mirror of
https://github.com/torvalds/linux.git
synced 2024-12-29 06:12:08 +00:00
bc696ca05f
So the old one didn't work properly before alternatives had run. And it was supposed to provide an optimized JMP because the assumption was that the offset it is jumping to is within a signed byte and thus a two-byte JMP. So I did an x86_64 allyesconfig build and dumped all possible sites where static_cpu_has() was used. The optimization amounted to all in all 12(!) places where static_cpu_has() had generated a 2-byte JMP. Which has saved us a whopping 36 bytes! This clearly is not worth the trouble so we can remove it. The only place where the optimization might count - in __switch_to() - we will handle differently. But that's not subject of this patch. Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1453842730-28463-6-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
690 lines
18 KiB
C
690 lines
18 KiB
C
/*
|
|
* Copyright (C) 1994 Linus Torvalds
|
|
*
|
|
* Pentium III FXSR, SSE support
|
|
* General FPU state handling cleanups
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
* x86-64 work by Andi Kleen 2002
|
|
*/
|
|
|
|
#ifndef _ASM_X86_FPU_INTERNAL_H
|
|
#define _ASM_X86_FPU_INTERNAL_H
|
|
|
|
#include <linux/compat.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/user.h>
|
|
#include <asm/fpu/api.h>
|
|
#include <asm/fpu/xstate.h>
|
|
#include <asm/cpufeature.h>
|
|
|
|
/*
|
|
* High level FPU state handling functions:
|
|
*/
|
|
extern void fpu__activate_curr(struct fpu *fpu);
|
|
extern void fpu__activate_fpstate_read(struct fpu *fpu);
|
|
extern void fpu__activate_fpstate_write(struct fpu *fpu);
|
|
extern void fpu__save(struct fpu *fpu);
|
|
extern void fpu__restore(struct fpu *fpu);
|
|
extern int fpu__restore_sig(void __user *buf, int ia32_frame);
|
|
extern void fpu__drop(struct fpu *fpu);
|
|
extern int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
|
|
extern void fpu__clear(struct fpu *fpu);
|
|
extern int fpu__exception_code(struct fpu *fpu, int trap_nr);
|
|
extern int dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
|
|
|
|
/*
|
|
* Boot time FPU initialization functions:
|
|
*/
|
|
extern void fpu__init_cpu(void);
|
|
extern void fpu__init_system_xstate(void);
|
|
extern void fpu__init_cpu_xstate(void);
|
|
extern void fpu__init_system(struct cpuinfo_x86 *c);
|
|
extern void fpu__init_check_bugs(void);
|
|
extern void fpu__resume_cpu(void);
|
|
extern u64 fpu__get_supported_xfeatures_mask(void);
|
|
|
|
/*
|
|
* Debugging facility:
|
|
*/
|
|
#ifdef CONFIG_X86_DEBUG_FPU
|
|
# define WARN_ON_FPU(x) WARN_ON_ONCE(x)
|
|
#else
|
|
# define WARN_ON_FPU(x) ({ (void)(x); 0; })
|
|
#endif
|
|
|
|
/*
|
|
* FPU related CPU feature flag helper routines:
|
|
*/
|
|
static __always_inline __pure bool use_eager_fpu(void)
|
|
{
|
|
return static_cpu_has(X86_FEATURE_EAGER_FPU);
|
|
}
|
|
|
|
static __always_inline __pure bool use_xsaveopt(void)
|
|
{
|
|
return static_cpu_has(X86_FEATURE_XSAVEOPT);
|
|
}
|
|
|
|
static __always_inline __pure bool use_xsave(void)
|
|
{
|
|
return static_cpu_has(X86_FEATURE_XSAVE);
|
|
}
|
|
|
|
static __always_inline __pure bool use_fxsr(void)
|
|
{
|
|
return static_cpu_has(X86_FEATURE_FXSR);
|
|
}
|
|
|
|
/*
|
|
* fpstate handling functions:
|
|
*/
|
|
|
|
extern union fpregs_state init_fpstate;
|
|
|
|
extern void fpstate_init(union fpregs_state *state);
|
|
#ifdef CONFIG_MATH_EMULATION
|
|
extern void fpstate_init_soft(struct swregs_state *soft);
|
|
#else
|
|
static inline void fpstate_init_soft(struct swregs_state *soft) {}
|
|
#endif
|
|
static inline void fpstate_init_fxstate(struct fxregs_state *fx)
|
|
{
|
|
fx->cwd = 0x37f;
|
|
fx->mxcsr = MXCSR_DEFAULT;
|
|
}
|
|
extern void fpstate_sanitize_xstate(struct fpu *fpu);
|
|
|
|
#define user_insn(insn, output, input...) \
|
|
({ \
|
|
int err; \
|
|
asm volatile(ASM_STAC "\n" \
|
|
"1:" #insn "\n\t" \
|
|
"2: " ASM_CLAC "\n" \
|
|
".section .fixup,\"ax\"\n" \
|
|
"3: movl $-1,%[err]\n" \
|
|
" jmp 2b\n" \
|
|
".previous\n" \
|
|
_ASM_EXTABLE(1b, 3b) \
|
|
: [err] "=r" (err), output \
|
|
: "0"(0), input); \
|
|
err; \
|
|
})
|
|
|
|
#define check_insn(insn, output, input...) \
|
|
({ \
|
|
int err; \
|
|
asm volatile("1:" #insn "\n\t" \
|
|
"2:\n" \
|
|
".section .fixup,\"ax\"\n" \
|
|
"3: movl $-1,%[err]\n" \
|
|
" jmp 2b\n" \
|
|
".previous\n" \
|
|
_ASM_EXTABLE(1b, 3b) \
|
|
: [err] "=r" (err), output \
|
|
: "0"(0), input); \
|
|
err; \
|
|
})
|
|
|
|
static inline int copy_fregs_to_user(struct fregs_state __user *fx)
|
|
{
|
|
return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
|
|
}
|
|
|
|
static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
|
|
{
|
|
if (config_enabled(CONFIG_X86_32))
|
|
return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
|
|
else if (config_enabled(CONFIG_AS_FXSAVEQ))
|
|
return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
|
|
|
|
/* See comment in copy_fxregs_to_kernel() below. */
|
|
return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
|
|
}
|
|
|
|
static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
|
|
{
|
|
int err;
|
|
|
|
if (config_enabled(CONFIG_X86_32)) {
|
|
err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
} else {
|
|
if (config_enabled(CONFIG_AS_FXSAVEQ)) {
|
|
err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
} else {
|
|
/* See comment in copy_fxregs_to_kernel() below. */
|
|
err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
|
|
}
|
|
}
|
|
/* Copying from a kernel buffer to FPU registers should never fail: */
|
|
WARN_ON_FPU(err);
|
|
}
|
|
|
|
static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
|
|
{
|
|
if (config_enabled(CONFIG_X86_32))
|
|
return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
else if (config_enabled(CONFIG_AS_FXSAVEQ))
|
|
return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
|
|
/* See comment in copy_fxregs_to_kernel() below. */
|
|
return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
|
|
"m" (*fx));
|
|
}
|
|
|
|
static inline void copy_kernel_to_fregs(struct fregs_state *fx)
|
|
{
|
|
int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
|
|
WARN_ON_FPU(err);
|
|
}
|
|
|
|
static inline int copy_user_to_fregs(struct fregs_state __user *fx)
|
|
{
|
|
return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
}
|
|
|
|
static inline void copy_fxregs_to_kernel(struct fpu *fpu)
|
|
{
|
|
if (config_enabled(CONFIG_X86_32))
|
|
asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
|
|
else if (config_enabled(CONFIG_AS_FXSAVEQ))
|
|
asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
|
|
else {
|
|
/* Using "rex64; fxsave %0" is broken because, if the memory
|
|
* operand uses any extended registers for addressing, a second
|
|
* REX prefix will be generated (to the assembler, rex64
|
|
* followed by semicolon is a separate instruction), and hence
|
|
* the 64-bitness is lost.
|
|
*
|
|
* Using "fxsaveq %0" would be the ideal choice, but is only
|
|
* supported starting with gas 2.16.
|
|
*
|
|
* Using, as a workaround, the properly prefixed form below
|
|
* isn't accepted by any binutils version so far released,
|
|
* complaining that the same type of prefix is used twice if
|
|
* an extended register is needed for addressing (fix submitted
|
|
* to mainline 2005-11-21).
|
|
*
|
|
* asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
|
|
*
|
|
* This, however, we can work around by forcing the compiler to
|
|
* select an addressing mode that doesn't require extended
|
|
* registers.
|
|
*/
|
|
asm volatile( "rex64/fxsave (%[fx])"
|
|
: "=m" (fpu->state.fxsave)
|
|
: [fx] "R" (&fpu->state.fxsave));
|
|
}
|
|
}
|
|
|
|
/* These macros all use (%edi)/(%rdi) as the single memory argument. */
|
|
#define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27"
|
|
#define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37"
|
|
#define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f"
|
|
#define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f"
|
|
#define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f"
|
|
|
|
#define XSTATE_OP(op, st, lmask, hmask, err) \
|
|
asm volatile("1:" op "\n\t" \
|
|
"xor %[err], %[err]\n" \
|
|
"2:\n\t" \
|
|
".pushsection .fixup,\"ax\"\n\t" \
|
|
"3: movl $-2,%[err]\n\t" \
|
|
"jmp 2b\n\t" \
|
|
".popsection\n\t" \
|
|
_ASM_EXTABLE(1b, 3b) \
|
|
: [err] "=r" (err) \
|
|
: "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
|
|
: "memory")
|
|
|
|
/*
|
|
* If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
|
|
* format and supervisor states in addition to modified optimization in
|
|
* XSAVEOPT.
|
|
*
|
|
* Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
|
|
* supports modified optimization which is not supported by XSAVE.
|
|
*
|
|
* We use XSAVE as a fallback.
|
|
*
|
|
* The 661 label is defined in the ALTERNATIVE* macros as the address of the
|
|
* original instruction which gets replaced. We need to use it here as the
|
|
* address of the instruction where we might get an exception at.
|
|
*/
|
|
#define XSTATE_XSAVE(st, lmask, hmask, err) \
|
|
asm volatile(ALTERNATIVE_2(XSAVE, \
|
|
XSAVEOPT, X86_FEATURE_XSAVEOPT, \
|
|
XSAVES, X86_FEATURE_XSAVES) \
|
|
"\n" \
|
|
"xor %[err], %[err]\n" \
|
|
"3:\n" \
|
|
".pushsection .fixup,\"ax\"\n" \
|
|
"4: movl $-2, %[err]\n" \
|
|
"jmp 3b\n" \
|
|
".popsection\n" \
|
|
_ASM_EXTABLE(661b, 4b) \
|
|
: [err] "=r" (err) \
|
|
: "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
|
|
: "memory")
|
|
|
|
/*
|
|
* Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
|
|
* XSAVE area format.
|
|
*/
|
|
#define XSTATE_XRESTORE(st, lmask, hmask, err) \
|
|
asm volatile(ALTERNATIVE(XRSTOR, \
|
|
XRSTORS, X86_FEATURE_XSAVES) \
|
|
"\n" \
|
|
"xor %[err], %[err]\n" \
|
|
"3:\n" \
|
|
".pushsection .fixup,\"ax\"\n" \
|
|
"4: movl $-2, %[err]\n" \
|
|
"jmp 3b\n" \
|
|
".popsection\n" \
|
|
_ASM_EXTABLE(661b, 4b) \
|
|
: [err] "=r" (err) \
|
|
: "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
|
|
: "memory")
|
|
|
|
/*
|
|
* This function is called only during boot time when x86 caps are not set
|
|
* up and alternative can not be used yet.
|
|
*/
|
|
static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
|
|
{
|
|
u64 mask = -1;
|
|
u32 lmask = mask;
|
|
u32 hmask = mask >> 32;
|
|
int err;
|
|
|
|
WARN_ON(system_state != SYSTEM_BOOTING);
|
|
|
|
if (static_cpu_has(X86_FEATURE_XSAVES))
|
|
XSTATE_OP(XSAVES, xstate, lmask, hmask, err);
|
|
else
|
|
XSTATE_OP(XSAVE, xstate, lmask, hmask, err);
|
|
|
|
/* We should never fault when copying to a kernel buffer: */
|
|
WARN_ON_FPU(err);
|
|
}
|
|
|
|
/*
|
|
* This function is called only during boot time when x86 caps are not set
|
|
* up and alternative can not be used yet.
|
|
*/
|
|
static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
|
|
{
|
|
u64 mask = -1;
|
|
u32 lmask = mask;
|
|
u32 hmask = mask >> 32;
|
|
int err;
|
|
|
|
WARN_ON(system_state != SYSTEM_BOOTING);
|
|
|
|
if (static_cpu_has(X86_FEATURE_XSAVES))
|
|
XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
|
|
else
|
|
XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
|
|
|
|
/* We should never fault when copying from a kernel buffer: */
|
|
WARN_ON_FPU(err);
|
|
}
|
|
|
|
/*
|
|
* Save processor xstate to xsave area.
|
|
*/
|
|
static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
|
|
{
|
|
u64 mask = -1;
|
|
u32 lmask = mask;
|
|
u32 hmask = mask >> 32;
|
|
int err;
|
|
|
|
WARN_ON(!alternatives_patched);
|
|
|
|
XSTATE_XSAVE(xstate, lmask, hmask, err);
|
|
|
|
/* We should never fault when copying to a kernel buffer: */
|
|
WARN_ON_FPU(err);
|
|
}
|
|
|
|
/*
|
|
* Restore processor xstate from xsave area.
|
|
*/
|
|
static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
|
|
{
|
|
u32 lmask = mask;
|
|
u32 hmask = mask >> 32;
|
|
int err;
|
|
|
|
XSTATE_XRESTORE(xstate, lmask, hmask, err);
|
|
|
|
/* We should never fault when copying from a kernel buffer: */
|
|
WARN_ON_FPU(err);
|
|
}
|
|
|
|
/*
|
|
* Save xstate to user space xsave area.
|
|
*
|
|
* We don't use modified optimization because xrstor/xrstors might track
|
|
* a different application.
|
|
*
|
|
* We don't use compacted format xsave area for
|
|
* backward compatibility for old applications which don't understand
|
|
* compacted format of xsave area.
|
|
*/
|
|
static inline int copy_xregs_to_user(struct xregs_state __user *buf)
|
|
{
|
|
int err;
|
|
|
|
/*
|
|
* Clear the xsave header first, so that reserved fields are
|
|
* initialized to zero.
|
|
*/
|
|
err = __clear_user(&buf->header, sizeof(buf->header));
|
|
if (unlikely(err))
|
|
return -EFAULT;
|
|
|
|
stac();
|
|
XSTATE_OP(XSAVE, buf, -1, -1, err);
|
|
clac();
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Restore xstate from user space xsave area.
|
|
*/
|
|
static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
|
|
{
|
|
struct xregs_state *xstate = ((__force struct xregs_state *)buf);
|
|
u32 lmask = mask;
|
|
u32 hmask = mask >> 32;
|
|
int err;
|
|
|
|
stac();
|
|
XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
|
|
clac();
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* These must be called with preempt disabled. Returns
|
|
* 'true' if the FPU state is still intact and we can
|
|
* keep registers active.
|
|
*
|
|
* The legacy FNSAVE instruction cleared all FPU state
|
|
* unconditionally, so registers are essentially destroyed.
|
|
* Modern FPU state can be kept in registers, if there are
|
|
* no pending FP exceptions.
|
|
*/
|
|
static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
|
|
{
|
|
if (likely(use_xsave())) {
|
|
copy_xregs_to_kernel(&fpu->state.xsave);
|
|
return 1;
|
|
}
|
|
|
|
if (likely(use_fxsr())) {
|
|
copy_fxregs_to_kernel(fpu);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Legacy FPU register saving, FNSAVE always clears FPU registers,
|
|
* so we have to mark them inactive:
|
|
*/
|
|
asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate)
|
|
{
|
|
if (use_xsave()) {
|
|
copy_kernel_to_xregs(&fpstate->xsave, -1);
|
|
} else {
|
|
if (use_fxsr())
|
|
copy_kernel_to_fxregs(&fpstate->fxsave);
|
|
else
|
|
copy_kernel_to_fregs(&fpstate->fsave);
|
|
}
|
|
}
|
|
|
|
static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
|
|
{
|
|
/*
|
|
* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
|
|
* pending. Clear the x87 state here by setting it to fixed values.
|
|
* "m" is a random variable that should be in L1.
|
|
*/
|
|
if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
|
|
asm volatile(
|
|
"fnclex\n\t"
|
|
"emms\n\t"
|
|
"fildl %P[addr]" /* set F?P to defined value */
|
|
: : [addr] "m" (fpstate));
|
|
}
|
|
|
|
__copy_kernel_to_fpregs(fpstate);
|
|
}
|
|
|
|
extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
|
|
|
|
/*
|
|
* FPU context switch related helper methods:
|
|
*/
|
|
|
|
DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
|
|
|
|
/*
|
|
* Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
|
|
* on this CPU.
|
|
*
|
|
* This will disable any lazy FPU state restore of the current FPU state,
|
|
* but if the current thread owns the FPU, it will still be saved by.
|
|
*/
|
|
static inline void __cpu_disable_lazy_restore(unsigned int cpu)
|
|
{
|
|
per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
|
|
}
|
|
|
|
static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu)
|
|
{
|
|
return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
|
|
}
|
|
|
|
|
|
/*
|
|
* Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation'
|
|
* idiom, which is then paired with the sw-flag (fpregs_active) later on:
|
|
*/
|
|
|
|
static inline void __fpregs_activate_hw(void)
|
|
{
|
|
if (!use_eager_fpu())
|
|
clts();
|
|
}
|
|
|
|
static inline void __fpregs_deactivate_hw(void)
|
|
{
|
|
if (!use_eager_fpu())
|
|
stts();
|
|
}
|
|
|
|
/* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */
|
|
static inline void __fpregs_deactivate(struct fpu *fpu)
|
|
{
|
|
WARN_ON_FPU(!fpu->fpregs_active);
|
|
|
|
fpu->fpregs_active = 0;
|
|
this_cpu_write(fpu_fpregs_owner_ctx, NULL);
|
|
}
|
|
|
|
/* Must be paired with a 'clts' (fpregs_activate_hw()) before! */
|
|
static inline void __fpregs_activate(struct fpu *fpu)
|
|
{
|
|
WARN_ON_FPU(fpu->fpregs_active);
|
|
|
|
fpu->fpregs_active = 1;
|
|
this_cpu_write(fpu_fpregs_owner_ctx, fpu);
|
|
}
|
|
|
|
/*
|
|
* The question "does this thread have fpu access?"
|
|
* is slightly racy, since preemption could come in
|
|
* and revoke it immediately after the test.
|
|
*
|
|
* However, even in that very unlikely scenario,
|
|
* we can just assume we have FPU access - typically
|
|
* to save the FP state - we'll just take a #NM
|
|
* fault and get the FPU access back.
|
|
*/
|
|
static inline int fpregs_active(void)
|
|
{
|
|
return current->thread.fpu.fpregs_active;
|
|
}
|
|
|
|
/*
|
|
* Encapsulate the CR0.TS handling together with the
|
|
* software flag.
|
|
*
|
|
* These generally need preemption protection to work,
|
|
* do try to avoid using these on their own.
|
|
*/
|
|
static inline void fpregs_activate(struct fpu *fpu)
|
|
{
|
|
__fpregs_activate_hw();
|
|
__fpregs_activate(fpu);
|
|
}
|
|
|
|
static inline void fpregs_deactivate(struct fpu *fpu)
|
|
{
|
|
__fpregs_deactivate(fpu);
|
|
__fpregs_deactivate_hw();
|
|
}
|
|
|
|
/*
|
|
* FPU state switching for scheduling.
|
|
*
|
|
* This is a two-stage process:
|
|
*
|
|
* - switch_fpu_prepare() saves the old state and
|
|
* sets the new state of the CR0.TS bit. This is
|
|
* done within the context of the old process.
|
|
*
|
|
* - switch_fpu_finish() restores the new state as
|
|
* necessary.
|
|
*/
|
|
typedef struct { int preload; } fpu_switch_t;
|
|
|
|
static inline fpu_switch_t
|
|
switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
|
|
{
|
|
fpu_switch_t fpu;
|
|
|
|
/*
|
|
* If the task has used the math, pre-load the FPU on xsave processors
|
|
* or if the past 5 consecutive context-switches used math.
|
|
*/
|
|
fpu.preload = new_fpu->fpstate_active &&
|
|
(use_eager_fpu() || new_fpu->counter > 5);
|
|
|
|
if (old_fpu->fpregs_active) {
|
|
if (!copy_fpregs_to_fpstate(old_fpu))
|
|
old_fpu->last_cpu = -1;
|
|
else
|
|
old_fpu->last_cpu = cpu;
|
|
|
|
/* But leave fpu_fpregs_owner_ctx! */
|
|
old_fpu->fpregs_active = 0;
|
|
|
|
/* Don't change CR0.TS if we just switch! */
|
|
if (fpu.preload) {
|
|
new_fpu->counter++;
|
|
__fpregs_activate(new_fpu);
|
|
prefetch(&new_fpu->state);
|
|
} else {
|
|
__fpregs_deactivate_hw();
|
|
}
|
|
} else {
|
|
old_fpu->counter = 0;
|
|
old_fpu->last_cpu = -1;
|
|
if (fpu.preload) {
|
|
new_fpu->counter++;
|
|
if (fpu_want_lazy_restore(new_fpu, cpu))
|
|
fpu.preload = 0;
|
|
else
|
|
prefetch(&new_fpu->state);
|
|
fpregs_activate(new_fpu);
|
|
}
|
|
}
|
|
return fpu;
|
|
}
|
|
|
|
/*
|
|
* Misc helper functions:
|
|
*/
|
|
|
|
/*
|
|
* By the time this gets called, we've already cleared CR0.TS and
|
|
* given the process the FPU if we are going to preload the FPU
|
|
* state - all we need to do is to conditionally restore the register
|
|
* state itself.
|
|
*/
|
|
static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
|
|
{
|
|
if (fpu_switch.preload)
|
|
copy_kernel_to_fpregs(&new_fpu->state);
|
|
}
|
|
|
|
/*
|
|
* Needs to be preemption-safe.
|
|
*
|
|
* NOTE! user_fpu_begin() must be used only immediately before restoring
|
|
* the save state. It does not do any saving/restoring on its own. In
|
|
* lazy FPU mode, it is just an optimization to avoid a #NM exception,
|
|
* the task can lose the FPU right after preempt_enable().
|
|
*/
|
|
static inline void user_fpu_begin(void)
|
|
{
|
|
struct fpu *fpu = ¤t->thread.fpu;
|
|
|
|
preempt_disable();
|
|
if (!fpregs_active())
|
|
fpregs_activate(fpu);
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* MXCSR and XCR definitions:
|
|
*/
|
|
|
|
extern unsigned int mxcsr_feature_mask;
|
|
|
|
#define XCR_XFEATURE_ENABLED_MASK 0x00000000
|
|
|
|
static inline u64 xgetbv(u32 index)
|
|
{
|
|
u32 eax, edx;
|
|
|
|
asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
|
|
: "=a" (eax), "=d" (edx)
|
|
: "c" (index));
|
|
return eax + ((u64)edx << 32);
|
|
}
|
|
|
|
static inline void xsetbv(u32 index, u64 value)
|
|
{
|
|
u32 eax = value;
|
|
u32 edx = value >> 32;
|
|
|
|
asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
|
|
: : "a" (eax), "d" (edx), "c" (index));
|
|
}
|
|
|
|
#endif /* _ASM_X86_FPU_INTERNAL_H */
|