mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 13:41:51 +00:00
1c450ffef5
Advertise AVX10.1 related CPUIDs, i.e. report AVX10 support bit via CPUID.(EAX=07H, ECX=01H):EDX[bit 19] and new CPUID leaf 0x24H so that guest OS and applications can query the AVX10.1 CPUIDs directly. Intel AVX10 represents the first major new vector ISA since the introduction of Intel AVX512, which will establish a common, converged vector instruction set across all Intel architectures[1]. AVX10.1 is an early version of AVX10, that enumerates the Intel AVX512 instruction set at 128, 256, and 512 bits which is enabled on Granite Rapids. I.e., AVX10.1 is only a new CPUID enumeration with no new functionality. New features, e.g. Embedded Rounding and Suppress All Exceptions (SAE) will be introduced in AVX10.2. Advertising AVX10.1 is safe because there is nothing to enable for AVX10.1, i.e. it's purely a new way to enumerate support, thus there will never be anything for the kernel to enable. Note just the CPUID checking is changed when using AVX512 related instructions, e.g. if using one AVX512 instruction needs to check (AVX512 AND AVX512DQ), it can check ((AVX512 AND AVX512DQ) OR AVX10.1) after checking XCR0[7:5]. The versions of AVX10 are expected to be inclusive, e.g. version N+1 is a superset of version N. Per the spec, the version can never be 0, just advertise AVX10.1 if it's supported in hardware. Moreover, advertising AVX10_{128,256,512} needs to land in the same commit as advertising basic AVX10.1 support, otherwise KVM would advertise an impossible CPU model. E.g. a CPU with AVX512 but not AVX10.1/512 is impossible per the SDM. As more and more AVX related CPUIDs are added (it would have resulted in around 40-50 CPUID flags when developing AVX10), the versioning approach is introduced. But incrementing version numbers are bad for virtualization. E.g. if AVX10.2 has a feature that shouldn't be enumerated to guests for whatever reason, then KVM can't enumerate any "later" features either, because the only way to hide the problematic AVX10.2 feature is to set the version to AVX10.1 or lower[2]. But most AVX features are just passed through and don't have virtualization controls, so AVX10 should not be problematic in practice, so long as Intel honors their promise that future versions will be supersets of past versions. [1] https://cdrdv2.intel.com/v1/dl/getContent/784267 [2] https://lore.kernel.org/all/Zkz5Ak0PQlAN8DxK@google.com/ Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Tao Su <tao1.su@linux.intel.com> Link: https://lore.kernel.org/r/20240819062327.3269720-1-tao1.su@linux.intel.com [sean: minor changelog tweaks] Signed-off-by: Sean Christopherson <seanjc@google.com>
1669 lines
47 KiB
C
1669 lines
47 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
* cpuid support routines
|
|
*
|
|
* derived from arch/x86/kvm/x86.c
|
|
*
|
|
* Copyright 2011 Red Hat, Inc. and/or its affiliates.
|
|
* Copyright IBM Corporation, 2008
|
|
*/
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include "linux/lockdep.h"
|
|
#include <linux/export.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/sched/stat.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/user.h>
|
|
#include <asm/fpu/xstate.h>
|
|
#include <asm/sgx.h>
|
|
#include <asm/cpuid.h>
|
|
#include "cpuid.h"
|
|
#include "lapic.h"
|
|
#include "mmu.h"
|
|
#include "trace.h"
|
|
#include "pmu.h"
|
|
#include "xen.h"
|
|
|
|
/*
|
|
* Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
|
|
* aligned to sizeof(unsigned long) because it's not accessed via bitops.
|
|
*/
|
|
u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
|
|
EXPORT_SYMBOL_GPL(kvm_cpu_caps);
|
|
|
|
u32 xstate_required_size(u64 xstate_bv, bool compacted)
|
|
{
|
|
int feature_bit = 0;
|
|
u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
|
|
|
|
xstate_bv &= XFEATURE_MASK_EXTEND;
|
|
while (xstate_bv) {
|
|
if (xstate_bv & 0x1) {
|
|
u32 eax, ebx, ecx, edx, offset;
|
|
cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
|
|
/* ECX[1]: 64B alignment in compacted form */
|
|
if (compacted)
|
|
offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
|
|
else
|
|
offset = ebx;
|
|
ret = max(ret, offset + eax);
|
|
}
|
|
|
|
xstate_bv >>= 1;
|
|
feature_bit++;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define F feature_bit
|
|
|
|
/* Scattered Flag - For features that are scattered by cpufeatures.h. */
|
|
#define SF(name) \
|
|
({ \
|
|
BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES); \
|
|
(boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0); \
|
|
})
|
|
|
|
/*
|
|
* Magic value used by KVM when querying userspace-provided CPUID entries and
|
|
* doesn't care about the CPIUD index because the index of the function in
|
|
* question is not significant. Note, this magic value must have at least one
|
|
* bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
|
|
* to avoid false positives when processing guest CPUID input.
|
|
*/
|
|
#define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
|
|
|
|
static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
|
|
struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
|
|
{
|
|
struct kvm_cpuid_entry2 *e;
|
|
int i;
|
|
|
|
/*
|
|
* KVM has a semi-arbitrary rule that querying the guest's CPUID model
|
|
* with IRQs disabled is disallowed. The CPUID model can legitimately
|
|
* have over one hundred entries, i.e. the lookup is slow, and IRQs are
|
|
* typically disabled in KVM only when KVM is in a performance critical
|
|
* path, e.g. the core VM-Enter/VM-Exit run loop. Nothing will break
|
|
* if this rule is violated, this assertion is purely to flag potential
|
|
* performance issues. If this fires, consider moving the lookup out
|
|
* of the hotpath, e.g. by caching information during CPUID updates.
|
|
*/
|
|
lockdep_assert_irqs_enabled();
|
|
|
|
for (i = 0; i < nent; i++) {
|
|
e = &entries[i];
|
|
|
|
if (e->function != function)
|
|
continue;
|
|
|
|
/*
|
|
* If the index isn't significant, use the first entry with a
|
|
* matching function. It's userspace's responsibility to not
|
|
* provide "duplicate" entries in all cases.
|
|
*/
|
|
if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
|
|
return e;
|
|
|
|
|
|
/*
|
|
* Similarly, use the first matching entry if KVM is doing a
|
|
* lookup (as opposed to emulating CPUID) for a function that's
|
|
* architecturally defined as not having a significant index.
|
|
*/
|
|
if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
|
|
/*
|
|
* Direct lookups from KVM should not diverge from what
|
|
* KVM defines internally (the architectural behavior).
|
|
*/
|
|
WARN_ON_ONCE(cpuid_function_is_indexed(function));
|
|
return e;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid_entry2 *entries,
|
|
int nent)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
u64 xfeatures;
|
|
|
|
/*
|
|
* The existing code assumes virtual address is 48-bit or 57-bit in the
|
|
* canonical address checks; exit if it is ever changed.
|
|
*/
|
|
best = cpuid_entry2_find(entries, nent, 0x80000008,
|
|
KVM_CPUID_INDEX_NOT_SIGNIFICANT);
|
|
if (best) {
|
|
int vaddr_bits = (best->eax & 0xff00) >> 8;
|
|
|
|
if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Exposing dynamic xfeatures to the guest requires additional
|
|
* enabling in the FPU, e.g. to expand the guest XSAVE state size.
|
|
*/
|
|
best = cpuid_entry2_find(entries, nent, 0xd, 0);
|
|
if (!best)
|
|
return 0;
|
|
|
|
xfeatures = best->eax | ((u64)best->edx << 32);
|
|
xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
|
|
if (!xfeatures)
|
|
return 0;
|
|
|
|
return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
|
|
}
|
|
|
|
/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
|
|
static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
|
|
int nent)
|
|
{
|
|
struct kvm_cpuid_entry2 *orig;
|
|
int i;
|
|
|
|
if (nent != vcpu->arch.cpuid_nent)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < nent; i++) {
|
|
orig = &vcpu->arch.cpuid_entries[i];
|
|
if (e2[i].function != orig->function ||
|
|
e2[i].index != orig->index ||
|
|
e2[i].flags != orig->flags ||
|
|
e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
|
|
e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct kvm_hypervisor_cpuid __kvm_get_hypervisor_cpuid(struct kvm_cpuid_entry2 *entries,
|
|
int nent, const char *sig)
|
|
{
|
|
struct kvm_hypervisor_cpuid cpuid = {};
|
|
struct kvm_cpuid_entry2 *entry;
|
|
u32 base;
|
|
|
|
for_each_possible_hypervisor_cpuid_base(base) {
|
|
entry = cpuid_entry2_find(entries, nent, base, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
|
|
|
|
if (entry) {
|
|
u32 signature[3];
|
|
|
|
signature[0] = entry->ebx;
|
|
signature[1] = entry->ecx;
|
|
signature[2] = entry->edx;
|
|
|
|
if (!memcmp(signature, sig, sizeof(signature))) {
|
|
cpuid.base = base;
|
|
cpuid.limit = entry->eax;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return cpuid;
|
|
}
|
|
|
|
static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
|
|
const char *sig)
|
|
{
|
|
return __kvm_get_hypervisor_cpuid(vcpu->arch.cpuid_entries,
|
|
vcpu->arch.cpuid_nent, sig);
|
|
}
|
|
|
|
static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_cpuid_entry2 *entries,
|
|
int nent, u32 kvm_cpuid_base)
|
|
{
|
|
return cpuid_entry2_find(entries, nent, kvm_cpuid_base | KVM_CPUID_FEATURES,
|
|
KVM_CPUID_INDEX_NOT_SIGNIFICANT);
|
|
}
|
|
|
|
static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 base = vcpu->arch.kvm_cpuid.base;
|
|
|
|
if (!base)
|
|
return NULL;
|
|
|
|
return __kvm_find_kvm_cpuid_features(vcpu->arch.cpuid_entries,
|
|
vcpu->arch.cpuid_nent, base);
|
|
}
|
|
|
|
void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
|
|
|
|
/*
|
|
* save the feature bitmap to avoid cpuid lookup for every PV
|
|
* operation
|
|
*/
|
|
if (best)
|
|
vcpu->arch.pv_cpuid.features = best->eax;
|
|
}
|
|
|
|
/*
|
|
* Calculate guest's supported XCR0 taking into account guest CPUID data and
|
|
* KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
|
|
*/
|
|
static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
best = cpuid_entry2_find(entries, nent, 0xd, 0);
|
|
if (!best)
|
|
return 0;
|
|
|
|
return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
|
|
}
|
|
|
|
static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
|
|
int nent)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
struct kvm_hypervisor_cpuid kvm_cpuid;
|
|
|
|
best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
|
|
if (best) {
|
|
/* Update OSXSAVE bit */
|
|
if (boot_cpu_has(X86_FEATURE_XSAVE))
|
|
cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
|
|
kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
|
|
|
|
cpuid_entry_change(best, X86_FEATURE_APIC,
|
|
vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
|
|
}
|
|
|
|
best = cpuid_entry2_find(entries, nent, 7, 0);
|
|
if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
|
|
cpuid_entry_change(best, X86_FEATURE_OSPKE,
|
|
kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
|
|
|
|
best = cpuid_entry2_find(entries, nent, 0xD, 0);
|
|
if (best)
|
|
best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
|
|
|
|
best = cpuid_entry2_find(entries, nent, 0xD, 1);
|
|
if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
|
|
cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
|
|
best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
|
|
|
|
kvm_cpuid = __kvm_get_hypervisor_cpuid(entries, nent, KVM_SIGNATURE);
|
|
if (kvm_cpuid.base) {
|
|
best = __kvm_find_kvm_cpuid_features(entries, nent, kvm_cpuid.base);
|
|
if (kvm_hlt_in_guest(vcpu->kvm) && best)
|
|
best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
|
|
}
|
|
|
|
if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
|
|
best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
|
|
if (best)
|
|
cpuid_entry_change(best, X86_FEATURE_MWAIT,
|
|
vcpu->arch.ia32_misc_enable_msr &
|
|
MSR_IA32_MISC_ENABLE_MWAIT);
|
|
}
|
|
}
|
|
|
|
void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
|
|
{
|
|
__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
|
|
|
|
static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
|
|
{
|
|
#ifdef CONFIG_KVM_HYPERV
|
|
struct kvm_cpuid_entry2 *entry;
|
|
|
|
entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
|
|
KVM_CPUID_INDEX_NOT_SIGNIFICANT);
|
|
return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *entry;
|
|
|
|
entry = kvm_find_cpuid_entry(vcpu, 0);
|
|
if (!entry)
|
|
return false;
|
|
|
|
return is_guest_vendor_amd(entry->ebx, entry->ecx, entry->edx) ||
|
|
is_guest_vendor_hygon(entry->ebx, entry->ecx, entry->edx);
|
|
}
|
|
|
|
static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
|
struct kvm_cpuid_entry2 *best;
|
|
bool allow_gbpages;
|
|
|
|
BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
|
|
bitmap_zero(vcpu->arch.governed_features.enabled,
|
|
KVM_MAX_NR_GOVERNED_FEATURES);
|
|
|
|
/*
|
|
* If TDP is enabled, let the guest use GBPAGES if they're supported in
|
|
* hardware. The hardware page walker doesn't let KVM disable GBPAGES,
|
|
* i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
|
|
* walk for performance and complexity reasons. Not to mention KVM
|
|
* _can't_ solve the problem because GVA->GPA walks aren't visible to
|
|
* KVM once a TDP translation is installed. Mimic hardware behavior so
|
|
* that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
|
|
* If TDP is disabled, honor *only* guest CPUID as KVM has full control
|
|
* and can install smaller shadow pages if the host lacks 1GiB support.
|
|
*/
|
|
allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
|
|
guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
|
|
if (allow_gbpages)
|
|
kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 1);
|
|
if (best && apic) {
|
|
if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
|
|
apic->lapic_timer.timer_mode_mask = 3 << 17;
|
|
else
|
|
apic->lapic_timer.timer_mode_mask = 1 << 17;
|
|
|
|
kvm_apic_set_version(vcpu);
|
|
}
|
|
|
|
vcpu->arch.guest_supported_xcr0 =
|
|
cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
|
|
|
|
kvm_update_pv_runtime(vcpu);
|
|
|
|
vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
|
|
vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
|
|
vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
|
|
|
|
kvm_pmu_refresh(vcpu);
|
|
vcpu->arch.cr4_guest_rsvd_bits =
|
|
__cr4_reserved_bits(guest_cpuid_has, vcpu);
|
|
|
|
kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
|
|
vcpu->arch.cpuid_nent));
|
|
|
|
/* Invoke the vendor callback only after the above state is updated. */
|
|
kvm_x86_call(vcpu_after_set_cpuid)(vcpu);
|
|
|
|
/*
|
|
* Except for the MMU, which needs to do its thing any vendor specific
|
|
* adjustments to the reserved GPA bits.
|
|
*/
|
|
kvm_mmu_after_set_cpuid(vcpu);
|
|
}
|
|
|
|
int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000000);
|
|
if (!best || best->eax < 0x80000008)
|
|
goto not_found;
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000008);
|
|
if (best)
|
|
return best->eax & 0xff;
|
|
not_found:
|
|
return 36;
|
|
}
|
|
|
|
/*
|
|
* This "raw" version returns the reserved GPA bits without any adjustments for
|
|
* encryption technologies that usurp bits. The raw mask should be used if and
|
|
* only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
|
|
*/
|
|
u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
|
|
{
|
|
return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
|
|
}
|
|
|
|
static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
|
|
int nent)
|
|
{
|
|
int r;
|
|
|
|
__kvm_update_cpuid_runtime(vcpu, e2, nent);
|
|
|
|
/*
|
|
* KVM does not correctly handle changing guest CPUID after KVM_RUN, as
|
|
* MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
|
|
* tracked in kvm_mmu_page_role. As a result, KVM may miss guest page
|
|
* faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
|
|
* the core vCPU model on the fly. It would've been better to forbid any
|
|
* KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
|
|
* some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
|
|
* KVM_SET_CPUID{,2} again. To support this legacy behavior, check
|
|
* whether the supplied CPUID data is equal to what's already set.
|
|
*/
|
|
if (kvm_vcpu_has_run(vcpu)) {
|
|
r = kvm_cpuid_check_equal(vcpu, e2, nent);
|
|
if (r)
|
|
return r;
|
|
|
|
kvfree(e2);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_HYPERV
|
|
if (kvm_cpuid_has_hyperv(e2, nent)) {
|
|
r = kvm_hv_vcpu_init(vcpu);
|
|
if (r)
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
r = kvm_check_cpuid(vcpu, e2, nent);
|
|
if (r)
|
|
return r;
|
|
|
|
kvfree(vcpu->arch.cpuid_entries);
|
|
vcpu->arch.cpuid_entries = e2;
|
|
vcpu->arch.cpuid_nent = nent;
|
|
|
|
vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
|
|
#ifdef CONFIG_KVM_XEN
|
|
vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
|
|
#endif
|
|
kvm_vcpu_after_set_cpuid(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* when an old userspace process fills a new kernel module */
|
|
int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid *cpuid,
|
|
struct kvm_cpuid_entry __user *entries)
|
|
{
|
|
int r, i;
|
|
struct kvm_cpuid_entry *e = NULL;
|
|
struct kvm_cpuid_entry2 *e2 = NULL;
|
|
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
return -E2BIG;
|
|
|
|
if (cpuid->nent) {
|
|
e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
|
|
if (IS_ERR(e))
|
|
return PTR_ERR(e);
|
|
|
|
e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
|
|
if (!e2) {
|
|
r = -ENOMEM;
|
|
goto out_free_cpuid;
|
|
}
|
|
}
|
|
for (i = 0; i < cpuid->nent; i++) {
|
|
e2[i].function = e[i].function;
|
|
e2[i].eax = e[i].eax;
|
|
e2[i].ebx = e[i].ebx;
|
|
e2[i].ecx = e[i].ecx;
|
|
e2[i].edx = e[i].edx;
|
|
e2[i].index = 0;
|
|
e2[i].flags = 0;
|
|
e2[i].padding[0] = 0;
|
|
e2[i].padding[1] = 0;
|
|
e2[i].padding[2] = 0;
|
|
}
|
|
|
|
r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
|
|
if (r)
|
|
kvfree(e2);
|
|
|
|
out_free_cpuid:
|
|
kvfree(e);
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries)
|
|
{
|
|
struct kvm_cpuid_entry2 *e2 = NULL;
|
|
int r;
|
|
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
return -E2BIG;
|
|
|
|
if (cpuid->nent) {
|
|
e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
|
|
if (IS_ERR(e2))
|
|
return PTR_ERR(e2);
|
|
}
|
|
|
|
r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
|
|
if (r)
|
|
kvfree(e2);
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries)
|
|
{
|
|
if (cpuid->nent < vcpu->arch.cpuid_nent)
|
|
return -E2BIG;
|
|
|
|
if (copy_to_user(entries, vcpu->arch.cpuid_entries,
|
|
vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
|
|
return -EFAULT;
|
|
|
|
cpuid->nent = vcpu->arch.cpuid_nent;
|
|
return 0;
|
|
}
|
|
|
|
/* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
|
|
static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
|
|
{
|
|
const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
|
|
struct kvm_cpuid_entry2 entry;
|
|
|
|
reverse_cpuid_check(leaf);
|
|
|
|
cpuid_count(cpuid.function, cpuid.index,
|
|
&entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
|
|
|
|
kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
|
|
}
|
|
|
|
static __always_inline
|
|
void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
|
|
{
|
|
/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
|
|
BUILD_BUG_ON(leaf < NCAPINTS);
|
|
|
|
kvm_cpu_caps[leaf] = mask;
|
|
|
|
__kvm_cpu_cap_mask(leaf);
|
|
}
|
|
|
|
static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
|
|
{
|
|
/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
|
|
BUILD_BUG_ON(leaf >= NCAPINTS);
|
|
|
|
kvm_cpu_caps[leaf] &= mask;
|
|
|
|
__kvm_cpu_cap_mask(leaf);
|
|
}
|
|
|
|
void kvm_set_cpu_caps(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
unsigned int f_gbpages = F(GBPAGES);
|
|
unsigned int f_lm = F(LM);
|
|
unsigned int f_xfd = F(XFD);
|
|
#else
|
|
unsigned int f_gbpages = 0;
|
|
unsigned int f_lm = 0;
|
|
unsigned int f_xfd = 0;
|
|
#endif
|
|
memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
|
|
|
|
BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
|
|
sizeof(boot_cpu_data.x86_capability));
|
|
|
|
memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
|
|
sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
|
|
|
|
kvm_cpu_cap_mask(CPUID_1_ECX,
|
|
/*
|
|
* NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
|
|
* advertised to guests via CPUID!
|
|
*/
|
|
F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
|
|
0 /* DS-CPL, VMX, SMX, EST */ |
|
|
0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
|
|
F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
|
|
F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
|
|
F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
|
|
0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
|
|
F(F16C) | F(RDRAND)
|
|
);
|
|
/* KVM emulates x2apic in software irrespective of host support. */
|
|
kvm_cpu_cap_set(X86_FEATURE_X2APIC);
|
|
|
|
kvm_cpu_cap_mask(CPUID_1_EDX,
|
|
F(FPU) | F(VME) | F(DE) | F(PSE) |
|
|
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
|
|
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
|
|
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
|
|
F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
|
|
0 /* Reserved, DS, ACPI */ | F(MMX) |
|
|
F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
|
|
0 /* HTT, TM, Reserved, PBE */
|
|
);
|
|
|
|
kvm_cpu_cap_mask(CPUID_7_0_EBX,
|
|
F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
|
|
F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
|
|
F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
|
|
F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
|
|
F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
|
|
F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
|
|
F(AVX512VL));
|
|
|
|
kvm_cpu_cap_mask(CPUID_7_ECX,
|
|
F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
|
|
F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
|
|
F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
|
|
F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
|
|
F(SGX_LC) | F(BUS_LOCK_DETECT)
|
|
);
|
|
/* Set LA57 based on hardware capability. */
|
|
if (cpuid_ecx(7) & F(LA57))
|
|
kvm_cpu_cap_set(X86_FEATURE_LA57);
|
|
|
|
/*
|
|
* PKU not yet implemented for shadow paging and requires OSPKE
|
|
* to be set on the host. Clear it if that is not the case
|
|
*/
|
|
if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
|
|
kvm_cpu_cap_clear(X86_FEATURE_PKU);
|
|
|
|
kvm_cpu_cap_mask(CPUID_7_EDX,
|
|
F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
|
|
F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
|
|
F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
|
|
F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
|
|
F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
|
|
);
|
|
|
|
/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
|
|
kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
|
|
kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
|
|
kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
|
|
if (boot_cpu_has(X86_FEATURE_STIBP))
|
|
kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
|
|
if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
|
|
kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
|
|
|
|
kvm_cpu_cap_mask(CPUID_7_1_EAX,
|
|
F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
|
|
F(FZRM) | F(FSRS) | F(FSRC) |
|
|
F(AMX_FP16) | F(AVX_IFMA) | F(LAM)
|
|
);
|
|
|
|
kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
|
|
F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
|
|
F(AMX_COMPLEX) | F(AVX10)
|
|
);
|
|
|
|
kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
|
|
F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
|
|
F(BHI_CTRL) | F(MCDT_NO)
|
|
);
|
|
|
|
kvm_cpu_cap_mask(CPUID_D_1_EAX,
|
|
F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
|
|
);
|
|
|
|
kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
|
|
SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
|
|
);
|
|
|
|
kvm_cpu_cap_init_kvm_defined(CPUID_24_0_EBX,
|
|
F(AVX10_128) | F(AVX10_256) | F(AVX10_512)
|
|
);
|
|
|
|
kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
|
|
F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
|
|
F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
|
|
F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
|
|
0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
|
|
F(TOPOEXT) | 0 /* PERFCTR_CORE */
|
|
);
|
|
|
|
kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
|
|
F(FPU) | F(VME) | F(DE) | F(PSE) |
|
|
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
|
|
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
|
|
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
|
|
F(PAT) | F(PSE36) | 0 /* Reserved */ |
|
|
F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
|
|
F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
|
|
0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
|
|
);
|
|
|
|
if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
|
|
kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
|
|
|
|
kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
|
|
SF(CONSTANT_TSC)
|
|
);
|
|
|
|
kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
|
|
F(CLZERO) | F(XSAVEERPTR) |
|
|
F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
|
|
F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
|
|
F(AMD_PSFD)
|
|
);
|
|
|
|
/*
|
|
* AMD has separate bits for each SPEC_CTRL bit.
|
|
* arch/x86/kernel/cpu/bugs.c is kind enough to
|
|
* record that in cpufeatures so use them.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_IBPB))
|
|
kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
|
|
if (boot_cpu_has(X86_FEATURE_IBRS))
|
|
kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
|
|
if (boot_cpu_has(X86_FEATURE_STIBP))
|
|
kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
|
|
if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
|
|
kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
|
|
if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
|
|
kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
|
|
/*
|
|
* The preference is to use SPEC CTRL MSR instead of the
|
|
* VIRT_SPEC MSR.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
|
|
!boot_cpu_has(X86_FEATURE_AMD_SSBD))
|
|
kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
|
|
|
|
/*
|
|
* Hide all SVM features by default, SVM will set the cap bits for
|
|
* features it emulates and/or exposes for L1.
|
|
*/
|
|
kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
|
|
|
|
kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
|
|
0 /* SME */ | 0 /* SEV */ | 0 /* VM_PAGE_FLUSH */ | 0 /* SEV_ES */ |
|
|
F(SME_COHERENT));
|
|
|
|
kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
|
|
F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
|
|
F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
|
|
F(WRMSR_XX_BASE_NS)
|
|
);
|
|
|
|
kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
|
|
kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
|
|
kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
|
|
|
|
kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
|
|
F(PERFMON_V2)
|
|
);
|
|
|
|
/*
|
|
* Synthesize "LFENCE is serializing" into the AMD-defined entry in
|
|
* KVM's supported CPUID if the feature is reported as supported by the
|
|
* kernel. LFENCE_RDTSC was a Linux-defined synthetic feature long
|
|
* before AMD joined the bandwagon, e.g. LFENCE is serializing on most
|
|
* CPUs that support SSE2. On CPUs that don't support AMD's leaf,
|
|
* kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
|
|
* the mask with the raw host CPUID, and reporting support in AMD's
|
|
* leaf can make it easier for userspace to detect the feature.
|
|
*/
|
|
if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
|
|
kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
|
|
if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
|
|
kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
|
|
kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
|
|
|
|
kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
|
|
F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
|
|
F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
|
|
F(PMM) | F(PMM_EN)
|
|
);
|
|
|
|
/*
|
|
* Hide RDTSCP and RDPID if either feature is reported as supported but
|
|
* probing MSR_TSC_AUX failed. This is purely a sanity check and
|
|
* should never happen, but the guest will likely crash if RDTSCP or
|
|
* RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
|
|
* the past. For example, the sanity check may fire if this instance of
|
|
* KVM is running as L1 on top of an older, broken KVM.
|
|
*/
|
|
if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
|
|
kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
|
|
!kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
|
|
kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
|
|
kvm_cpu_cap_clear(X86_FEATURE_RDPID);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
|
|
|
|
struct kvm_cpuid_array {
|
|
struct kvm_cpuid_entry2 *entries;
|
|
int maxnent;
|
|
int nent;
|
|
};
|
|
|
|
static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
|
|
{
|
|
if (array->nent >= array->maxnent)
|
|
return NULL;
|
|
|
|
return &array->entries[array->nent++];
|
|
}
|
|
|
|
static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
|
|
u32 function, u32 index)
|
|
{
|
|
struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
|
|
|
|
if (!entry)
|
|
return NULL;
|
|
|
|
memset(entry, 0, sizeof(*entry));
|
|
entry->function = function;
|
|
entry->index = index;
|
|
switch (function & 0xC0000000) {
|
|
case 0x40000000:
|
|
/* Hypervisor leaves are always synthesized by __do_cpuid_func. */
|
|
return entry;
|
|
|
|
case 0x80000000:
|
|
/*
|
|
* 0x80000021 is sometimes synthesized by __do_cpuid_func, which
|
|
* would result in out-of-bounds calls to do_host_cpuid.
|
|
*/
|
|
{
|
|
static int max_cpuid_80000000;
|
|
if (!READ_ONCE(max_cpuid_80000000))
|
|
WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
|
|
if (function > READ_ONCE(max_cpuid_80000000))
|
|
return entry;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
cpuid_count(entry->function, entry->index,
|
|
&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
|
|
|
|
if (cpuid_function_is_indexed(function))
|
|
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
|
|
return entry;
|
|
}
|
|
|
|
static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
|
|
{
|
|
struct kvm_cpuid_entry2 *entry;
|
|
|
|
if (array->nent >= array->maxnent)
|
|
return -E2BIG;
|
|
|
|
entry = &array->entries[array->nent];
|
|
entry->function = func;
|
|
entry->index = 0;
|
|
entry->flags = 0;
|
|
|
|
switch (func) {
|
|
case 0:
|
|
entry->eax = 7;
|
|
++array->nent;
|
|
break;
|
|
case 1:
|
|
entry->ecx = F(MOVBE);
|
|
++array->nent;
|
|
break;
|
|
case 7:
|
|
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
entry->eax = 0;
|
|
if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
|
|
entry->ecx = F(RDPID);
|
|
++array->nent;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
|
|
{
|
|
struct kvm_cpuid_entry2 *entry;
|
|
int r, i, max_idx;
|
|
|
|
/* all calls to cpuid_count() should be made on the same cpu */
|
|
get_cpu();
|
|
|
|
r = -E2BIG;
|
|
|
|
entry = do_host_cpuid(array, function, 0);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
switch (function) {
|
|
case 0:
|
|
/* Limited to the highest leaf implemented in KVM. */
|
|
entry->eax = min(entry->eax, 0x24U);
|
|
break;
|
|
case 1:
|
|
cpuid_entry_override(entry, CPUID_1_EDX);
|
|
cpuid_entry_override(entry, CPUID_1_ECX);
|
|
break;
|
|
case 2:
|
|
/*
|
|
* On ancient CPUs, function 2 entries are STATEFUL. That is,
|
|
* CPUID(function=2, index=0) may return different results each
|
|
* time, with the least-significant byte in EAX enumerating the
|
|
* number of times software should do CPUID(2, 0).
|
|
*
|
|
* Modern CPUs, i.e. every CPU KVM has *ever* run on are less
|
|
* idiotic. Intel's SDM states that EAX & 0xff "will always
|
|
* return 01H. Software should ignore this value and not
|
|
* interpret it as an informational descriptor", while AMD's
|
|
* APM states that CPUID(2) is reserved.
|
|
*
|
|
* WARN if a frankenstein CPU that supports virtualization and
|
|
* a stateful CPUID.0x2 is encountered.
|
|
*/
|
|
WARN_ON_ONCE((entry->eax & 0xff) > 1);
|
|
break;
|
|
/* functions 4 and 0x8000001d have additional index. */
|
|
case 4:
|
|
case 0x8000001d:
|
|
/*
|
|
* Read entries until the cache type in the previous entry is
|
|
* zero, i.e. indicates an invalid entry.
|
|
*/
|
|
for (i = 1; entry->eax & 0x1f; ++i) {
|
|
entry = do_host_cpuid(array, function, i);
|
|
if (!entry)
|
|
goto out;
|
|
}
|
|
break;
|
|
case 6: /* Thermal management */
|
|
entry->eax = 0x4; /* allow ARAT */
|
|
entry->ebx = 0;
|
|
entry->ecx = 0;
|
|
entry->edx = 0;
|
|
break;
|
|
/* function 7 has additional index. */
|
|
case 7:
|
|
max_idx = entry->eax = min(entry->eax, 2u);
|
|
cpuid_entry_override(entry, CPUID_7_0_EBX);
|
|
cpuid_entry_override(entry, CPUID_7_ECX);
|
|
cpuid_entry_override(entry, CPUID_7_EDX);
|
|
|
|
/* KVM only supports up to 0x7.2, capped above via min(). */
|
|
if (max_idx >= 1) {
|
|
entry = do_host_cpuid(array, function, 1);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
cpuid_entry_override(entry, CPUID_7_1_EAX);
|
|
cpuid_entry_override(entry, CPUID_7_1_EDX);
|
|
entry->ebx = 0;
|
|
entry->ecx = 0;
|
|
}
|
|
if (max_idx >= 2) {
|
|
entry = do_host_cpuid(array, function, 2);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
cpuid_entry_override(entry, CPUID_7_2_EDX);
|
|
entry->ecx = 0;
|
|
entry->ebx = 0;
|
|
entry->eax = 0;
|
|
}
|
|
break;
|
|
case 0xa: { /* Architectural Performance Monitoring */
|
|
union cpuid10_eax eax;
|
|
union cpuid10_edx edx;
|
|
|
|
if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
eax.split.version_id = kvm_pmu_cap.version;
|
|
eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
|
|
eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
|
|
eax.split.mask_length = kvm_pmu_cap.events_mask_len;
|
|
edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
|
|
edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
|
|
|
|
if (kvm_pmu_cap.version)
|
|
edx.split.anythread_deprecated = 1;
|
|
edx.split.reserved1 = 0;
|
|
edx.split.reserved2 = 0;
|
|
|
|
entry->eax = eax.full;
|
|
entry->ebx = kvm_pmu_cap.events_mask;
|
|
entry->ecx = 0;
|
|
entry->edx = edx.full;
|
|
break;
|
|
}
|
|
case 0x1f:
|
|
case 0xb:
|
|
/*
|
|
* No topology; a valid topology is indicated by the presence
|
|
* of subleaf 1.
|
|
*/
|
|
entry->eax = entry->ebx = entry->ecx = 0;
|
|
break;
|
|
case 0xd: {
|
|
u64 permitted_xcr0 = kvm_get_filtered_xcr0();
|
|
u64 permitted_xss = kvm_caps.supported_xss;
|
|
|
|
entry->eax &= permitted_xcr0;
|
|
entry->ebx = xstate_required_size(permitted_xcr0, false);
|
|
entry->ecx = entry->ebx;
|
|
entry->edx &= permitted_xcr0 >> 32;
|
|
if (!permitted_xcr0)
|
|
break;
|
|
|
|
entry = do_host_cpuid(array, function, 1);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
cpuid_entry_override(entry, CPUID_D_1_EAX);
|
|
if (entry->eax & (F(XSAVES)|F(XSAVEC)))
|
|
entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
|
|
true);
|
|
else {
|
|
WARN_ON_ONCE(permitted_xss != 0);
|
|
entry->ebx = 0;
|
|
}
|
|
entry->ecx &= permitted_xss;
|
|
entry->edx &= permitted_xss >> 32;
|
|
|
|
for (i = 2; i < 64; ++i) {
|
|
bool s_state;
|
|
if (permitted_xcr0 & BIT_ULL(i))
|
|
s_state = false;
|
|
else if (permitted_xss & BIT_ULL(i))
|
|
s_state = true;
|
|
else
|
|
continue;
|
|
|
|
entry = do_host_cpuid(array, function, i);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
/*
|
|
* The supported check above should have filtered out
|
|
* invalid sub-leafs. Only valid sub-leafs should
|
|
* reach this point, and they should have a non-zero
|
|
* save state size. Furthermore, check whether the
|
|
* processor agrees with permitted_xcr0/permitted_xss
|
|
* on whether this is an XCR0- or IA32_XSS-managed area.
|
|
*/
|
|
if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
|
|
--array->nent;
|
|
continue;
|
|
}
|
|
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
|
|
entry->ecx &= ~BIT_ULL(2);
|
|
entry->edx = 0;
|
|
}
|
|
break;
|
|
}
|
|
case 0x12:
|
|
/* Intel SGX */
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Index 0: Sub-features, MISCSELECT (a.k.a extended features)
|
|
* and max enclave sizes. The SGX sub-features and MISCSELECT
|
|
* are restricted by kernel and KVM capabilities (like most
|
|
* feature flags), while enclave size is unrestricted.
|
|
*/
|
|
cpuid_entry_override(entry, CPUID_12_EAX);
|
|
entry->ebx &= SGX_MISC_EXINFO;
|
|
|
|
entry = do_host_cpuid(array, function, 1);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
/*
|
|
* Index 1: SECS.ATTRIBUTES. ATTRIBUTES are restricted a la
|
|
* feature flags. Advertise all supported flags, including
|
|
* privileged attributes that require explicit opt-in from
|
|
* userspace. ATTRIBUTES.XFRM is not adjusted as userspace is
|
|
* expected to derive it from supported XCR0.
|
|
*/
|
|
entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
|
|
entry->ebx &= 0;
|
|
break;
|
|
/* Intel PT */
|
|
case 0x14:
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
|
|
if (!do_host_cpuid(array, function, i))
|
|
goto out;
|
|
}
|
|
break;
|
|
/* Intel AMX TILE */
|
|
case 0x1d:
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
|
|
if (!do_host_cpuid(array, function, i))
|
|
goto out;
|
|
}
|
|
break;
|
|
case 0x1e: /* TMUL information */
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
break;
|
|
case 0x24: {
|
|
u8 avx10_version;
|
|
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_AVX10)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* The AVX10 version is encoded in EBX[7:0]. Note, the version
|
|
* is guaranteed to be >=1 if AVX10 is supported. Note #2, the
|
|
* version needs to be captured before overriding EBX features!
|
|
*/
|
|
avx10_version = min_t(u8, entry->ebx & 0xff, 1);
|
|
cpuid_entry_override(entry, CPUID_24_0_EBX);
|
|
entry->ebx |= avx10_version;
|
|
|
|
entry->eax = 0;
|
|
entry->ecx = 0;
|
|
entry->edx = 0;
|
|
break;
|
|
}
|
|
case KVM_CPUID_SIGNATURE: {
|
|
const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
|
|
entry->eax = KVM_CPUID_FEATURES;
|
|
entry->ebx = sigptr[0];
|
|
entry->ecx = sigptr[1];
|
|
entry->edx = sigptr[2];
|
|
break;
|
|
}
|
|
case KVM_CPUID_FEATURES:
|
|
entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
|
|
(1 << KVM_FEATURE_NOP_IO_DELAY) |
|
|
(1 << KVM_FEATURE_CLOCKSOURCE2) |
|
|
(1 << KVM_FEATURE_ASYNC_PF) |
|
|
(1 << KVM_FEATURE_PV_EOI) |
|
|
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
|
|
(1 << KVM_FEATURE_PV_UNHALT) |
|
|
(1 << KVM_FEATURE_PV_TLB_FLUSH) |
|
|
(1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
|
|
(1 << KVM_FEATURE_PV_SEND_IPI) |
|
|
(1 << KVM_FEATURE_POLL_CONTROL) |
|
|
(1 << KVM_FEATURE_PV_SCHED_YIELD) |
|
|
(1 << KVM_FEATURE_ASYNC_PF_INT);
|
|
|
|
if (sched_info_on())
|
|
entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
|
|
|
|
entry->ebx = 0;
|
|
entry->ecx = 0;
|
|
entry->edx = 0;
|
|
break;
|
|
case 0x80000000:
|
|
entry->eax = min(entry->eax, 0x80000022);
|
|
/*
|
|
* Serializing LFENCE is reported in a multitude of ways, and
|
|
* NullSegClearsBase is not reported in CPUID on Zen2; help
|
|
* userspace by providing the CPUID leaf ourselves.
|
|
*
|
|
* However, only do it if the host has CPUID leaf 0x8000001d.
|
|
* QEMU thinks that it can query the host blindly for that
|
|
* CPUID leaf if KVM reports that it supports 0x8000001d or
|
|
* above. The processor merrily returns values from the
|
|
* highest Intel leaf which QEMU tries to use as the guest's
|
|
* 0x8000001d. Even worse, this can result in an infinite
|
|
* loop if said highest leaf has no subleaves indexed by ECX.
|
|
*/
|
|
if (entry->eax >= 0x8000001d &&
|
|
(static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
|
|
|| !static_cpu_has_bug(X86_BUG_NULL_SEG)))
|
|
entry->eax = max(entry->eax, 0x80000021);
|
|
break;
|
|
case 0x80000001:
|
|
entry->ebx &= ~GENMASK(27, 16);
|
|
cpuid_entry_override(entry, CPUID_8000_0001_EDX);
|
|
cpuid_entry_override(entry, CPUID_8000_0001_ECX);
|
|
break;
|
|
case 0x80000005:
|
|
/* Pass host L1 cache and TLB info. */
|
|
break;
|
|
case 0x80000006:
|
|
/* Drop reserved bits, pass host L2 cache and TLB info. */
|
|
entry->edx &= ~GENMASK(17, 16);
|
|
break;
|
|
case 0x80000007: /* Advanced power management */
|
|
cpuid_entry_override(entry, CPUID_8000_0007_EDX);
|
|
|
|
/* mask against host */
|
|
entry->edx &= boot_cpu_data.x86_power;
|
|
entry->eax = entry->ebx = entry->ecx = 0;
|
|
break;
|
|
case 0x80000008: {
|
|
/*
|
|
* GuestPhysAddrSize (EAX[23:16]) is intended for software
|
|
* use.
|
|
*
|
|
* KVM's ABI is to report the effective MAXPHYADDR for the
|
|
* guest in PhysAddrSize (phys_as), and the maximum
|
|
* *addressable* GPA in GuestPhysAddrSize (g_phys_as).
|
|
*
|
|
* GuestPhysAddrSize is valid if and only if TDP is enabled,
|
|
* in which case the max GPA that can be addressed by KVM may
|
|
* be less than the max GPA that can be legally generated by
|
|
* the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't
|
|
* support 5-level TDP.
|
|
*/
|
|
unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
|
|
unsigned int phys_as, g_phys_as;
|
|
|
|
/*
|
|
* If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
|
|
* the guest operates in the same PA space as the host, i.e.
|
|
* reductions in MAXPHYADDR for memory encryption affect shadow
|
|
* paging, too.
|
|
*
|
|
* If TDP is enabled, use the raw bare metal MAXPHYADDR as
|
|
* reductions to the HPAs do not affect GPAs. The max
|
|
* addressable GPA is the same as the max effective GPA, except
|
|
* that it's capped at 48 bits if 5-level TDP isn't supported
|
|
* (hardware processes bits 51:48 only when walking the fifth
|
|
* level page table).
|
|
*/
|
|
if (!tdp_enabled) {
|
|
phys_as = boot_cpu_data.x86_phys_bits;
|
|
g_phys_as = 0;
|
|
} else {
|
|
phys_as = entry->eax & 0xff;
|
|
g_phys_as = phys_as;
|
|
if (kvm_mmu_get_max_tdp_level() < 5)
|
|
g_phys_as = min(g_phys_as, 48);
|
|
}
|
|
|
|
entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16);
|
|
entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
|
|
entry->edx = 0;
|
|
cpuid_entry_override(entry, CPUID_8000_0008_EBX);
|
|
break;
|
|
}
|
|
case 0x8000000A:
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
entry->eax = 1; /* SVM revision 1 */
|
|
entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
|
|
ASID emulation to nested SVM */
|
|
entry->ecx = 0; /* Reserved */
|
|
cpuid_entry_override(entry, CPUID_8000_000A_EDX);
|
|
break;
|
|
case 0x80000019:
|
|
entry->ecx = entry->edx = 0;
|
|
break;
|
|
case 0x8000001a:
|
|
entry->eax &= GENMASK(2, 0);
|
|
entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
case 0x8000001e:
|
|
/* Do not return host topology information. */
|
|
entry->eax = entry->ebx = entry->ecx = 0;
|
|
entry->edx = 0; /* reserved */
|
|
break;
|
|
case 0x8000001F:
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
} else {
|
|
cpuid_entry_override(entry, CPUID_8000_001F_EAX);
|
|
/* Clear NumVMPL since KVM does not support VMPL. */
|
|
entry->ebx &= ~GENMASK(31, 12);
|
|
/*
|
|
* Enumerate '0' for "PA bits reduction", the adjusted
|
|
* MAXPHYADDR is enumerated directly (see 0x80000008).
|
|
*/
|
|
entry->ebx &= ~GENMASK(11, 6);
|
|
}
|
|
break;
|
|
case 0x80000020:
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
case 0x80000021:
|
|
entry->ebx = entry->ecx = entry->edx = 0;
|
|
cpuid_entry_override(entry, CPUID_8000_0021_EAX);
|
|
break;
|
|
/* AMD Extended Performance Monitoring and Debug */
|
|
case 0x80000022: {
|
|
union cpuid_0x80000022_ebx ebx;
|
|
|
|
entry->ecx = entry->edx = 0;
|
|
if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
|
|
entry->eax = entry->ebx;
|
|
break;
|
|
}
|
|
|
|
cpuid_entry_override(entry, CPUID_8000_0022_EAX);
|
|
|
|
if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
|
|
ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
|
|
else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
|
|
ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
|
|
else
|
|
ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
|
|
|
|
entry->ebx = ebx.full;
|
|
break;
|
|
}
|
|
/*Add support for Centaur's CPUID instruction*/
|
|
case 0xC0000000:
|
|
/*Just support up to 0xC0000004 now*/
|
|
entry->eax = min(entry->eax, 0xC0000004);
|
|
break;
|
|
case 0xC0000001:
|
|
cpuid_entry_override(entry, CPUID_C000_0001_EDX);
|
|
break;
|
|
case 3: /* Processor serial number */
|
|
case 5: /* MONITOR/MWAIT */
|
|
case 0xC0000002:
|
|
case 0xC0000003:
|
|
case 0xC0000004:
|
|
default:
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
r = 0;
|
|
|
|
out:
|
|
put_cpu();
|
|
|
|
return r;
|
|
}
|
|
|
|
static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
|
|
unsigned int type)
|
|
{
|
|
if (type == KVM_GET_EMULATED_CPUID)
|
|
return __do_cpuid_func_emulated(array, func);
|
|
|
|
return __do_cpuid_func(array, func);
|
|
}
|
|
|
|
#define CENTAUR_CPUID_SIGNATURE 0xC0000000
|
|
|
|
static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
|
|
unsigned int type)
|
|
{
|
|
u32 limit;
|
|
int r;
|
|
|
|
if (func == CENTAUR_CPUID_SIGNATURE &&
|
|
boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
|
|
return 0;
|
|
|
|
r = do_cpuid_func(array, func, type);
|
|
if (r)
|
|
return r;
|
|
|
|
limit = array->entries[array->nent - 1].eax;
|
|
for (func = func + 1; func <= limit; ++func) {
|
|
r = do_cpuid_func(array, func, type);
|
|
if (r)
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
|
|
__u32 num_entries, unsigned int ioctl_type)
|
|
{
|
|
int i;
|
|
__u32 pad[3];
|
|
|
|
if (ioctl_type != KVM_GET_EMULATED_CPUID)
|
|
return false;
|
|
|
|
/*
|
|
* We want to make sure that ->padding is being passed clean from
|
|
* userspace in case we want to use it for something in the future.
|
|
*
|
|
* Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
|
|
* have to give ourselves satisfied only with the emulated side. /me
|
|
* sheds a tear.
|
|
*/
|
|
for (i = 0; i < num_entries; i++) {
|
|
if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
|
|
return true;
|
|
|
|
if (pad[0] || pad[1] || pad[2])
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries,
|
|
unsigned int type)
|
|
{
|
|
static const u32 funcs[] = {
|
|
0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
|
|
};
|
|
|
|
struct kvm_cpuid_array array = {
|
|
.nent = 0,
|
|
};
|
|
int r, i;
|
|
|
|
if (cpuid->nent < 1)
|
|
return -E2BIG;
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
cpuid->nent = KVM_MAX_CPUID_ENTRIES;
|
|
|
|
if (sanity_check_entries(entries, cpuid->nent, type))
|
|
return -EINVAL;
|
|
|
|
array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
|
|
if (!array.entries)
|
|
return -ENOMEM;
|
|
|
|
array.maxnent = cpuid->nent;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(funcs); i++) {
|
|
r = get_cpuid_func(&array, funcs[i], type);
|
|
if (r)
|
|
goto out_free;
|
|
}
|
|
cpuid->nent = array.nent;
|
|
|
|
if (copy_to_user(entries, array.entries,
|
|
array.nent * sizeof(struct kvm_cpuid_entry2)))
|
|
r = -EFAULT;
|
|
|
|
out_free:
|
|
kvfree(array.entries);
|
|
return r;
|
|
}
|
|
|
|
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
|
|
u32 function, u32 index)
|
|
{
|
|
return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
|
|
function, index);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
|
|
|
|
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
|
|
u32 function)
|
|
{
|
|
return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
|
|
function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
|
|
|
|
/*
|
|
* Intel CPUID semantics treats any query for an out-of-range leaf as if the
|
|
* highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics
|
|
* returns all zeroes for any undefined leaf, whether or not the leaf is in
|
|
* range. Centaur/VIA follows Intel semantics.
|
|
*
|
|
* A leaf is considered out-of-range if its function is higher than the maximum
|
|
* supported leaf of its associated class or if its associated class does not
|
|
* exist.
|
|
*
|
|
* There are three primary classes to be considered, with their respective
|
|
* ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary
|
|
* class exists if a guest CPUID entry for its <base> leaf exists. For a given
|
|
* class, CPUID.<base>.EAX contains the max supported leaf for the class.
|
|
*
|
|
* - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
|
|
* - Hypervisor: 0x40000000 - 0x4fffffff
|
|
* - Extended: 0x80000000 - 0xbfffffff
|
|
* - Centaur: 0xc0000000 - 0xcfffffff
|
|
*
|
|
* The Hypervisor class is further subdivided into sub-classes that each act as
|
|
* their own independent class associated with a 0x100 byte range. E.g. if Qemu
|
|
* is advertising support for both HyperV and KVM, the resulting Hypervisor
|
|
* CPUID sub-classes are:
|
|
*
|
|
* - HyperV: 0x40000000 - 0x400000ff
|
|
* - KVM: 0x40000100 - 0x400001ff
|
|
*/
|
|
static struct kvm_cpuid_entry2 *
|
|
get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
|
|
{
|
|
struct kvm_cpuid_entry2 *basic, *class;
|
|
u32 function = *fn_ptr;
|
|
|
|
basic = kvm_find_cpuid_entry(vcpu, 0);
|
|
if (!basic)
|
|
return NULL;
|
|
|
|
if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
|
|
is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
|
|
return NULL;
|
|
|
|
if (function >= 0x40000000 && function <= 0x4fffffff)
|
|
class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
|
|
else if (function >= 0xc0000000)
|
|
class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
|
|
else
|
|
class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
|
|
|
|
if (class && function <= class->eax)
|
|
return NULL;
|
|
|
|
/*
|
|
* Leaf specific adjustments are also applied when redirecting to the
|
|
* max basic entry, e.g. if the max basic leaf is 0xb but there is no
|
|
* entry for CPUID.0xb.index (see below), then the output value for EDX
|
|
* needs to be pulled from CPUID.0xb.1.
|
|
*/
|
|
*fn_ptr = basic->eax;
|
|
|
|
/*
|
|
* The class does not exist or the requested function is out of range;
|
|
* the effective CPUID entry is the max basic leaf. Note, the index of
|
|
* the original requested leaf is observed!
|
|
*/
|
|
return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
|
|
}
|
|
|
|
bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
|
|
u32 *ecx, u32 *edx, bool exact_only)
|
|
{
|
|
u32 orig_function = *eax, function = *eax, index = *ecx;
|
|
struct kvm_cpuid_entry2 *entry;
|
|
bool exact, used_max_basic = false;
|
|
|
|
entry = kvm_find_cpuid_entry_index(vcpu, function, index);
|
|
exact = !!entry;
|
|
|
|
if (!entry && !exact_only) {
|
|
entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
|
|
used_max_basic = !!entry;
|
|
}
|
|
|
|
if (entry) {
|
|
*eax = entry->eax;
|
|
*ebx = entry->ebx;
|
|
*ecx = entry->ecx;
|
|
*edx = entry->edx;
|
|
if (function == 7 && index == 0) {
|
|
u64 data;
|
|
if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
|
|
(data & TSX_CTRL_CPUID_CLEAR))
|
|
*ebx &= ~(F(RTM) | F(HLE));
|
|
} else if (function == 0x80000007) {
|
|
if (kvm_hv_invtsc_suppressed(vcpu))
|
|
*edx &= ~SF(CONSTANT_TSC);
|
|
}
|
|
} else {
|
|
*eax = *ebx = *ecx = *edx = 0;
|
|
/*
|
|
* When leaf 0BH or 1FH is defined, CL is pass-through
|
|
* and EDX is always the x2APIC ID, even for undefined
|
|
* subleaves. Index 1 will exist iff the leaf is
|
|
* implemented, so we pass through CL iff leaf 1
|
|
* exists. EDX can be copied from any existing index.
|
|
*/
|
|
if (function == 0xb || function == 0x1f) {
|
|
entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
|
|
if (entry) {
|
|
*ecx = index & 0xff;
|
|
*edx = entry->edx;
|
|
}
|
|
}
|
|
}
|
|
trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
|
|
used_max_basic);
|
|
return exact;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_cpuid);
|
|
|
|
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
|
|
return 1;
|
|
|
|
eax = kvm_rax_read(vcpu);
|
|
ecx = kvm_rcx_read(vcpu);
|
|
kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
|
|
kvm_rax_write(vcpu, eax);
|
|
kvm_rbx_write(vcpu, ebx);
|
|
kvm_rcx_write(vcpu, ecx);
|
|
kvm_rdx_write(vcpu, edx);
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
|