mirror of
https://github.com/torvalds/linux.git
synced 2024-12-15 15:41:58 +00:00
0cbbeaf370
The intent here is to return an error code if we don't find what we are
looking for in the 'list_for_each_entry()' loop.
's' is not NULL if the list is empty or if we scan the complete list.
Introduce a new 'found' variable to handle such cases.
Fixes: 60dd49298e
("ALSA: firewire-lib: handle several AMDTP streams in callback handler of IRQ target")
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Acked-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Link: https://lore.kernel.org/r/9c9a53a4905984a570ba5672cbab84f2027dedc1.1624560484.git.christophe.jaillet@wanadoo.fr
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2025 lines
56 KiB
C
2025 lines
56 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Audio and Music Data Transmission Protocol (IEC 61883-6) streams
|
|
* with Common Isochronous Packet (IEC 61883-1) headers
|
|
*
|
|
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
|
|
*/
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/err.h>
|
|
#include <linux/firewire.h>
|
|
#include <linux/firewire-constants.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <sound/pcm.h>
|
|
#include <sound/pcm_params.h>
|
|
#include "amdtp-stream.h"
|
|
|
|
#define TICKS_PER_CYCLE 3072
|
|
#define CYCLES_PER_SECOND 8000
|
|
#define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
|
|
|
|
#define OHCI_SECOND_MODULUS 8
|
|
|
|
/* Always support Linux tracing subsystem. */
|
|
#define CREATE_TRACE_POINTS
|
|
#include "amdtp-stream-trace.h"
|
|
|
|
#define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */
|
|
|
|
/* isochronous header parameters */
|
|
#define ISO_DATA_LENGTH_SHIFT 16
|
|
#define TAG_NO_CIP_HEADER 0
|
|
#define TAG_CIP 1
|
|
|
|
// Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported.
|
|
#define CIP_HEADER_QUADLETS 2
|
|
#define CIP_EOH_SHIFT 31
|
|
#define CIP_EOH (1u << CIP_EOH_SHIFT)
|
|
#define CIP_EOH_MASK 0x80000000
|
|
#define CIP_SID_SHIFT 24
|
|
#define CIP_SID_MASK 0x3f000000
|
|
#define CIP_DBS_MASK 0x00ff0000
|
|
#define CIP_DBS_SHIFT 16
|
|
#define CIP_SPH_MASK 0x00000400
|
|
#define CIP_SPH_SHIFT 10
|
|
#define CIP_DBC_MASK 0x000000ff
|
|
#define CIP_FMT_SHIFT 24
|
|
#define CIP_FMT_MASK 0x3f000000
|
|
#define CIP_FDF_MASK 0x00ff0000
|
|
#define CIP_FDF_SHIFT 16
|
|
#define CIP_FDF_NO_DATA 0xff
|
|
#define CIP_SYT_MASK 0x0000ffff
|
|
#define CIP_SYT_NO_INFO 0xffff
|
|
#define CIP_SYT_CYCLE_MODULUS 16
|
|
#define CIP_NO_DATA ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO)
|
|
|
|
#define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS)
|
|
|
|
/* Audio and Music transfer protocol specific parameters */
|
|
#define CIP_FMT_AM 0x10
|
|
#define AMDTP_FDF_NO_DATA 0xff
|
|
|
|
// For iso header and tstamp.
|
|
#define IR_CTX_HEADER_DEFAULT_QUADLETS 2
|
|
// Add nothing.
|
|
#define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS)
|
|
// Add two quadlets CIP header.
|
|
#define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE)
|
|
#define HEADER_TSTAMP_MASK 0x0000ffff
|
|
|
|
#define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE
|
|
#define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing.
|
|
|
|
// The initial firmware of OXFW970 can postpone transmission of packet during finishing
|
|
// asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer
|
|
// overrun. Actual device can skip more, then this module stops the packet streaming.
|
|
#define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5
|
|
|
|
/**
|
|
* amdtp_stream_init - initialize an AMDTP stream structure
|
|
* @s: the AMDTP stream to initialize
|
|
* @unit: the target of the stream
|
|
* @dir: the direction of stream
|
|
* @flags: the details of the streaming protocol consist of cip_flags enumeration-constants.
|
|
* @fmt: the value of fmt field in CIP header
|
|
* @process_ctx_payloads: callback handler to process payloads of isoc context
|
|
* @protocol_size: the size to allocate newly for protocol
|
|
*/
|
|
int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
|
|
enum amdtp_stream_direction dir, unsigned int flags,
|
|
unsigned int fmt,
|
|
amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
|
|
unsigned int protocol_size)
|
|
{
|
|
if (process_ctx_payloads == NULL)
|
|
return -EINVAL;
|
|
|
|
s->protocol = kzalloc(protocol_size, GFP_KERNEL);
|
|
if (!s->protocol)
|
|
return -ENOMEM;
|
|
|
|
s->unit = unit;
|
|
s->direction = dir;
|
|
s->flags = flags;
|
|
s->context = ERR_PTR(-1);
|
|
mutex_init(&s->mutex);
|
|
s->packet_index = 0;
|
|
|
|
init_waitqueue_head(&s->ready_wait);
|
|
|
|
s->fmt = fmt;
|
|
s->process_ctx_payloads = process_ctx_payloads;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(amdtp_stream_init);
|
|
|
|
/**
|
|
* amdtp_stream_destroy - free stream resources
|
|
* @s: the AMDTP stream to destroy
|
|
*/
|
|
void amdtp_stream_destroy(struct amdtp_stream *s)
|
|
{
|
|
/* Not initialized. */
|
|
if (s->protocol == NULL)
|
|
return;
|
|
|
|
WARN_ON(amdtp_stream_running(s));
|
|
kfree(s->protocol);
|
|
mutex_destroy(&s->mutex);
|
|
}
|
|
EXPORT_SYMBOL(amdtp_stream_destroy);
|
|
|
|
const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
|
|
[CIP_SFC_32000] = 8,
|
|
[CIP_SFC_44100] = 8,
|
|
[CIP_SFC_48000] = 8,
|
|
[CIP_SFC_88200] = 16,
|
|
[CIP_SFC_96000] = 16,
|
|
[CIP_SFC_176400] = 32,
|
|
[CIP_SFC_192000] = 32,
|
|
};
|
|
EXPORT_SYMBOL(amdtp_syt_intervals);
|
|
|
|
const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
|
|
[CIP_SFC_32000] = 32000,
|
|
[CIP_SFC_44100] = 44100,
|
|
[CIP_SFC_48000] = 48000,
|
|
[CIP_SFC_88200] = 88200,
|
|
[CIP_SFC_96000] = 96000,
|
|
[CIP_SFC_176400] = 176400,
|
|
[CIP_SFC_192000] = 192000,
|
|
};
|
|
EXPORT_SYMBOL(amdtp_rate_table);
|
|
|
|
static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
|
|
struct snd_pcm_hw_rule *rule)
|
|
{
|
|
struct snd_interval *s = hw_param_interval(params, rule->var);
|
|
const struct snd_interval *r =
|
|
hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
|
|
struct snd_interval t = {0};
|
|
unsigned int step = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < CIP_SFC_COUNT; ++i) {
|
|
if (snd_interval_test(r, amdtp_rate_table[i]))
|
|
step = max(step, amdtp_syt_intervals[i]);
|
|
}
|
|
|
|
t.min = roundup(s->min, step);
|
|
t.max = rounddown(s->max, step);
|
|
t.integer = 1;
|
|
|
|
return snd_interval_refine(s, &t);
|
|
}
|
|
|
|
/**
|
|
* amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
|
|
* @s: the AMDTP stream, which must be initialized.
|
|
* @runtime: the PCM substream runtime
|
|
*/
|
|
int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
|
|
struct snd_pcm_runtime *runtime)
|
|
{
|
|
struct snd_pcm_hardware *hw = &runtime->hw;
|
|
unsigned int ctx_header_size;
|
|
unsigned int maximum_usec_per_period;
|
|
int err;
|
|
|
|
hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER |
|
|
SNDRV_PCM_INFO_INTERLEAVED |
|
|
SNDRV_PCM_INFO_JOINT_DUPLEX |
|
|
SNDRV_PCM_INFO_MMAP |
|
|
SNDRV_PCM_INFO_MMAP_VALID |
|
|
SNDRV_PCM_INFO_NO_PERIOD_WAKEUP;
|
|
|
|
hw->periods_min = 2;
|
|
hw->periods_max = UINT_MAX;
|
|
|
|
/* bytes for a frame */
|
|
hw->period_bytes_min = 4 * hw->channels_max;
|
|
|
|
/* Just to prevent from allocating much pages. */
|
|
hw->period_bytes_max = hw->period_bytes_min * 2048;
|
|
hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
|
|
|
|
// Linux driver for 1394 OHCI controller voluntarily flushes isoc
|
|
// context when total size of accumulated context header reaches
|
|
// PAGE_SIZE. This kicks work for the isoc context and brings
|
|
// callback in the middle of scheduled interrupts.
|
|
// Although AMDTP streams in the same domain use the same events per
|
|
// IRQ, use the largest size of context header between IT/IR contexts.
|
|
// Here, use the value of context header in IR context is for both
|
|
// contexts.
|
|
if (!(s->flags & CIP_NO_HEADER))
|
|
ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
|
|
else
|
|
ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
|
|
maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
|
|
CYCLES_PER_SECOND / ctx_header_size;
|
|
|
|
// In IEC 61883-6, one isoc packet can transfer events up to the value
|
|
// of syt interval. This comes from the interval of isoc cycle. As 1394
|
|
// OHCI controller can generate hardware IRQ per isoc packet, the
|
|
// interval is 125 usec.
|
|
// However, there are two ways of transmission in IEC 61883-6; blocking
|
|
// and non-blocking modes. In blocking mode, the sequence of isoc packet
|
|
// includes 'empty' or 'NODATA' packets which include no event. In
|
|
// non-blocking mode, the number of events per packet is variable up to
|
|
// the syt interval.
|
|
// Due to the above protocol design, the minimum PCM frames per
|
|
// interrupt should be double of the value of syt interval, thus it is
|
|
// 250 usec.
|
|
err = snd_pcm_hw_constraint_minmax(runtime,
|
|
SNDRV_PCM_HW_PARAM_PERIOD_TIME,
|
|
250, maximum_usec_per_period);
|
|
if (err < 0)
|
|
goto end;
|
|
|
|
/* Non-Blocking stream has no more constraints */
|
|
if (!(s->flags & CIP_BLOCKING))
|
|
goto end;
|
|
|
|
/*
|
|
* One AMDTP packet can include some frames. In blocking mode, the
|
|
* number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
|
|
* depending on its sampling rate. For accurate period interrupt, it's
|
|
* preferrable to align period/buffer sizes to current SYT_INTERVAL.
|
|
*/
|
|
err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
|
|
apply_constraint_to_size, NULL,
|
|
SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
|
|
SNDRV_PCM_HW_PARAM_RATE, -1);
|
|
if (err < 0)
|
|
goto end;
|
|
err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
|
|
apply_constraint_to_size, NULL,
|
|
SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
|
|
SNDRV_PCM_HW_PARAM_RATE, -1);
|
|
if (err < 0)
|
|
goto end;
|
|
end:
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
|
|
|
|
/**
|
|
* amdtp_stream_set_parameters - set stream parameters
|
|
* @s: the AMDTP stream to configure
|
|
* @rate: the sample rate
|
|
* @data_block_quadlets: the size of a data block in quadlet unit
|
|
*
|
|
* The parameters must be set before the stream is started, and must not be
|
|
* changed while the stream is running.
|
|
*/
|
|
int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
|
|
unsigned int data_block_quadlets)
|
|
{
|
|
unsigned int sfc;
|
|
|
|
for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
|
|
if (amdtp_rate_table[sfc] == rate)
|
|
break;
|
|
}
|
|
if (sfc == ARRAY_SIZE(amdtp_rate_table))
|
|
return -EINVAL;
|
|
|
|
s->sfc = sfc;
|
|
s->data_block_quadlets = data_block_quadlets;
|
|
s->syt_interval = amdtp_syt_intervals[sfc];
|
|
|
|
// default buffering in the device.
|
|
s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
|
|
|
|
// additional buffering needed to adjust for no-data packets.
|
|
if (s->flags & CIP_BLOCKING)
|
|
s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(amdtp_stream_set_parameters);
|
|
|
|
// The CIP header is processed in context header apart from context payload.
|
|
static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s)
|
|
{
|
|
unsigned int multiplier;
|
|
|
|
if (s->flags & CIP_JUMBO_PAYLOAD)
|
|
multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES;
|
|
else
|
|
multiplier = 1;
|
|
|
|
return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
|
|
}
|
|
|
|
/**
|
|
* amdtp_stream_get_max_payload - get the stream's packet size
|
|
* @s: the AMDTP stream
|
|
*
|
|
* This function must not be called before the stream has been configured
|
|
* with amdtp_stream_set_parameters().
|
|
*/
|
|
unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
|
|
{
|
|
unsigned int cip_header_size;
|
|
|
|
if (!(s->flags & CIP_NO_HEADER))
|
|
cip_header_size = CIP_HEADER_SIZE;
|
|
else
|
|
cip_header_size = 0;
|
|
|
|
return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s);
|
|
}
|
|
EXPORT_SYMBOL(amdtp_stream_get_max_payload);
|
|
|
|
/**
|
|
* amdtp_stream_pcm_prepare - prepare PCM device for running
|
|
* @s: the AMDTP stream
|
|
*
|
|
* This function should be called from the PCM device's .prepare callback.
|
|
*/
|
|
void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
|
|
{
|
|
s->pcm_buffer_pointer = 0;
|
|
s->pcm_period_pointer = 0;
|
|
}
|
|
EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
|
|
|
|
static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
|
|
const unsigned int seq_size, unsigned int seq_tail,
|
|
unsigned int count)
|
|
{
|
|
const unsigned int syt_interval = s->syt_interval;
|
|
int i;
|
|
|
|
for (i = 0; i < count; ++i) {
|
|
struct seq_desc *desc = descs + seq_tail;
|
|
|
|
if (desc->syt_offset != CIP_SYT_NO_INFO)
|
|
desc->data_blocks = syt_interval;
|
|
else
|
|
desc->data_blocks = 0;
|
|
|
|
seq_tail = (seq_tail + 1) % seq_size;
|
|
}
|
|
}
|
|
|
|
static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
|
|
const unsigned int seq_size, unsigned int seq_tail,
|
|
unsigned int count)
|
|
{
|
|
const enum cip_sfc sfc = s->sfc;
|
|
unsigned int state = s->ctx_data.rx.data_block_state;
|
|
int i;
|
|
|
|
for (i = 0; i < count; ++i) {
|
|
struct seq_desc *desc = descs + seq_tail;
|
|
|
|
if (!cip_sfc_is_base_44100(sfc)) {
|
|
// Sample_rate / 8000 is an integer, and precomputed.
|
|
desc->data_blocks = state;
|
|
} else {
|
|
unsigned int phase = state;
|
|
|
|
/*
|
|
* This calculates the number of data blocks per packet so that
|
|
* 1) the overall rate is correct and exactly synchronized to
|
|
* the bus clock, and
|
|
* 2) packets with a rounded-up number of blocks occur as early
|
|
* as possible in the sequence (to prevent underruns of the
|
|
* device's buffer).
|
|
*/
|
|
if (sfc == CIP_SFC_44100)
|
|
/* 6 6 5 6 5 6 5 ... */
|
|
desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40));
|
|
else
|
|
/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
|
|
desc->data_blocks = 11 * (sfc >> 1) + (phase == 0);
|
|
if (++phase >= (80 >> (sfc >> 1)))
|
|
phase = 0;
|
|
state = phase;
|
|
}
|
|
|
|
seq_tail = (seq_tail + 1) % seq_size;
|
|
}
|
|
|
|
s->ctx_data.rx.data_block_state = state;
|
|
}
|
|
|
|
static unsigned int calculate_syt_offset(unsigned int *last_syt_offset,
|
|
unsigned int *syt_offset_state, enum cip_sfc sfc)
|
|
{
|
|
unsigned int syt_offset;
|
|
|
|
if (*last_syt_offset < TICKS_PER_CYCLE) {
|
|
if (!cip_sfc_is_base_44100(sfc))
|
|
syt_offset = *last_syt_offset + *syt_offset_state;
|
|
else {
|
|
/*
|
|
* The time, in ticks, of the n'th SYT_INTERVAL sample is:
|
|
* n * SYT_INTERVAL * 24576000 / sample_rate
|
|
* Modulo TICKS_PER_CYCLE, the difference between successive
|
|
* elements is about 1386.23. Rounding the results of this
|
|
* formula to the SYT precision results in a sequence of
|
|
* differences that begins with:
|
|
* 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
|
|
* This code generates _exactly_ the same sequence.
|
|
*/
|
|
unsigned int phase = *syt_offset_state;
|
|
unsigned int index = phase % 13;
|
|
|
|
syt_offset = *last_syt_offset;
|
|
syt_offset += 1386 + ((index && !(index & 3)) ||
|
|
phase == 146);
|
|
if (++phase >= 147)
|
|
phase = 0;
|
|
*syt_offset_state = phase;
|
|
}
|
|
} else
|
|
syt_offset = *last_syt_offset - TICKS_PER_CYCLE;
|
|
*last_syt_offset = syt_offset;
|
|
|
|
if (syt_offset >= TICKS_PER_CYCLE)
|
|
syt_offset = CIP_SYT_NO_INFO;
|
|
|
|
return syt_offset;
|
|
}
|
|
|
|
static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs,
|
|
const unsigned int seq_size, unsigned int seq_tail,
|
|
unsigned int count)
|
|
{
|
|
const enum cip_sfc sfc = s->sfc;
|
|
unsigned int last = s->ctx_data.rx.last_syt_offset;
|
|
unsigned int state = s->ctx_data.rx.syt_offset_state;
|
|
int i;
|
|
|
|
for (i = 0; i < count; ++i) {
|
|
struct seq_desc *desc = descs + seq_tail;
|
|
|
|
desc->syt_offset = calculate_syt_offset(&last, &state, sfc);
|
|
|
|
seq_tail = (seq_tail + 1) % seq_size;
|
|
}
|
|
|
|
s->ctx_data.rx.last_syt_offset = last;
|
|
s->ctx_data.rx.syt_offset_state = state;
|
|
}
|
|
|
|
static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle,
|
|
unsigned int transfer_delay)
|
|
{
|
|
unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f;
|
|
unsigned int syt_cycle_lo = (syt & 0xf000) >> 12;
|
|
unsigned int syt_offset;
|
|
|
|
// Round up.
|
|
if (syt_cycle_lo < cycle_lo)
|
|
syt_cycle_lo += CIP_SYT_CYCLE_MODULUS;
|
|
syt_cycle_lo -= cycle_lo;
|
|
|
|
// Subtract transfer delay so that the synchronization offset is not so large
|
|
// at transmission.
|
|
syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff);
|
|
if (syt_offset < transfer_delay)
|
|
syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE;
|
|
|
|
return syt_offset - transfer_delay;
|
|
}
|
|
|
|
// Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus.
|
|
// Additionally, the sequence of tx packets is severely checked against any discontinuity
|
|
// before filling entries in the queue. The calculation is safe even if it looks fragile by
|
|
// overrun.
|
|
static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head)
|
|
{
|
|
const unsigned int cache_size = s->ctx_data.tx.cache.size;
|
|
unsigned int cycles = s->ctx_data.tx.cache.tail;
|
|
|
|
if (cycles < head)
|
|
cycles += cache_size;
|
|
cycles -= head;
|
|
|
|
return cycles;
|
|
}
|
|
|
|
static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *descs, unsigned int desc_count)
|
|
{
|
|
const unsigned int transfer_delay = s->transfer_delay;
|
|
const unsigned int cache_size = s->ctx_data.tx.cache.size;
|
|
struct seq_desc *cache = s->ctx_data.tx.cache.descs;
|
|
unsigned int cache_tail = s->ctx_data.tx.cache.tail;
|
|
bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
|
|
int i;
|
|
|
|
for (i = 0; i < desc_count; ++i) {
|
|
struct seq_desc *dst = cache + cache_tail;
|
|
const struct pkt_desc *src = descs + i;
|
|
|
|
if (aware_syt && src->syt != CIP_SYT_NO_INFO)
|
|
dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay);
|
|
else
|
|
dst->syt_offset = CIP_SYT_NO_INFO;
|
|
dst->data_blocks = src->data_blocks;
|
|
|
|
cache_tail = (cache_tail + 1) % cache_size;
|
|
}
|
|
|
|
s->ctx_data.tx.cache.tail = cache_tail;
|
|
}
|
|
|
|
static void pool_ideal_seq_descs(struct amdtp_stream *s, unsigned int count)
|
|
{
|
|
struct seq_desc *descs = s->ctx_data.rx.seq.descs;
|
|
unsigned int seq_tail = s->ctx_data.rx.seq.tail;
|
|
const unsigned int seq_size = s->ctx_data.rx.seq.size;
|
|
|
|
pool_ideal_syt_offsets(s, descs, seq_size, seq_tail, count);
|
|
|
|
if (s->flags & CIP_BLOCKING)
|
|
pool_blocking_data_blocks(s, descs, seq_size, seq_tail, count);
|
|
else
|
|
pool_ideal_nonblocking_data_blocks(s, descs, seq_size, seq_tail, count);
|
|
|
|
s->ctx_data.rx.seq.tail = (seq_tail + count) % seq_size;
|
|
}
|
|
|
|
static void pool_replayed_seq(struct amdtp_stream *s, unsigned int count)
|
|
{
|
|
struct amdtp_stream *target = s->ctx_data.rx.replay_target;
|
|
const struct seq_desc *cache = target->ctx_data.tx.cache.descs;
|
|
const unsigned int cache_size = target->ctx_data.tx.cache.size;
|
|
unsigned int cache_head = s->ctx_data.rx.cache_head;
|
|
struct seq_desc *descs = s->ctx_data.rx.seq.descs;
|
|
const unsigned int seq_size = s->ctx_data.rx.seq.size;
|
|
unsigned int seq_tail = s->ctx_data.rx.seq.tail;
|
|
int i;
|
|
|
|
for (i = 0; i < count; ++i) {
|
|
descs[seq_tail] = cache[cache_head];
|
|
seq_tail = (seq_tail + 1) % seq_size;
|
|
cache_head = (cache_head + 1) % cache_size;
|
|
}
|
|
|
|
s->ctx_data.rx.seq.tail = seq_tail;
|
|
s->ctx_data.rx.cache_head = cache_head;
|
|
}
|
|
|
|
static void pool_seq_descs(struct amdtp_stream *s, unsigned int count)
|
|
{
|
|
struct amdtp_domain *d = s->domain;
|
|
|
|
if (!d->replay.enable || !s->ctx_data.rx.replay_target) {
|
|
pool_ideal_seq_descs(s, count);
|
|
} else {
|
|
if (!d->replay.on_the_fly) {
|
|
pool_replayed_seq(s, count);
|
|
} else {
|
|
struct amdtp_stream *tx = s->ctx_data.rx.replay_target;
|
|
const unsigned int cache_size = tx->ctx_data.tx.cache.size;
|
|
const unsigned int cache_head = s->ctx_data.rx.cache_head;
|
|
unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_head);
|
|
|
|
if (cached_cycles > count && cached_cycles > cache_size / 2)
|
|
pool_replayed_seq(s, count);
|
|
else
|
|
pool_ideal_seq_descs(s, count);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_pcm_pointers(struct amdtp_stream *s,
|
|
struct snd_pcm_substream *pcm,
|
|
unsigned int frames)
|
|
{
|
|
unsigned int ptr;
|
|
|
|
ptr = s->pcm_buffer_pointer + frames;
|
|
if (ptr >= pcm->runtime->buffer_size)
|
|
ptr -= pcm->runtime->buffer_size;
|
|
WRITE_ONCE(s->pcm_buffer_pointer, ptr);
|
|
|
|
s->pcm_period_pointer += frames;
|
|
if (s->pcm_period_pointer >= pcm->runtime->period_size) {
|
|
s->pcm_period_pointer -= pcm->runtime->period_size;
|
|
|
|
// The program in user process should periodically check the status of intermediate
|
|
// buffer associated to PCM substream to process PCM frames in the buffer, instead
|
|
// of receiving notification of period elapsed by poll wait.
|
|
if (!pcm->runtime->no_period_wakeup) {
|
|
if (in_softirq()) {
|
|
// In software IRQ context for 1394 OHCI.
|
|
snd_pcm_period_elapsed(pcm);
|
|
} else {
|
|
// In process context of ALSA PCM application under acquired lock of
|
|
// PCM substream.
|
|
snd_pcm_period_elapsed_under_stream_lock(pcm);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
|
|
bool sched_irq)
|
|
{
|
|
int err;
|
|
|
|
params->interrupt = sched_irq;
|
|
params->tag = s->tag;
|
|
params->sy = 0;
|
|
|
|
err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
|
|
s->buffer.packets[s->packet_index].offset);
|
|
if (err < 0) {
|
|
dev_err(&s->unit->device, "queueing error: %d\n", err);
|
|
goto end;
|
|
}
|
|
|
|
if (++s->packet_index >= s->queue_size)
|
|
s->packet_index = 0;
|
|
end:
|
|
return err;
|
|
}
|
|
|
|
static inline int queue_out_packet(struct amdtp_stream *s,
|
|
struct fw_iso_packet *params, bool sched_irq)
|
|
{
|
|
params->skip =
|
|
!!(params->header_length == 0 && params->payload_length == 0);
|
|
return queue_packet(s, params, sched_irq);
|
|
}
|
|
|
|
static inline int queue_in_packet(struct amdtp_stream *s,
|
|
struct fw_iso_packet *params)
|
|
{
|
|
// Queue one packet for IR context.
|
|
params->header_length = s->ctx_data.tx.ctx_header_size;
|
|
params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
|
|
params->skip = false;
|
|
return queue_packet(s, params, false);
|
|
}
|
|
|
|
static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
|
|
unsigned int data_block_counter, unsigned int syt)
|
|
{
|
|
cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
|
|
(s->data_block_quadlets << CIP_DBS_SHIFT) |
|
|
((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
|
|
data_block_counter);
|
|
cip_header[1] = cpu_to_be32(CIP_EOH |
|
|
((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
|
|
((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
|
|
(syt & CIP_SYT_MASK));
|
|
}
|
|
|
|
static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
|
|
struct fw_iso_packet *params, unsigned int header_length,
|
|
unsigned int data_blocks,
|
|
unsigned int data_block_counter,
|
|
unsigned int syt, unsigned int index)
|
|
{
|
|
unsigned int payload_length;
|
|
__be32 *cip_header;
|
|
|
|
payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
|
|
params->payload_length = payload_length;
|
|
|
|
if (header_length > 0) {
|
|
cip_header = (__be32 *)params->header;
|
|
generate_cip_header(s, cip_header, data_block_counter, syt);
|
|
params->header_length = header_length;
|
|
} else {
|
|
cip_header = NULL;
|
|
}
|
|
|
|
trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks,
|
|
data_block_counter, s->packet_index, index);
|
|
}
|
|
|
|
static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
|
|
unsigned int payload_length,
|
|
unsigned int *data_blocks,
|
|
unsigned int *data_block_counter, unsigned int *syt)
|
|
{
|
|
u32 cip_header[2];
|
|
unsigned int sph;
|
|
unsigned int fmt;
|
|
unsigned int fdf;
|
|
unsigned int dbc;
|
|
bool lost;
|
|
|
|
cip_header[0] = be32_to_cpu(buf[0]);
|
|
cip_header[1] = be32_to_cpu(buf[1]);
|
|
|
|
/*
|
|
* This module supports 'Two-quadlet CIP header with SYT field'.
|
|
* For convenience, also check FMT field is AM824 or not.
|
|
*/
|
|
if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
|
|
((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
|
|
(!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
|
|
dev_info_ratelimited(&s->unit->device,
|
|
"Invalid CIP header for AMDTP: %08X:%08X\n",
|
|
cip_header[0], cip_header[1]);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/* Check valid protocol or not. */
|
|
sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
|
|
fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
|
|
if (sph != s->sph || fmt != s->fmt) {
|
|
dev_info_ratelimited(&s->unit->device,
|
|
"Detect unexpected protocol: %08x %08x\n",
|
|
cip_header[0], cip_header[1]);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/* Calculate data blocks */
|
|
fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
|
|
if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
|
|
*data_blocks = 0;
|
|
} else {
|
|
unsigned int data_block_quadlets =
|
|
(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
|
|
/* avoid division by zero */
|
|
if (data_block_quadlets == 0) {
|
|
dev_err(&s->unit->device,
|
|
"Detect invalid value in dbs field: %08X\n",
|
|
cip_header[0]);
|
|
return -EPROTO;
|
|
}
|
|
if (s->flags & CIP_WRONG_DBS)
|
|
data_block_quadlets = s->data_block_quadlets;
|
|
|
|
*data_blocks = payload_length / sizeof(__be32) / data_block_quadlets;
|
|
}
|
|
|
|
/* Check data block counter continuity */
|
|
dbc = cip_header[0] & CIP_DBC_MASK;
|
|
if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
|
|
*data_block_counter != UINT_MAX)
|
|
dbc = *data_block_counter;
|
|
|
|
if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
|
|
*data_block_counter == UINT_MAX) {
|
|
lost = false;
|
|
} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
|
|
lost = dbc != *data_block_counter;
|
|
} else {
|
|
unsigned int dbc_interval;
|
|
|
|
if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
|
|
dbc_interval = s->ctx_data.tx.dbc_interval;
|
|
else
|
|
dbc_interval = *data_blocks;
|
|
|
|
lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
|
|
}
|
|
|
|
if (lost) {
|
|
dev_err(&s->unit->device,
|
|
"Detect discontinuity of CIP: %02X %02X\n",
|
|
*data_block_counter, dbc);
|
|
return -EIO;
|
|
}
|
|
|
|
*data_block_counter = dbc;
|
|
|
|
if (!(s->flags & CIP_UNAWARE_SYT))
|
|
*syt = cip_header[1] & CIP_SYT_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
|
|
const __be32 *ctx_header,
|
|
unsigned int *data_blocks,
|
|
unsigned int *data_block_counter,
|
|
unsigned int *syt, unsigned int packet_index, unsigned int index)
|
|
{
|
|
unsigned int payload_length;
|
|
const __be32 *cip_header;
|
|
unsigned int cip_header_size;
|
|
|
|
payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
|
|
|
|
if (!(s->flags & CIP_NO_HEADER))
|
|
cip_header_size = CIP_HEADER_SIZE;
|
|
else
|
|
cip_header_size = 0;
|
|
|
|
if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) {
|
|
dev_err(&s->unit->device,
|
|
"Detect jumbo payload: %04x %04x\n",
|
|
payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length);
|
|
return -EIO;
|
|
}
|
|
|
|
if (cip_header_size > 0) {
|
|
if (payload_length >= cip_header_size) {
|
|
int err;
|
|
|
|
cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
|
|
err = check_cip_header(s, cip_header, payload_length - cip_header_size,
|
|
data_blocks, data_block_counter, syt);
|
|
if (err < 0)
|
|
return err;
|
|
} else {
|
|
// Handle the cycle so that empty packet arrives.
|
|
cip_header = NULL;
|
|
*data_blocks = 0;
|
|
*syt = 0;
|
|
}
|
|
} else {
|
|
cip_header = NULL;
|
|
*data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets;
|
|
*syt = 0;
|
|
|
|
if (*data_block_counter == UINT_MAX)
|
|
*data_block_counter = 0;
|
|
}
|
|
|
|
trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks,
|
|
*data_block_counter, packet_index, index);
|
|
|
|
return 0;
|
|
}
|
|
|
|
// In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
|
|
// the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
|
|
// it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
|
|
static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp)
|
|
{
|
|
u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
|
|
return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
|
|
}
|
|
|
|
static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend)
|
|
{
|
|
cycle += addend;
|
|
if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND)
|
|
cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
|
|
return cycle;
|
|
}
|
|
|
|
static int compare_ohci_cycle_count(u32 lval, u32 rval)
|
|
{
|
|
if (lval == rval)
|
|
return 0;
|
|
else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2)
|
|
return -1;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
// Align to actual cycle count for the packet which is going to be scheduled.
|
|
// This module queued the same number of isochronous cycle as the size of queue
|
|
// to kip isochronous cycle, therefore it's OK to just increment the cycle by
|
|
// the size of queue for scheduled cycle.
|
|
static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp,
|
|
unsigned int queue_size)
|
|
{
|
|
u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp);
|
|
return increment_ohci_cycle_count(cycle, queue_size);
|
|
}
|
|
|
|
static int generate_device_pkt_descs(struct amdtp_stream *s,
|
|
struct pkt_desc *descs,
|
|
const __be32 *ctx_header,
|
|
unsigned int packets,
|
|
unsigned int *desc_count)
|
|
{
|
|
unsigned int next_cycle = s->next_cycle;
|
|
unsigned int dbc = s->data_block_counter;
|
|
unsigned int packet_index = s->packet_index;
|
|
unsigned int queue_size = s->queue_size;
|
|
int i;
|
|
int err;
|
|
|
|
*desc_count = 0;
|
|
for (i = 0; i < packets; ++i) {
|
|
struct pkt_desc *desc = descs + *desc_count;
|
|
unsigned int cycle;
|
|
bool lost;
|
|
unsigned int data_blocks;
|
|
unsigned int syt;
|
|
|
|
cycle = compute_ohci_cycle_count(ctx_header[1]);
|
|
lost = (next_cycle != cycle);
|
|
if (lost) {
|
|
if (s->flags & CIP_NO_HEADER) {
|
|
// Fireface skips transmission just for an isoc cycle corresponding
|
|
// to empty packet.
|
|
unsigned int prev_cycle = next_cycle;
|
|
|
|
next_cycle = increment_ohci_cycle_count(next_cycle, 1);
|
|
lost = (next_cycle != cycle);
|
|
if (!lost) {
|
|
// Prepare a description for the skipped cycle for
|
|
// sequence replay.
|
|
desc->cycle = prev_cycle;
|
|
desc->syt = 0;
|
|
desc->data_blocks = 0;
|
|
desc->data_block_counter = dbc;
|
|
desc->ctx_payload = NULL;
|
|
++desc;
|
|
++(*desc_count);
|
|
}
|
|
} else if (s->flags & CIP_JUMBO_PAYLOAD) {
|
|
// OXFW970 skips transmission for several isoc cycles during
|
|
// asynchronous transaction. The sequence replay is impossible due
|
|
// to the reason.
|
|
unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle,
|
|
IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES);
|
|
lost = (compare_ohci_cycle_count(safe_cycle, cycle) > 0);
|
|
}
|
|
if (lost) {
|
|
dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n",
|
|
next_cycle, cycle);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt,
|
|
packet_index, i);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
desc->cycle = cycle;
|
|
desc->syt = syt;
|
|
desc->data_blocks = data_blocks;
|
|
desc->data_block_counter = dbc;
|
|
desc->ctx_payload = s->buffer.packets[packet_index].buffer;
|
|
|
|
if (!(s->flags & CIP_DBC_IS_END_EVENT))
|
|
dbc = (dbc + desc->data_blocks) & 0xff;
|
|
|
|
next_cycle = increment_ohci_cycle_count(next_cycle, 1);
|
|
++(*desc_count);
|
|
ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
|
|
packet_index = (packet_index + 1) % queue_size;
|
|
}
|
|
|
|
s->next_cycle = next_cycle;
|
|
s->data_block_counter = dbc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle,
|
|
unsigned int transfer_delay)
|
|
{
|
|
unsigned int syt;
|
|
|
|
syt_offset += transfer_delay;
|
|
syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) |
|
|
(syt_offset % TICKS_PER_CYCLE);
|
|
return syt & CIP_SYT_MASK;
|
|
}
|
|
|
|
static void generate_pkt_descs(struct amdtp_stream *s, const __be32 *ctx_header, unsigned int packets)
|
|
{
|
|
struct pkt_desc *descs = s->pkt_descs;
|
|
const struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs;
|
|
const unsigned int seq_size = s->ctx_data.rx.seq.size;
|
|
unsigned int dbc = s->data_block_counter;
|
|
unsigned int seq_head = s->ctx_data.rx.seq.head;
|
|
bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
|
|
int i;
|
|
|
|
for (i = 0; i < packets; ++i) {
|
|
struct pkt_desc *desc = descs + i;
|
|
unsigned int index = (s->packet_index + i) % s->queue_size;
|
|
const struct seq_desc *seq = seq_descs + seq_head;
|
|
|
|
desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size);
|
|
|
|
if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO)
|
|
desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay);
|
|
else
|
|
desc->syt = CIP_SYT_NO_INFO;
|
|
|
|
desc->data_blocks = seq->data_blocks;
|
|
|
|
if (s->flags & CIP_DBC_IS_END_EVENT)
|
|
dbc = (dbc + desc->data_blocks) & 0xff;
|
|
|
|
desc->data_block_counter = dbc;
|
|
|
|
if (!(s->flags & CIP_DBC_IS_END_EVENT))
|
|
dbc = (dbc + desc->data_blocks) & 0xff;
|
|
|
|
desc->ctx_payload = s->buffer.packets[index].buffer;
|
|
|
|
seq_head = (seq_head + 1) % seq_size;
|
|
|
|
++ctx_header;
|
|
}
|
|
|
|
s->data_block_counter = dbc;
|
|
s->ctx_data.rx.seq.head = seq_head;
|
|
}
|
|
|
|
static inline void cancel_stream(struct amdtp_stream *s)
|
|
{
|
|
s->packet_index = -1;
|
|
if (in_softirq())
|
|
amdtp_stream_pcm_abort(s);
|
|
WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
|
|
}
|
|
|
|
static void process_ctx_payloads(struct amdtp_stream *s,
|
|
const struct pkt_desc *descs,
|
|
unsigned int packets)
|
|
{
|
|
struct snd_pcm_substream *pcm;
|
|
unsigned int pcm_frames;
|
|
|
|
pcm = READ_ONCE(s->pcm);
|
|
pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm);
|
|
if (pcm)
|
|
update_pcm_pointers(s, pcm, pcm_frames);
|
|
}
|
|
|
|
static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
|
|
void *header, void *private_data)
|
|
{
|
|
struct amdtp_stream *s = private_data;
|
|
const struct amdtp_domain *d = s->domain;
|
|
const __be32 *ctx_header = header;
|
|
const unsigned int events_per_period = d->events_per_period;
|
|
unsigned int event_count = s->ctx_data.rx.event_count;
|
|
unsigned int pkt_header_length;
|
|
unsigned int packets;
|
|
bool need_hw_irq;
|
|
int i;
|
|
|
|
if (s->packet_index < 0)
|
|
return;
|
|
|
|
// Calculate the number of packets in buffer and check XRUN.
|
|
packets = header_length / sizeof(*ctx_header);
|
|
|
|
pool_seq_descs(s, packets);
|
|
|
|
generate_pkt_descs(s, ctx_header, packets);
|
|
|
|
process_ctx_payloads(s, s->pkt_descs, packets);
|
|
|
|
if (!(s->flags & CIP_NO_HEADER))
|
|
pkt_header_length = IT_PKT_HEADER_SIZE_CIP;
|
|
else
|
|
pkt_header_length = 0;
|
|
|
|
if (s == d->irq_target) {
|
|
// At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by
|
|
// the tasks of user process operating ALSA PCM character device by calling ioctl(2)
|
|
// with some requests, instead of scheduled hardware IRQ of an IT context.
|
|
struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
|
|
need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup;
|
|
} else {
|
|
need_hw_irq = false;
|
|
}
|
|
|
|
for (i = 0; i < packets; ++i) {
|
|
const struct pkt_desc *desc = s->pkt_descs + i;
|
|
struct {
|
|
struct fw_iso_packet params;
|
|
__be32 header[CIP_HEADER_QUADLETS];
|
|
} template = { {0}, {0} };
|
|
bool sched_irq = false;
|
|
|
|
build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length,
|
|
desc->data_blocks, desc->data_block_counter,
|
|
desc->syt, i);
|
|
|
|
if (s == s->domain->irq_target) {
|
|
event_count += desc->data_blocks;
|
|
if (event_count >= events_per_period) {
|
|
event_count -= events_per_period;
|
|
sched_irq = need_hw_irq;
|
|
}
|
|
}
|
|
|
|
if (queue_out_packet(s, &template.params, sched_irq) < 0) {
|
|
cancel_stream(s);
|
|
return;
|
|
}
|
|
}
|
|
|
|
s->ctx_data.rx.event_count = event_count;
|
|
}
|
|
|
|
static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
|
|
void *header, void *private_data)
|
|
{
|
|
struct amdtp_stream *s = private_data;
|
|
struct amdtp_domain *d = s->domain;
|
|
const __be32 *ctx_header = header;
|
|
unsigned int packets;
|
|
unsigned int cycle;
|
|
int i;
|
|
|
|
if (s->packet_index < 0)
|
|
return;
|
|
|
|
packets = header_length / sizeof(*ctx_header);
|
|
|
|
cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size);
|
|
s->next_cycle = increment_ohci_cycle_count(cycle, 1);
|
|
|
|
for (i = 0; i < packets; ++i) {
|
|
struct fw_iso_packet params = {
|
|
.header_length = 0,
|
|
.payload_length = 0,
|
|
};
|
|
bool sched_irq = (s == d->irq_target && i == packets - 1);
|
|
|
|
if (queue_out_packet(s, ¶ms, sched_irq) < 0) {
|
|
cancel_stream(s);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
|
|
void *header, void *private_data);
|
|
|
|
static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
|
|
size_t header_length, void *header, void *private_data)
|
|
{
|
|
struct amdtp_stream *s = private_data;
|
|
struct amdtp_domain *d = s->domain;
|
|
__be32 *ctx_header = header;
|
|
const unsigned int queue_size = s->queue_size;
|
|
unsigned int packets;
|
|
unsigned int offset;
|
|
|
|
if (s->packet_index < 0)
|
|
return;
|
|
|
|
packets = header_length / sizeof(*ctx_header);
|
|
|
|
offset = 0;
|
|
while (offset < packets) {
|
|
unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size);
|
|
|
|
if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0)
|
|
break;
|
|
|
|
++offset;
|
|
}
|
|
|
|
if (offset > 0) {
|
|
unsigned int length = sizeof(*ctx_header) * offset;
|
|
|
|
skip_rx_packets(context, tstamp, length, ctx_header, private_data);
|
|
if (amdtp_streaming_error(s))
|
|
return;
|
|
|
|
ctx_header += offset;
|
|
header_length -= length;
|
|
}
|
|
|
|
if (offset < packets) {
|
|
s->ready_processing = true;
|
|
wake_up(&s->ready_wait);
|
|
|
|
process_rx_packets(context, tstamp, header_length, ctx_header, private_data);
|
|
if (amdtp_streaming_error(s))
|
|
return;
|
|
|
|
if (s == d->irq_target)
|
|
s->context->callback.sc = irq_target_callback;
|
|
else
|
|
s->context->callback.sc = process_rx_packets;
|
|
}
|
|
}
|
|
|
|
static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
|
|
void *header, void *private_data)
|
|
{
|
|
struct amdtp_stream *s = private_data;
|
|
__be32 *ctx_header = header;
|
|
unsigned int packets;
|
|
unsigned int desc_count;
|
|
int i;
|
|
int err;
|
|
|
|
if (s->packet_index < 0)
|
|
return;
|
|
|
|
// Calculate the number of packets in buffer and check XRUN.
|
|
packets = header_length / s->ctx_data.tx.ctx_header_size;
|
|
|
|
desc_count = 0;
|
|
err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets, &desc_count);
|
|
if (err < 0) {
|
|
if (err != -EAGAIN) {
|
|
cancel_stream(s);
|
|
return;
|
|
}
|
|
} else {
|
|
struct amdtp_domain *d = s->domain;
|
|
|
|
process_ctx_payloads(s, s->pkt_descs, desc_count);
|
|
|
|
if (d->replay.enable)
|
|
cache_seq(s, s->pkt_descs, desc_count);
|
|
}
|
|
|
|
for (i = 0; i < packets; ++i) {
|
|
struct fw_iso_packet params = {0};
|
|
|
|
if (queue_in_packet(s, ¶ms) < 0) {
|
|
cancel_stream(s);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
|
|
void *header, void *private_data)
|
|
{
|
|
struct amdtp_stream *s = private_data;
|
|
const __be32 *ctx_header = header;
|
|
unsigned int packets;
|
|
unsigned int cycle;
|
|
int i;
|
|
|
|
if (s->packet_index < 0)
|
|
return;
|
|
|
|
packets = header_length / s->ctx_data.tx.ctx_header_size;
|
|
|
|
ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
|
|
cycle = compute_ohci_cycle_count(ctx_header[1]);
|
|
s->next_cycle = increment_ohci_cycle_count(cycle, 1);
|
|
|
|
for (i = 0; i < packets; ++i) {
|
|
struct fw_iso_packet params = {0};
|
|
|
|
if (queue_in_packet(s, ¶ms) < 0) {
|
|
cancel_stream(s);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
|
|
size_t header_length, void *header, void *private_data)
|
|
{
|
|
struct amdtp_stream *s = private_data;
|
|
struct amdtp_domain *d = s->domain;
|
|
__be32 *ctx_header;
|
|
unsigned int packets;
|
|
unsigned int offset;
|
|
|
|
if (s->packet_index < 0)
|
|
return;
|
|
|
|
packets = header_length / s->ctx_data.tx.ctx_header_size;
|
|
|
|
offset = 0;
|
|
ctx_header = header;
|
|
while (offset < packets) {
|
|
unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]);
|
|
|
|
if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0)
|
|
break;
|
|
|
|
ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
|
|
++offset;
|
|
}
|
|
|
|
ctx_header = header;
|
|
|
|
if (offset > 0) {
|
|
size_t length = s->ctx_data.tx.ctx_header_size * offset;
|
|
|
|
drop_tx_packets(context, tstamp, length, ctx_header, s);
|
|
if (amdtp_streaming_error(s))
|
|
return;
|
|
|
|
ctx_header += length / sizeof(*ctx_header);
|
|
header_length -= length;
|
|
}
|
|
|
|
if (offset < packets) {
|
|
s->ready_processing = true;
|
|
wake_up(&s->ready_wait);
|
|
|
|
process_tx_packets(context, tstamp, header_length, ctx_header, s);
|
|
if (amdtp_streaming_error(s))
|
|
return;
|
|
|
|
context->callback.sc = process_tx_packets;
|
|
}
|
|
}
|
|
|
|
static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp,
|
|
size_t header_length, void *header, void *private_data)
|
|
{
|
|
struct amdtp_stream *s = private_data;
|
|
struct amdtp_domain *d = s->domain;
|
|
__be32 *ctx_header;
|
|
unsigned int count;
|
|
unsigned int events;
|
|
int i;
|
|
|
|
if (s->packet_index < 0)
|
|
return;
|
|
|
|
count = header_length / s->ctx_data.tx.ctx_header_size;
|
|
|
|
// Attempt to detect any event in the batch of packets.
|
|
events = 0;
|
|
ctx_header = header;
|
|
for (i = 0; i < count; ++i) {
|
|
unsigned int payload_quads =
|
|
(be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32);
|
|
unsigned int data_blocks;
|
|
|
|
if (s->flags & CIP_NO_HEADER) {
|
|
data_blocks = payload_quads / s->data_block_quadlets;
|
|
} else {
|
|
__be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
|
|
|
|
if (payload_quads < CIP_HEADER_QUADLETS) {
|
|
data_blocks = 0;
|
|
} else {
|
|
payload_quads -= CIP_HEADER_QUADLETS;
|
|
|
|
if (s->flags & CIP_UNAWARE_SYT) {
|
|
data_blocks = payload_quads / s->data_block_quadlets;
|
|
} else {
|
|
u32 cip1 = be32_to_cpu(cip_headers[1]);
|
|
|
|
// NODATA packet can includes any data blocks but they are
|
|
// not available as event.
|
|
if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA)
|
|
data_blocks = 0;
|
|
else
|
|
data_blocks = payload_quads / s->data_block_quadlets;
|
|
}
|
|
}
|
|
}
|
|
|
|
events += data_blocks;
|
|
|
|
ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
|
|
}
|
|
|
|
drop_tx_packets(context, tstamp, header_length, header, s);
|
|
|
|
if (events > 0)
|
|
s->ctx_data.tx.event_starts = true;
|
|
|
|
// Decide the cycle count to begin processing content of packet in IR contexts.
|
|
{
|
|
unsigned int stream_count = 0;
|
|
unsigned int event_starts_count = 0;
|
|
unsigned int cycle = UINT_MAX;
|
|
|
|
list_for_each_entry(s, &d->streams, list) {
|
|
if (s->direction == AMDTP_IN_STREAM) {
|
|
++stream_count;
|
|
if (s->ctx_data.tx.event_starts)
|
|
++event_starts_count;
|
|
}
|
|
}
|
|
|
|
if (stream_count == event_starts_count) {
|
|
unsigned int next_cycle;
|
|
|
|
list_for_each_entry(s, &d->streams, list) {
|
|
if (s->direction != AMDTP_IN_STREAM)
|
|
continue;
|
|
|
|
next_cycle = increment_ohci_cycle_count(s->next_cycle,
|
|
d->processing_cycle.tx_init_skip);
|
|
if (cycle == UINT_MAX ||
|
|
compare_ohci_cycle_count(next_cycle, cycle) > 0)
|
|
cycle = next_cycle;
|
|
|
|
s->context->callback.sc = process_tx_packets_intermediately;
|
|
}
|
|
|
|
d->processing_cycle.tx_start = cycle;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void process_ctxs_in_domain(struct amdtp_domain *d)
|
|
{
|
|
struct amdtp_stream *s;
|
|
|
|
list_for_each_entry(s, &d->streams, list) {
|
|
if (s != d->irq_target && amdtp_stream_running(s))
|
|
fw_iso_context_flush_completions(s->context);
|
|
|
|
if (amdtp_streaming_error(s))
|
|
goto error;
|
|
}
|
|
|
|
return;
|
|
error:
|
|
if (amdtp_stream_running(d->irq_target))
|
|
cancel_stream(d->irq_target);
|
|
|
|
list_for_each_entry(s, &d->streams, list) {
|
|
if (amdtp_stream_running(s))
|
|
cancel_stream(s);
|
|
}
|
|
}
|
|
|
|
static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
|
|
void *header, void *private_data)
|
|
{
|
|
struct amdtp_stream *s = private_data;
|
|
struct amdtp_domain *d = s->domain;
|
|
|
|
process_rx_packets(context, tstamp, header_length, header, private_data);
|
|
process_ctxs_in_domain(d);
|
|
}
|
|
|
|
static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp,
|
|
size_t header_length, void *header, void *private_data)
|
|
{
|
|
struct amdtp_stream *s = private_data;
|
|
struct amdtp_domain *d = s->domain;
|
|
|
|
process_rx_packets_intermediately(context, tstamp, header_length, header, private_data);
|
|
process_ctxs_in_domain(d);
|
|
}
|
|
|
|
static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp,
|
|
size_t header_length, void *header, void *private_data)
|
|
{
|
|
struct amdtp_stream *s = private_data;
|
|
struct amdtp_domain *d = s->domain;
|
|
bool ready_to_start;
|
|
|
|
skip_rx_packets(context, tstamp, header_length, header, private_data);
|
|
process_ctxs_in_domain(d);
|
|
|
|
if (d->replay.enable && !d->replay.on_the_fly) {
|
|
unsigned int rx_count = 0;
|
|
unsigned int rx_ready_count = 0;
|
|
struct amdtp_stream *rx;
|
|
|
|
list_for_each_entry(rx, &d->streams, list) {
|
|
struct amdtp_stream *tx;
|
|
unsigned int cached_cycles;
|
|
|
|
if (rx->direction != AMDTP_OUT_STREAM)
|
|
continue;
|
|
++rx_count;
|
|
|
|
tx = rx->ctx_data.rx.replay_target;
|
|
cached_cycles = calculate_cached_cycle_count(tx, 0);
|
|
if (cached_cycles > tx->ctx_data.tx.cache.size / 2)
|
|
++rx_ready_count;
|
|
}
|
|
|
|
ready_to_start = (rx_count == rx_ready_count);
|
|
} else {
|
|
ready_to_start = true;
|
|
}
|
|
|
|
// Decide the cycle count to begin processing content of packet in IT contexts. All of IT
|
|
// contexts are expected to start and get callback when reaching here.
|
|
if (ready_to_start) {
|
|
unsigned int cycle = s->next_cycle;
|
|
list_for_each_entry(s, &d->streams, list) {
|
|
if (s->direction != AMDTP_OUT_STREAM)
|
|
continue;
|
|
|
|
if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0)
|
|
cycle = s->next_cycle;
|
|
|
|
if (s == d->irq_target)
|
|
s->context->callback.sc = irq_target_callback_intermediately;
|
|
else
|
|
s->context->callback.sc = process_rx_packets_intermediately;
|
|
}
|
|
|
|
d->processing_cycle.rx_start = cycle;
|
|
}
|
|
}
|
|
|
|
// This is executed one time. For in-stream, first packet has come. For out-stream, prepared to
|
|
// transmit first packet.
|
|
static void amdtp_stream_first_callback(struct fw_iso_context *context,
|
|
u32 tstamp, size_t header_length,
|
|
void *header, void *private_data)
|
|
{
|
|
struct amdtp_stream *s = private_data;
|
|
struct amdtp_domain *d = s->domain;
|
|
|
|
if (s->direction == AMDTP_IN_STREAM) {
|
|
context->callback.sc = drop_tx_packets_initially;
|
|
} else {
|
|
if (s == d->irq_target)
|
|
context->callback.sc = irq_target_callback_skip;
|
|
else
|
|
context->callback.sc = skip_rx_packets;
|
|
}
|
|
|
|
context->callback.sc(context, tstamp, header_length, header, s);
|
|
}
|
|
|
|
/**
|
|
* amdtp_stream_start - start transferring packets
|
|
* @s: the AMDTP stream to start
|
|
* @channel: the isochronous channel on the bus
|
|
* @speed: firewire speed code
|
|
* @queue_size: The number of packets in the queue.
|
|
* @idle_irq_interval: the interval to queue packet during initial state.
|
|
*
|
|
* The stream cannot be started until it has been configured with
|
|
* amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
|
|
* device can be started.
|
|
*/
|
|
static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
|
|
unsigned int queue_size, unsigned int idle_irq_interval)
|
|
{
|
|
bool is_irq_target = (s == s->domain->irq_target);
|
|
unsigned int ctx_header_size;
|
|
unsigned int max_ctx_payload_size;
|
|
enum dma_data_direction dir;
|
|
int type, tag, err;
|
|
|
|
mutex_lock(&s->mutex);
|
|
|
|
if (WARN_ON(amdtp_stream_running(s) ||
|
|
(s->data_block_quadlets < 1))) {
|
|
err = -EBADFD;
|
|
goto err_unlock;
|
|
}
|
|
|
|
if (s->direction == AMDTP_IN_STREAM) {
|
|
// NOTE: IT context should be used for constant IRQ.
|
|
if (is_irq_target) {
|
|
err = -EINVAL;
|
|
goto err_unlock;
|
|
}
|
|
|
|
s->data_block_counter = UINT_MAX;
|
|
} else {
|
|
s->data_block_counter = 0;
|
|
}
|
|
|
|
// initialize packet buffer.
|
|
if (s->direction == AMDTP_IN_STREAM) {
|
|
dir = DMA_FROM_DEVICE;
|
|
type = FW_ISO_CONTEXT_RECEIVE;
|
|
if (!(s->flags & CIP_NO_HEADER))
|
|
ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
|
|
else
|
|
ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
|
|
} else {
|
|
dir = DMA_TO_DEVICE;
|
|
type = FW_ISO_CONTEXT_TRANSMIT;
|
|
ctx_header_size = 0; // No effect for IT context.
|
|
}
|
|
max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s);
|
|
|
|
err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir);
|
|
if (err < 0)
|
|
goto err_unlock;
|
|
s->queue_size = queue_size;
|
|
|
|
s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
|
|
type, channel, speed, ctx_header_size,
|
|
amdtp_stream_first_callback, s);
|
|
if (IS_ERR(s->context)) {
|
|
err = PTR_ERR(s->context);
|
|
if (err == -EBUSY)
|
|
dev_err(&s->unit->device,
|
|
"no free stream on this controller\n");
|
|
goto err_buffer;
|
|
}
|
|
|
|
amdtp_stream_update(s);
|
|
|
|
if (s->direction == AMDTP_IN_STREAM) {
|
|
s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
|
|
s->ctx_data.tx.ctx_header_size = ctx_header_size;
|
|
s->ctx_data.tx.event_starts = false;
|
|
|
|
if (s->domain->replay.enable) {
|
|
// struct fw_iso_context.drop_overflow_headers is false therefore it's
|
|
// possible to cache much unexpectedly.
|
|
s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2,
|
|
queue_size * 3 / 2);
|
|
s->ctx_data.tx.cache.tail = 0;
|
|
s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size,
|
|
sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL);
|
|
if (!s->ctx_data.tx.cache.descs) {
|
|
err = -ENOMEM;
|
|
goto err_context;
|
|
}
|
|
}
|
|
} else {
|
|
static const struct {
|
|
unsigned int data_block;
|
|
unsigned int syt_offset;
|
|
} *entry, initial_state[] = {
|
|
[CIP_SFC_32000] = { 4, 3072 },
|
|
[CIP_SFC_48000] = { 6, 1024 },
|
|
[CIP_SFC_96000] = { 12, 1024 },
|
|
[CIP_SFC_192000] = { 24, 1024 },
|
|
[CIP_SFC_44100] = { 0, 67 },
|
|
[CIP_SFC_88200] = { 0, 67 },
|
|
[CIP_SFC_176400] = { 0, 67 },
|
|
};
|
|
|
|
s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL);
|
|
if (!s->ctx_data.rx.seq.descs) {
|
|
err = -ENOMEM;
|
|
goto err_context;
|
|
}
|
|
s->ctx_data.rx.seq.size = queue_size;
|
|
s->ctx_data.rx.seq.tail = 0;
|
|
s->ctx_data.rx.seq.head = 0;
|
|
|
|
entry = &initial_state[s->sfc];
|
|
s->ctx_data.rx.data_block_state = entry->data_block;
|
|
s->ctx_data.rx.syt_offset_state = entry->syt_offset;
|
|
s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
|
|
|
|
s->ctx_data.rx.event_count = 0;
|
|
}
|
|
|
|
if (s->flags & CIP_NO_HEADER)
|
|
s->tag = TAG_NO_CIP_HEADER;
|
|
else
|
|
s->tag = TAG_CIP;
|
|
|
|
s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs),
|
|
GFP_KERNEL);
|
|
if (!s->pkt_descs) {
|
|
err = -ENOMEM;
|
|
goto err_context;
|
|
}
|
|
|
|
s->packet_index = 0;
|
|
do {
|
|
struct fw_iso_packet params;
|
|
|
|
if (s->direction == AMDTP_IN_STREAM) {
|
|
err = queue_in_packet(s, ¶ms);
|
|
} else {
|
|
bool sched_irq = false;
|
|
|
|
params.header_length = 0;
|
|
params.payload_length = 0;
|
|
|
|
if (is_irq_target) {
|
|
sched_irq = !((s->packet_index + 1) %
|
|
idle_irq_interval);
|
|
}
|
|
|
|
err = queue_out_packet(s, ¶ms, sched_irq);
|
|
}
|
|
if (err < 0)
|
|
goto err_pkt_descs;
|
|
} while (s->packet_index > 0);
|
|
|
|
/* NOTE: TAG1 matches CIP. This just affects in stream. */
|
|
tag = FW_ISO_CONTEXT_MATCH_TAG1;
|
|
if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
|
|
tag |= FW_ISO_CONTEXT_MATCH_TAG0;
|
|
|
|
s->ready_processing = false;
|
|
err = fw_iso_context_start(s->context, -1, 0, tag);
|
|
if (err < 0)
|
|
goto err_pkt_descs;
|
|
|
|
mutex_unlock(&s->mutex);
|
|
|
|
return 0;
|
|
err_pkt_descs:
|
|
kfree(s->pkt_descs);
|
|
err_context:
|
|
if (s->direction == AMDTP_OUT_STREAM) {
|
|
kfree(s->ctx_data.rx.seq.descs);
|
|
} else {
|
|
if (s->domain->replay.enable)
|
|
kfree(s->ctx_data.tx.cache.descs);
|
|
}
|
|
fw_iso_context_destroy(s->context);
|
|
s->context = ERR_PTR(-1);
|
|
err_buffer:
|
|
iso_packets_buffer_destroy(&s->buffer, s->unit);
|
|
err_unlock:
|
|
mutex_unlock(&s->mutex);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* amdtp_domain_stream_pcm_pointer - get the PCM buffer position
|
|
* @d: the AMDTP domain.
|
|
* @s: the AMDTP stream that transports the PCM data
|
|
*
|
|
* Returns the current buffer position, in frames.
|
|
*/
|
|
unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
|
|
struct amdtp_stream *s)
|
|
{
|
|
struct amdtp_stream *irq_target = d->irq_target;
|
|
|
|
// Process isochronous packets queued till recent isochronous cycle to handle PCM frames.
|
|
if (irq_target && amdtp_stream_running(irq_target)) {
|
|
// In software IRQ context, the call causes dead-lock to disable the tasklet
|
|
// synchronously.
|
|
if (!in_softirq())
|
|
fw_iso_context_flush_completions(irq_target->context);
|
|
}
|
|
|
|
return READ_ONCE(s->pcm_buffer_pointer);
|
|
}
|
|
EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
|
|
|
|
/**
|
|
* amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
|
|
* @d: the AMDTP domain.
|
|
* @s: the AMDTP stream that transfers the PCM frames
|
|
*
|
|
* Returns zero always.
|
|
*/
|
|
int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
|
|
{
|
|
struct amdtp_stream *irq_target = d->irq_target;
|
|
|
|
// Process isochronous packets for recent isochronous cycle to handle
|
|
// queued PCM frames.
|
|
if (irq_target && amdtp_stream_running(irq_target))
|
|
fw_iso_context_flush_completions(irq_target->context);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
|
|
|
|
/**
|
|
* amdtp_stream_update - update the stream after a bus reset
|
|
* @s: the AMDTP stream
|
|
*/
|
|
void amdtp_stream_update(struct amdtp_stream *s)
|
|
{
|
|
/* Precomputing. */
|
|
WRITE_ONCE(s->source_node_id_field,
|
|
(fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
|
|
}
|
|
EXPORT_SYMBOL(amdtp_stream_update);
|
|
|
|
/**
|
|
* amdtp_stream_stop - stop sending packets
|
|
* @s: the AMDTP stream to stop
|
|
*
|
|
* All PCM and MIDI devices of the stream must be stopped before the stream
|
|
* itself can be stopped.
|
|
*/
|
|
static void amdtp_stream_stop(struct amdtp_stream *s)
|
|
{
|
|
mutex_lock(&s->mutex);
|
|
|
|
if (!amdtp_stream_running(s)) {
|
|
mutex_unlock(&s->mutex);
|
|
return;
|
|
}
|
|
|
|
fw_iso_context_stop(s->context);
|
|
fw_iso_context_destroy(s->context);
|
|
s->context = ERR_PTR(-1);
|
|
iso_packets_buffer_destroy(&s->buffer, s->unit);
|
|
kfree(s->pkt_descs);
|
|
|
|
if (s->direction == AMDTP_OUT_STREAM) {
|
|
kfree(s->ctx_data.rx.seq.descs);
|
|
} else {
|
|
if (s->domain->replay.enable)
|
|
kfree(s->ctx_data.tx.cache.descs);
|
|
}
|
|
|
|
mutex_unlock(&s->mutex);
|
|
}
|
|
|
|
/**
|
|
* amdtp_stream_pcm_abort - abort the running PCM device
|
|
* @s: the AMDTP stream about to be stopped
|
|
*
|
|
* If the isochronous stream needs to be stopped asynchronously, call this
|
|
* function first to stop the PCM device.
|
|
*/
|
|
void amdtp_stream_pcm_abort(struct amdtp_stream *s)
|
|
{
|
|
struct snd_pcm_substream *pcm;
|
|
|
|
pcm = READ_ONCE(s->pcm);
|
|
if (pcm)
|
|
snd_pcm_stop_xrun(pcm);
|
|
}
|
|
EXPORT_SYMBOL(amdtp_stream_pcm_abort);
|
|
|
|
/**
|
|
* amdtp_domain_init - initialize an AMDTP domain structure
|
|
* @d: the AMDTP domain to initialize.
|
|
*/
|
|
int amdtp_domain_init(struct amdtp_domain *d)
|
|
{
|
|
INIT_LIST_HEAD(&d->streams);
|
|
|
|
d->events_per_period = 0;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(amdtp_domain_init);
|
|
|
|
/**
|
|
* amdtp_domain_destroy - destroy an AMDTP domain structure
|
|
* @d: the AMDTP domain to destroy.
|
|
*/
|
|
void amdtp_domain_destroy(struct amdtp_domain *d)
|
|
{
|
|
// At present nothing to do.
|
|
return;
|
|
}
|
|
EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
|
|
|
|
/**
|
|
* amdtp_domain_add_stream - register isoc context into the domain.
|
|
* @d: the AMDTP domain.
|
|
* @s: the AMDTP stream.
|
|
* @channel: the isochronous channel on the bus.
|
|
* @speed: firewire speed code.
|
|
*/
|
|
int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
|
|
int channel, int speed)
|
|
{
|
|
struct amdtp_stream *tmp;
|
|
|
|
list_for_each_entry(tmp, &d->streams, list) {
|
|
if (s == tmp)
|
|
return -EBUSY;
|
|
}
|
|
|
|
list_add(&s->list, &d->streams);
|
|
|
|
s->channel = channel;
|
|
s->speed = speed;
|
|
s->domain = d;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
|
|
|
|
// Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams
|
|
// is less than the number of rx streams, the first tx stream is selected.
|
|
static int make_association(struct amdtp_domain *d)
|
|
{
|
|
unsigned int dst_index = 0;
|
|
struct amdtp_stream *rx;
|
|
|
|
// Make association to replay target.
|
|
list_for_each_entry(rx, &d->streams, list) {
|
|
if (rx->direction == AMDTP_OUT_STREAM) {
|
|
unsigned int src_index = 0;
|
|
struct amdtp_stream *tx = NULL;
|
|
struct amdtp_stream *s;
|
|
|
|
list_for_each_entry(s, &d->streams, list) {
|
|
if (s->direction == AMDTP_IN_STREAM) {
|
|
if (dst_index == src_index) {
|
|
tx = s;
|
|
break;
|
|
}
|
|
|
|
++src_index;
|
|
}
|
|
}
|
|
if (!tx) {
|
|
// Select the first entry.
|
|
list_for_each_entry(s, &d->streams, list) {
|
|
if (s->direction == AMDTP_IN_STREAM) {
|
|
tx = s;
|
|
break;
|
|
}
|
|
}
|
|
// No target is available to replay sequence.
|
|
if (!tx)
|
|
return -EINVAL;
|
|
}
|
|
|
|
rx->ctx_data.rx.replay_target = tx;
|
|
rx->ctx_data.rx.cache_head = 0;
|
|
|
|
++dst_index;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* amdtp_domain_start - start sending packets for isoc context in the domain.
|
|
* @d: the AMDTP domain.
|
|
* @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR
|
|
* contexts.
|
|
* @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in
|
|
* IT context.
|
|
* @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay
|
|
* according to arrival of events in tx packets.
|
|
*/
|
|
int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq,
|
|
bool replay_on_the_fly)
|
|
{
|
|
unsigned int events_per_buffer = d->events_per_buffer;
|
|
unsigned int events_per_period = d->events_per_period;
|
|
unsigned int queue_size;
|
|
struct amdtp_stream *s;
|
|
bool found = false;
|
|
int err;
|
|
|
|
if (replay_seq) {
|
|
err = make_association(d);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
d->replay.enable = replay_seq;
|
|
d->replay.on_the_fly = replay_on_the_fly;
|
|
|
|
// Select an IT context as IRQ target.
|
|
list_for_each_entry(s, &d->streams, list) {
|
|
if (s->direction == AMDTP_OUT_STREAM) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
return -ENXIO;
|
|
d->irq_target = s;
|
|
|
|
d->processing_cycle.tx_init_skip = tx_init_skip_cycles;
|
|
|
|
// This is a case that AMDTP streams in domain run just for MIDI
|
|
// substream. Use the number of events equivalent to 10 msec as
|
|
// interval of hardware IRQ.
|
|
if (events_per_period == 0)
|
|
events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100;
|
|
if (events_per_buffer == 0)
|
|
events_per_buffer = events_per_period * 3;
|
|
|
|
queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
|
|
amdtp_rate_table[d->irq_target->sfc]);
|
|
|
|
list_for_each_entry(s, &d->streams, list) {
|
|
unsigned int idle_irq_interval = 0;
|
|
|
|
if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) {
|
|
idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
|
|
amdtp_rate_table[d->irq_target->sfc]);
|
|
}
|
|
|
|
// Starts immediately but actually DMA context starts several hundred cycles later.
|
|
err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval);
|
|
if (err < 0)
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
list_for_each_entry(s, &d->streams, list)
|
|
amdtp_stream_stop(s);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(amdtp_domain_start);
|
|
|
|
/**
|
|
* amdtp_domain_stop - stop sending packets for isoc context in the same domain.
|
|
* @d: the AMDTP domain to which the isoc contexts belong.
|
|
*/
|
|
void amdtp_domain_stop(struct amdtp_domain *d)
|
|
{
|
|
struct amdtp_stream *s, *next;
|
|
|
|
if (d->irq_target)
|
|
amdtp_stream_stop(d->irq_target);
|
|
|
|
list_for_each_entry_safe(s, next, &d->streams, list) {
|
|
list_del(&s->list);
|
|
|
|
if (s != d->irq_target)
|
|
amdtp_stream_stop(s);
|
|
}
|
|
|
|
d->events_per_period = 0;
|
|
d->irq_target = NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(amdtp_domain_stop);
|