linux/arch/s390/kvm/priv.c
Heiko Carstens 58cdf5eb13 KVM: s390: use new mm defines instead of magic values
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2017-07-26 08:25:10 +02:00

1361 lines
36 KiB
C

/*
* handling privileged instructions
*
* Copyright IBM Corp. 2008, 2013
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License (version 2 only)
* as published by the Free Software Foundation.
*
* Author(s): Carsten Otte <cotte@de.ibm.com>
* Christian Borntraeger <borntraeger@de.ibm.com>
*/
#include <linux/kvm.h>
#include <linux/gfp.h>
#include <linux/errno.h>
#include <linux/compat.h>
#include <linux/mm_types.h>
#include <asm/asm-offsets.h>
#include <asm/facility.h>
#include <asm/current.h>
#include <asm/debug.h>
#include <asm/ebcdic.h>
#include <asm/sysinfo.h>
#include <asm/pgtable.h>
#include <asm/page-states.h>
#include <asm/pgalloc.h>
#include <asm/gmap.h>
#include <asm/io.h>
#include <asm/ptrace.h>
#include <asm/compat.h>
#include <asm/sclp.h>
#include "gaccess.h"
#include "kvm-s390.h"
#include "trace.h"
static int handle_ri(struct kvm_vcpu *vcpu)
{
if (test_kvm_facility(vcpu->kvm, 64)) {
VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (lazy)");
vcpu->arch.sie_block->ecb3 |= ECB3_RI;
kvm_s390_retry_instr(vcpu);
return 0;
} else
return kvm_s390_inject_program_int(vcpu, PGM_OPERATION);
}
int kvm_s390_handle_aa(struct kvm_vcpu *vcpu)
{
if ((vcpu->arch.sie_block->ipa & 0xf) <= 4)
return handle_ri(vcpu);
else
return -EOPNOTSUPP;
}
static int handle_gs(struct kvm_vcpu *vcpu)
{
if (test_kvm_facility(vcpu->kvm, 133)) {
VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (lazy)");
preempt_disable();
__ctl_set_bit(2, 4);
current->thread.gs_cb = (struct gs_cb *)&vcpu->run->s.regs.gscb;
restore_gs_cb(current->thread.gs_cb);
preempt_enable();
vcpu->arch.sie_block->ecb |= ECB_GS;
vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
vcpu->arch.gs_enabled = 1;
kvm_s390_retry_instr(vcpu);
return 0;
} else
return kvm_s390_inject_program_int(vcpu, PGM_OPERATION);
}
int kvm_s390_handle_e3(struct kvm_vcpu *vcpu)
{
int code = vcpu->arch.sie_block->ipb & 0xff;
if (code == 0x49 || code == 0x4d)
return handle_gs(vcpu);
else
return -EOPNOTSUPP;
}
/* Handle SCK (SET CLOCK) interception */
static int handle_set_clock(struct kvm_vcpu *vcpu)
{
int rc;
u8 ar;
u64 op2, val;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
op2 = kvm_s390_get_base_disp_s(vcpu, &ar);
if (op2 & 7) /* Operand must be on a doubleword boundary */
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
rc = read_guest(vcpu, op2, ar, &val, sizeof(val));
if (rc)
return kvm_s390_inject_prog_cond(vcpu, rc);
VCPU_EVENT(vcpu, 3, "SCK: setting guest TOD to 0x%llx", val);
kvm_s390_set_tod_clock(vcpu->kvm, val);
kvm_s390_set_psw_cc(vcpu, 0);
return 0;
}
static int handle_set_prefix(struct kvm_vcpu *vcpu)
{
u64 operand2;
u32 address;
int rc;
u8 ar;
vcpu->stat.instruction_spx++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
operand2 = kvm_s390_get_base_disp_s(vcpu, &ar);
/* must be word boundary */
if (operand2 & 3)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
/* get the value */
rc = read_guest(vcpu, operand2, ar, &address, sizeof(address));
if (rc)
return kvm_s390_inject_prog_cond(vcpu, rc);
address &= 0x7fffe000u;
/*
* Make sure the new value is valid memory. We only need to check the
* first page, since address is 8k aligned and memory pieces are always
* at least 1MB aligned and have at least a size of 1MB.
*/
if (kvm_is_error_gpa(vcpu->kvm, address))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
kvm_s390_set_prefix(vcpu, address);
trace_kvm_s390_handle_prefix(vcpu, 1, address);
return 0;
}
static int handle_store_prefix(struct kvm_vcpu *vcpu)
{
u64 operand2;
u32 address;
int rc;
u8 ar;
vcpu->stat.instruction_stpx++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
operand2 = kvm_s390_get_base_disp_s(vcpu, &ar);
/* must be word boundary */
if (operand2 & 3)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
address = kvm_s390_get_prefix(vcpu);
/* get the value */
rc = write_guest(vcpu, operand2, ar, &address, sizeof(address));
if (rc)
return kvm_s390_inject_prog_cond(vcpu, rc);
VCPU_EVENT(vcpu, 3, "STPX: storing prefix 0x%x into 0x%llx", address, operand2);
trace_kvm_s390_handle_prefix(vcpu, 0, address);
return 0;
}
static int handle_store_cpu_address(struct kvm_vcpu *vcpu)
{
u16 vcpu_id = vcpu->vcpu_id;
u64 ga;
int rc;
u8 ar;
vcpu->stat.instruction_stap++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
ga = kvm_s390_get_base_disp_s(vcpu, &ar);
if (ga & 1)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
rc = write_guest(vcpu, ga, ar, &vcpu_id, sizeof(vcpu_id));
if (rc)
return kvm_s390_inject_prog_cond(vcpu, rc);
VCPU_EVENT(vcpu, 3, "STAP: storing cpu address (%u) to 0x%llx", vcpu_id, ga);
trace_kvm_s390_handle_stap(vcpu, ga);
return 0;
}
int kvm_s390_skey_check_enable(struct kvm_vcpu *vcpu)
{
int rc = 0;
struct kvm_s390_sie_block *sie_block = vcpu->arch.sie_block;
trace_kvm_s390_skey_related_inst(vcpu);
if (!(sie_block->ictl & (ICTL_ISKE | ICTL_SSKE | ICTL_RRBE)) &&
!(atomic_read(&sie_block->cpuflags) & CPUSTAT_KSS))
return rc;
rc = s390_enable_skey();
VCPU_EVENT(vcpu, 3, "enabling storage keys for guest: %d", rc);
if (!rc) {
if (atomic_read(&sie_block->cpuflags) & CPUSTAT_KSS)
atomic_andnot(CPUSTAT_KSS, &sie_block->cpuflags);
else
sie_block->ictl &= ~(ICTL_ISKE | ICTL_SSKE |
ICTL_RRBE);
}
return rc;
}
static int try_handle_skey(struct kvm_vcpu *vcpu)
{
int rc;
vcpu->stat.instruction_storage_key++;
rc = kvm_s390_skey_check_enable(vcpu);
if (rc)
return rc;
if (sclp.has_skey) {
/* with storage-key facility, SIE interprets it for us */
kvm_s390_retry_instr(vcpu);
VCPU_EVENT(vcpu, 4, "%s", "retrying storage key operation");
return -EAGAIN;
}
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
return 0;
}
static int handle_iske(struct kvm_vcpu *vcpu)
{
unsigned long addr;
unsigned char key;
int reg1, reg2;
int rc;
rc = try_handle_skey(vcpu);
if (rc)
return rc != -EAGAIN ? rc : 0;
kvm_s390_get_regs_rre(vcpu, &reg1, &reg2);
addr = vcpu->run->s.regs.gprs[reg2] & PAGE_MASK;
addr = kvm_s390_logical_to_effective(vcpu, addr);
addr = kvm_s390_real_to_abs(vcpu, addr);
addr = gfn_to_hva(vcpu->kvm, gpa_to_gfn(addr));
if (kvm_is_error_hva(addr))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
down_read(&current->mm->mmap_sem);
rc = get_guest_storage_key(current->mm, addr, &key);
up_read(&current->mm->mmap_sem);
if (rc)
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
vcpu->run->s.regs.gprs[reg1] &= ~0xff;
vcpu->run->s.regs.gprs[reg1] |= key;
return 0;
}
static int handle_rrbe(struct kvm_vcpu *vcpu)
{
unsigned long addr;
int reg1, reg2;
int rc;
rc = try_handle_skey(vcpu);
if (rc)
return rc != -EAGAIN ? rc : 0;
kvm_s390_get_regs_rre(vcpu, &reg1, &reg2);
addr = vcpu->run->s.regs.gprs[reg2] & PAGE_MASK;
addr = kvm_s390_logical_to_effective(vcpu, addr);
addr = kvm_s390_real_to_abs(vcpu, addr);
addr = gfn_to_hva(vcpu->kvm, gpa_to_gfn(addr));
if (kvm_is_error_hva(addr))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
down_read(&current->mm->mmap_sem);
rc = reset_guest_reference_bit(current->mm, addr);
up_read(&current->mm->mmap_sem);
if (rc < 0)
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
kvm_s390_set_psw_cc(vcpu, rc);
return 0;
}
#define SSKE_NQ 0x8
#define SSKE_MR 0x4
#define SSKE_MC 0x2
#define SSKE_MB 0x1
static int handle_sske(struct kvm_vcpu *vcpu)
{
unsigned char m3 = vcpu->arch.sie_block->ipb >> 28;
unsigned long start, end;
unsigned char key, oldkey;
int reg1, reg2;
int rc;
rc = try_handle_skey(vcpu);
if (rc)
return rc != -EAGAIN ? rc : 0;
if (!test_kvm_facility(vcpu->kvm, 8))
m3 &= ~SSKE_MB;
if (!test_kvm_facility(vcpu->kvm, 10))
m3 &= ~(SSKE_MC | SSKE_MR);
if (!test_kvm_facility(vcpu->kvm, 14))
m3 &= ~SSKE_NQ;
kvm_s390_get_regs_rre(vcpu, &reg1, &reg2);
key = vcpu->run->s.regs.gprs[reg1] & 0xfe;
start = vcpu->run->s.regs.gprs[reg2] & PAGE_MASK;
start = kvm_s390_logical_to_effective(vcpu, start);
if (m3 & SSKE_MB) {
/* start already designates an absolute address */
end = (start + _SEGMENT_SIZE) & ~(_SEGMENT_SIZE - 1);
} else {
start = kvm_s390_real_to_abs(vcpu, start);
end = start + PAGE_SIZE;
}
while (start != end) {
unsigned long addr = gfn_to_hva(vcpu->kvm, gpa_to_gfn(start));
if (kvm_is_error_hva(addr))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
down_read(&current->mm->mmap_sem);
rc = cond_set_guest_storage_key(current->mm, addr, key, &oldkey,
m3 & SSKE_NQ, m3 & SSKE_MR,
m3 & SSKE_MC);
up_read(&current->mm->mmap_sem);
if (rc < 0)
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
start += PAGE_SIZE;
}
if (m3 & (SSKE_MC | SSKE_MR)) {
if (m3 & SSKE_MB) {
/* skey in reg1 is unpredictable */
kvm_s390_set_psw_cc(vcpu, 3);
} else {
kvm_s390_set_psw_cc(vcpu, rc);
vcpu->run->s.regs.gprs[reg1] &= ~0xff00UL;
vcpu->run->s.regs.gprs[reg1] |= (u64) oldkey << 8;
}
}
if (m3 & SSKE_MB) {
if (psw_bits(vcpu->arch.sie_block->gpsw).eaba == PSW_BITS_AMODE_64BIT)
vcpu->run->s.regs.gprs[reg2] &= ~PAGE_MASK;
else
vcpu->run->s.regs.gprs[reg2] &= ~0xfffff000UL;
end = kvm_s390_logical_to_effective(vcpu, end);
vcpu->run->s.regs.gprs[reg2] |= end;
}
return 0;
}
static int handle_ipte_interlock(struct kvm_vcpu *vcpu)
{
vcpu->stat.instruction_ipte_interlock++;
if (psw_bits(vcpu->arch.sie_block->gpsw).pstate)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
wait_event(vcpu->kvm->arch.ipte_wq, !ipte_lock_held(vcpu));
kvm_s390_retry_instr(vcpu);
VCPU_EVENT(vcpu, 4, "%s", "retrying ipte interlock operation");
return 0;
}
static int handle_test_block(struct kvm_vcpu *vcpu)
{
gpa_t addr;
int reg2;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
kvm_s390_get_regs_rre(vcpu, NULL, &reg2);
addr = vcpu->run->s.regs.gprs[reg2] & PAGE_MASK;
addr = kvm_s390_logical_to_effective(vcpu, addr);
if (kvm_s390_check_low_addr_prot_real(vcpu, addr))
return kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
addr = kvm_s390_real_to_abs(vcpu, addr);
if (kvm_is_error_gpa(vcpu->kvm, addr))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
/*
* We don't expect errors on modern systems, and do not care
* about storage keys (yet), so let's just clear the page.
*/
if (kvm_clear_guest(vcpu->kvm, addr, PAGE_SIZE))
return -EFAULT;
kvm_s390_set_psw_cc(vcpu, 0);
vcpu->run->s.regs.gprs[0] = 0;
return 0;
}
static int handle_tpi(struct kvm_vcpu *vcpu)
{
struct kvm_s390_interrupt_info *inti;
unsigned long len;
u32 tpi_data[3];
int rc;
u64 addr;
u8 ar;
addr = kvm_s390_get_base_disp_s(vcpu, &ar);
if (addr & 3)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
inti = kvm_s390_get_io_int(vcpu->kvm, vcpu->arch.sie_block->gcr[6], 0);
if (!inti) {
kvm_s390_set_psw_cc(vcpu, 0);
return 0;
}
tpi_data[0] = inti->io.subchannel_id << 16 | inti->io.subchannel_nr;
tpi_data[1] = inti->io.io_int_parm;
tpi_data[2] = inti->io.io_int_word;
if (addr) {
/*
* Store the two-word I/O interruption code into the
* provided area.
*/
len = sizeof(tpi_data) - 4;
rc = write_guest(vcpu, addr, ar, &tpi_data, len);
if (rc) {
rc = kvm_s390_inject_prog_cond(vcpu, rc);
goto reinject_interrupt;
}
} else {
/*
* Store the three-word I/O interruption code into
* the appropriate lowcore area.
*/
len = sizeof(tpi_data);
if (write_guest_lc(vcpu, __LC_SUBCHANNEL_ID, &tpi_data, len)) {
/* failed writes to the low core are not recoverable */
rc = -EFAULT;
goto reinject_interrupt;
}
}
/* irq was successfully handed to the guest */
kfree(inti);
kvm_s390_set_psw_cc(vcpu, 1);
return 0;
reinject_interrupt:
/*
* If we encounter a problem storing the interruption code, the
* instruction is suppressed from the guest's view: reinject the
* interrupt.
*/
if (kvm_s390_reinject_io_int(vcpu->kvm, inti)) {
kfree(inti);
rc = -EFAULT;
}
/* don't set the cc, a pgm irq was injected or we drop to user space */
return rc ? -EFAULT : 0;
}
static int handle_tsch(struct kvm_vcpu *vcpu)
{
struct kvm_s390_interrupt_info *inti = NULL;
const u64 isc_mask = 0xffUL << 24; /* all iscs set */
/* a valid schid has at least one bit set */
if (vcpu->run->s.regs.gprs[1])
inti = kvm_s390_get_io_int(vcpu->kvm, isc_mask,
vcpu->run->s.regs.gprs[1]);
/*
* Prepare exit to userspace.
* We indicate whether we dequeued a pending I/O interrupt
* so that userspace can re-inject it if the instruction gets
* a program check. While this may re-order the pending I/O
* interrupts, this is no problem since the priority is kept
* intact.
*/
vcpu->run->exit_reason = KVM_EXIT_S390_TSCH;
vcpu->run->s390_tsch.dequeued = !!inti;
if (inti) {
vcpu->run->s390_tsch.subchannel_id = inti->io.subchannel_id;
vcpu->run->s390_tsch.subchannel_nr = inti->io.subchannel_nr;
vcpu->run->s390_tsch.io_int_parm = inti->io.io_int_parm;
vcpu->run->s390_tsch.io_int_word = inti->io.io_int_word;
}
vcpu->run->s390_tsch.ipb = vcpu->arch.sie_block->ipb;
kfree(inti);
return -EREMOTE;
}
static int handle_io_inst(struct kvm_vcpu *vcpu)
{
VCPU_EVENT(vcpu, 4, "%s", "I/O instruction");
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
if (vcpu->kvm->arch.css_support) {
/*
* Most I/O instructions will be handled by userspace.
* Exceptions are tpi and the interrupt portion of tsch.
*/
if (vcpu->arch.sie_block->ipa == 0xb236)
return handle_tpi(vcpu);
if (vcpu->arch.sie_block->ipa == 0xb235)
return handle_tsch(vcpu);
/* Handle in userspace. */
return -EOPNOTSUPP;
} else {
/*
* Set condition code 3 to stop the guest from issuing channel
* I/O instructions.
*/
kvm_s390_set_psw_cc(vcpu, 3);
return 0;
}
}
static int handle_stfl(struct kvm_vcpu *vcpu)
{
int rc;
unsigned int fac;
vcpu->stat.instruction_stfl++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
/*
* We need to shift the lower 32 facility bits (bit 0-31) from a u64
* into a u32 memory representation. They will remain bits 0-31.
*/
fac = *vcpu->kvm->arch.model.fac_list >> 32;
rc = write_guest_lc(vcpu, offsetof(struct lowcore, stfl_fac_list),
&fac, sizeof(fac));
if (rc)
return rc;
VCPU_EVENT(vcpu, 3, "STFL: store facility list 0x%x", fac);
trace_kvm_s390_handle_stfl(vcpu, fac);
return 0;
}
#define PSW_MASK_ADDR_MODE (PSW_MASK_EA | PSW_MASK_BA)
#define PSW_MASK_UNASSIGNED 0xb80800fe7fffffffUL
#define PSW_ADDR_24 0x0000000000ffffffUL
#define PSW_ADDR_31 0x000000007fffffffUL
int is_valid_psw(psw_t *psw)
{
if (psw->mask & PSW_MASK_UNASSIGNED)
return 0;
if ((psw->mask & PSW_MASK_ADDR_MODE) == PSW_MASK_BA) {
if (psw->addr & ~PSW_ADDR_31)
return 0;
}
if (!(psw->mask & PSW_MASK_ADDR_MODE) && (psw->addr & ~PSW_ADDR_24))
return 0;
if ((psw->mask & PSW_MASK_ADDR_MODE) == PSW_MASK_EA)
return 0;
if (psw->addr & 1)
return 0;
return 1;
}
int kvm_s390_handle_lpsw(struct kvm_vcpu *vcpu)
{
psw_t *gpsw = &vcpu->arch.sie_block->gpsw;
psw_compat_t new_psw;
u64 addr;
int rc;
u8 ar;
if (gpsw->mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
addr = kvm_s390_get_base_disp_s(vcpu, &ar);
if (addr & 7)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
rc = read_guest(vcpu, addr, ar, &new_psw, sizeof(new_psw));
if (rc)
return kvm_s390_inject_prog_cond(vcpu, rc);
if (!(new_psw.mask & PSW32_MASK_BASE))
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
gpsw->mask = (new_psw.mask & ~PSW32_MASK_BASE) << 32;
gpsw->mask |= new_psw.addr & PSW32_ADDR_AMODE;
gpsw->addr = new_psw.addr & ~PSW32_ADDR_AMODE;
if (!is_valid_psw(gpsw))
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
return 0;
}
static int handle_lpswe(struct kvm_vcpu *vcpu)
{
psw_t new_psw;
u64 addr;
int rc;
u8 ar;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
addr = kvm_s390_get_base_disp_s(vcpu, &ar);
if (addr & 7)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
rc = read_guest(vcpu, addr, ar, &new_psw, sizeof(new_psw));
if (rc)
return kvm_s390_inject_prog_cond(vcpu, rc);
vcpu->arch.sie_block->gpsw = new_psw;
if (!is_valid_psw(&vcpu->arch.sie_block->gpsw))
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
return 0;
}
static int handle_stidp(struct kvm_vcpu *vcpu)
{
u64 stidp_data = vcpu->kvm->arch.model.cpuid;
u64 operand2;
int rc;
u8 ar;
vcpu->stat.instruction_stidp++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
operand2 = kvm_s390_get_base_disp_s(vcpu, &ar);
if (operand2 & 7)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
rc = write_guest(vcpu, operand2, ar, &stidp_data, sizeof(stidp_data));
if (rc)
return kvm_s390_inject_prog_cond(vcpu, rc);
VCPU_EVENT(vcpu, 3, "STIDP: store cpu id 0x%llx", stidp_data);
return 0;
}
static void handle_stsi_3_2_2(struct kvm_vcpu *vcpu, struct sysinfo_3_2_2 *mem)
{
int cpus = 0;
int n;
cpus = atomic_read(&vcpu->kvm->online_vcpus);
/* deal with other level 3 hypervisors */
if (stsi(mem, 3, 2, 2))
mem->count = 0;
if (mem->count < 8)
mem->count++;
for (n = mem->count - 1; n > 0 ; n--)
memcpy(&mem->vm[n], &mem->vm[n - 1], sizeof(mem->vm[0]));
memset(&mem->vm[0], 0, sizeof(mem->vm[0]));
mem->vm[0].cpus_total = cpus;
mem->vm[0].cpus_configured = cpus;
mem->vm[0].cpus_standby = 0;
mem->vm[0].cpus_reserved = 0;
mem->vm[0].caf = 1000;
memcpy(mem->vm[0].name, "KVMguest", 8);
ASCEBC(mem->vm[0].name, 8);
memcpy(mem->vm[0].cpi, "KVM/Linux ", 16);
ASCEBC(mem->vm[0].cpi, 16);
}
static void insert_stsi_usr_data(struct kvm_vcpu *vcpu, u64 addr, u8 ar,
u8 fc, u8 sel1, u16 sel2)
{
vcpu->run->exit_reason = KVM_EXIT_S390_STSI;
vcpu->run->s390_stsi.addr = addr;
vcpu->run->s390_stsi.ar = ar;
vcpu->run->s390_stsi.fc = fc;
vcpu->run->s390_stsi.sel1 = sel1;
vcpu->run->s390_stsi.sel2 = sel2;
}
static int handle_stsi(struct kvm_vcpu *vcpu)
{
int fc = (vcpu->run->s.regs.gprs[0] & 0xf0000000) >> 28;
int sel1 = vcpu->run->s.regs.gprs[0] & 0xff;
int sel2 = vcpu->run->s.regs.gprs[1] & 0xffff;
unsigned long mem = 0;
u64 operand2;
int rc = 0;
u8 ar;
vcpu->stat.instruction_stsi++;
VCPU_EVENT(vcpu, 3, "STSI: fc: %u sel1: %u sel2: %u", fc, sel1, sel2);
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
if (fc > 3) {
kvm_s390_set_psw_cc(vcpu, 3);
return 0;
}
if (vcpu->run->s.regs.gprs[0] & 0x0fffff00
|| vcpu->run->s.regs.gprs[1] & 0xffff0000)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
if (fc == 0) {
vcpu->run->s.regs.gprs[0] = 3 << 28;
kvm_s390_set_psw_cc(vcpu, 0);
return 0;
}
operand2 = kvm_s390_get_base_disp_s(vcpu, &ar);
if (operand2 & 0xfff)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
switch (fc) {
case 1: /* same handling for 1 and 2 */
case 2:
mem = get_zeroed_page(GFP_KERNEL);
if (!mem)
goto out_no_data;
if (stsi((void *) mem, fc, sel1, sel2))
goto out_no_data;
break;
case 3:
if (sel1 != 2 || sel2 != 2)
goto out_no_data;
mem = get_zeroed_page(GFP_KERNEL);
if (!mem)
goto out_no_data;
handle_stsi_3_2_2(vcpu, (void *) mem);
break;
}
rc = write_guest(vcpu, operand2, ar, (void *)mem, PAGE_SIZE);
if (rc) {
rc = kvm_s390_inject_prog_cond(vcpu, rc);
goto out;
}
if (vcpu->kvm->arch.user_stsi) {
insert_stsi_usr_data(vcpu, operand2, ar, fc, sel1, sel2);
rc = -EREMOTE;
}
trace_kvm_s390_handle_stsi(vcpu, fc, sel1, sel2, operand2);
free_page(mem);
kvm_s390_set_psw_cc(vcpu, 0);
vcpu->run->s.regs.gprs[0] = 0;
return rc;
out_no_data:
kvm_s390_set_psw_cc(vcpu, 3);
out:
free_page(mem);
return rc;
}
static const intercept_handler_t b2_handlers[256] = {
[0x02] = handle_stidp,
[0x04] = handle_set_clock,
[0x10] = handle_set_prefix,
[0x11] = handle_store_prefix,
[0x12] = handle_store_cpu_address,
[0x14] = kvm_s390_handle_vsie,
[0x21] = handle_ipte_interlock,
[0x29] = handle_iske,
[0x2a] = handle_rrbe,
[0x2b] = handle_sske,
[0x2c] = handle_test_block,
[0x30] = handle_io_inst,
[0x31] = handle_io_inst,
[0x32] = handle_io_inst,
[0x33] = handle_io_inst,
[0x34] = handle_io_inst,
[0x35] = handle_io_inst,
[0x36] = handle_io_inst,
[0x37] = handle_io_inst,
[0x38] = handle_io_inst,
[0x39] = handle_io_inst,
[0x3a] = handle_io_inst,
[0x3b] = handle_io_inst,
[0x3c] = handle_io_inst,
[0x50] = handle_ipte_interlock,
[0x56] = handle_sthyi,
[0x5f] = handle_io_inst,
[0x74] = handle_io_inst,
[0x76] = handle_io_inst,
[0x7d] = handle_stsi,
[0xb1] = handle_stfl,
[0xb2] = handle_lpswe,
};
int kvm_s390_handle_b2(struct kvm_vcpu *vcpu)
{
intercept_handler_t handler;
/*
* A lot of B2 instructions are priviledged. Here we check for
* the privileged ones, that we can handle in the kernel.
* Anything else goes to userspace.
*/
handler = b2_handlers[vcpu->arch.sie_block->ipa & 0x00ff];
if (handler)
return handler(vcpu);
return -EOPNOTSUPP;
}
static int handle_epsw(struct kvm_vcpu *vcpu)
{
int reg1, reg2;
kvm_s390_get_regs_rre(vcpu, &reg1, &reg2);
/* This basically extracts the mask half of the psw. */
vcpu->run->s.regs.gprs[reg1] &= 0xffffffff00000000UL;
vcpu->run->s.regs.gprs[reg1] |= vcpu->arch.sie_block->gpsw.mask >> 32;
if (reg2) {
vcpu->run->s.regs.gprs[reg2] &= 0xffffffff00000000UL;
vcpu->run->s.regs.gprs[reg2] |=
vcpu->arch.sie_block->gpsw.mask & 0x00000000ffffffffUL;
}
return 0;
}
#define PFMF_RESERVED 0xfffc0101UL
#define PFMF_SK 0x00020000UL
#define PFMF_CF 0x00010000UL
#define PFMF_UI 0x00008000UL
#define PFMF_FSC 0x00007000UL
#define PFMF_NQ 0x00000800UL
#define PFMF_MR 0x00000400UL
#define PFMF_MC 0x00000200UL
#define PFMF_KEY 0x000000feUL
static int handle_pfmf(struct kvm_vcpu *vcpu)
{
bool mr = false, mc = false, nq;
int reg1, reg2;
unsigned long start, end;
unsigned char key;
vcpu->stat.instruction_pfmf++;
kvm_s390_get_regs_rre(vcpu, &reg1, &reg2);
if (!test_kvm_facility(vcpu->kvm, 8))
return kvm_s390_inject_program_int(vcpu, PGM_OPERATION);
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
if (vcpu->run->s.regs.gprs[reg1] & PFMF_RESERVED)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
/* Only provide non-quiescing support if enabled for the guest */
if (vcpu->run->s.regs.gprs[reg1] & PFMF_NQ &&
!test_kvm_facility(vcpu->kvm, 14))
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
/* Only provide conditional-SSKE support if enabled for the guest */
if (vcpu->run->s.regs.gprs[reg1] & PFMF_SK &&
test_kvm_facility(vcpu->kvm, 10)) {
mr = vcpu->run->s.regs.gprs[reg1] & PFMF_MR;
mc = vcpu->run->s.regs.gprs[reg1] & PFMF_MC;
}
nq = vcpu->run->s.regs.gprs[reg1] & PFMF_NQ;
key = vcpu->run->s.regs.gprs[reg1] & PFMF_KEY;
start = vcpu->run->s.regs.gprs[reg2] & PAGE_MASK;
start = kvm_s390_logical_to_effective(vcpu, start);
if (vcpu->run->s.regs.gprs[reg1] & PFMF_CF) {
if (kvm_s390_check_low_addr_prot_real(vcpu, start))
return kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
}
switch (vcpu->run->s.regs.gprs[reg1] & PFMF_FSC) {
case 0x00000000:
/* only 4k frames specify a real address */
start = kvm_s390_real_to_abs(vcpu, start);
end = (start + PAGE_SIZE) & ~(PAGE_SIZE - 1);
break;
case 0x00001000:
end = (start + _SEGMENT_SIZE) & ~(_SEGMENT_SIZE - 1);
break;
case 0x00002000:
/* only support 2G frame size if EDAT2 is available and we are
not in 24-bit addressing mode */
if (!test_kvm_facility(vcpu->kvm, 78) ||
psw_bits(vcpu->arch.sie_block->gpsw).eaba == PSW_BITS_AMODE_24BIT)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
end = (start + _REGION3_SIZE) & ~(_REGION3_SIZE - 1);
break;
default:
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
}
while (start != end) {
unsigned long useraddr;
/* Translate guest address to host address */
useraddr = gfn_to_hva(vcpu->kvm, gpa_to_gfn(start));
if (kvm_is_error_hva(useraddr))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
if (vcpu->run->s.regs.gprs[reg1] & PFMF_CF) {
if (clear_user((void __user *)useraddr, PAGE_SIZE))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
}
if (vcpu->run->s.regs.gprs[reg1] & PFMF_SK) {
int rc = kvm_s390_skey_check_enable(vcpu);
if (rc)
return rc;
down_read(&current->mm->mmap_sem);
rc = cond_set_guest_storage_key(current->mm, useraddr,
key, NULL, nq, mr, mc);
up_read(&current->mm->mmap_sem);
if (rc < 0)
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
}
start += PAGE_SIZE;
}
if (vcpu->run->s.regs.gprs[reg1] & PFMF_FSC) {
if (psw_bits(vcpu->arch.sie_block->gpsw).eaba == PSW_BITS_AMODE_64BIT) {
vcpu->run->s.regs.gprs[reg2] = end;
} else {
vcpu->run->s.regs.gprs[reg2] &= ~0xffffffffUL;
end = kvm_s390_logical_to_effective(vcpu, end);
vcpu->run->s.regs.gprs[reg2] |= end;
}
}
return 0;
}
static inline int do_essa(struct kvm_vcpu *vcpu, const int orc)
{
struct kvm_s390_migration_state *ms = vcpu->kvm->arch.migration_state;
int r1, r2, nappended, entries;
unsigned long gfn, hva, res, pgstev, ptev;
unsigned long *cbrlo;
/*
* We don't need to set SD.FPF.SK to 1 here, because if we have a
* machine check here we either handle it or crash
*/
kvm_s390_get_regs_rre(vcpu, &r1, &r2);
gfn = vcpu->run->s.regs.gprs[r2] >> PAGE_SHIFT;
hva = gfn_to_hva(vcpu->kvm, gfn);
entries = (vcpu->arch.sie_block->cbrlo & ~PAGE_MASK) >> 3;
if (kvm_is_error_hva(hva))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
nappended = pgste_perform_essa(vcpu->kvm->mm, hva, orc, &ptev, &pgstev);
if (nappended < 0) {
res = orc ? 0x10 : 0;
vcpu->run->s.regs.gprs[r1] = res; /* Exception Indication */
return 0;
}
res = (pgstev & _PGSTE_GPS_USAGE_MASK) >> 22;
/*
* Set the block-content state part of the result. 0 means resident, so
* nothing to do if the page is valid. 2 is for preserved pages
* (non-present and non-zero), and 3 for zero pages (non-present and
* zero).
*/
if (ptev & _PAGE_INVALID) {
res |= 2;
if (pgstev & _PGSTE_GPS_ZERO)
res |= 1;
}
vcpu->run->s.regs.gprs[r1] = res;
/*
* It is possible that all the normal 511 slots were full, in which case
* we will now write in the 512th slot, which is reserved for host use.
* In both cases we let the normal essa handling code process all the
* slots, including the reserved one, if needed.
*/
if (nappended > 0) {
cbrlo = phys_to_virt(vcpu->arch.sie_block->cbrlo & PAGE_MASK);
cbrlo[entries] = gfn << PAGE_SHIFT;
}
if (orc) {
/* increment only if we are really flipping the bit to 1 */
if (!test_and_set_bit(gfn, ms->pgste_bitmap))
atomic64_inc(&ms->dirty_pages);
}
return nappended;
}
static int handle_essa(struct kvm_vcpu *vcpu)
{
/* entries expected to be 1FF */
int entries = (vcpu->arch.sie_block->cbrlo & ~PAGE_MASK) >> 3;
unsigned long *cbrlo;
struct gmap *gmap;
int i, orc;
VCPU_EVENT(vcpu, 4, "ESSA: release %d pages", entries);
gmap = vcpu->arch.gmap;
vcpu->stat.instruction_essa++;
if (!vcpu->kvm->arch.use_cmma)
return kvm_s390_inject_program_int(vcpu, PGM_OPERATION);
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
/* Check for invalid operation request code */
orc = (vcpu->arch.sie_block->ipb & 0xf0000000) >> 28;
if (orc > ESSA_MAX)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
if (likely(!vcpu->kvm->arch.migration_state)) {
/*
* CMMA is enabled in the KVM settings, but is disabled in
* the SIE block and in the mm_context, and we are not doing
* a migration. Enable CMMA in the mm_context.
* Since we need to take a write lock to write to the context
* to avoid races with storage keys handling, we check if the
* value really needs to be written to; if the value is
* already correct, we do nothing and avoid the lock.
*/
if (vcpu->kvm->mm->context.use_cmma == 0) {
down_write(&vcpu->kvm->mm->mmap_sem);
vcpu->kvm->mm->context.use_cmma = 1;
up_write(&vcpu->kvm->mm->mmap_sem);
}
/*
* If we are here, we are supposed to have CMMA enabled in
* the SIE block. Enabling CMMA works on a per-CPU basis,
* while the context use_cmma flag is per process.
* It's possible that the context flag is enabled and the
* SIE flag is not, so we set the flag always; if it was
* already set, nothing changes, otherwise we enable it
* on this CPU too.
*/
vcpu->arch.sie_block->ecb2 |= ECB2_CMMA;
/* Retry the ESSA instruction */
kvm_s390_retry_instr(vcpu);
} else {
/* Account for the possible extra cbrl entry */
i = do_essa(vcpu, orc);
if (i < 0)
return i;
entries += i;
}
vcpu->arch.sie_block->cbrlo &= PAGE_MASK; /* reset nceo */
cbrlo = phys_to_virt(vcpu->arch.sie_block->cbrlo);
down_read(&gmap->mm->mmap_sem);
for (i = 0; i < entries; ++i)
__gmap_zap(gmap, cbrlo[i]);
up_read(&gmap->mm->mmap_sem);
return 0;
}
static const intercept_handler_t b9_handlers[256] = {
[0x8a] = handle_ipte_interlock,
[0x8d] = handle_epsw,
[0x8e] = handle_ipte_interlock,
[0x8f] = handle_ipte_interlock,
[0xab] = handle_essa,
[0xaf] = handle_pfmf,
};
int kvm_s390_handle_b9(struct kvm_vcpu *vcpu)
{
intercept_handler_t handler;
/* This is handled just as for the B2 instructions. */
handler = b9_handlers[vcpu->arch.sie_block->ipa & 0x00ff];
if (handler)
return handler(vcpu);
return -EOPNOTSUPP;
}
int kvm_s390_handle_lctl(struct kvm_vcpu *vcpu)
{
int reg1 = (vcpu->arch.sie_block->ipa & 0x00f0) >> 4;
int reg3 = vcpu->arch.sie_block->ipa & 0x000f;
int reg, rc, nr_regs;
u32 ctl_array[16];
u64 ga;
u8 ar;
vcpu->stat.instruction_lctl++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
ga = kvm_s390_get_base_disp_rs(vcpu, &ar);
if (ga & 3)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
VCPU_EVENT(vcpu, 4, "LCTL: r1:%d, r3:%d, addr: 0x%llx", reg1, reg3, ga);
trace_kvm_s390_handle_lctl(vcpu, 0, reg1, reg3, ga);
nr_regs = ((reg3 - reg1) & 0xf) + 1;
rc = read_guest(vcpu, ga, ar, ctl_array, nr_regs * sizeof(u32));
if (rc)
return kvm_s390_inject_prog_cond(vcpu, rc);
reg = reg1;
nr_regs = 0;
do {
vcpu->arch.sie_block->gcr[reg] &= 0xffffffff00000000ul;
vcpu->arch.sie_block->gcr[reg] |= ctl_array[nr_regs++];
if (reg == reg3)
break;
reg = (reg + 1) % 16;
} while (1);
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
return 0;
}
int kvm_s390_handle_stctl(struct kvm_vcpu *vcpu)
{
int reg1 = (vcpu->arch.sie_block->ipa & 0x00f0) >> 4;
int reg3 = vcpu->arch.sie_block->ipa & 0x000f;
int reg, rc, nr_regs;
u32 ctl_array[16];
u64 ga;
u8 ar;
vcpu->stat.instruction_stctl++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
ga = kvm_s390_get_base_disp_rs(vcpu, &ar);
if (ga & 3)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
VCPU_EVENT(vcpu, 4, "STCTL r1:%d, r3:%d, addr: 0x%llx", reg1, reg3, ga);
trace_kvm_s390_handle_stctl(vcpu, 0, reg1, reg3, ga);
reg = reg1;
nr_regs = 0;
do {
ctl_array[nr_regs++] = vcpu->arch.sie_block->gcr[reg];
if (reg == reg3)
break;
reg = (reg + 1) % 16;
} while (1);
rc = write_guest(vcpu, ga, ar, ctl_array, nr_regs * sizeof(u32));
return rc ? kvm_s390_inject_prog_cond(vcpu, rc) : 0;
}
static int handle_lctlg(struct kvm_vcpu *vcpu)
{
int reg1 = (vcpu->arch.sie_block->ipa & 0x00f0) >> 4;
int reg3 = vcpu->arch.sie_block->ipa & 0x000f;
int reg, rc, nr_regs;
u64 ctl_array[16];
u64 ga;
u8 ar;
vcpu->stat.instruction_lctlg++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
ga = kvm_s390_get_base_disp_rsy(vcpu, &ar);
if (ga & 7)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
VCPU_EVENT(vcpu, 4, "LCTLG: r1:%d, r3:%d, addr: 0x%llx", reg1, reg3, ga);
trace_kvm_s390_handle_lctl(vcpu, 1, reg1, reg3, ga);
nr_regs = ((reg3 - reg1) & 0xf) + 1;
rc = read_guest(vcpu, ga, ar, ctl_array, nr_regs * sizeof(u64));
if (rc)
return kvm_s390_inject_prog_cond(vcpu, rc);
reg = reg1;
nr_regs = 0;
do {
vcpu->arch.sie_block->gcr[reg] = ctl_array[nr_regs++];
if (reg == reg3)
break;
reg = (reg + 1) % 16;
} while (1);
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
return 0;
}
static int handle_stctg(struct kvm_vcpu *vcpu)
{
int reg1 = (vcpu->arch.sie_block->ipa & 0x00f0) >> 4;
int reg3 = vcpu->arch.sie_block->ipa & 0x000f;
int reg, rc, nr_regs;
u64 ctl_array[16];
u64 ga;
u8 ar;
vcpu->stat.instruction_stctg++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
ga = kvm_s390_get_base_disp_rsy(vcpu, &ar);
if (ga & 7)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
VCPU_EVENT(vcpu, 4, "STCTG r1:%d, r3:%d, addr: 0x%llx", reg1, reg3, ga);
trace_kvm_s390_handle_stctl(vcpu, 1, reg1, reg3, ga);
reg = reg1;
nr_regs = 0;
do {
ctl_array[nr_regs++] = vcpu->arch.sie_block->gcr[reg];
if (reg == reg3)
break;
reg = (reg + 1) % 16;
} while (1);
rc = write_guest(vcpu, ga, ar, ctl_array, nr_regs * sizeof(u64));
return rc ? kvm_s390_inject_prog_cond(vcpu, rc) : 0;
}
static const intercept_handler_t eb_handlers[256] = {
[0x2f] = handle_lctlg,
[0x25] = handle_stctg,
[0x60] = handle_ri,
[0x61] = handle_ri,
[0x62] = handle_ri,
};
int kvm_s390_handle_eb(struct kvm_vcpu *vcpu)
{
intercept_handler_t handler;
handler = eb_handlers[vcpu->arch.sie_block->ipb & 0xff];
if (handler)
return handler(vcpu);
return -EOPNOTSUPP;
}
static int handle_tprot(struct kvm_vcpu *vcpu)
{
u64 address1, address2;
unsigned long hva, gpa;
int ret = 0, cc = 0;
bool writable;
u8 ar;
vcpu->stat.instruction_tprot++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
kvm_s390_get_base_disp_sse(vcpu, &address1, &address2, &ar, NULL);
/* we only handle the Linux memory detection case:
* access key == 0
* everything else goes to userspace. */
if (address2 & 0xf0)
return -EOPNOTSUPP;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_DAT)
ipte_lock(vcpu);
ret = guest_translate_address(vcpu, address1, ar, &gpa, GACC_STORE);
if (ret == PGM_PROTECTION) {
/* Write protected? Try again with read-only... */
cc = 1;
ret = guest_translate_address(vcpu, address1, ar, &gpa,
GACC_FETCH);
}
if (ret) {
if (ret == PGM_ADDRESSING || ret == PGM_TRANSLATION_SPEC) {
ret = kvm_s390_inject_program_int(vcpu, ret);
} else if (ret > 0) {
/* Translation not available */
kvm_s390_set_psw_cc(vcpu, 3);
ret = 0;
}
goto out_unlock;
}
hva = gfn_to_hva_prot(vcpu->kvm, gpa_to_gfn(gpa), &writable);
if (kvm_is_error_hva(hva)) {
ret = kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
} else {
if (!writable)
cc = 1; /* Write not permitted ==> read-only */
kvm_s390_set_psw_cc(vcpu, cc);
/* Note: CC2 only occurs for storage keys (not supported yet) */
}
out_unlock:
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_DAT)
ipte_unlock(vcpu);
return ret;
}
int kvm_s390_handle_e5(struct kvm_vcpu *vcpu)
{
/* For e5xx... instructions we only handle TPROT */
if ((vcpu->arch.sie_block->ipa & 0x00ff) == 0x01)
return handle_tprot(vcpu);
return -EOPNOTSUPP;
}
static int handle_sckpf(struct kvm_vcpu *vcpu)
{
u32 value;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
if (vcpu->run->s.regs.gprs[0] & 0x00000000ffff0000)
return kvm_s390_inject_program_int(vcpu,
PGM_SPECIFICATION);
value = vcpu->run->s.regs.gprs[0] & 0x000000000000ffff;
vcpu->arch.sie_block->todpr = value;
return 0;
}
static int handle_ptff(struct kvm_vcpu *vcpu)
{
/* we don't emulate any control instructions yet */
kvm_s390_set_psw_cc(vcpu, 3);
return 0;
}
static const intercept_handler_t x01_handlers[256] = {
[0x04] = handle_ptff,
[0x07] = handle_sckpf,
};
int kvm_s390_handle_01(struct kvm_vcpu *vcpu)
{
intercept_handler_t handler;
handler = x01_handlers[vcpu->arch.sie_block->ipa & 0x00ff];
if (handler)
return handler(vcpu);
return -EOPNOTSUPP;
}