mirror of
https://github.com/torvalds/linux.git
synced 2024-11-24 05:02:12 +00:00
aa6bf01d39
The new concurrency managed workqueues are cheap enough that we can create per-filesystem instead of global workqueues. This allows us to remove the trylock or defer scheme on the ilock, which is not helpful once we have outstanding log reservations until finishing a size update. Also allow the default concurrency on this workqueues so that I/O completions blocking on the ilock for one inode do not block process for another inode. Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
1808 lines
40 KiB
C
1808 lines
40 KiB
C
/*
|
|
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include <linux/stddef.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/init.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/freezer.h>
|
|
|
|
#include "xfs_sb.h"
|
|
#include "xfs_inum.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_trace.h"
|
|
|
|
static kmem_zone_t *xfs_buf_zone;
|
|
STATIC int xfsbufd(void *);
|
|
|
|
static struct workqueue_struct *xfslogd_workqueue;
|
|
|
|
#ifdef XFS_BUF_LOCK_TRACKING
|
|
# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
|
|
# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
|
|
# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
|
|
#else
|
|
# define XB_SET_OWNER(bp) do { } while (0)
|
|
# define XB_CLEAR_OWNER(bp) do { } while (0)
|
|
# define XB_GET_OWNER(bp) do { } while (0)
|
|
#endif
|
|
|
|
#define xb_to_gfp(flags) \
|
|
((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
|
|
((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
|
|
|
|
#define xb_to_km(flags) \
|
|
(((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
|
|
|
|
|
|
static inline int
|
|
xfs_buf_is_vmapped(
|
|
struct xfs_buf *bp)
|
|
{
|
|
/*
|
|
* Return true if the buffer is vmapped.
|
|
*
|
|
* The XBF_MAPPED flag is set if the buffer should be mapped, but the
|
|
* code is clever enough to know it doesn't have to map a single page,
|
|
* so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
|
|
*/
|
|
return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
|
|
}
|
|
|
|
static inline int
|
|
xfs_buf_vmap_len(
|
|
struct xfs_buf *bp)
|
|
{
|
|
return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
|
|
}
|
|
|
|
/*
|
|
* xfs_buf_lru_add - add a buffer to the LRU.
|
|
*
|
|
* The LRU takes a new reference to the buffer so that it will only be freed
|
|
* once the shrinker takes the buffer off the LRU.
|
|
*/
|
|
STATIC void
|
|
xfs_buf_lru_add(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_buftarg *btp = bp->b_target;
|
|
|
|
spin_lock(&btp->bt_lru_lock);
|
|
if (list_empty(&bp->b_lru)) {
|
|
atomic_inc(&bp->b_hold);
|
|
list_add_tail(&bp->b_lru, &btp->bt_lru);
|
|
btp->bt_lru_nr++;
|
|
}
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
}
|
|
|
|
/*
|
|
* xfs_buf_lru_del - remove a buffer from the LRU
|
|
*
|
|
* The unlocked check is safe here because it only occurs when there are not
|
|
* b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
|
|
* to optimise the shrinker removing the buffer from the LRU and calling
|
|
* xfs_buf_free(). i.e. it removes an unnecessary round trip on the
|
|
* bt_lru_lock.
|
|
*/
|
|
STATIC void
|
|
xfs_buf_lru_del(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_buftarg *btp = bp->b_target;
|
|
|
|
if (list_empty(&bp->b_lru))
|
|
return;
|
|
|
|
spin_lock(&btp->bt_lru_lock);
|
|
if (!list_empty(&bp->b_lru)) {
|
|
list_del_init(&bp->b_lru);
|
|
btp->bt_lru_nr--;
|
|
}
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
}
|
|
|
|
/*
|
|
* When we mark a buffer stale, we remove the buffer from the LRU and clear the
|
|
* b_lru_ref count so that the buffer is freed immediately when the buffer
|
|
* reference count falls to zero. If the buffer is already on the LRU, we need
|
|
* to remove the reference that LRU holds on the buffer.
|
|
*
|
|
* This prevents build-up of stale buffers on the LRU.
|
|
*/
|
|
void
|
|
xfs_buf_stale(
|
|
struct xfs_buf *bp)
|
|
{
|
|
bp->b_flags |= XBF_STALE;
|
|
xfs_buf_delwri_dequeue(bp);
|
|
atomic_set(&(bp)->b_lru_ref, 0);
|
|
if (!list_empty(&bp->b_lru)) {
|
|
struct xfs_buftarg *btp = bp->b_target;
|
|
|
|
spin_lock(&btp->bt_lru_lock);
|
|
if (!list_empty(&bp->b_lru)) {
|
|
list_del_init(&bp->b_lru);
|
|
btp->bt_lru_nr--;
|
|
atomic_dec(&bp->b_hold);
|
|
}
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
}
|
|
ASSERT(atomic_read(&bp->b_hold) >= 1);
|
|
}
|
|
|
|
struct xfs_buf *
|
|
xfs_buf_alloc(
|
|
struct xfs_buftarg *target,
|
|
xfs_off_t range_base,
|
|
size_t range_length,
|
|
xfs_buf_flags_t flags)
|
|
{
|
|
struct xfs_buf *bp;
|
|
|
|
bp = kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags));
|
|
if (unlikely(!bp))
|
|
return NULL;
|
|
|
|
/*
|
|
* We don't want certain flags to appear in b_flags.
|
|
*/
|
|
flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
|
|
|
|
memset(bp, 0, sizeof(xfs_buf_t));
|
|
atomic_set(&bp->b_hold, 1);
|
|
atomic_set(&bp->b_lru_ref, 1);
|
|
init_completion(&bp->b_iowait);
|
|
INIT_LIST_HEAD(&bp->b_lru);
|
|
INIT_LIST_HEAD(&bp->b_list);
|
|
RB_CLEAR_NODE(&bp->b_rbnode);
|
|
sema_init(&bp->b_sema, 0); /* held, no waiters */
|
|
XB_SET_OWNER(bp);
|
|
bp->b_target = target;
|
|
bp->b_file_offset = range_base;
|
|
/*
|
|
* Set buffer_length and count_desired to the same value initially.
|
|
* I/O routines should use count_desired, which will be the same in
|
|
* most cases but may be reset (e.g. XFS recovery).
|
|
*/
|
|
bp->b_buffer_length = bp->b_count_desired = range_length;
|
|
bp->b_flags = flags;
|
|
bp->b_bn = XFS_BUF_DADDR_NULL;
|
|
atomic_set(&bp->b_pin_count, 0);
|
|
init_waitqueue_head(&bp->b_waiters);
|
|
|
|
XFS_STATS_INC(xb_create);
|
|
trace_xfs_buf_init(bp, _RET_IP_);
|
|
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* Allocate a page array capable of holding a specified number
|
|
* of pages, and point the page buf at it.
|
|
*/
|
|
STATIC int
|
|
_xfs_buf_get_pages(
|
|
xfs_buf_t *bp,
|
|
int page_count,
|
|
xfs_buf_flags_t flags)
|
|
{
|
|
/* Make sure that we have a page list */
|
|
if (bp->b_pages == NULL) {
|
|
bp->b_offset = xfs_buf_poff(bp->b_file_offset);
|
|
bp->b_page_count = page_count;
|
|
if (page_count <= XB_PAGES) {
|
|
bp->b_pages = bp->b_page_array;
|
|
} else {
|
|
bp->b_pages = kmem_alloc(sizeof(struct page *) *
|
|
page_count, xb_to_km(flags));
|
|
if (bp->b_pages == NULL)
|
|
return -ENOMEM;
|
|
}
|
|
memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Frees b_pages if it was allocated.
|
|
*/
|
|
STATIC void
|
|
_xfs_buf_free_pages(
|
|
xfs_buf_t *bp)
|
|
{
|
|
if (bp->b_pages != bp->b_page_array) {
|
|
kmem_free(bp->b_pages);
|
|
bp->b_pages = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Releases the specified buffer.
|
|
*
|
|
* The modification state of any associated pages is left unchanged.
|
|
* The buffer most not be on any hash - use xfs_buf_rele instead for
|
|
* hashed and refcounted buffers
|
|
*/
|
|
void
|
|
xfs_buf_free(
|
|
xfs_buf_t *bp)
|
|
{
|
|
trace_xfs_buf_free(bp, _RET_IP_);
|
|
|
|
ASSERT(list_empty(&bp->b_lru));
|
|
|
|
if (bp->b_flags & _XBF_PAGES) {
|
|
uint i;
|
|
|
|
if (xfs_buf_is_vmapped(bp))
|
|
vm_unmap_ram(bp->b_addr - bp->b_offset,
|
|
bp->b_page_count);
|
|
|
|
for (i = 0; i < bp->b_page_count; i++) {
|
|
struct page *page = bp->b_pages[i];
|
|
|
|
__free_page(page);
|
|
}
|
|
} else if (bp->b_flags & _XBF_KMEM)
|
|
kmem_free(bp->b_addr);
|
|
_xfs_buf_free_pages(bp);
|
|
kmem_zone_free(xfs_buf_zone, bp);
|
|
}
|
|
|
|
/*
|
|
* Allocates all the pages for buffer in question and builds it's page list.
|
|
*/
|
|
STATIC int
|
|
xfs_buf_allocate_memory(
|
|
xfs_buf_t *bp,
|
|
uint flags)
|
|
{
|
|
size_t size = bp->b_count_desired;
|
|
size_t nbytes, offset;
|
|
gfp_t gfp_mask = xb_to_gfp(flags);
|
|
unsigned short page_count, i;
|
|
xfs_off_t end;
|
|
int error;
|
|
|
|
/*
|
|
* for buffers that are contained within a single page, just allocate
|
|
* the memory from the heap - there's no need for the complexity of
|
|
* page arrays to keep allocation down to order 0.
|
|
*/
|
|
if (bp->b_buffer_length < PAGE_SIZE) {
|
|
bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
|
|
if (!bp->b_addr) {
|
|
/* low memory - use alloc_page loop instead */
|
|
goto use_alloc_page;
|
|
}
|
|
|
|
if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
|
|
PAGE_MASK) !=
|
|
((unsigned long)bp->b_addr & PAGE_MASK)) {
|
|
/* b_addr spans two pages - use alloc_page instead */
|
|
kmem_free(bp->b_addr);
|
|
bp->b_addr = NULL;
|
|
goto use_alloc_page;
|
|
}
|
|
bp->b_offset = offset_in_page(bp->b_addr);
|
|
bp->b_pages = bp->b_page_array;
|
|
bp->b_pages[0] = virt_to_page(bp->b_addr);
|
|
bp->b_page_count = 1;
|
|
bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
|
|
return 0;
|
|
}
|
|
|
|
use_alloc_page:
|
|
end = bp->b_file_offset + bp->b_buffer_length;
|
|
page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
|
|
error = _xfs_buf_get_pages(bp, page_count, flags);
|
|
if (unlikely(error))
|
|
return error;
|
|
|
|
offset = bp->b_offset;
|
|
bp->b_flags |= _XBF_PAGES;
|
|
|
|
for (i = 0; i < bp->b_page_count; i++) {
|
|
struct page *page;
|
|
uint retries = 0;
|
|
retry:
|
|
page = alloc_page(gfp_mask);
|
|
if (unlikely(page == NULL)) {
|
|
if (flags & XBF_READ_AHEAD) {
|
|
bp->b_page_count = i;
|
|
error = ENOMEM;
|
|
goto out_free_pages;
|
|
}
|
|
|
|
/*
|
|
* This could deadlock.
|
|
*
|
|
* But until all the XFS lowlevel code is revamped to
|
|
* handle buffer allocation failures we can't do much.
|
|
*/
|
|
if (!(++retries % 100))
|
|
xfs_err(NULL,
|
|
"possible memory allocation deadlock in %s (mode:0x%x)",
|
|
__func__, gfp_mask);
|
|
|
|
XFS_STATS_INC(xb_page_retries);
|
|
congestion_wait(BLK_RW_ASYNC, HZ/50);
|
|
goto retry;
|
|
}
|
|
|
|
XFS_STATS_INC(xb_page_found);
|
|
|
|
nbytes = min_t(size_t, size, PAGE_SIZE - offset);
|
|
size -= nbytes;
|
|
bp->b_pages[i] = page;
|
|
offset = 0;
|
|
}
|
|
return 0;
|
|
|
|
out_free_pages:
|
|
for (i = 0; i < bp->b_page_count; i++)
|
|
__free_page(bp->b_pages[i]);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Map buffer into kernel address-space if necessary.
|
|
*/
|
|
STATIC int
|
|
_xfs_buf_map_pages(
|
|
xfs_buf_t *bp,
|
|
uint flags)
|
|
{
|
|
ASSERT(bp->b_flags & _XBF_PAGES);
|
|
if (bp->b_page_count == 1) {
|
|
/* A single page buffer is always mappable */
|
|
bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
|
|
bp->b_flags |= XBF_MAPPED;
|
|
} else if (flags & XBF_MAPPED) {
|
|
int retried = 0;
|
|
|
|
do {
|
|
bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
|
|
-1, PAGE_KERNEL);
|
|
if (bp->b_addr)
|
|
break;
|
|
vm_unmap_aliases();
|
|
} while (retried++ <= 1);
|
|
|
|
if (!bp->b_addr)
|
|
return -ENOMEM;
|
|
bp->b_addr += bp->b_offset;
|
|
bp->b_flags |= XBF_MAPPED;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Finding and Reading Buffers
|
|
*/
|
|
|
|
/*
|
|
* Look up, and creates if absent, a lockable buffer for
|
|
* a given range of an inode. The buffer is returned
|
|
* locked. No I/O is implied by this call.
|
|
*/
|
|
xfs_buf_t *
|
|
_xfs_buf_find(
|
|
xfs_buftarg_t *btp, /* block device target */
|
|
xfs_off_t ioff, /* starting offset of range */
|
|
size_t isize, /* length of range */
|
|
xfs_buf_flags_t flags,
|
|
xfs_buf_t *new_bp)
|
|
{
|
|
xfs_off_t range_base;
|
|
size_t range_length;
|
|
struct xfs_perag *pag;
|
|
struct rb_node **rbp;
|
|
struct rb_node *parent;
|
|
xfs_buf_t *bp;
|
|
|
|
range_base = (ioff << BBSHIFT);
|
|
range_length = (isize << BBSHIFT);
|
|
|
|
/* Check for IOs smaller than the sector size / not sector aligned */
|
|
ASSERT(!(range_length < (1 << btp->bt_sshift)));
|
|
ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
|
|
|
|
/* get tree root */
|
|
pag = xfs_perag_get(btp->bt_mount,
|
|
xfs_daddr_to_agno(btp->bt_mount, ioff));
|
|
|
|
/* walk tree */
|
|
spin_lock(&pag->pag_buf_lock);
|
|
rbp = &pag->pag_buf_tree.rb_node;
|
|
parent = NULL;
|
|
bp = NULL;
|
|
while (*rbp) {
|
|
parent = *rbp;
|
|
bp = rb_entry(parent, struct xfs_buf, b_rbnode);
|
|
|
|
if (range_base < bp->b_file_offset)
|
|
rbp = &(*rbp)->rb_left;
|
|
else if (range_base > bp->b_file_offset)
|
|
rbp = &(*rbp)->rb_right;
|
|
else {
|
|
/*
|
|
* found a block offset match. If the range doesn't
|
|
* match, the only way this is allowed is if the buffer
|
|
* in the cache is stale and the transaction that made
|
|
* it stale has not yet committed. i.e. we are
|
|
* reallocating a busy extent. Skip this buffer and
|
|
* continue searching to the right for an exact match.
|
|
*/
|
|
if (bp->b_buffer_length != range_length) {
|
|
ASSERT(bp->b_flags & XBF_STALE);
|
|
rbp = &(*rbp)->rb_right;
|
|
continue;
|
|
}
|
|
atomic_inc(&bp->b_hold);
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
/* No match found */
|
|
if (new_bp) {
|
|
rb_link_node(&new_bp->b_rbnode, parent, rbp);
|
|
rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
|
|
/* the buffer keeps the perag reference until it is freed */
|
|
new_bp->b_pag = pag;
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
} else {
|
|
XFS_STATS_INC(xb_miss_locked);
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
xfs_perag_put(pag);
|
|
}
|
|
return new_bp;
|
|
|
|
found:
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
xfs_perag_put(pag);
|
|
|
|
if (!xfs_buf_trylock(bp)) {
|
|
if (flags & XBF_TRYLOCK) {
|
|
xfs_buf_rele(bp);
|
|
XFS_STATS_INC(xb_busy_locked);
|
|
return NULL;
|
|
}
|
|
xfs_buf_lock(bp);
|
|
XFS_STATS_INC(xb_get_locked_waited);
|
|
}
|
|
|
|
/*
|
|
* if the buffer is stale, clear all the external state associated with
|
|
* it. We need to keep flags such as how we allocated the buffer memory
|
|
* intact here.
|
|
*/
|
|
if (bp->b_flags & XBF_STALE) {
|
|
ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
|
|
bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
|
|
}
|
|
|
|
trace_xfs_buf_find(bp, flags, _RET_IP_);
|
|
XFS_STATS_INC(xb_get_locked);
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* Assembles a buffer covering the specified range. The code is optimised for
|
|
* cache hits, as metadata intensive workloads will see 3 orders of magnitude
|
|
* more hits than misses.
|
|
*/
|
|
struct xfs_buf *
|
|
xfs_buf_get(
|
|
xfs_buftarg_t *target,/* target for buffer */
|
|
xfs_off_t ioff, /* starting offset of range */
|
|
size_t isize, /* length of range */
|
|
xfs_buf_flags_t flags)
|
|
{
|
|
struct xfs_buf *bp;
|
|
struct xfs_buf *new_bp;
|
|
int error = 0;
|
|
|
|
bp = _xfs_buf_find(target, ioff, isize, flags, NULL);
|
|
if (likely(bp))
|
|
goto found;
|
|
|
|
new_bp = xfs_buf_alloc(target, ioff << BBSHIFT, isize << BBSHIFT,
|
|
flags);
|
|
if (unlikely(!new_bp))
|
|
return NULL;
|
|
|
|
bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
|
|
if (!bp) {
|
|
kmem_zone_free(xfs_buf_zone, new_bp);
|
|
return NULL;
|
|
}
|
|
|
|
if (bp == new_bp) {
|
|
error = xfs_buf_allocate_memory(bp, flags);
|
|
if (error)
|
|
goto no_buffer;
|
|
} else
|
|
kmem_zone_free(xfs_buf_zone, new_bp);
|
|
|
|
/*
|
|
* Now we have a workable buffer, fill in the block number so
|
|
* that we can do IO on it.
|
|
*/
|
|
bp->b_bn = ioff;
|
|
bp->b_count_desired = bp->b_buffer_length;
|
|
|
|
found:
|
|
if (!(bp->b_flags & XBF_MAPPED)) {
|
|
error = _xfs_buf_map_pages(bp, flags);
|
|
if (unlikely(error)) {
|
|
xfs_warn(target->bt_mount,
|
|
"%s: failed to map pages\n", __func__);
|
|
goto no_buffer;
|
|
}
|
|
}
|
|
|
|
XFS_STATS_INC(xb_get);
|
|
trace_xfs_buf_get(bp, flags, _RET_IP_);
|
|
return bp;
|
|
|
|
no_buffer:
|
|
if (flags & (XBF_LOCK | XBF_TRYLOCK))
|
|
xfs_buf_unlock(bp);
|
|
xfs_buf_rele(bp);
|
|
return NULL;
|
|
}
|
|
|
|
STATIC int
|
|
_xfs_buf_read(
|
|
xfs_buf_t *bp,
|
|
xfs_buf_flags_t flags)
|
|
{
|
|
int status;
|
|
|
|
ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
|
|
ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
|
|
|
|
bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD);
|
|
bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
|
|
|
|
status = xfs_buf_iorequest(bp);
|
|
if (status || bp->b_error || (flags & XBF_ASYNC))
|
|
return status;
|
|
return xfs_buf_iowait(bp);
|
|
}
|
|
|
|
xfs_buf_t *
|
|
xfs_buf_read(
|
|
xfs_buftarg_t *target,
|
|
xfs_off_t ioff,
|
|
size_t isize,
|
|
xfs_buf_flags_t flags)
|
|
{
|
|
xfs_buf_t *bp;
|
|
|
|
flags |= XBF_READ;
|
|
|
|
bp = xfs_buf_get(target, ioff, isize, flags);
|
|
if (bp) {
|
|
trace_xfs_buf_read(bp, flags, _RET_IP_);
|
|
|
|
if (!XFS_BUF_ISDONE(bp)) {
|
|
XFS_STATS_INC(xb_get_read);
|
|
_xfs_buf_read(bp, flags);
|
|
} else if (flags & XBF_ASYNC) {
|
|
/*
|
|
* Read ahead call which is already satisfied,
|
|
* drop the buffer
|
|
*/
|
|
goto no_buffer;
|
|
} else {
|
|
/* We do not want read in the flags */
|
|
bp->b_flags &= ~XBF_READ;
|
|
}
|
|
}
|
|
|
|
return bp;
|
|
|
|
no_buffer:
|
|
if (flags & (XBF_LOCK | XBF_TRYLOCK))
|
|
xfs_buf_unlock(bp);
|
|
xfs_buf_rele(bp);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If we are not low on memory then do the readahead in a deadlock
|
|
* safe manner.
|
|
*/
|
|
void
|
|
xfs_buf_readahead(
|
|
xfs_buftarg_t *target,
|
|
xfs_off_t ioff,
|
|
size_t isize)
|
|
{
|
|
if (bdi_read_congested(target->bt_bdi))
|
|
return;
|
|
|
|
xfs_buf_read(target, ioff, isize,
|
|
XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
|
|
}
|
|
|
|
/*
|
|
* Read an uncached buffer from disk. Allocates and returns a locked
|
|
* buffer containing the disk contents or nothing.
|
|
*/
|
|
struct xfs_buf *
|
|
xfs_buf_read_uncached(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buftarg *target,
|
|
xfs_daddr_t daddr,
|
|
size_t length,
|
|
int flags)
|
|
{
|
|
xfs_buf_t *bp;
|
|
int error;
|
|
|
|
bp = xfs_buf_get_uncached(target, length, flags);
|
|
if (!bp)
|
|
return NULL;
|
|
|
|
/* set up the buffer for a read IO */
|
|
XFS_BUF_SET_ADDR(bp, daddr);
|
|
XFS_BUF_READ(bp);
|
|
|
|
xfsbdstrat(mp, bp);
|
|
error = xfs_buf_iowait(bp);
|
|
if (error || bp->b_error) {
|
|
xfs_buf_relse(bp);
|
|
return NULL;
|
|
}
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* Return a buffer allocated as an empty buffer and associated to external
|
|
* memory via xfs_buf_associate_memory() back to it's empty state.
|
|
*/
|
|
void
|
|
xfs_buf_set_empty(
|
|
struct xfs_buf *bp,
|
|
size_t len)
|
|
{
|
|
if (bp->b_pages)
|
|
_xfs_buf_free_pages(bp);
|
|
|
|
bp->b_pages = NULL;
|
|
bp->b_page_count = 0;
|
|
bp->b_addr = NULL;
|
|
bp->b_file_offset = 0;
|
|
bp->b_buffer_length = bp->b_count_desired = len;
|
|
bp->b_bn = XFS_BUF_DADDR_NULL;
|
|
bp->b_flags &= ~XBF_MAPPED;
|
|
}
|
|
|
|
static inline struct page *
|
|
mem_to_page(
|
|
void *addr)
|
|
{
|
|
if ((!is_vmalloc_addr(addr))) {
|
|
return virt_to_page(addr);
|
|
} else {
|
|
return vmalloc_to_page(addr);
|
|
}
|
|
}
|
|
|
|
int
|
|
xfs_buf_associate_memory(
|
|
xfs_buf_t *bp,
|
|
void *mem,
|
|
size_t len)
|
|
{
|
|
int rval;
|
|
int i = 0;
|
|
unsigned long pageaddr;
|
|
unsigned long offset;
|
|
size_t buflen;
|
|
int page_count;
|
|
|
|
pageaddr = (unsigned long)mem & PAGE_MASK;
|
|
offset = (unsigned long)mem - pageaddr;
|
|
buflen = PAGE_ALIGN(len + offset);
|
|
page_count = buflen >> PAGE_SHIFT;
|
|
|
|
/* Free any previous set of page pointers */
|
|
if (bp->b_pages)
|
|
_xfs_buf_free_pages(bp);
|
|
|
|
bp->b_pages = NULL;
|
|
bp->b_addr = mem;
|
|
|
|
rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
|
|
if (rval)
|
|
return rval;
|
|
|
|
bp->b_offset = offset;
|
|
|
|
for (i = 0; i < bp->b_page_count; i++) {
|
|
bp->b_pages[i] = mem_to_page((void *)pageaddr);
|
|
pageaddr += PAGE_SIZE;
|
|
}
|
|
|
|
bp->b_count_desired = len;
|
|
bp->b_buffer_length = buflen;
|
|
bp->b_flags |= XBF_MAPPED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
xfs_buf_t *
|
|
xfs_buf_get_uncached(
|
|
struct xfs_buftarg *target,
|
|
size_t len,
|
|
int flags)
|
|
{
|
|
unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
|
|
int error, i;
|
|
xfs_buf_t *bp;
|
|
|
|
bp = xfs_buf_alloc(target, 0, len, 0);
|
|
if (unlikely(bp == NULL))
|
|
goto fail;
|
|
|
|
error = _xfs_buf_get_pages(bp, page_count, 0);
|
|
if (error)
|
|
goto fail_free_buf;
|
|
|
|
for (i = 0; i < page_count; i++) {
|
|
bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
|
|
if (!bp->b_pages[i])
|
|
goto fail_free_mem;
|
|
}
|
|
bp->b_flags |= _XBF_PAGES;
|
|
|
|
error = _xfs_buf_map_pages(bp, XBF_MAPPED);
|
|
if (unlikely(error)) {
|
|
xfs_warn(target->bt_mount,
|
|
"%s: failed to map pages\n", __func__);
|
|
goto fail_free_mem;
|
|
}
|
|
|
|
trace_xfs_buf_get_uncached(bp, _RET_IP_);
|
|
return bp;
|
|
|
|
fail_free_mem:
|
|
while (--i >= 0)
|
|
__free_page(bp->b_pages[i]);
|
|
_xfs_buf_free_pages(bp);
|
|
fail_free_buf:
|
|
kmem_zone_free(xfs_buf_zone, bp);
|
|
fail:
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Increment reference count on buffer, to hold the buffer concurrently
|
|
* with another thread which may release (free) the buffer asynchronously.
|
|
* Must hold the buffer already to call this function.
|
|
*/
|
|
void
|
|
xfs_buf_hold(
|
|
xfs_buf_t *bp)
|
|
{
|
|
trace_xfs_buf_hold(bp, _RET_IP_);
|
|
atomic_inc(&bp->b_hold);
|
|
}
|
|
|
|
/*
|
|
* Releases a hold on the specified buffer. If the
|
|
* the hold count is 1, calls xfs_buf_free.
|
|
*/
|
|
void
|
|
xfs_buf_rele(
|
|
xfs_buf_t *bp)
|
|
{
|
|
struct xfs_perag *pag = bp->b_pag;
|
|
|
|
trace_xfs_buf_rele(bp, _RET_IP_);
|
|
|
|
if (!pag) {
|
|
ASSERT(list_empty(&bp->b_lru));
|
|
ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
|
|
if (atomic_dec_and_test(&bp->b_hold))
|
|
xfs_buf_free(bp);
|
|
return;
|
|
}
|
|
|
|
ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
|
|
|
|
ASSERT(atomic_read(&bp->b_hold) > 0);
|
|
if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
|
|
if (!(bp->b_flags & XBF_STALE) &&
|
|
atomic_read(&bp->b_lru_ref)) {
|
|
xfs_buf_lru_add(bp);
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
} else {
|
|
xfs_buf_lru_del(bp);
|
|
ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
|
|
rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
xfs_perag_put(pag);
|
|
xfs_buf_free(bp);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Lock a buffer object, if it is not already locked.
|
|
*
|
|
* If we come across a stale, pinned, locked buffer, we know that we are
|
|
* being asked to lock a buffer that has been reallocated. Because it is
|
|
* pinned, we know that the log has not been pushed to disk and hence it
|
|
* will still be locked. Rather than continuing to have trylock attempts
|
|
* fail until someone else pushes the log, push it ourselves before
|
|
* returning. This means that the xfsaild will not get stuck trying
|
|
* to push on stale inode buffers.
|
|
*/
|
|
int
|
|
xfs_buf_trylock(
|
|
struct xfs_buf *bp)
|
|
{
|
|
int locked;
|
|
|
|
locked = down_trylock(&bp->b_sema) == 0;
|
|
if (locked)
|
|
XB_SET_OWNER(bp);
|
|
else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
|
|
xfs_log_force(bp->b_target->bt_mount, 0);
|
|
|
|
trace_xfs_buf_trylock(bp, _RET_IP_);
|
|
return locked;
|
|
}
|
|
|
|
/*
|
|
* Lock a buffer object.
|
|
*
|
|
* If we come across a stale, pinned, locked buffer, we know that we
|
|
* are being asked to lock a buffer that has been reallocated. Because
|
|
* it is pinned, we know that the log has not been pushed to disk and
|
|
* hence it will still be locked. Rather than sleeping until someone
|
|
* else pushes the log, push it ourselves before trying to get the lock.
|
|
*/
|
|
void
|
|
xfs_buf_lock(
|
|
struct xfs_buf *bp)
|
|
{
|
|
trace_xfs_buf_lock(bp, _RET_IP_);
|
|
|
|
if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
|
|
xfs_log_force(bp->b_target->bt_mount, 0);
|
|
down(&bp->b_sema);
|
|
XB_SET_OWNER(bp);
|
|
|
|
trace_xfs_buf_lock_done(bp, _RET_IP_);
|
|
}
|
|
|
|
/*
|
|
* Releases the lock on the buffer object.
|
|
* If the buffer is marked delwri but is not queued, do so before we
|
|
* unlock the buffer as we need to set flags correctly. We also need to
|
|
* take a reference for the delwri queue because the unlocker is going to
|
|
* drop their's and they don't know we just queued it.
|
|
*/
|
|
void
|
|
xfs_buf_unlock(
|
|
struct xfs_buf *bp)
|
|
{
|
|
XB_CLEAR_OWNER(bp);
|
|
up(&bp->b_sema);
|
|
|
|
trace_xfs_buf_unlock(bp, _RET_IP_);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_buf_wait_unpin(
|
|
xfs_buf_t *bp)
|
|
{
|
|
DECLARE_WAITQUEUE (wait, current);
|
|
|
|
if (atomic_read(&bp->b_pin_count) == 0)
|
|
return;
|
|
|
|
add_wait_queue(&bp->b_waiters, &wait);
|
|
for (;;) {
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
if (atomic_read(&bp->b_pin_count) == 0)
|
|
break;
|
|
io_schedule();
|
|
}
|
|
remove_wait_queue(&bp->b_waiters, &wait);
|
|
set_current_state(TASK_RUNNING);
|
|
}
|
|
|
|
/*
|
|
* Buffer Utility Routines
|
|
*/
|
|
|
|
STATIC void
|
|
xfs_buf_iodone_work(
|
|
struct work_struct *work)
|
|
{
|
|
xfs_buf_t *bp =
|
|
container_of(work, xfs_buf_t, b_iodone_work);
|
|
|
|
if (bp->b_iodone)
|
|
(*(bp->b_iodone))(bp);
|
|
else if (bp->b_flags & XBF_ASYNC)
|
|
xfs_buf_relse(bp);
|
|
}
|
|
|
|
void
|
|
xfs_buf_ioend(
|
|
xfs_buf_t *bp,
|
|
int schedule)
|
|
{
|
|
trace_xfs_buf_iodone(bp, _RET_IP_);
|
|
|
|
bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
|
|
if (bp->b_error == 0)
|
|
bp->b_flags |= XBF_DONE;
|
|
|
|
if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
|
|
if (schedule) {
|
|
INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
|
|
queue_work(xfslogd_workqueue, &bp->b_iodone_work);
|
|
} else {
|
|
xfs_buf_iodone_work(&bp->b_iodone_work);
|
|
}
|
|
} else {
|
|
complete(&bp->b_iowait);
|
|
}
|
|
}
|
|
|
|
void
|
|
xfs_buf_ioerror(
|
|
xfs_buf_t *bp,
|
|
int error)
|
|
{
|
|
ASSERT(error >= 0 && error <= 0xffff);
|
|
bp->b_error = (unsigned short)error;
|
|
trace_xfs_buf_ioerror(bp, error, _RET_IP_);
|
|
}
|
|
|
|
void
|
|
xfs_buf_ioerror_alert(
|
|
struct xfs_buf *bp,
|
|
const char *func)
|
|
{
|
|
xfs_alert(bp->b_target->bt_mount,
|
|
"metadata I/O error: block 0x%llx (\"%s\") error %d buf count %zd",
|
|
(__uint64_t)XFS_BUF_ADDR(bp), func,
|
|
bp->b_error, XFS_BUF_COUNT(bp));
|
|
}
|
|
|
|
int
|
|
xfs_bwrite(
|
|
struct xfs_buf *bp)
|
|
{
|
|
int error;
|
|
|
|
bp->b_flags |= XBF_WRITE;
|
|
bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
|
|
|
|
xfs_buf_delwri_dequeue(bp);
|
|
xfs_bdstrat_cb(bp);
|
|
|
|
error = xfs_buf_iowait(bp);
|
|
if (error) {
|
|
xfs_force_shutdown(bp->b_target->bt_mount,
|
|
SHUTDOWN_META_IO_ERROR);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Called when we want to stop a buffer from getting written or read.
|
|
* We attach the EIO error, muck with its flags, and call xfs_buf_ioend
|
|
* so that the proper iodone callbacks get called.
|
|
*/
|
|
STATIC int
|
|
xfs_bioerror(
|
|
xfs_buf_t *bp)
|
|
{
|
|
#ifdef XFSERRORDEBUG
|
|
ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
|
|
#endif
|
|
|
|
/*
|
|
* No need to wait until the buffer is unpinned, we aren't flushing it.
|
|
*/
|
|
xfs_buf_ioerror(bp, EIO);
|
|
|
|
/*
|
|
* We're calling xfs_buf_ioend, so delete XBF_DONE flag.
|
|
*/
|
|
XFS_BUF_UNREAD(bp);
|
|
XFS_BUF_UNDONE(bp);
|
|
xfs_buf_stale(bp);
|
|
|
|
xfs_buf_ioend(bp, 0);
|
|
|
|
return EIO;
|
|
}
|
|
|
|
/*
|
|
* Same as xfs_bioerror, except that we are releasing the buffer
|
|
* here ourselves, and avoiding the xfs_buf_ioend call.
|
|
* This is meant for userdata errors; metadata bufs come with
|
|
* iodone functions attached, so that we can track down errors.
|
|
*/
|
|
STATIC int
|
|
xfs_bioerror_relse(
|
|
struct xfs_buf *bp)
|
|
{
|
|
int64_t fl = bp->b_flags;
|
|
/*
|
|
* No need to wait until the buffer is unpinned.
|
|
* We aren't flushing it.
|
|
*
|
|
* chunkhold expects B_DONE to be set, whether
|
|
* we actually finish the I/O or not. We don't want to
|
|
* change that interface.
|
|
*/
|
|
XFS_BUF_UNREAD(bp);
|
|
XFS_BUF_DONE(bp);
|
|
xfs_buf_stale(bp);
|
|
bp->b_iodone = NULL;
|
|
if (!(fl & XBF_ASYNC)) {
|
|
/*
|
|
* Mark b_error and B_ERROR _both_.
|
|
* Lot's of chunkcache code assumes that.
|
|
* There's no reason to mark error for
|
|
* ASYNC buffers.
|
|
*/
|
|
xfs_buf_ioerror(bp, EIO);
|
|
complete(&bp->b_iowait);
|
|
} else {
|
|
xfs_buf_relse(bp);
|
|
}
|
|
|
|
return EIO;
|
|
}
|
|
|
|
|
|
/*
|
|
* All xfs metadata buffers except log state machine buffers
|
|
* get this attached as their b_bdstrat callback function.
|
|
* This is so that we can catch a buffer
|
|
* after prematurely unpinning it to forcibly shutdown the filesystem.
|
|
*/
|
|
int
|
|
xfs_bdstrat_cb(
|
|
struct xfs_buf *bp)
|
|
{
|
|
if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
|
|
trace_xfs_bdstrat_shut(bp, _RET_IP_);
|
|
/*
|
|
* Metadata write that didn't get logged but
|
|
* written delayed anyway. These aren't associated
|
|
* with a transaction, and can be ignored.
|
|
*/
|
|
if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
|
|
return xfs_bioerror_relse(bp);
|
|
else
|
|
return xfs_bioerror(bp);
|
|
}
|
|
|
|
xfs_buf_iorequest(bp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wrapper around bdstrat so that we can stop data from going to disk in case
|
|
* we are shutting down the filesystem. Typically user data goes thru this
|
|
* path; one of the exceptions is the superblock.
|
|
*/
|
|
void
|
|
xfsbdstrat(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp)
|
|
{
|
|
if (XFS_FORCED_SHUTDOWN(mp)) {
|
|
trace_xfs_bdstrat_shut(bp, _RET_IP_);
|
|
xfs_bioerror_relse(bp);
|
|
return;
|
|
}
|
|
|
|
xfs_buf_iorequest(bp);
|
|
}
|
|
|
|
STATIC void
|
|
_xfs_buf_ioend(
|
|
xfs_buf_t *bp,
|
|
int schedule)
|
|
{
|
|
if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
|
|
xfs_buf_ioend(bp, schedule);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_buf_bio_end_io(
|
|
struct bio *bio,
|
|
int error)
|
|
{
|
|
xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
|
|
|
|
xfs_buf_ioerror(bp, -error);
|
|
|
|
if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
|
|
invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
|
|
|
|
_xfs_buf_ioend(bp, 1);
|
|
bio_put(bio);
|
|
}
|
|
|
|
STATIC void
|
|
_xfs_buf_ioapply(
|
|
xfs_buf_t *bp)
|
|
{
|
|
int rw, map_i, total_nr_pages, nr_pages;
|
|
struct bio *bio;
|
|
int offset = bp->b_offset;
|
|
int size = bp->b_count_desired;
|
|
sector_t sector = bp->b_bn;
|
|
|
|
total_nr_pages = bp->b_page_count;
|
|
map_i = 0;
|
|
|
|
if (bp->b_flags & XBF_WRITE) {
|
|
if (bp->b_flags & XBF_SYNCIO)
|
|
rw = WRITE_SYNC;
|
|
else
|
|
rw = WRITE;
|
|
if (bp->b_flags & XBF_FUA)
|
|
rw |= REQ_FUA;
|
|
if (bp->b_flags & XBF_FLUSH)
|
|
rw |= REQ_FLUSH;
|
|
} else if (bp->b_flags & XBF_READ_AHEAD) {
|
|
rw = READA;
|
|
} else {
|
|
rw = READ;
|
|
}
|
|
|
|
/* we only use the buffer cache for meta-data */
|
|
rw |= REQ_META;
|
|
|
|
next_chunk:
|
|
atomic_inc(&bp->b_io_remaining);
|
|
nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
|
|
if (nr_pages > total_nr_pages)
|
|
nr_pages = total_nr_pages;
|
|
|
|
bio = bio_alloc(GFP_NOIO, nr_pages);
|
|
bio->bi_bdev = bp->b_target->bt_bdev;
|
|
bio->bi_sector = sector;
|
|
bio->bi_end_io = xfs_buf_bio_end_io;
|
|
bio->bi_private = bp;
|
|
|
|
|
|
for (; size && nr_pages; nr_pages--, map_i++) {
|
|
int rbytes, nbytes = PAGE_SIZE - offset;
|
|
|
|
if (nbytes > size)
|
|
nbytes = size;
|
|
|
|
rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
|
|
if (rbytes < nbytes)
|
|
break;
|
|
|
|
offset = 0;
|
|
sector += nbytes >> BBSHIFT;
|
|
size -= nbytes;
|
|
total_nr_pages--;
|
|
}
|
|
|
|
if (likely(bio->bi_size)) {
|
|
if (xfs_buf_is_vmapped(bp)) {
|
|
flush_kernel_vmap_range(bp->b_addr,
|
|
xfs_buf_vmap_len(bp));
|
|
}
|
|
submit_bio(rw, bio);
|
|
if (size)
|
|
goto next_chunk;
|
|
} else {
|
|
xfs_buf_ioerror(bp, EIO);
|
|
bio_put(bio);
|
|
}
|
|
}
|
|
|
|
int
|
|
xfs_buf_iorequest(
|
|
xfs_buf_t *bp)
|
|
{
|
|
trace_xfs_buf_iorequest(bp, _RET_IP_);
|
|
|
|
ASSERT(!(bp->b_flags & XBF_DELWRI));
|
|
|
|
if (bp->b_flags & XBF_WRITE)
|
|
xfs_buf_wait_unpin(bp);
|
|
xfs_buf_hold(bp);
|
|
|
|
/* Set the count to 1 initially, this will stop an I/O
|
|
* completion callout which happens before we have started
|
|
* all the I/O from calling xfs_buf_ioend too early.
|
|
*/
|
|
atomic_set(&bp->b_io_remaining, 1);
|
|
_xfs_buf_ioapply(bp);
|
|
_xfs_buf_ioend(bp, 0);
|
|
|
|
xfs_buf_rele(bp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Waits for I/O to complete on the buffer supplied.
|
|
* It returns immediately if no I/O is pending.
|
|
* It returns the I/O error code, if any, or 0 if there was no error.
|
|
*/
|
|
int
|
|
xfs_buf_iowait(
|
|
xfs_buf_t *bp)
|
|
{
|
|
trace_xfs_buf_iowait(bp, _RET_IP_);
|
|
|
|
wait_for_completion(&bp->b_iowait);
|
|
|
|
trace_xfs_buf_iowait_done(bp, _RET_IP_);
|
|
return bp->b_error;
|
|
}
|
|
|
|
xfs_caddr_t
|
|
xfs_buf_offset(
|
|
xfs_buf_t *bp,
|
|
size_t offset)
|
|
{
|
|
struct page *page;
|
|
|
|
if (bp->b_flags & XBF_MAPPED)
|
|
return bp->b_addr + offset;
|
|
|
|
offset += bp->b_offset;
|
|
page = bp->b_pages[offset >> PAGE_SHIFT];
|
|
return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
|
|
}
|
|
|
|
/*
|
|
* Move data into or out of a buffer.
|
|
*/
|
|
void
|
|
xfs_buf_iomove(
|
|
xfs_buf_t *bp, /* buffer to process */
|
|
size_t boff, /* starting buffer offset */
|
|
size_t bsize, /* length to copy */
|
|
void *data, /* data address */
|
|
xfs_buf_rw_t mode) /* read/write/zero flag */
|
|
{
|
|
size_t bend, cpoff, csize;
|
|
struct page *page;
|
|
|
|
bend = boff + bsize;
|
|
while (boff < bend) {
|
|
page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
|
|
cpoff = xfs_buf_poff(boff + bp->b_offset);
|
|
csize = min_t(size_t,
|
|
PAGE_SIZE-cpoff, bp->b_count_desired-boff);
|
|
|
|
ASSERT(((csize + cpoff) <= PAGE_SIZE));
|
|
|
|
switch (mode) {
|
|
case XBRW_ZERO:
|
|
memset(page_address(page) + cpoff, 0, csize);
|
|
break;
|
|
case XBRW_READ:
|
|
memcpy(data, page_address(page) + cpoff, csize);
|
|
break;
|
|
case XBRW_WRITE:
|
|
memcpy(page_address(page) + cpoff, data, csize);
|
|
}
|
|
|
|
boff += csize;
|
|
data += csize;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handling of buffer targets (buftargs).
|
|
*/
|
|
|
|
/*
|
|
* Wait for any bufs with callbacks that have been submitted but have not yet
|
|
* returned. These buffers will have an elevated hold count, so wait on those
|
|
* while freeing all the buffers only held by the LRU.
|
|
*/
|
|
void
|
|
xfs_wait_buftarg(
|
|
struct xfs_buftarg *btp)
|
|
{
|
|
struct xfs_buf *bp;
|
|
|
|
restart:
|
|
spin_lock(&btp->bt_lru_lock);
|
|
while (!list_empty(&btp->bt_lru)) {
|
|
bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
|
|
if (atomic_read(&bp->b_hold) > 1) {
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
delay(100);
|
|
goto restart;
|
|
}
|
|
/*
|
|
* clear the LRU reference count so the buffer doesn't get
|
|
* ignored in xfs_buf_rele().
|
|
*/
|
|
atomic_set(&bp->b_lru_ref, 0);
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
xfs_buf_rele(bp);
|
|
spin_lock(&btp->bt_lru_lock);
|
|
}
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
}
|
|
|
|
int
|
|
xfs_buftarg_shrink(
|
|
struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct xfs_buftarg *btp = container_of(shrink,
|
|
struct xfs_buftarg, bt_shrinker);
|
|
struct xfs_buf *bp;
|
|
int nr_to_scan = sc->nr_to_scan;
|
|
LIST_HEAD(dispose);
|
|
|
|
if (!nr_to_scan)
|
|
return btp->bt_lru_nr;
|
|
|
|
spin_lock(&btp->bt_lru_lock);
|
|
while (!list_empty(&btp->bt_lru)) {
|
|
if (nr_to_scan-- <= 0)
|
|
break;
|
|
|
|
bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
|
|
|
|
/*
|
|
* Decrement the b_lru_ref count unless the value is already
|
|
* zero. If the value is already zero, we need to reclaim the
|
|
* buffer, otherwise it gets another trip through the LRU.
|
|
*/
|
|
if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
|
|
list_move_tail(&bp->b_lru, &btp->bt_lru);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* remove the buffer from the LRU now to avoid needing another
|
|
* lock round trip inside xfs_buf_rele().
|
|
*/
|
|
list_move(&bp->b_lru, &dispose);
|
|
btp->bt_lru_nr--;
|
|
}
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
|
|
while (!list_empty(&dispose)) {
|
|
bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
|
|
list_del_init(&bp->b_lru);
|
|
xfs_buf_rele(bp);
|
|
}
|
|
|
|
return btp->bt_lru_nr;
|
|
}
|
|
|
|
void
|
|
xfs_free_buftarg(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buftarg *btp)
|
|
{
|
|
unregister_shrinker(&btp->bt_shrinker);
|
|
|
|
xfs_flush_buftarg(btp, 1);
|
|
if (mp->m_flags & XFS_MOUNT_BARRIER)
|
|
xfs_blkdev_issue_flush(btp);
|
|
|
|
kthread_stop(btp->bt_task);
|
|
kmem_free(btp);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_setsize_buftarg_flags(
|
|
xfs_buftarg_t *btp,
|
|
unsigned int blocksize,
|
|
unsigned int sectorsize,
|
|
int verbose)
|
|
{
|
|
btp->bt_bsize = blocksize;
|
|
btp->bt_sshift = ffs(sectorsize) - 1;
|
|
btp->bt_smask = sectorsize - 1;
|
|
|
|
if (set_blocksize(btp->bt_bdev, sectorsize)) {
|
|
char name[BDEVNAME_SIZE];
|
|
|
|
bdevname(btp->bt_bdev, name);
|
|
|
|
xfs_warn(btp->bt_mount,
|
|
"Cannot set_blocksize to %u on device %s\n",
|
|
sectorsize, name);
|
|
return EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* When allocating the initial buffer target we have not yet
|
|
* read in the superblock, so don't know what sized sectors
|
|
* are being used is at this early stage. Play safe.
|
|
*/
|
|
STATIC int
|
|
xfs_setsize_buftarg_early(
|
|
xfs_buftarg_t *btp,
|
|
struct block_device *bdev)
|
|
{
|
|
return xfs_setsize_buftarg_flags(btp,
|
|
PAGE_SIZE, bdev_logical_block_size(bdev), 0);
|
|
}
|
|
|
|
int
|
|
xfs_setsize_buftarg(
|
|
xfs_buftarg_t *btp,
|
|
unsigned int blocksize,
|
|
unsigned int sectorsize)
|
|
{
|
|
return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_alloc_delwri_queue(
|
|
xfs_buftarg_t *btp,
|
|
const char *fsname)
|
|
{
|
|
INIT_LIST_HEAD(&btp->bt_delwri_queue);
|
|
spin_lock_init(&btp->bt_delwri_lock);
|
|
btp->bt_flags = 0;
|
|
btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
|
|
if (IS_ERR(btp->bt_task))
|
|
return PTR_ERR(btp->bt_task);
|
|
return 0;
|
|
}
|
|
|
|
xfs_buftarg_t *
|
|
xfs_alloc_buftarg(
|
|
struct xfs_mount *mp,
|
|
struct block_device *bdev,
|
|
int external,
|
|
const char *fsname)
|
|
{
|
|
xfs_buftarg_t *btp;
|
|
|
|
btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
|
|
|
|
btp->bt_mount = mp;
|
|
btp->bt_dev = bdev->bd_dev;
|
|
btp->bt_bdev = bdev;
|
|
btp->bt_bdi = blk_get_backing_dev_info(bdev);
|
|
if (!btp->bt_bdi)
|
|
goto error;
|
|
|
|
INIT_LIST_HEAD(&btp->bt_lru);
|
|
spin_lock_init(&btp->bt_lru_lock);
|
|
if (xfs_setsize_buftarg_early(btp, bdev))
|
|
goto error;
|
|
if (xfs_alloc_delwri_queue(btp, fsname))
|
|
goto error;
|
|
btp->bt_shrinker.shrink = xfs_buftarg_shrink;
|
|
btp->bt_shrinker.seeks = DEFAULT_SEEKS;
|
|
register_shrinker(&btp->bt_shrinker);
|
|
return btp;
|
|
|
|
error:
|
|
kmem_free(btp);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* Delayed write buffer handling
|
|
*/
|
|
void
|
|
xfs_buf_delwri_queue(
|
|
xfs_buf_t *bp)
|
|
{
|
|
struct xfs_buftarg *btp = bp->b_target;
|
|
|
|
trace_xfs_buf_delwri_queue(bp, _RET_IP_);
|
|
|
|
ASSERT(!(bp->b_flags & XBF_READ));
|
|
|
|
spin_lock(&btp->bt_delwri_lock);
|
|
if (!list_empty(&bp->b_list)) {
|
|
/* if already in the queue, move it to the tail */
|
|
ASSERT(bp->b_flags & _XBF_DELWRI_Q);
|
|
list_move_tail(&bp->b_list, &btp->bt_delwri_queue);
|
|
} else {
|
|
/* start xfsbufd as it is about to have something to do */
|
|
if (list_empty(&btp->bt_delwri_queue))
|
|
wake_up_process(bp->b_target->bt_task);
|
|
|
|
atomic_inc(&bp->b_hold);
|
|
bp->b_flags |= XBF_DELWRI | _XBF_DELWRI_Q | XBF_ASYNC;
|
|
list_add_tail(&bp->b_list, &btp->bt_delwri_queue);
|
|
}
|
|
bp->b_queuetime = jiffies;
|
|
spin_unlock(&btp->bt_delwri_lock);
|
|
}
|
|
|
|
void
|
|
xfs_buf_delwri_dequeue(
|
|
xfs_buf_t *bp)
|
|
{
|
|
int dequeued = 0;
|
|
|
|
spin_lock(&bp->b_target->bt_delwri_lock);
|
|
if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
|
|
ASSERT(bp->b_flags & _XBF_DELWRI_Q);
|
|
list_del_init(&bp->b_list);
|
|
dequeued = 1;
|
|
}
|
|
bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
|
|
spin_unlock(&bp->b_target->bt_delwri_lock);
|
|
|
|
if (dequeued)
|
|
xfs_buf_rele(bp);
|
|
|
|
trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
|
|
}
|
|
|
|
/*
|
|
* If a delwri buffer needs to be pushed before it has aged out, then promote
|
|
* it to the head of the delwri queue so that it will be flushed on the next
|
|
* xfsbufd run. We do this by resetting the queuetime of the buffer to be older
|
|
* than the age currently needed to flush the buffer. Hence the next time the
|
|
* xfsbufd sees it is guaranteed to be considered old enough to flush.
|
|
*/
|
|
void
|
|
xfs_buf_delwri_promote(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_buftarg *btp = bp->b_target;
|
|
long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
|
|
|
|
ASSERT(bp->b_flags & XBF_DELWRI);
|
|
ASSERT(bp->b_flags & _XBF_DELWRI_Q);
|
|
|
|
/*
|
|
* Check the buffer age before locking the delayed write queue as we
|
|
* don't need to promote buffers that are already past the flush age.
|
|
*/
|
|
if (bp->b_queuetime < jiffies - age)
|
|
return;
|
|
bp->b_queuetime = jiffies - age;
|
|
spin_lock(&btp->bt_delwri_lock);
|
|
list_move(&bp->b_list, &btp->bt_delwri_queue);
|
|
spin_unlock(&btp->bt_delwri_lock);
|
|
}
|
|
|
|
/*
|
|
* Move as many buffers as specified to the supplied list
|
|
* idicating if we skipped any buffers to prevent deadlocks.
|
|
*/
|
|
STATIC int
|
|
xfs_buf_delwri_split(
|
|
xfs_buftarg_t *target,
|
|
struct list_head *list,
|
|
unsigned long age)
|
|
{
|
|
xfs_buf_t *bp, *n;
|
|
int skipped = 0;
|
|
int force;
|
|
|
|
force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
|
|
INIT_LIST_HEAD(list);
|
|
spin_lock(&target->bt_delwri_lock);
|
|
list_for_each_entry_safe(bp, n, &target->bt_delwri_queue, b_list) {
|
|
ASSERT(bp->b_flags & XBF_DELWRI);
|
|
|
|
if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) {
|
|
if (!force &&
|
|
time_before(jiffies, bp->b_queuetime + age)) {
|
|
xfs_buf_unlock(bp);
|
|
break;
|
|
}
|
|
|
|
bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q);
|
|
bp->b_flags |= XBF_WRITE;
|
|
list_move_tail(&bp->b_list, list);
|
|
trace_xfs_buf_delwri_split(bp, _RET_IP_);
|
|
} else
|
|
skipped++;
|
|
}
|
|
|
|
spin_unlock(&target->bt_delwri_lock);
|
|
return skipped;
|
|
}
|
|
|
|
/*
|
|
* Compare function is more complex than it needs to be because
|
|
* the return value is only 32 bits and we are doing comparisons
|
|
* on 64 bit values
|
|
*/
|
|
static int
|
|
xfs_buf_cmp(
|
|
void *priv,
|
|
struct list_head *a,
|
|
struct list_head *b)
|
|
{
|
|
struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
|
|
struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
|
|
xfs_daddr_t diff;
|
|
|
|
diff = ap->b_bn - bp->b_bn;
|
|
if (diff < 0)
|
|
return -1;
|
|
if (diff > 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfsbufd(
|
|
void *data)
|
|
{
|
|
xfs_buftarg_t *target = (xfs_buftarg_t *)data;
|
|
|
|
current->flags |= PF_MEMALLOC;
|
|
|
|
set_freezable();
|
|
|
|
do {
|
|
long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
|
|
long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
|
|
struct list_head tmp;
|
|
struct blk_plug plug;
|
|
|
|
if (unlikely(freezing(current)))
|
|
try_to_freeze();
|
|
|
|
/* sleep for a long time if there is nothing to do. */
|
|
if (list_empty(&target->bt_delwri_queue))
|
|
tout = MAX_SCHEDULE_TIMEOUT;
|
|
schedule_timeout_interruptible(tout);
|
|
|
|
xfs_buf_delwri_split(target, &tmp, age);
|
|
list_sort(NULL, &tmp, xfs_buf_cmp);
|
|
|
|
blk_start_plug(&plug);
|
|
while (!list_empty(&tmp)) {
|
|
struct xfs_buf *bp;
|
|
bp = list_first_entry(&tmp, struct xfs_buf, b_list);
|
|
list_del_init(&bp->b_list);
|
|
xfs_bdstrat_cb(bp);
|
|
}
|
|
blk_finish_plug(&plug);
|
|
} while (!kthread_should_stop());
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Go through all incore buffers, and release buffers if they belong to
|
|
* the given device. This is used in filesystem error handling to
|
|
* preserve the consistency of its metadata.
|
|
*/
|
|
int
|
|
xfs_flush_buftarg(
|
|
xfs_buftarg_t *target,
|
|
int wait)
|
|
{
|
|
xfs_buf_t *bp;
|
|
int pincount = 0;
|
|
LIST_HEAD(tmp_list);
|
|
LIST_HEAD(wait_list);
|
|
struct blk_plug plug;
|
|
|
|
flush_workqueue(xfslogd_workqueue);
|
|
|
|
set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
|
|
pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
|
|
|
|
/*
|
|
* Dropped the delayed write list lock, now walk the temporary list.
|
|
* All I/O is issued async and then if we need to wait for completion
|
|
* we do that after issuing all the IO.
|
|
*/
|
|
list_sort(NULL, &tmp_list, xfs_buf_cmp);
|
|
|
|
blk_start_plug(&plug);
|
|
while (!list_empty(&tmp_list)) {
|
|
bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
|
|
ASSERT(target == bp->b_target);
|
|
list_del_init(&bp->b_list);
|
|
if (wait) {
|
|
bp->b_flags &= ~XBF_ASYNC;
|
|
list_add(&bp->b_list, &wait_list);
|
|
}
|
|
xfs_bdstrat_cb(bp);
|
|
}
|
|
blk_finish_plug(&plug);
|
|
|
|
if (wait) {
|
|
/* Wait for IO to complete. */
|
|
while (!list_empty(&wait_list)) {
|
|
bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
|
|
|
|
list_del_init(&bp->b_list);
|
|
xfs_buf_iowait(bp);
|
|
xfs_buf_relse(bp);
|
|
}
|
|
}
|
|
|
|
return pincount;
|
|
}
|
|
|
|
int __init
|
|
xfs_buf_init(void)
|
|
{
|
|
xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
|
|
KM_ZONE_HWALIGN, NULL);
|
|
if (!xfs_buf_zone)
|
|
goto out;
|
|
|
|
xfslogd_workqueue = alloc_workqueue("xfslogd",
|
|
WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
|
|
if (!xfslogd_workqueue)
|
|
goto out_free_buf_zone;
|
|
|
|
return 0;
|
|
|
|
out_free_buf_zone:
|
|
kmem_zone_destroy(xfs_buf_zone);
|
|
out:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void
|
|
xfs_buf_terminate(void)
|
|
{
|
|
destroy_workqueue(xfslogd_workqueue);
|
|
kmem_zone_destroy(xfs_buf_zone);
|
|
}
|