index)
{
return radix_tree_lookup(root, index);
}
void item_check_absent(struct radix_tree_root *root, unsigned long index)
{
struct item *item;
item = radix_tree_lookup(root, index);
assert(item == NULL);
}
/*
* Scan only the passed (start, start+nr] for present items
*/
void item_gang_check_present(struct radix_tree_root *root,
unsigned long start, unsigned long nr,
int chunk, int hop)
{
struct item *items[chunk];
unsigned long into;
for (into = 0; into < nr; ) {
int nfound;
int nr_to_find = chunk;
int i;
if (nr_to_find > (nr - into))
nr_to_find = nr - into;
nfound = radix_tree_gang_lookup(root, (void **)items,
start + into, nr_to_find);
assert(nfound == nr_to_find);
for (i = 0; i < nfound; i++)
assert(items[i]->index == start + into + i);
into += hop;
}
}
/*
* Scan the entire tree, only expecting present items (start, start+nr]
*/
void item_full_scan(struct radix_tree_root *root, unsigned long start,
unsigned long nr, int chunk)
{
struct item *items[chunk];
unsigned long into = 0;
unsigned long this_index = start;
int nfound;
int i;
// printf("%s(0x%08lx, 0x%08lx, %d)\n", __FUNCTION__, start, nr, chunk);
while ((nfound = radix_tree_gang_lookup(root, (void **)items, into,
chunk))) {
// printf("At 0x%08lx, nfound=%d\n", into, nfound);
for (i = 0; i < nfound; i++) {
assert(items[i]->index == this_index);
this_index++;
}
// printf("Found 0x%08lx->0x%08lx\n",
// items[0]->index, items[nfound-1]->index);
into = this_index;
}
if (chunk)
assert(this_index == start + nr);
nfound = radix_tree_gang_lookup(root, (void **)items,
this_index, chunk);
assert(nfound == 0);
}
/* Use the same pattern as tag_pages_for_writeback() in mm/page-writeback.c */
int tag_tagged_items(struct radix_tree_root *root, pthread_mutex_t *lock,
unsigned long start, unsigned long end, unsigned batch,
unsigned iftag, unsigned thentag)
{
unsigned long tagged = 0;
struct radix_tree_iter iter;
void **slot;
if (batch == 0)
batch = 1;
if (lock)
pthread_mutex_lock(lock);
radix_tree_for_each_tagged(slot, root, &iter, start, iftag) {
if (iter.index > end)
break;
radix_tree_iter_tag_set(root, &iter, thentag);
tagged++;
if ((tagged % batch) != 0)
continue;
slot = radix_tree_iter_resume(slot, &iter);
if (lock) {
pthread_mutex_unlock(lock);
rcu_barrier();
pthread_mutex_lock(lock);
}
}
if (lock)
pthread_mutex_unlock(lock);
return tagged;
}
/* Use the same pattern as find_swap_entry() in mm/shmem.c */
unsigned long find_item(struct radix_tree_root *root, void *item)
{
struct radix_tree_iter iter;
void **slot;
unsigned long found = -1;
unsigned long checked = 0;
radix_tree_for_each_slot(slot, root, &iter, 0) {
if (*slot == item) {
found = iter.index;
break;
}
checked++;
if ((checked % 4) != 0)
continue;
slot = radix_tree_iter_resume(slot, &iter);
}
return found;
}
static int verify_node(struct radix_tree_node *slot, unsigned int tag,
int tagged)
{
int anyset = 0;
int i;
int j;
slot = entry_to_node(slot);
/* Verify consistency at this level */
for (i = 0; i < RADIX_TREE_TAG_LONGS; i++) {
if (slot->tags[tag][i]) {
anyset = 1;
break;
}
}
if (tagged != anyset) {
printf("tag: %u, shift %u, tagged: %d, anyset: %d\n",
tag, slot->shift, tagged, anyset);
for (j = 0; j < RADIX_TREE_MAX_TAGS; j++) {
printf("tag %d: ", j);
for (i = 0; i < RADIX_TREE_TAG_LONGS; i++)
printf("%016lx ", slot->tags[j][i]);
printf("\n");
}
return 1;
}
assert(tagged == anyset);
/* Go for next level */
if (slot->shift > 0) {
for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
if (slot->slots[i])
if (verify_node(slot->slots[i], tag,
!!test_bit(i, slot->tags[tag]))) {
printf("Failure at off %d\n", i);
for (j = 0; j < RADIX_TREE_MAX_TAGS; j++) {
printf("tag %d: ", j);
for (i = 0; i < RADIX_TREE_TAG_LONGS; i++)
printf("%016lx ", slot->tags[j][i]);
printf("\n");
}
return 1;
}
}
return 0;
}
void verify_tag_consistency(struct radix_tree_root *root, unsigned int tag)
{
struct radix_tree_node *node = root->rnode;
if (!radix_tree_is_internal_node(node))
return;
verify_node(node, tag, !!root_tag_get(root, tag));
}
void item_kill_tree(struct radix_tree_root *root)
{
struct radix_tree_iter iter;
void **slot;
struct item *items[32];
int nfound;
radix_tree_for_each_slot(slot, root, &iter, 0) {
if (radix_tree_exceptional_entry(*slot))
radix_tree_delete(root, iter.index);
}
while ((nfound = radix_tree_gang_lookup(root, (void **)items, 0, 32))) {
int i;
for (i = 0; i < nfound; i++) {
void *ret;
ret = radix_tree_delete(root, items[i]->index);
assert(ret == items[i]);
free(items[i]);
}
}
assert(radix_tree_gang_lookup(root, (void **)items, 0, 32) == 0);
assert(root->rnode == NULL);
}
void tree_verify_min_height(struct radix_tree_root *root, int maxindex)
{
unsigned shift;
struct radix_tree_node *node = root->rnode;
if (!radix_tree_is_internal_node(node)) {
assert(maxindex == 0);
return;
}
node = entry_to_node(node);
assert(maxindex <= node_maxindex(node));
shift = node->shift;
if (shift > 0)
assert(maxindex > shift_maxindex(shift - RADIX_TREE_MAP_SHIFT));
else
assert(maxindex > 0);
}