mirror of
https://github.com/torvalds/linux.git
synced 2024-11-05 11:32:04 +00:00
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
493 lines
16 KiB
C
493 lines
16 KiB
C
#ifndef _M68K_DMA_H
|
|
#define _M68K_DMA_H 1
|
|
|
|
//#define DMA_DEBUG 1
|
|
|
|
#include <linux/config.h>
|
|
|
|
#ifdef CONFIG_COLDFIRE
|
|
/*
|
|
* ColdFire DMA Model:
|
|
* ColdFire DMA supports two forms of DMA: Single and Dual address. Single
|
|
* address mode emits a source address, and expects that the device will either
|
|
* pick up the data (DMA READ) or source data (DMA WRITE). This implies that
|
|
* the device will place data on the correct byte(s) of the data bus, as the
|
|
* memory transactions are always 32 bits. This implies that only 32 bit
|
|
* devices will find single mode transfers useful. Dual address DMA mode
|
|
* performs two cycles: source read and destination write. ColdFire will
|
|
* align the data so that the device will always get the correct bytes, thus
|
|
* is useful for 8 and 16 bit devices. This is the mode that is supported
|
|
* below.
|
|
*
|
|
* AUG/22/2000 : added support for 32-bit Dual-Address-Mode (K) 2000
|
|
* Oliver Kamphenkel (O.Kamphenkel@tu-bs.de)
|
|
*
|
|
* AUG/25/2000 : addad support for 8, 16 and 32-bit Single-Address-Mode (K)2000
|
|
* Oliver Kamphenkel (O.Kamphenkel@tu-bs.de)
|
|
*
|
|
* APR/18/2002 : added proper support for MCF5272 DMA controller.
|
|
* Arthur Shipkowski (art@videon-central.com)
|
|
*/
|
|
|
|
#include <asm/coldfire.h>
|
|
#include <asm/mcfsim.h>
|
|
#include <asm/mcfdma.h>
|
|
|
|
/*
|
|
* Set number of channels of DMA on ColdFire for different implementations.
|
|
*/
|
|
#if defined(CONFIG_M5249) || defined(CONFIG_M5307) || defined(CONFIG_M5407)
|
|
#define MAX_M68K_DMA_CHANNELS 4
|
|
#elif defined(CONFIG_M5272)
|
|
#define MAX_M68K_DMA_CHANNELS 1
|
|
#else
|
|
#define MAX_M68K_DMA_CHANNELS 2
|
|
#endif
|
|
|
|
extern unsigned int dma_base_addr[MAX_M68K_DMA_CHANNELS];
|
|
extern unsigned int dma_device_address[MAX_M68K_DMA_CHANNELS];
|
|
|
|
#if !defined(CONFIG_M5272)
|
|
#define DMA_MODE_WRITE_BIT 0x01 /* Memory/IO to IO/Memory select */
|
|
#define DMA_MODE_WORD_BIT 0x02 /* 8 or 16 bit transfers */
|
|
#define DMA_MODE_LONG_BIT 0x04 /* or 32 bit transfers */
|
|
#define DMA_MODE_SINGLE_BIT 0x08 /* single-address-mode */
|
|
|
|
/* I/O to memory, 8 bits, mode */
|
|
#define DMA_MODE_READ 0
|
|
/* memory to I/O, 8 bits, mode */
|
|
#define DMA_MODE_WRITE 1
|
|
/* I/O to memory, 16 bits, mode */
|
|
#define DMA_MODE_READ_WORD 2
|
|
/* memory to I/O, 16 bits, mode */
|
|
#define DMA_MODE_WRITE_WORD 3
|
|
/* I/O to memory, 32 bits, mode */
|
|
#define DMA_MODE_READ_LONG 4
|
|
/* memory to I/O, 32 bits, mode */
|
|
#define DMA_MODE_WRITE_LONG 5
|
|
/* I/O to memory, 8 bits, single-address-mode */
|
|
#define DMA_MODE_READ_SINGLE 8
|
|
/* memory to I/O, 8 bits, single-address-mode */
|
|
#define DMA_MODE_WRITE_SINGLE 9
|
|
/* I/O to memory, 16 bits, single-address-mode */
|
|
#define DMA_MODE_READ_WORD_SINGLE 10
|
|
/* memory to I/O, 16 bits, single-address-mode */
|
|
#define DMA_MODE_WRITE_WORD_SINGLE 11
|
|
/* I/O to memory, 32 bits, single-address-mode */
|
|
#define DMA_MODE_READ_LONG_SINGLE 12
|
|
/* memory to I/O, 32 bits, single-address-mode */
|
|
#define DMA_MODE_WRITE_LONG_SINGLE 13
|
|
|
|
#else /* CONFIG_M5272 is defined */
|
|
|
|
/* Source static-address mode */
|
|
#define DMA_MODE_SRC_SA_BIT 0x01
|
|
/* Two bits to select between all four modes */
|
|
#define DMA_MODE_SSIZE_MASK 0x06
|
|
/* Offset to shift bits in */
|
|
#define DMA_MODE_SSIZE_OFF 0x01
|
|
/* Destination static-address mode */
|
|
#define DMA_MODE_DES_SA_BIT 0x10
|
|
/* Two bits to select between all four modes */
|
|
#define DMA_MODE_DSIZE_MASK 0x60
|
|
/* Offset to shift bits in */
|
|
#define DMA_MODE_DSIZE_OFF 0x05
|
|
/* Size modifiers */
|
|
#define DMA_MODE_SIZE_LONG 0x00
|
|
#define DMA_MODE_SIZE_BYTE 0x01
|
|
#define DMA_MODE_SIZE_WORD 0x02
|
|
#define DMA_MODE_SIZE_LINE 0x03
|
|
|
|
/*
|
|
* Aliases to help speed quick ports; these may be suboptimal, however. They
|
|
* do not include the SINGLE mode modifiers since the MCF5272 does not have a
|
|
* mode where the device is in control of its addressing.
|
|
*/
|
|
|
|
/* I/O to memory, 8 bits, mode */
|
|
#define DMA_MODE_READ ((DMA_MODE_SIZE_BYTE << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_BYTE << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT)
|
|
/* memory to I/O, 8 bits, mode */
|
|
#define DMA_MODE_WRITE ((DMA_MODE_SIZE_BYTE << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_BYTE << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT)
|
|
/* I/O to memory, 16 bits, mode */
|
|
#define DMA_MODE_READ_WORD ((DMA_MODE_SIZE_WORD << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_WORD << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT)
|
|
/* memory to I/O, 16 bits, mode */
|
|
#define DMA_MODE_WRITE_WORD ((DMA_MODE_SIZE_WORD << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_WORD << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT)
|
|
/* I/O to memory, 32 bits, mode */
|
|
#define DMA_MODE_READ_LONG ((DMA_MODE_SIZE_LONG << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_LONG << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT)
|
|
/* memory to I/O, 32 bits, mode */
|
|
#define DMA_MODE_WRITE_LONG ((DMA_MODE_SIZE_LONG << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_LONG << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT)
|
|
|
|
#endif /* !defined(CONFIG_M5272) */
|
|
|
|
#if !defined(CONFIG_M5272)
|
|
/* enable/disable a specific DMA channel */
|
|
static __inline__ void enable_dma(unsigned int dmanr)
|
|
{
|
|
volatile unsigned short *dmawp;
|
|
|
|
#ifdef DMA_DEBUG
|
|
printk("enable_dma(dmanr=%d)\n", dmanr);
|
|
#endif
|
|
|
|
dmawp = (unsigned short *) dma_base_addr[dmanr];
|
|
dmawp[MCFDMA_DCR] |= MCFDMA_DCR_EEXT;
|
|
}
|
|
|
|
static __inline__ void disable_dma(unsigned int dmanr)
|
|
{
|
|
volatile unsigned short *dmawp;
|
|
volatile unsigned char *dmapb;
|
|
|
|
#ifdef DMA_DEBUG
|
|
printk("disable_dma(dmanr=%d)\n", dmanr);
|
|
#endif
|
|
|
|
dmawp = (unsigned short *) dma_base_addr[dmanr];
|
|
dmapb = (unsigned char *) dma_base_addr[dmanr];
|
|
|
|
/* Turn off external requests, and stop any DMA in progress */
|
|
dmawp[MCFDMA_DCR] &= ~MCFDMA_DCR_EEXT;
|
|
dmapb[MCFDMA_DSR] = MCFDMA_DSR_DONE;
|
|
}
|
|
|
|
/*
|
|
* Clear the 'DMA Pointer Flip Flop'.
|
|
* Write 0 for LSB/MSB, 1 for MSB/LSB access.
|
|
* Use this once to initialize the FF to a known state.
|
|
* After that, keep track of it. :-)
|
|
* --- In order to do that, the DMA routines below should ---
|
|
* --- only be used while interrupts are disabled! ---
|
|
*
|
|
* This is a NOP for ColdFire. Provide a stub for compatibility.
|
|
*/
|
|
static __inline__ void clear_dma_ff(unsigned int dmanr)
|
|
{
|
|
}
|
|
|
|
/* set mode (above) for a specific DMA channel */
|
|
static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
|
|
{
|
|
|
|
volatile unsigned char *dmabp;
|
|
volatile unsigned short *dmawp;
|
|
|
|
#ifdef DMA_DEBUG
|
|
printk("set_dma_mode(dmanr=%d,mode=%d)\n", dmanr, mode);
|
|
#endif
|
|
|
|
dmabp = (unsigned char *) dma_base_addr[dmanr];
|
|
dmawp = (unsigned short *) dma_base_addr[dmanr];
|
|
|
|
// Clear config errors
|
|
dmabp[MCFDMA_DSR] = MCFDMA_DSR_DONE;
|
|
|
|
// Set command register
|
|
dmawp[MCFDMA_DCR] =
|
|
MCFDMA_DCR_INT | // Enable completion irq
|
|
MCFDMA_DCR_CS | // Force one xfer per request
|
|
MCFDMA_DCR_AA | // Enable auto alignment
|
|
// single-address-mode
|
|
((mode & DMA_MODE_SINGLE_BIT) ? MCFDMA_DCR_SAA : 0) |
|
|
// sets s_rw (-> r/w) high if Memory to I/0
|
|
((mode & DMA_MODE_WRITE_BIT) ? MCFDMA_DCR_S_RW : 0) |
|
|
// Memory to I/O or I/O to Memory
|
|
((mode & DMA_MODE_WRITE_BIT) ? MCFDMA_DCR_SINC : MCFDMA_DCR_DINC) |
|
|
// 32 bit, 16 bit or 8 bit transfers
|
|
((mode & DMA_MODE_WORD_BIT) ? MCFDMA_DCR_SSIZE_WORD :
|
|
((mode & DMA_MODE_LONG_BIT) ? MCFDMA_DCR_SSIZE_LONG :
|
|
MCFDMA_DCR_SSIZE_BYTE)) |
|
|
((mode & DMA_MODE_WORD_BIT) ? MCFDMA_DCR_DSIZE_WORD :
|
|
((mode & DMA_MODE_LONG_BIT) ? MCFDMA_DCR_DSIZE_LONG :
|
|
MCFDMA_DCR_DSIZE_BYTE));
|
|
|
|
#ifdef DEBUG_DMA
|
|
printk("%s(%d): dmanr=%d DSR[%x]=%x DCR[%x]=%x\n", __FILE__, __LINE__,
|
|
dmanr, (int) &dmabp[MCFDMA_DSR], dmabp[MCFDMA_DSR],
|
|
(int) &dmawp[MCFDMA_DCR], dmawp[MCFDMA_DCR]);
|
|
#endif
|
|
}
|
|
|
|
/* Set transfer address for specific DMA channel */
|
|
static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
|
|
{
|
|
volatile unsigned short *dmawp;
|
|
volatile unsigned int *dmalp;
|
|
|
|
#ifdef DMA_DEBUG
|
|
printk("set_dma_addr(dmanr=%d,a=%x)\n", dmanr, a);
|
|
#endif
|
|
|
|
dmawp = (unsigned short *) dma_base_addr[dmanr];
|
|
dmalp = (unsigned int *) dma_base_addr[dmanr];
|
|
|
|
// Determine which address registers are used for memory/device accesses
|
|
if (dmawp[MCFDMA_DCR] & MCFDMA_DCR_SINC) {
|
|
// Source incrementing, must be memory
|
|
dmalp[MCFDMA_SAR] = a;
|
|
// Set dest address, must be device
|
|
dmalp[MCFDMA_DAR] = dma_device_address[dmanr];
|
|
} else {
|
|
// Destination incrementing, must be memory
|
|
dmalp[MCFDMA_DAR] = a;
|
|
// Set source address, must be device
|
|
dmalp[MCFDMA_SAR] = dma_device_address[dmanr];
|
|
}
|
|
|
|
#ifdef DEBUG_DMA
|
|
printk("%s(%d): dmanr=%d DCR[%x]=%x SAR[%x]=%08x DAR[%x]=%08x\n",
|
|
__FILE__, __LINE__, dmanr, (int) &dmawp[MCFDMA_DCR], dmawp[MCFDMA_DCR],
|
|
(int) &dmalp[MCFDMA_SAR], dmalp[MCFDMA_SAR],
|
|
(int) &dmalp[MCFDMA_DAR], dmalp[MCFDMA_DAR]);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Specific for Coldfire - sets device address.
|
|
* Should be called after the mode set call, and before set DMA address.
|
|
*/
|
|
static __inline__ void set_dma_device_addr(unsigned int dmanr, unsigned int a)
|
|
{
|
|
#ifdef DMA_DEBUG
|
|
printk("set_dma_device_addr(dmanr=%d,a=%x)\n", dmanr, a);
|
|
#endif
|
|
|
|
dma_device_address[dmanr] = a;
|
|
}
|
|
|
|
/*
|
|
* NOTE 2: "count" represents _bytes_.
|
|
*/
|
|
static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
|
|
{
|
|
volatile unsigned short *dmawp;
|
|
|
|
#ifdef DMA_DEBUG
|
|
printk("set_dma_count(dmanr=%d,count=%d)\n", dmanr, count);
|
|
#endif
|
|
|
|
dmawp = (unsigned short *) dma_base_addr[dmanr];
|
|
dmawp[MCFDMA_BCR] = (unsigned short)count;
|
|
}
|
|
|
|
/*
|
|
* Get DMA residue count. After a DMA transfer, this
|
|
* should return zero. Reading this while a DMA transfer is
|
|
* still in progress will return unpredictable results.
|
|
* Otherwise, it returns the number of _bytes_ left to transfer.
|
|
*/
|
|
static __inline__ int get_dma_residue(unsigned int dmanr)
|
|
{
|
|
volatile unsigned short *dmawp;
|
|
unsigned short count;
|
|
|
|
#ifdef DMA_DEBUG
|
|
printk("get_dma_residue(dmanr=%d)\n", dmanr);
|
|
#endif
|
|
|
|
dmawp = (unsigned short *) dma_base_addr[dmanr];
|
|
count = dmawp[MCFDMA_BCR];
|
|
return((int) count);
|
|
}
|
|
#else /* CONFIG_M5272 is defined */
|
|
|
|
/*
|
|
* The MCF5272 DMA controller is very different than the controller defined above
|
|
* in terms of register mapping. For instance, with the exception of the 16-bit
|
|
* interrupt register (IRQ#85, for reference), all of the registers are 32-bit.
|
|
*
|
|
* The big difference, however, is the lack of device-requested DMA. All modes
|
|
* are dual address transfer, and there is no 'device' setup or direction bit.
|
|
* You can DMA between a device and memory, between memory and memory, or even between
|
|
* two devices directly, with any combination of incrementing and non-incrementing
|
|
* addresses you choose. This puts a crimp in distinguishing between the 'device
|
|
* address' set up by set_dma_device_addr.
|
|
*
|
|
* Therefore, there are two options. One is to use set_dma_addr and set_dma_device_addr,
|
|
* which will act exactly as above in -- it will look to see if the source is set to
|
|
* autoincrement, and if so it will make the source use the set_dma_addr value and the
|
|
* destination the set_dma_device_addr value. Otherwise the source will be set to the
|
|
* set_dma_device_addr value and the destination will get the set_dma_addr value.
|
|
*
|
|
* The other is to use the provided set_dma_src_addr and set_dma_dest_addr functions
|
|
* and make it explicit. Depending on what you're doing, one of these two should work
|
|
* for you, but don't mix them in the same transfer setup.
|
|
*/
|
|
|
|
/* enable/disable a specific DMA channel */
|
|
static __inline__ void enable_dma(unsigned int dmanr)
|
|
{
|
|
volatile unsigned int *dmalp;
|
|
|
|
#ifdef DMA_DEBUG
|
|
printk("enable_dma(dmanr=%d)\n", dmanr);
|
|
#endif
|
|
|
|
dmalp = (unsigned int *) dma_base_addr[dmanr];
|
|
dmalp[MCFDMA_DMR] |= MCFDMA_DMR_EN;
|
|
}
|
|
|
|
static __inline__ void disable_dma(unsigned int dmanr)
|
|
{
|
|
volatile unsigned int *dmalp;
|
|
|
|
#ifdef DMA_DEBUG
|
|
printk("disable_dma(dmanr=%d)\n", dmanr);
|
|
#endif
|
|
|
|
dmalp = (unsigned int *) dma_base_addr[dmanr];
|
|
|
|
/* Turn off external requests, and stop any DMA in progress */
|
|
dmalp[MCFDMA_DMR] &= ~MCFDMA_DMR_EN;
|
|
dmalp[MCFDMA_DMR] |= MCFDMA_DMR_RESET;
|
|
}
|
|
|
|
/*
|
|
* Clear the 'DMA Pointer Flip Flop'.
|
|
* Write 0 for LSB/MSB, 1 for MSB/LSB access.
|
|
* Use this once to initialize the FF to a known state.
|
|
* After that, keep track of it. :-)
|
|
* --- In order to do that, the DMA routines below should ---
|
|
* --- only be used while interrupts are disabled! ---
|
|
*
|
|
* This is a NOP for ColdFire. Provide a stub for compatibility.
|
|
*/
|
|
static __inline__ void clear_dma_ff(unsigned int dmanr)
|
|
{
|
|
}
|
|
|
|
/* set mode (above) for a specific DMA channel */
|
|
static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
|
|
{
|
|
|
|
volatile unsigned int *dmalp;
|
|
volatile unsigned short *dmawp;
|
|
|
|
#ifdef DMA_DEBUG
|
|
printk("set_dma_mode(dmanr=%d,mode=%d)\n", dmanr, mode);
|
|
#endif
|
|
dmalp = (unsigned int *) dma_base_addr[dmanr];
|
|
dmawp = (unsigned short *) dma_base_addr[dmanr];
|
|
|
|
// Clear config errors
|
|
dmalp[MCFDMA_DMR] |= MCFDMA_DMR_RESET;
|
|
|
|
// Set command register
|
|
dmalp[MCFDMA_DMR] =
|
|
MCFDMA_DMR_RQM_DUAL | // Mandatory Request Mode setting
|
|
MCFDMA_DMR_DSTT_SD | // Set up addressing types; set to supervisor-data.
|
|
MCFDMA_DMR_SRCT_SD | // Set up addressing types; set to supervisor-data.
|
|
// source static-address-mode
|
|
((mode & DMA_MODE_SRC_SA_BIT) ? MCFDMA_DMR_SRCM_SA : MCFDMA_DMR_SRCM_IA) |
|
|
// dest static-address-mode
|
|
((mode & DMA_MODE_DES_SA_BIT) ? MCFDMA_DMR_DSTM_SA : MCFDMA_DMR_DSTM_IA) |
|
|
// burst, 32 bit, 16 bit or 8 bit transfers are separately configurable on the MCF5272
|
|
(((mode & DMA_MODE_SSIZE_MASK) >> DMA_MODE_SSIZE_OFF) << MCFDMA_DMR_DSTS_OFF) |
|
|
(((mode & DMA_MODE_SSIZE_MASK) >> DMA_MODE_SSIZE_OFF) << MCFDMA_DMR_SRCS_OFF);
|
|
|
|
dmawp[MCFDMA_DIR] |= MCFDMA_DIR_ASCEN; /* Enable completion interrupts */
|
|
|
|
#ifdef DEBUG_DMA
|
|
printk("%s(%d): dmanr=%d DMR[%x]=%x DIR[%x]=%x\n", __FILE__, __LINE__,
|
|
dmanr, (int) &dmalp[MCFDMA_DMR], dmabp[MCFDMA_DMR],
|
|
(int) &dmawp[MCFDMA_DIR], dmawp[MCFDMA_DIR]);
|
|
#endif
|
|
}
|
|
|
|
/* Set transfer address for specific DMA channel */
|
|
static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
|
|
{
|
|
volatile unsigned int *dmalp;
|
|
|
|
#ifdef DMA_DEBUG
|
|
printk("set_dma_addr(dmanr=%d,a=%x)\n", dmanr, a);
|
|
#endif
|
|
|
|
dmalp = (unsigned int *) dma_base_addr[dmanr];
|
|
|
|
// Determine which address registers are used for memory/device accesses
|
|
if (dmalp[MCFDMA_DMR] & MCFDMA_DMR_SRCM) {
|
|
// Source incrementing, must be memory
|
|
dmalp[MCFDMA_DSAR] = a;
|
|
// Set dest address, must be device
|
|
dmalp[MCFDMA_DDAR] = dma_device_address[dmanr];
|
|
} else {
|
|
// Destination incrementing, must be memory
|
|
dmalp[MCFDMA_DDAR] = a;
|
|
// Set source address, must be device
|
|
dmalp[MCFDMA_DSAR] = dma_device_address[dmanr];
|
|
}
|
|
|
|
#ifdef DEBUG_DMA
|
|
printk("%s(%d): dmanr=%d DMR[%x]=%x SAR[%x]=%08x DAR[%x]=%08x\n",
|
|
__FILE__, __LINE__, dmanr, (int) &dmawp[MCFDMA_DMR], dmawp[MCFDMA_DMR],
|
|
(int) &dmalp[MCFDMA_DSAR], dmalp[MCFDMA_DSAR],
|
|
(int) &dmalp[MCFDMA_DDAR], dmalp[MCFDMA_DDAR]);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Specific for Coldfire - sets device address.
|
|
* Should be called after the mode set call, and before set DMA address.
|
|
*/
|
|
static __inline__ void set_dma_device_addr(unsigned int dmanr, unsigned int a)
|
|
{
|
|
#ifdef DMA_DEBUG
|
|
printk("set_dma_device_addr(dmanr=%d,a=%x)\n", dmanr, a);
|
|
#endif
|
|
|
|
dma_device_address[dmanr] = a;
|
|
}
|
|
|
|
/*
|
|
* NOTE 2: "count" represents _bytes_.
|
|
*
|
|
* NOTE 3: While a 32-bit register, "count" is only a maximum 24-bit value.
|
|
*/
|
|
static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
|
|
{
|
|
volatile unsigned int *dmalp;
|
|
|
|
#ifdef DMA_DEBUG
|
|
printk("set_dma_count(dmanr=%d,count=%d)\n", dmanr, count);
|
|
#endif
|
|
|
|
dmalp = (unsigned int *) dma_base_addr[dmanr];
|
|
dmalp[MCFDMA_DBCR] = count;
|
|
}
|
|
|
|
/*
|
|
* Get DMA residue count. After a DMA transfer, this
|
|
* should return zero. Reading this while a DMA transfer is
|
|
* still in progress will return unpredictable results.
|
|
* Otherwise, it returns the number of _bytes_ left to transfer.
|
|
*/
|
|
static __inline__ int get_dma_residue(unsigned int dmanr)
|
|
{
|
|
volatile unsigned int *dmalp;
|
|
unsigned int count;
|
|
|
|
#ifdef DMA_DEBUG
|
|
printk("get_dma_residue(dmanr=%d)\n", dmanr);
|
|
#endif
|
|
|
|
dmalp = (unsigned int *) dma_base_addr[dmanr];
|
|
count = dmalp[MCFDMA_DBCR];
|
|
return(count);
|
|
}
|
|
|
|
#endif /* !defined(CONFIG_M5272) */
|
|
#endif /* CONFIG_COLDFIRE */
|
|
|
|
#define MAX_DMA_CHANNELS 8
|
|
|
|
/* Don't define MAX_DMA_ADDRESS; it's useless on the m68k/coldfire and any
|
|
occurrence should be flagged as an error. */
|
|
/* under 2.4 it is actually needed by the new bootmem allocator */
|
|
#define MAX_DMA_ADDRESS PAGE_OFFSET
|
|
|
|
/* These are in kernel/dma.c: */
|
|
extern int request_dma(unsigned int dmanr, const char *device_id); /* reserve a DMA channel */
|
|
extern void free_dma(unsigned int dmanr); /* release it again */
|
|
|
|
#endif /* _M68K_DMA_H */
|