mirror of
https://github.com/torvalds/linux.git
synced 2024-12-27 05:11:48 +00:00
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
208 lines
6.8 KiB
C
208 lines
6.8 KiB
C
/*
|
|
* Copyright (C) 2000 Andreas E. Bombe
|
|
* 2001 Ben Collins <bcollins@debian.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#ifndef _IEEE1394_NODEMGR_H
|
|
#define _IEEE1394_NODEMGR_H
|
|
|
|
#include <linux/device.h>
|
|
#include "csr1212.h"
|
|
#include "ieee1394_core.h"
|
|
#include "ieee1394_hotplug.h"
|
|
|
|
/* '1' '3' '9' '4' in ASCII */
|
|
#define IEEE1394_BUSID_MAGIC __constant_cpu_to_be32(0x31333934)
|
|
|
|
/* This is the start of a Node entry structure. It should be a stable API
|
|
* for which to gather info from the Node Manager about devices attached
|
|
* to the bus. */
|
|
struct bus_options {
|
|
u8 irmc; /* Iso Resource Manager Capable */
|
|
u8 cmc; /* Cycle Master Capable */
|
|
u8 isc; /* Iso Capable */
|
|
u8 bmc; /* Bus Master Capable */
|
|
u8 pmc; /* Power Manager Capable (PNP spec) */
|
|
u8 cyc_clk_acc; /* Cycle clock accuracy */
|
|
u8 max_rom; /* Maximum block read supported in the CSR */
|
|
u8 generation; /* Incremented when configrom changes */
|
|
u8 lnkspd; /* Link speed */
|
|
u16 max_rec; /* Maximum packet size node can receive */
|
|
};
|
|
|
|
|
|
#define UNIT_DIRECTORY_VENDOR_ID 0x01
|
|
#define UNIT_DIRECTORY_MODEL_ID 0x02
|
|
#define UNIT_DIRECTORY_SPECIFIER_ID 0x04
|
|
#define UNIT_DIRECTORY_VERSION 0x08
|
|
#define UNIT_DIRECTORY_HAS_LUN_DIRECTORY 0x10
|
|
#define UNIT_DIRECTORY_LUN_DIRECTORY 0x20
|
|
#define UNIT_DIRECTORY_HAS_LUN 0x40
|
|
|
|
/*
|
|
* A unit directory corresponds to a protocol supported by the
|
|
* node. If a node supports eg. IP/1394 and AV/C, its config rom has a
|
|
* unit directory for each of these protocols.
|
|
*/
|
|
struct unit_directory {
|
|
struct node_entry *ne; /* The node which this directory belongs to */
|
|
octlet_t address; /* Address of the unit directory on the node */
|
|
u8 flags; /* Indicates which entries were read */
|
|
|
|
quadlet_t vendor_id;
|
|
struct csr1212_keyval *vendor_name_kv;
|
|
const char *vendor_oui;
|
|
|
|
quadlet_t model_id;
|
|
struct csr1212_keyval *model_name_kv;
|
|
quadlet_t specifier_id;
|
|
quadlet_t version;
|
|
|
|
unsigned int id;
|
|
|
|
int ignore_driver;
|
|
|
|
int length; /* Number of quadlets */
|
|
|
|
struct device device;
|
|
|
|
struct class_device class_dev;
|
|
|
|
struct csr1212_keyval *ud_kv;
|
|
u32 lun; /* logical unit number immediate value */
|
|
};
|
|
|
|
struct node_entry {
|
|
u64 guid; /* GUID of this node */
|
|
u32 guid_vendor_id; /* Top 24bits of guid */
|
|
const char *guid_vendor_oui; /* OUI name of guid vendor id */
|
|
|
|
struct hpsb_host *host; /* Host this node is attached to */
|
|
nodeid_t nodeid; /* NodeID */
|
|
struct bus_options busopt; /* Bus Options */
|
|
int needs_probe;
|
|
unsigned int generation; /* Synced with hpsb generation */
|
|
|
|
/* The following is read from the config rom */
|
|
u32 vendor_id;
|
|
struct csr1212_keyval *vendor_name_kv;
|
|
const char *vendor_oui;
|
|
|
|
u32 capabilities;
|
|
struct hpsb_tlabel_pool *tpool;
|
|
|
|
struct device device;
|
|
|
|
struct class_device class_dev;
|
|
|
|
/* Means this node is not attached anymore */
|
|
int in_limbo;
|
|
|
|
struct csr1212_csr *csr;
|
|
};
|
|
|
|
struct hpsb_protocol_driver {
|
|
/* The name of the driver, e.g. SBP2 or IP1394 */
|
|
const char *name;
|
|
|
|
/*
|
|
* The device id table describing the protocols and/or devices
|
|
* supported by this driver. This is used by the nodemgr to
|
|
* decide if a driver could support a given node, but the
|
|
* probe function below can implement further protocol
|
|
* dependent or vendor dependent checking.
|
|
*/
|
|
struct ieee1394_device_id *id_table;
|
|
|
|
/*
|
|
* The update function is called when the node has just
|
|
* survived a bus reset, i.e. it is still present on the bus.
|
|
* However, it may be necessary to reestablish the connection
|
|
* or login into the node again, depending on the protocol. If the
|
|
* probe fails (returns non-zero), we unbind the driver from this
|
|
* device.
|
|
*/
|
|
int (*update)(struct unit_directory *ud);
|
|
|
|
/* Our LDM structure */
|
|
struct device_driver driver;
|
|
};
|
|
|
|
int hpsb_register_protocol(struct hpsb_protocol_driver *driver);
|
|
void hpsb_unregister_protocol(struct hpsb_protocol_driver *driver);
|
|
|
|
static inline int hpsb_node_entry_valid(struct node_entry *ne)
|
|
{
|
|
return ne->generation == get_hpsb_generation(ne->host);
|
|
}
|
|
|
|
/*
|
|
* Returns a node entry (which has its reference count incremented) or NULL if
|
|
* the GUID in question is not known. Getting a valid entry does not mean that
|
|
* the node with this GUID is currently accessible (might be powered down).
|
|
*/
|
|
struct node_entry *hpsb_guid_get_entry(u64 guid);
|
|
|
|
/* Same as above, but use the nodeid to get an node entry. This is not
|
|
* fool-proof by itself, since the nodeid can change. */
|
|
struct node_entry *hpsb_nodeid_get_entry(struct hpsb_host *host, nodeid_t nodeid);
|
|
|
|
/*
|
|
* If the entry refers to a local host, this function will return the pointer
|
|
* to the hpsb_host structure. It will return NULL otherwise. Once you have
|
|
* established it is a local host, you can use that knowledge from then on (the
|
|
* GUID won't wander to an external node). */
|
|
struct hpsb_host *hpsb_get_host_by_ne(struct node_entry *ne);
|
|
|
|
/*
|
|
* This will fill in the given, pre-initialised hpsb_packet with the current
|
|
* information from the node entry (host, node ID, generation number). It will
|
|
* return false if the node owning the GUID is not accessible (and not modify the
|
|
* hpsb_packet) and return true otherwise.
|
|
*
|
|
* Note that packet sending may still fail in hpsb_send_packet if a bus reset
|
|
* happens while you are trying to set up the packet (due to obsolete generation
|
|
* number). It will at least reliably fail so that you don't accidentally and
|
|
* unknowingly send your packet to the wrong node.
|
|
*/
|
|
void hpsb_node_fill_packet(struct node_entry *ne, struct hpsb_packet *pkt);
|
|
|
|
int hpsb_node_read(struct node_entry *ne, u64 addr,
|
|
quadlet_t *buffer, size_t length);
|
|
int hpsb_node_write(struct node_entry *ne, u64 addr,
|
|
quadlet_t *buffer, size_t length);
|
|
int hpsb_node_lock(struct node_entry *ne, u64 addr,
|
|
int extcode, quadlet_t *data, quadlet_t arg);
|
|
|
|
|
|
/* Iterate the hosts, calling a given function with supplied data for each
|
|
* host. */
|
|
int nodemgr_for_each_host(void *__data, int (*cb)(struct hpsb_host *, void *));
|
|
|
|
|
|
int init_ieee1394_nodemgr(void);
|
|
void cleanup_ieee1394_nodemgr(void);
|
|
|
|
|
|
/* The template for a host device */
|
|
extern struct device nodemgr_dev_template_host;
|
|
|
|
/* Bus attributes we export */
|
|
extern struct bus_attribute *const fw_bus_attrs[];
|
|
|
|
#endif /* _IEEE1394_NODEMGR_H */
|