mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 20:51:44 +00:00
428e211641
The functions get_online_cpus() and put_online_cpus() have been deprecated during the CPU hotplug rework. They map directly to cpus_read_lock() and cpus_read_unlock(). Replace deprecated CPU-hotplug functions with the official version. The behavior remains unchanged. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210803141621.780504-26-bigeasy@linutronix.de
515 lines
13 KiB
C
515 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2016 Thomas Gleixner.
|
|
* Copyright (C) 2016-2017 Christoph Hellwig.
|
|
*/
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/sort.h>
|
|
|
|
static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
|
|
unsigned int cpus_per_vec)
|
|
{
|
|
const struct cpumask *siblmsk;
|
|
int cpu, sibl;
|
|
|
|
for ( ; cpus_per_vec > 0; ) {
|
|
cpu = cpumask_first(nmsk);
|
|
|
|
/* Should not happen, but I'm too lazy to think about it */
|
|
if (cpu >= nr_cpu_ids)
|
|
return;
|
|
|
|
cpumask_clear_cpu(cpu, nmsk);
|
|
cpumask_set_cpu(cpu, irqmsk);
|
|
cpus_per_vec--;
|
|
|
|
/* If the cpu has siblings, use them first */
|
|
siblmsk = topology_sibling_cpumask(cpu);
|
|
for (sibl = -1; cpus_per_vec > 0; ) {
|
|
sibl = cpumask_next(sibl, siblmsk);
|
|
if (sibl >= nr_cpu_ids)
|
|
break;
|
|
if (!cpumask_test_and_clear_cpu(sibl, nmsk))
|
|
continue;
|
|
cpumask_set_cpu(sibl, irqmsk);
|
|
cpus_per_vec--;
|
|
}
|
|
}
|
|
}
|
|
|
|
static cpumask_var_t *alloc_node_to_cpumask(void)
|
|
{
|
|
cpumask_var_t *masks;
|
|
int node;
|
|
|
|
masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
|
|
if (!masks)
|
|
return NULL;
|
|
|
|
for (node = 0; node < nr_node_ids; node++) {
|
|
if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
|
|
goto out_unwind;
|
|
}
|
|
|
|
return masks;
|
|
|
|
out_unwind:
|
|
while (--node >= 0)
|
|
free_cpumask_var(masks[node]);
|
|
kfree(masks);
|
|
return NULL;
|
|
}
|
|
|
|
static void free_node_to_cpumask(cpumask_var_t *masks)
|
|
{
|
|
int node;
|
|
|
|
for (node = 0; node < nr_node_ids; node++)
|
|
free_cpumask_var(masks[node]);
|
|
kfree(masks);
|
|
}
|
|
|
|
static void build_node_to_cpumask(cpumask_var_t *masks)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
|
|
}
|
|
|
|
static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
|
|
const struct cpumask *mask, nodemask_t *nodemsk)
|
|
{
|
|
int n, nodes = 0;
|
|
|
|
/* Calculate the number of nodes in the supplied affinity mask */
|
|
for_each_node(n) {
|
|
if (cpumask_intersects(mask, node_to_cpumask[n])) {
|
|
node_set(n, *nodemsk);
|
|
nodes++;
|
|
}
|
|
}
|
|
return nodes;
|
|
}
|
|
|
|
struct node_vectors {
|
|
unsigned id;
|
|
|
|
union {
|
|
unsigned nvectors;
|
|
unsigned ncpus;
|
|
};
|
|
};
|
|
|
|
static int ncpus_cmp_func(const void *l, const void *r)
|
|
{
|
|
const struct node_vectors *ln = l;
|
|
const struct node_vectors *rn = r;
|
|
|
|
return ln->ncpus - rn->ncpus;
|
|
}
|
|
|
|
/*
|
|
* Allocate vector number for each node, so that for each node:
|
|
*
|
|
* 1) the allocated number is >= 1
|
|
*
|
|
* 2) the allocated numbver is <= active CPU number of this node
|
|
*
|
|
* The actual allocated total vectors may be less than @numvecs when
|
|
* active total CPU number is less than @numvecs.
|
|
*
|
|
* Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
|
|
* for each node.
|
|
*/
|
|
static void alloc_nodes_vectors(unsigned int numvecs,
|
|
cpumask_var_t *node_to_cpumask,
|
|
const struct cpumask *cpu_mask,
|
|
const nodemask_t nodemsk,
|
|
struct cpumask *nmsk,
|
|
struct node_vectors *node_vectors)
|
|
{
|
|
unsigned n, remaining_ncpus = 0;
|
|
|
|
for (n = 0; n < nr_node_ids; n++) {
|
|
node_vectors[n].id = n;
|
|
node_vectors[n].ncpus = UINT_MAX;
|
|
}
|
|
|
|
for_each_node_mask(n, nodemsk) {
|
|
unsigned ncpus;
|
|
|
|
cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
|
|
ncpus = cpumask_weight(nmsk);
|
|
|
|
if (!ncpus)
|
|
continue;
|
|
remaining_ncpus += ncpus;
|
|
node_vectors[n].ncpus = ncpus;
|
|
}
|
|
|
|
numvecs = min_t(unsigned, remaining_ncpus, numvecs);
|
|
|
|
sort(node_vectors, nr_node_ids, sizeof(node_vectors[0]),
|
|
ncpus_cmp_func, NULL);
|
|
|
|
/*
|
|
* Allocate vectors for each node according to the ratio of this
|
|
* node's nr_cpus to remaining un-assigned ncpus. 'numvecs' is
|
|
* bigger than number of active numa nodes. Always start the
|
|
* allocation from the node with minimized nr_cpus.
|
|
*
|
|
* This way guarantees that each active node gets allocated at
|
|
* least one vector, and the theory is simple: over-allocation
|
|
* is only done when this node is assigned by one vector, so
|
|
* other nodes will be allocated >= 1 vector, since 'numvecs' is
|
|
* bigger than number of numa nodes.
|
|
*
|
|
* One perfect invariant is that number of allocated vectors for
|
|
* each node is <= CPU count of this node:
|
|
*
|
|
* 1) suppose there are two nodes: A and B
|
|
* ncpu(X) is CPU count of node X
|
|
* vecs(X) is the vector count allocated to node X via this
|
|
* algorithm
|
|
*
|
|
* ncpu(A) <= ncpu(B)
|
|
* ncpu(A) + ncpu(B) = N
|
|
* vecs(A) + vecs(B) = V
|
|
*
|
|
* vecs(A) = max(1, round_down(V * ncpu(A) / N))
|
|
* vecs(B) = V - vecs(A)
|
|
*
|
|
* both N and V are integer, and 2 <= V <= N, suppose
|
|
* V = N - delta, and 0 <= delta <= N - 2
|
|
*
|
|
* 2) obviously vecs(A) <= ncpu(A) because:
|
|
*
|
|
* if vecs(A) is 1, then vecs(A) <= ncpu(A) given
|
|
* ncpu(A) >= 1
|
|
*
|
|
* otherwise,
|
|
* vecs(A) <= V * ncpu(A) / N <= ncpu(A), given V <= N
|
|
*
|
|
* 3) prove how vecs(B) <= ncpu(B):
|
|
*
|
|
* if round_down(V * ncpu(A) / N) == 0, vecs(B) won't be
|
|
* over-allocated, so vecs(B) <= ncpu(B),
|
|
*
|
|
* otherwise:
|
|
*
|
|
* vecs(A) =
|
|
* round_down(V * ncpu(A) / N) =
|
|
* round_down((N - delta) * ncpu(A) / N) =
|
|
* round_down((N * ncpu(A) - delta * ncpu(A)) / N) >=
|
|
* round_down((N * ncpu(A) - delta * N) / N) =
|
|
* cpu(A) - delta
|
|
*
|
|
* then:
|
|
*
|
|
* vecs(A) - V >= ncpu(A) - delta - V
|
|
* =>
|
|
* V - vecs(A) <= V + delta - ncpu(A)
|
|
* =>
|
|
* vecs(B) <= N - ncpu(A)
|
|
* =>
|
|
* vecs(B) <= cpu(B)
|
|
*
|
|
* For nodes >= 3, it can be thought as one node and another big
|
|
* node given that is exactly what this algorithm is implemented,
|
|
* and we always re-calculate 'remaining_ncpus' & 'numvecs', and
|
|
* finally for each node X: vecs(X) <= ncpu(X).
|
|
*
|
|
*/
|
|
for (n = 0; n < nr_node_ids; n++) {
|
|
unsigned nvectors, ncpus;
|
|
|
|
if (node_vectors[n].ncpus == UINT_MAX)
|
|
continue;
|
|
|
|
WARN_ON_ONCE(numvecs == 0);
|
|
|
|
ncpus = node_vectors[n].ncpus;
|
|
nvectors = max_t(unsigned, 1,
|
|
numvecs * ncpus / remaining_ncpus);
|
|
WARN_ON_ONCE(nvectors > ncpus);
|
|
|
|
node_vectors[n].nvectors = nvectors;
|
|
|
|
remaining_ncpus -= ncpus;
|
|
numvecs -= nvectors;
|
|
}
|
|
}
|
|
|
|
static int __irq_build_affinity_masks(unsigned int startvec,
|
|
unsigned int numvecs,
|
|
unsigned int firstvec,
|
|
cpumask_var_t *node_to_cpumask,
|
|
const struct cpumask *cpu_mask,
|
|
struct cpumask *nmsk,
|
|
struct irq_affinity_desc *masks)
|
|
{
|
|
unsigned int i, n, nodes, cpus_per_vec, extra_vecs, done = 0;
|
|
unsigned int last_affv = firstvec + numvecs;
|
|
unsigned int curvec = startvec;
|
|
nodemask_t nodemsk = NODE_MASK_NONE;
|
|
struct node_vectors *node_vectors;
|
|
|
|
if (!cpumask_weight(cpu_mask))
|
|
return 0;
|
|
|
|
nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
|
|
|
|
/*
|
|
* If the number of nodes in the mask is greater than or equal the
|
|
* number of vectors we just spread the vectors across the nodes.
|
|
*/
|
|
if (numvecs <= nodes) {
|
|
for_each_node_mask(n, nodemsk) {
|
|
cpumask_or(&masks[curvec].mask, &masks[curvec].mask,
|
|
node_to_cpumask[n]);
|
|
if (++curvec == last_affv)
|
|
curvec = firstvec;
|
|
}
|
|
return numvecs;
|
|
}
|
|
|
|
node_vectors = kcalloc(nr_node_ids,
|
|
sizeof(struct node_vectors),
|
|
GFP_KERNEL);
|
|
if (!node_vectors)
|
|
return -ENOMEM;
|
|
|
|
/* allocate vector number for each node */
|
|
alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask,
|
|
nodemsk, nmsk, node_vectors);
|
|
|
|
for (i = 0; i < nr_node_ids; i++) {
|
|
unsigned int ncpus, v;
|
|
struct node_vectors *nv = &node_vectors[i];
|
|
|
|
if (nv->nvectors == UINT_MAX)
|
|
continue;
|
|
|
|
/* Get the cpus on this node which are in the mask */
|
|
cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
|
|
ncpus = cpumask_weight(nmsk);
|
|
if (!ncpus)
|
|
continue;
|
|
|
|
WARN_ON_ONCE(nv->nvectors > ncpus);
|
|
|
|
/* Account for rounding errors */
|
|
extra_vecs = ncpus - nv->nvectors * (ncpus / nv->nvectors);
|
|
|
|
/* Spread allocated vectors on CPUs of the current node */
|
|
for (v = 0; v < nv->nvectors; v++, curvec++) {
|
|
cpus_per_vec = ncpus / nv->nvectors;
|
|
|
|
/* Account for extra vectors to compensate rounding errors */
|
|
if (extra_vecs) {
|
|
cpus_per_vec++;
|
|
--extra_vecs;
|
|
}
|
|
|
|
/*
|
|
* wrapping has to be considered given 'startvec'
|
|
* may start anywhere
|
|
*/
|
|
if (curvec >= last_affv)
|
|
curvec = firstvec;
|
|
irq_spread_init_one(&masks[curvec].mask, nmsk,
|
|
cpus_per_vec);
|
|
}
|
|
done += nv->nvectors;
|
|
}
|
|
kfree(node_vectors);
|
|
return done;
|
|
}
|
|
|
|
/*
|
|
* build affinity in two stages:
|
|
* 1) spread present CPU on these vectors
|
|
* 2) spread other possible CPUs on these vectors
|
|
*/
|
|
static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs,
|
|
unsigned int firstvec,
|
|
struct irq_affinity_desc *masks)
|
|
{
|
|
unsigned int curvec = startvec, nr_present = 0, nr_others = 0;
|
|
cpumask_var_t *node_to_cpumask;
|
|
cpumask_var_t nmsk, npresmsk;
|
|
int ret = -ENOMEM;
|
|
|
|
if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
|
|
return ret;
|
|
|
|
if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
|
|
goto fail_nmsk;
|
|
|
|
node_to_cpumask = alloc_node_to_cpumask();
|
|
if (!node_to_cpumask)
|
|
goto fail_npresmsk;
|
|
|
|
/* Stabilize the cpumasks */
|
|
cpus_read_lock();
|
|
build_node_to_cpumask(node_to_cpumask);
|
|
|
|
/* Spread on present CPUs starting from affd->pre_vectors */
|
|
ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
|
|
node_to_cpumask, cpu_present_mask,
|
|
nmsk, masks);
|
|
if (ret < 0)
|
|
goto fail_build_affinity;
|
|
nr_present = ret;
|
|
|
|
/*
|
|
* Spread on non present CPUs starting from the next vector to be
|
|
* handled. If the spreading of present CPUs already exhausted the
|
|
* vector space, assign the non present CPUs to the already spread
|
|
* out vectors.
|
|
*/
|
|
if (nr_present >= numvecs)
|
|
curvec = firstvec;
|
|
else
|
|
curvec = firstvec + nr_present;
|
|
cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
|
|
ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
|
|
node_to_cpumask, npresmsk, nmsk,
|
|
masks);
|
|
if (ret >= 0)
|
|
nr_others = ret;
|
|
|
|
fail_build_affinity:
|
|
cpus_read_unlock();
|
|
|
|
if (ret >= 0)
|
|
WARN_ON(nr_present + nr_others < numvecs);
|
|
|
|
free_node_to_cpumask(node_to_cpumask);
|
|
|
|
fail_npresmsk:
|
|
free_cpumask_var(npresmsk);
|
|
|
|
fail_nmsk:
|
|
free_cpumask_var(nmsk);
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
|
|
static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs)
|
|
{
|
|
affd->nr_sets = 1;
|
|
affd->set_size[0] = affvecs;
|
|
}
|
|
|
|
/**
|
|
* irq_create_affinity_masks - Create affinity masks for multiqueue spreading
|
|
* @nvecs: The total number of vectors
|
|
* @affd: Description of the affinity requirements
|
|
*
|
|
* Returns the irq_affinity_desc pointer or NULL if allocation failed.
|
|
*/
|
|
struct irq_affinity_desc *
|
|
irq_create_affinity_masks(unsigned int nvecs, struct irq_affinity *affd)
|
|
{
|
|
unsigned int affvecs, curvec, usedvecs, i;
|
|
struct irq_affinity_desc *masks = NULL;
|
|
|
|
/*
|
|
* Determine the number of vectors which need interrupt affinities
|
|
* assigned. If the pre/post request exhausts the available vectors
|
|
* then nothing to do here except for invoking the calc_sets()
|
|
* callback so the device driver can adjust to the situation.
|
|
*/
|
|
if (nvecs > affd->pre_vectors + affd->post_vectors)
|
|
affvecs = nvecs - affd->pre_vectors - affd->post_vectors;
|
|
else
|
|
affvecs = 0;
|
|
|
|
/*
|
|
* Simple invocations do not provide a calc_sets() callback. Install
|
|
* the generic one.
|
|
*/
|
|
if (!affd->calc_sets)
|
|
affd->calc_sets = default_calc_sets;
|
|
|
|
/* Recalculate the sets */
|
|
affd->calc_sets(affd, affvecs);
|
|
|
|
if (WARN_ON_ONCE(affd->nr_sets > IRQ_AFFINITY_MAX_SETS))
|
|
return NULL;
|
|
|
|
/* Nothing to assign? */
|
|
if (!affvecs)
|
|
return NULL;
|
|
|
|
masks = kcalloc(nvecs, sizeof(*masks), GFP_KERNEL);
|
|
if (!masks)
|
|
return NULL;
|
|
|
|
/* Fill out vectors at the beginning that don't need affinity */
|
|
for (curvec = 0; curvec < affd->pre_vectors; curvec++)
|
|
cpumask_copy(&masks[curvec].mask, irq_default_affinity);
|
|
|
|
/*
|
|
* Spread on present CPUs starting from affd->pre_vectors. If we
|
|
* have multiple sets, build each sets affinity mask separately.
|
|
*/
|
|
for (i = 0, usedvecs = 0; i < affd->nr_sets; i++) {
|
|
unsigned int this_vecs = affd->set_size[i];
|
|
int ret;
|
|
|
|
ret = irq_build_affinity_masks(curvec, this_vecs,
|
|
curvec, masks);
|
|
if (ret) {
|
|
kfree(masks);
|
|
return NULL;
|
|
}
|
|
curvec += this_vecs;
|
|
usedvecs += this_vecs;
|
|
}
|
|
|
|
/* Fill out vectors at the end that don't need affinity */
|
|
if (usedvecs >= affvecs)
|
|
curvec = affd->pre_vectors + affvecs;
|
|
else
|
|
curvec = affd->pre_vectors + usedvecs;
|
|
for (; curvec < nvecs; curvec++)
|
|
cpumask_copy(&masks[curvec].mask, irq_default_affinity);
|
|
|
|
/* Mark the managed interrupts */
|
|
for (i = affd->pre_vectors; i < nvecs - affd->post_vectors; i++)
|
|
masks[i].is_managed = 1;
|
|
|
|
return masks;
|
|
}
|
|
|
|
/**
|
|
* irq_calc_affinity_vectors - Calculate the optimal number of vectors
|
|
* @minvec: The minimum number of vectors available
|
|
* @maxvec: The maximum number of vectors available
|
|
* @affd: Description of the affinity requirements
|
|
*/
|
|
unsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec,
|
|
const struct irq_affinity *affd)
|
|
{
|
|
unsigned int resv = affd->pre_vectors + affd->post_vectors;
|
|
unsigned int set_vecs;
|
|
|
|
if (resv > minvec)
|
|
return 0;
|
|
|
|
if (affd->calc_sets) {
|
|
set_vecs = maxvec - resv;
|
|
} else {
|
|
cpus_read_lock();
|
|
set_vecs = cpumask_weight(cpu_possible_mask);
|
|
cpus_read_unlock();
|
|
}
|
|
|
|
return resv + min(set_vecs, maxvec - resv);
|
|
}
|