mirror of
https://github.com/torvalds/linux.git
synced 2024-11-30 08:01:59 +00:00
78eb4ea25c
const qualify the struct ctl_table argument in the proc_handler function signatures. This is a prerequisite to moving the static ctl_table structs into .rodata data which will ensure that proc_handler function pointers cannot be modified. This patch has been generated by the following coccinelle script: ``` virtual patch @r1@ identifier ctl, write, buffer, lenp, ppos; identifier func !~ "appldata_(timer|interval)_handler|sched_(rt|rr)_handler|rds_tcp_skbuf_handler|proc_sctp_do_(hmac_alg|rto_min|rto_max|udp_port|alpha_beta|auth|probe_interval)"; @@ int func( - struct ctl_table *ctl + const struct ctl_table *ctl ,int write, void *buffer, size_t *lenp, loff_t *ppos); @r2@ identifier func, ctl, write, buffer, lenp, ppos; @@ int func( - struct ctl_table *ctl + const struct ctl_table *ctl ,int write, void *buffer, size_t *lenp, loff_t *ppos) { ... } @r3@ identifier func; @@ int func( - struct ctl_table * + const struct ctl_table * ,int , void *, size_t *, loff_t *); @r4@ identifier func, ctl; @@ int func( - struct ctl_table *ctl + const struct ctl_table *ctl ,int , void *, size_t *, loff_t *); @r5@ identifier func, write, buffer, lenp, ppos; @@ int func( - struct ctl_table * + const struct ctl_table * ,int write, void *buffer, size_t *lenp, loff_t *ppos); ``` * Code formatting was adjusted in xfs_sysctl.c to comply with code conventions. The xfs_stats_clear_proc_handler, xfs_panic_mask_proc_handler and xfs_deprecated_dointvec_minmax where adjusted. * The ctl_table argument in proc_watchdog_common was const qualified. This is called from a proc_handler itself and is calling back into another proc_handler, making it necessary to change it as part of the proc_handler migration. Co-developed-by: Thomas Weißschuh <linux@weissschuh.net> Signed-off-by: Thomas Weißschuh <linux@weissschuh.net> Co-developed-by: Joel Granados <j.granados@samsung.com> Signed-off-by: Joel Granados <j.granados@samsung.com>
1522 lines
37 KiB
C
1522 lines
37 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/fs/pipe.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1999 Linus Torvalds
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/file.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/pseudo_fs.h>
|
|
#include <linux/magic.h>
|
|
#include <linux/pipe_fs_i.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/watch_queue.h>
|
|
#include <linux/sysctl.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <asm/ioctls.h>
|
|
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* New pipe buffers will be restricted to this size while the user is exceeding
|
|
* their pipe buffer quota. The general pipe use case needs at least two
|
|
* buffers: one for data yet to be read, and one for new data. If this is less
|
|
* than two, then a write to a non-empty pipe may block even if the pipe is not
|
|
* full. This can occur with GNU make jobserver or similar uses of pipes as
|
|
* semaphores: multiple processes may be waiting to write tokens back to the
|
|
* pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
|
|
*
|
|
* Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
|
|
* own risk, namely: pipe writes to non-full pipes may block until the pipe is
|
|
* emptied.
|
|
*/
|
|
#define PIPE_MIN_DEF_BUFFERS 2
|
|
|
|
/*
|
|
* The max size that a non-root user is allowed to grow the pipe. Can
|
|
* be set by root in /proc/sys/fs/pipe-max-size
|
|
*/
|
|
static unsigned int pipe_max_size = 1048576;
|
|
|
|
/* Maximum allocatable pages per user. Hard limit is unset by default, soft
|
|
* matches default values.
|
|
*/
|
|
static unsigned long pipe_user_pages_hard;
|
|
static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
|
|
|
|
/*
|
|
* We use head and tail indices that aren't masked off, except at the point of
|
|
* dereference, but rather they're allowed to wrap naturally. This means there
|
|
* isn't a dead spot in the buffer, but the ring has to be a power of two and
|
|
* <= 2^31.
|
|
* -- David Howells 2019-09-23.
|
|
*
|
|
* Reads with count = 0 should always return 0.
|
|
* -- Julian Bradfield 1999-06-07.
|
|
*
|
|
* FIFOs and Pipes now generate SIGIO for both readers and writers.
|
|
* -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
|
|
*
|
|
* pipe_read & write cleanup
|
|
* -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
|
|
*/
|
|
|
|
#define cmp_int(l, r) ((l > r) - (l < r))
|
|
|
|
#ifdef CONFIG_PROVE_LOCKING
|
|
static int pipe_lock_cmp_fn(const struct lockdep_map *a,
|
|
const struct lockdep_map *b)
|
|
{
|
|
return cmp_int((unsigned long) a, (unsigned long) b);
|
|
}
|
|
#endif
|
|
|
|
void pipe_lock(struct pipe_inode_info *pipe)
|
|
{
|
|
if (pipe->files)
|
|
mutex_lock(&pipe->mutex);
|
|
}
|
|
EXPORT_SYMBOL(pipe_lock);
|
|
|
|
void pipe_unlock(struct pipe_inode_info *pipe)
|
|
{
|
|
if (pipe->files)
|
|
mutex_unlock(&pipe->mutex);
|
|
}
|
|
EXPORT_SYMBOL(pipe_unlock);
|
|
|
|
void pipe_double_lock(struct pipe_inode_info *pipe1,
|
|
struct pipe_inode_info *pipe2)
|
|
{
|
|
BUG_ON(pipe1 == pipe2);
|
|
|
|
if (pipe1 > pipe2)
|
|
swap(pipe1, pipe2);
|
|
|
|
pipe_lock(pipe1);
|
|
pipe_lock(pipe2);
|
|
}
|
|
|
|
static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
|
|
struct pipe_buffer *buf)
|
|
{
|
|
struct page *page = buf->page;
|
|
|
|
/*
|
|
* If nobody else uses this page, and we don't already have a
|
|
* temporary page, let's keep track of it as a one-deep
|
|
* allocation cache. (Otherwise just release our reference to it)
|
|
*/
|
|
if (page_count(page) == 1 && !pipe->tmp_page)
|
|
pipe->tmp_page = page;
|
|
else
|
|
put_page(page);
|
|
}
|
|
|
|
static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
|
|
struct pipe_buffer *buf)
|
|
{
|
|
struct page *page = buf->page;
|
|
|
|
if (page_count(page) != 1)
|
|
return false;
|
|
memcg_kmem_uncharge_page(page, 0);
|
|
__SetPageLocked(page);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
|
|
* @pipe: the pipe that the buffer belongs to
|
|
* @buf: the buffer to attempt to steal
|
|
*
|
|
* Description:
|
|
* This function attempts to steal the &struct page attached to
|
|
* @buf. If successful, this function returns 0 and returns with
|
|
* the page locked. The caller may then reuse the page for whatever
|
|
* he wishes; the typical use is insertion into a different file
|
|
* page cache.
|
|
*/
|
|
bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
|
|
struct pipe_buffer *buf)
|
|
{
|
|
struct page *page = buf->page;
|
|
|
|
/*
|
|
* A reference of one is golden, that means that the owner of this
|
|
* page is the only one holding a reference to it. lock the page
|
|
* and return OK.
|
|
*/
|
|
if (page_count(page) == 1) {
|
|
lock_page(page);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(generic_pipe_buf_try_steal);
|
|
|
|
/**
|
|
* generic_pipe_buf_get - get a reference to a &struct pipe_buffer
|
|
* @pipe: the pipe that the buffer belongs to
|
|
* @buf: the buffer to get a reference to
|
|
*
|
|
* Description:
|
|
* This function grabs an extra reference to @buf. It's used in
|
|
* the tee() system call, when we duplicate the buffers in one
|
|
* pipe into another.
|
|
*/
|
|
bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
|
|
{
|
|
return try_get_page(buf->page);
|
|
}
|
|
EXPORT_SYMBOL(generic_pipe_buf_get);
|
|
|
|
/**
|
|
* generic_pipe_buf_release - put a reference to a &struct pipe_buffer
|
|
* @pipe: the pipe that the buffer belongs to
|
|
* @buf: the buffer to put a reference to
|
|
*
|
|
* Description:
|
|
* This function releases a reference to @buf.
|
|
*/
|
|
void generic_pipe_buf_release(struct pipe_inode_info *pipe,
|
|
struct pipe_buffer *buf)
|
|
{
|
|
put_page(buf->page);
|
|
}
|
|
EXPORT_SYMBOL(generic_pipe_buf_release);
|
|
|
|
static const struct pipe_buf_operations anon_pipe_buf_ops = {
|
|
.release = anon_pipe_buf_release,
|
|
.try_steal = anon_pipe_buf_try_steal,
|
|
.get = generic_pipe_buf_get,
|
|
};
|
|
|
|
/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
|
|
static inline bool pipe_readable(const struct pipe_inode_info *pipe)
|
|
{
|
|
unsigned int head = READ_ONCE(pipe->head);
|
|
unsigned int tail = READ_ONCE(pipe->tail);
|
|
unsigned int writers = READ_ONCE(pipe->writers);
|
|
|
|
return !pipe_empty(head, tail) || !writers;
|
|
}
|
|
|
|
static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe,
|
|
struct pipe_buffer *buf,
|
|
unsigned int tail)
|
|
{
|
|
pipe_buf_release(pipe, buf);
|
|
|
|
/*
|
|
* If the pipe has a watch_queue, we need additional protection
|
|
* by the spinlock because notifications get posted with only
|
|
* this spinlock, no mutex
|
|
*/
|
|
if (pipe_has_watch_queue(pipe)) {
|
|
spin_lock_irq(&pipe->rd_wait.lock);
|
|
#ifdef CONFIG_WATCH_QUEUE
|
|
if (buf->flags & PIPE_BUF_FLAG_LOSS)
|
|
pipe->note_loss = true;
|
|
#endif
|
|
pipe->tail = ++tail;
|
|
spin_unlock_irq(&pipe->rd_wait.lock);
|
|
return tail;
|
|
}
|
|
|
|
/*
|
|
* Without a watch_queue, we can simply increment the tail
|
|
* without the spinlock - the mutex is enough.
|
|
*/
|
|
pipe->tail = ++tail;
|
|
return tail;
|
|
}
|
|
|
|
static ssize_t
|
|
pipe_read(struct kiocb *iocb, struct iov_iter *to)
|
|
{
|
|
size_t total_len = iov_iter_count(to);
|
|
struct file *filp = iocb->ki_filp;
|
|
struct pipe_inode_info *pipe = filp->private_data;
|
|
bool was_full, wake_next_reader = false;
|
|
ssize_t ret;
|
|
|
|
/* Null read succeeds. */
|
|
if (unlikely(total_len == 0))
|
|
return 0;
|
|
|
|
ret = 0;
|
|
mutex_lock(&pipe->mutex);
|
|
|
|
/*
|
|
* We only wake up writers if the pipe was full when we started
|
|
* reading in order to avoid unnecessary wakeups.
|
|
*
|
|
* But when we do wake up writers, we do so using a sync wakeup
|
|
* (WF_SYNC), because we want them to get going and generate more
|
|
* data for us.
|
|
*/
|
|
was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
|
|
for (;;) {
|
|
/* Read ->head with a barrier vs post_one_notification() */
|
|
unsigned int head = smp_load_acquire(&pipe->head);
|
|
unsigned int tail = pipe->tail;
|
|
unsigned int mask = pipe->ring_size - 1;
|
|
|
|
#ifdef CONFIG_WATCH_QUEUE
|
|
if (pipe->note_loss) {
|
|
struct watch_notification n;
|
|
|
|
if (total_len < 8) {
|
|
if (ret == 0)
|
|
ret = -ENOBUFS;
|
|
break;
|
|
}
|
|
|
|
n.type = WATCH_TYPE_META;
|
|
n.subtype = WATCH_META_LOSS_NOTIFICATION;
|
|
n.info = watch_sizeof(n);
|
|
if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
|
|
if (ret == 0)
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
ret += sizeof(n);
|
|
total_len -= sizeof(n);
|
|
pipe->note_loss = false;
|
|
}
|
|
#endif
|
|
|
|
if (!pipe_empty(head, tail)) {
|
|
struct pipe_buffer *buf = &pipe->bufs[tail & mask];
|
|
size_t chars = buf->len;
|
|
size_t written;
|
|
int error;
|
|
|
|
if (chars > total_len) {
|
|
if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
|
|
if (ret == 0)
|
|
ret = -ENOBUFS;
|
|
break;
|
|
}
|
|
chars = total_len;
|
|
}
|
|
|
|
error = pipe_buf_confirm(pipe, buf);
|
|
if (error) {
|
|
if (!ret)
|
|
ret = error;
|
|
break;
|
|
}
|
|
|
|
written = copy_page_to_iter(buf->page, buf->offset, chars, to);
|
|
if (unlikely(written < chars)) {
|
|
if (!ret)
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
ret += chars;
|
|
buf->offset += chars;
|
|
buf->len -= chars;
|
|
|
|
/* Was it a packet buffer? Clean up and exit */
|
|
if (buf->flags & PIPE_BUF_FLAG_PACKET) {
|
|
total_len = chars;
|
|
buf->len = 0;
|
|
}
|
|
|
|
if (!buf->len)
|
|
tail = pipe_update_tail(pipe, buf, tail);
|
|
total_len -= chars;
|
|
if (!total_len)
|
|
break; /* common path: read succeeded */
|
|
if (!pipe_empty(head, tail)) /* More to do? */
|
|
continue;
|
|
}
|
|
|
|
if (!pipe->writers)
|
|
break;
|
|
if (ret)
|
|
break;
|
|
if ((filp->f_flags & O_NONBLOCK) ||
|
|
(iocb->ki_flags & IOCB_NOWAIT)) {
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
mutex_unlock(&pipe->mutex);
|
|
|
|
/*
|
|
* We only get here if we didn't actually read anything.
|
|
*
|
|
* However, we could have seen (and removed) a zero-sized
|
|
* pipe buffer, and might have made space in the buffers
|
|
* that way.
|
|
*
|
|
* You can't make zero-sized pipe buffers by doing an empty
|
|
* write (not even in packet mode), but they can happen if
|
|
* the writer gets an EFAULT when trying to fill a buffer
|
|
* that already got allocated and inserted in the buffer
|
|
* array.
|
|
*
|
|
* So we still need to wake up any pending writers in the
|
|
* _very_ unlikely case that the pipe was full, but we got
|
|
* no data.
|
|
*/
|
|
if (unlikely(was_full))
|
|
wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
|
|
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
|
|
|
|
/*
|
|
* But because we didn't read anything, at this point we can
|
|
* just return directly with -ERESTARTSYS if we're interrupted,
|
|
* since we've done any required wakeups and there's no need
|
|
* to mark anything accessed. And we've dropped the lock.
|
|
*/
|
|
if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
|
|
return -ERESTARTSYS;
|
|
|
|
mutex_lock(&pipe->mutex);
|
|
was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
|
|
wake_next_reader = true;
|
|
}
|
|
if (pipe_empty(pipe->head, pipe->tail))
|
|
wake_next_reader = false;
|
|
mutex_unlock(&pipe->mutex);
|
|
|
|
if (was_full)
|
|
wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
|
|
if (wake_next_reader)
|
|
wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
|
|
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
|
|
if (ret > 0)
|
|
file_accessed(filp);
|
|
return ret;
|
|
}
|
|
|
|
static inline int is_packetized(struct file *file)
|
|
{
|
|
return (file->f_flags & O_DIRECT) != 0;
|
|
}
|
|
|
|
/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
|
|
static inline bool pipe_writable(const struct pipe_inode_info *pipe)
|
|
{
|
|
unsigned int head = READ_ONCE(pipe->head);
|
|
unsigned int tail = READ_ONCE(pipe->tail);
|
|
unsigned int max_usage = READ_ONCE(pipe->max_usage);
|
|
|
|
return !pipe_full(head, tail, max_usage) ||
|
|
!READ_ONCE(pipe->readers);
|
|
}
|
|
|
|
static ssize_t
|
|
pipe_write(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct file *filp = iocb->ki_filp;
|
|
struct pipe_inode_info *pipe = filp->private_data;
|
|
unsigned int head;
|
|
ssize_t ret = 0;
|
|
size_t total_len = iov_iter_count(from);
|
|
ssize_t chars;
|
|
bool was_empty = false;
|
|
bool wake_next_writer = false;
|
|
|
|
/*
|
|
* Reject writing to watch queue pipes before the point where we lock
|
|
* the pipe.
|
|
* Otherwise, lockdep would be unhappy if the caller already has another
|
|
* pipe locked.
|
|
* If we had to support locking a normal pipe and a notification pipe at
|
|
* the same time, we could set up lockdep annotations for that, but
|
|
* since we don't actually need that, it's simpler to just bail here.
|
|
*/
|
|
if (pipe_has_watch_queue(pipe))
|
|
return -EXDEV;
|
|
|
|
/* Null write succeeds. */
|
|
if (unlikely(total_len == 0))
|
|
return 0;
|
|
|
|
mutex_lock(&pipe->mutex);
|
|
|
|
if (!pipe->readers) {
|
|
send_sig(SIGPIPE, current, 0);
|
|
ret = -EPIPE;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If it wasn't empty we try to merge new data into
|
|
* the last buffer.
|
|
*
|
|
* That naturally merges small writes, but it also
|
|
* page-aligns the rest of the writes for large writes
|
|
* spanning multiple pages.
|
|
*/
|
|
head = pipe->head;
|
|
was_empty = pipe_empty(head, pipe->tail);
|
|
chars = total_len & (PAGE_SIZE-1);
|
|
if (chars && !was_empty) {
|
|
unsigned int mask = pipe->ring_size - 1;
|
|
struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
|
|
int offset = buf->offset + buf->len;
|
|
|
|
if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
|
|
offset + chars <= PAGE_SIZE) {
|
|
ret = pipe_buf_confirm(pipe, buf);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = copy_page_from_iter(buf->page, offset, chars, from);
|
|
if (unlikely(ret < chars)) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
buf->len += ret;
|
|
if (!iov_iter_count(from))
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
for (;;) {
|
|
if (!pipe->readers) {
|
|
send_sig(SIGPIPE, current, 0);
|
|
if (!ret)
|
|
ret = -EPIPE;
|
|
break;
|
|
}
|
|
|
|
head = pipe->head;
|
|
if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
|
|
unsigned int mask = pipe->ring_size - 1;
|
|
struct pipe_buffer *buf;
|
|
struct page *page = pipe->tmp_page;
|
|
int copied;
|
|
|
|
if (!page) {
|
|
page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
|
|
if (unlikely(!page)) {
|
|
ret = ret ? : -ENOMEM;
|
|
break;
|
|
}
|
|
pipe->tmp_page = page;
|
|
}
|
|
|
|
/* Allocate a slot in the ring in advance and attach an
|
|
* empty buffer. If we fault or otherwise fail to use
|
|
* it, either the reader will consume it or it'll still
|
|
* be there for the next write.
|
|
*/
|
|
pipe->head = head + 1;
|
|
|
|
/* Insert it into the buffer array */
|
|
buf = &pipe->bufs[head & mask];
|
|
buf->page = page;
|
|
buf->ops = &anon_pipe_buf_ops;
|
|
buf->offset = 0;
|
|
buf->len = 0;
|
|
if (is_packetized(filp))
|
|
buf->flags = PIPE_BUF_FLAG_PACKET;
|
|
else
|
|
buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
|
|
pipe->tmp_page = NULL;
|
|
|
|
copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
|
|
if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
|
|
if (!ret)
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
ret += copied;
|
|
buf->len = copied;
|
|
|
|
if (!iov_iter_count(from))
|
|
break;
|
|
}
|
|
|
|
if (!pipe_full(head, pipe->tail, pipe->max_usage))
|
|
continue;
|
|
|
|
/* Wait for buffer space to become available. */
|
|
if ((filp->f_flags & O_NONBLOCK) ||
|
|
(iocb->ki_flags & IOCB_NOWAIT)) {
|
|
if (!ret)
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
if (signal_pending(current)) {
|
|
if (!ret)
|
|
ret = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We're going to release the pipe lock and wait for more
|
|
* space. We wake up any readers if necessary, and then
|
|
* after waiting we need to re-check whether the pipe
|
|
* become empty while we dropped the lock.
|
|
*/
|
|
mutex_unlock(&pipe->mutex);
|
|
if (was_empty)
|
|
wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
|
|
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
|
|
wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
|
|
mutex_lock(&pipe->mutex);
|
|
was_empty = pipe_empty(pipe->head, pipe->tail);
|
|
wake_next_writer = true;
|
|
}
|
|
out:
|
|
if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
|
|
wake_next_writer = false;
|
|
mutex_unlock(&pipe->mutex);
|
|
|
|
/*
|
|
* If we do do a wakeup event, we do a 'sync' wakeup, because we
|
|
* want the reader to start processing things asap, rather than
|
|
* leave the data pending.
|
|
*
|
|
* This is particularly important for small writes, because of
|
|
* how (for example) the GNU make jobserver uses small writes to
|
|
* wake up pending jobs
|
|
*
|
|
* Epoll nonsensically wants a wakeup whether the pipe
|
|
* was already empty or not.
|
|
*/
|
|
if (was_empty || pipe->poll_usage)
|
|
wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
|
|
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
|
|
if (wake_next_writer)
|
|
wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
|
|
if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
|
|
int err = file_update_time(filp);
|
|
if (err)
|
|
ret = err;
|
|
sb_end_write(file_inode(filp)->i_sb);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct pipe_inode_info *pipe = filp->private_data;
|
|
unsigned int count, head, tail, mask;
|
|
|
|
switch (cmd) {
|
|
case FIONREAD:
|
|
mutex_lock(&pipe->mutex);
|
|
count = 0;
|
|
head = pipe->head;
|
|
tail = pipe->tail;
|
|
mask = pipe->ring_size - 1;
|
|
|
|
while (tail != head) {
|
|
count += pipe->bufs[tail & mask].len;
|
|
tail++;
|
|
}
|
|
mutex_unlock(&pipe->mutex);
|
|
|
|
return put_user(count, (int __user *)arg);
|
|
|
|
#ifdef CONFIG_WATCH_QUEUE
|
|
case IOC_WATCH_QUEUE_SET_SIZE: {
|
|
int ret;
|
|
mutex_lock(&pipe->mutex);
|
|
ret = watch_queue_set_size(pipe, arg);
|
|
mutex_unlock(&pipe->mutex);
|
|
return ret;
|
|
}
|
|
|
|
case IOC_WATCH_QUEUE_SET_FILTER:
|
|
return watch_queue_set_filter(
|
|
pipe, (struct watch_notification_filter __user *)arg);
|
|
#endif
|
|
|
|
default:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
}
|
|
|
|
/* No kernel lock held - fine */
|
|
static __poll_t
|
|
pipe_poll(struct file *filp, poll_table *wait)
|
|
{
|
|
__poll_t mask;
|
|
struct pipe_inode_info *pipe = filp->private_data;
|
|
unsigned int head, tail;
|
|
|
|
/* Epoll has some historical nasty semantics, this enables them */
|
|
WRITE_ONCE(pipe->poll_usage, true);
|
|
|
|
/*
|
|
* Reading pipe state only -- no need for acquiring the semaphore.
|
|
*
|
|
* But because this is racy, the code has to add the
|
|
* entry to the poll table _first_ ..
|
|
*/
|
|
if (filp->f_mode & FMODE_READ)
|
|
poll_wait(filp, &pipe->rd_wait, wait);
|
|
if (filp->f_mode & FMODE_WRITE)
|
|
poll_wait(filp, &pipe->wr_wait, wait);
|
|
|
|
/*
|
|
* .. and only then can you do the racy tests. That way,
|
|
* if something changes and you got it wrong, the poll
|
|
* table entry will wake you up and fix it.
|
|
*/
|
|
head = READ_ONCE(pipe->head);
|
|
tail = READ_ONCE(pipe->tail);
|
|
|
|
mask = 0;
|
|
if (filp->f_mode & FMODE_READ) {
|
|
if (!pipe_empty(head, tail))
|
|
mask |= EPOLLIN | EPOLLRDNORM;
|
|
if (!pipe->writers && filp->f_version != pipe->w_counter)
|
|
mask |= EPOLLHUP;
|
|
}
|
|
|
|
if (filp->f_mode & FMODE_WRITE) {
|
|
if (!pipe_full(head, tail, pipe->max_usage))
|
|
mask |= EPOLLOUT | EPOLLWRNORM;
|
|
/*
|
|
* Most Unices do not set EPOLLERR for FIFOs but on Linux they
|
|
* behave exactly like pipes for poll().
|
|
*/
|
|
if (!pipe->readers)
|
|
mask |= EPOLLERR;
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
|
|
{
|
|
int kill = 0;
|
|
|
|
spin_lock(&inode->i_lock);
|
|
if (!--pipe->files) {
|
|
inode->i_pipe = NULL;
|
|
kill = 1;
|
|
}
|
|
spin_unlock(&inode->i_lock);
|
|
|
|
if (kill)
|
|
free_pipe_info(pipe);
|
|
}
|
|
|
|
static int
|
|
pipe_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct pipe_inode_info *pipe = file->private_data;
|
|
|
|
mutex_lock(&pipe->mutex);
|
|
if (file->f_mode & FMODE_READ)
|
|
pipe->readers--;
|
|
if (file->f_mode & FMODE_WRITE)
|
|
pipe->writers--;
|
|
|
|
/* Was that the last reader or writer, but not the other side? */
|
|
if (!pipe->readers != !pipe->writers) {
|
|
wake_up_interruptible_all(&pipe->rd_wait);
|
|
wake_up_interruptible_all(&pipe->wr_wait);
|
|
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
|
|
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
|
|
}
|
|
mutex_unlock(&pipe->mutex);
|
|
|
|
put_pipe_info(inode, pipe);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
pipe_fasync(int fd, struct file *filp, int on)
|
|
{
|
|
struct pipe_inode_info *pipe = filp->private_data;
|
|
int retval = 0;
|
|
|
|
mutex_lock(&pipe->mutex);
|
|
if (filp->f_mode & FMODE_READ)
|
|
retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
|
|
if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
|
|
retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
|
|
if (retval < 0 && (filp->f_mode & FMODE_READ))
|
|
/* this can happen only if on == T */
|
|
fasync_helper(-1, filp, 0, &pipe->fasync_readers);
|
|
}
|
|
mutex_unlock(&pipe->mutex);
|
|
return retval;
|
|
}
|
|
|
|
unsigned long account_pipe_buffers(struct user_struct *user,
|
|
unsigned long old, unsigned long new)
|
|
{
|
|
return atomic_long_add_return(new - old, &user->pipe_bufs);
|
|
}
|
|
|
|
bool too_many_pipe_buffers_soft(unsigned long user_bufs)
|
|
{
|
|
unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
|
|
|
|
return soft_limit && user_bufs > soft_limit;
|
|
}
|
|
|
|
bool too_many_pipe_buffers_hard(unsigned long user_bufs)
|
|
{
|
|
unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
|
|
|
|
return hard_limit && user_bufs > hard_limit;
|
|
}
|
|
|
|
bool pipe_is_unprivileged_user(void)
|
|
{
|
|
return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
|
|
}
|
|
|
|
struct pipe_inode_info *alloc_pipe_info(void)
|
|
{
|
|
struct pipe_inode_info *pipe;
|
|
unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
|
|
struct user_struct *user = get_current_user();
|
|
unsigned long user_bufs;
|
|
unsigned int max_size = READ_ONCE(pipe_max_size);
|
|
|
|
pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
|
|
if (pipe == NULL)
|
|
goto out_free_uid;
|
|
|
|
if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
|
|
pipe_bufs = max_size >> PAGE_SHIFT;
|
|
|
|
user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
|
|
|
|
if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
|
|
user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
|
|
pipe_bufs = PIPE_MIN_DEF_BUFFERS;
|
|
}
|
|
|
|
if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
|
|
goto out_revert_acct;
|
|
|
|
pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
|
|
GFP_KERNEL_ACCOUNT);
|
|
|
|
if (pipe->bufs) {
|
|
init_waitqueue_head(&pipe->rd_wait);
|
|
init_waitqueue_head(&pipe->wr_wait);
|
|
pipe->r_counter = pipe->w_counter = 1;
|
|
pipe->max_usage = pipe_bufs;
|
|
pipe->ring_size = pipe_bufs;
|
|
pipe->nr_accounted = pipe_bufs;
|
|
pipe->user = user;
|
|
mutex_init(&pipe->mutex);
|
|
lock_set_cmp_fn(&pipe->mutex, pipe_lock_cmp_fn, NULL);
|
|
return pipe;
|
|
}
|
|
|
|
out_revert_acct:
|
|
(void) account_pipe_buffers(user, pipe_bufs, 0);
|
|
kfree(pipe);
|
|
out_free_uid:
|
|
free_uid(user);
|
|
return NULL;
|
|
}
|
|
|
|
void free_pipe_info(struct pipe_inode_info *pipe)
|
|
{
|
|
unsigned int i;
|
|
|
|
#ifdef CONFIG_WATCH_QUEUE
|
|
if (pipe->watch_queue)
|
|
watch_queue_clear(pipe->watch_queue);
|
|
#endif
|
|
|
|
(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
|
|
free_uid(pipe->user);
|
|
for (i = 0; i < pipe->ring_size; i++) {
|
|
struct pipe_buffer *buf = pipe->bufs + i;
|
|
if (buf->ops)
|
|
pipe_buf_release(pipe, buf);
|
|
}
|
|
#ifdef CONFIG_WATCH_QUEUE
|
|
if (pipe->watch_queue)
|
|
put_watch_queue(pipe->watch_queue);
|
|
#endif
|
|
if (pipe->tmp_page)
|
|
__free_page(pipe->tmp_page);
|
|
kfree(pipe->bufs);
|
|
kfree(pipe);
|
|
}
|
|
|
|
static struct vfsmount *pipe_mnt __ro_after_init;
|
|
|
|
/*
|
|
* pipefs_dname() is called from d_path().
|
|
*/
|
|
static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
|
|
{
|
|
return dynamic_dname(buffer, buflen, "pipe:[%lu]",
|
|
d_inode(dentry)->i_ino);
|
|
}
|
|
|
|
static const struct dentry_operations pipefs_dentry_operations = {
|
|
.d_dname = pipefs_dname,
|
|
};
|
|
|
|
static struct inode * get_pipe_inode(void)
|
|
{
|
|
struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
|
|
struct pipe_inode_info *pipe;
|
|
|
|
if (!inode)
|
|
goto fail_inode;
|
|
|
|
inode->i_ino = get_next_ino();
|
|
|
|
pipe = alloc_pipe_info();
|
|
if (!pipe)
|
|
goto fail_iput;
|
|
|
|
inode->i_pipe = pipe;
|
|
pipe->files = 2;
|
|
pipe->readers = pipe->writers = 1;
|
|
inode->i_fop = &pipefifo_fops;
|
|
|
|
/*
|
|
* Mark the inode dirty from the very beginning,
|
|
* that way it will never be moved to the dirty
|
|
* list because "mark_inode_dirty()" will think
|
|
* that it already _is_ on the dirty list.
|
|
*/
|
|
inode->i_state = I_DIRTY;
|
|
inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
|
|
inode->i_uid = current_fsuid();
|
|
inode->i_gid = current_fsgid();
|
|
simple_inode_init_ts(inode);
|
|
|
|
return inode;
|
|
|
|
fail_iput:
|
|
iput(inode);
|
|
|
|
fail_inode:
|
|
return NULL;
|
|
}
|
|
|
|
int create_pipe_files(struct file **res, int flags)
|
|
{
|
|
struct inode *inode = get_pipe_inode();
|
|
struct file *f;
|
|
int error;
|
|
|
|
if (!inode)
|
|
return -ENFILE;
|
|
|
|
if (flags & O_NOTIFICATION_PIPE) {
|
|
error = watch_queue_init(inode->i_pipe);
|
|
if (error) {
|
|
free_pipe_info(inode->i_pipe);
|
|
iput(inode);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
f = alloc_file_pseudo(inode, pipe_mnt, "",
|
|
O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
|
|
&pipefifo_fops);
|
|
if (IS_ERR(f)) {
|
|
free_pipe_info(inode->i_pipe);
|
|
iput(inode);
|
|
return PTR_ERR(f);
|
|
}
|
|
|
|
f->private_data = inode->i_pipe;
|
|
|
|
res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
|
|
&pipefifo_fops);
|
|
if (IS_ERR(res[0])) {
|
|
put_pipe_info(inode, inode->i_pipe);
|
|
fput(f);
|
|
return PTR_ERR(res[0]);
|
|
}
|
|
res[0]->private_data = inode->i_pipe;
|
|
res[1] = f;
|
|
stream_open(inode, res[0]);
|
|
stream_open(inode, res[1]);
|
|
return 0;
|
|
}
|
|
|
|
static int __do_pipe_flags(int *fd, struct file **files, int flags)
|
|
{
|
|
int error;
|
|
int fdw, fdr;
|
|
|
|
if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
|
|
return -EINVAL;
|
|
|
|
error = create_pipe_files(files, flags);
|
|
if (error)
|
|
return error;
|
|
|
|
error = get_unused_fd_flags(flags);
|
|
if (error < 0)
|
|
goto err_read_pipe;
|
|
fdr = error;
|
|
|
|
error = get_unused_fd_flags(flags);
|
|
if (error < 0)
|
|
goto err_fdr;
|
|
fdw = error;
|
|
|
|
audit_fd_pair(fdr, fdw);
|
|
fd[0] = fdr;
|
|
fd[1] = fdw;
|
|
/* pipe groks IOCB_NOWAIT */
|
|
files[0]->f_mode |= FMODE_NOWAIT;
|
|
files[1]->f_mode |= FMODE_NOWAIT;
|
|
return 0;
|
|
|
|
err_fdr:
|
|
put_unused_fd(fdr);
|
|
err_read_pipe:
|
|
fput(files[0]);
|
|
fput(files[1]);
|
|
return error;
|
|
}
|
|
|
|
int do_pipe_flags(int *fd, int flags)
|
|
{
|
|
struct file *files[2];
|
|
int error = __do_pipe_flags(fd, files, flags);
|
|
if (!error) {
|
|
fd_install(fd[0], files[0]);
|
|
fd_install(fd[1], files[1]);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* sys_pipe() is the normal C calling standard for creating
|
|
* a pipe. It's not the way Unix traditionally does this, though.
|
|
*/
|
|
static int do_pipe2(int __user *fildes, int flags)
|
|
{
|
|
struct file *files[2];
|
|
int fd[2];
|
|
int error;
|
|
|
|
error = __do_pipe_flags(fd, files, flags);
|
|
if (!error) {
|
|
if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
|
|
fput(files[0]);
|
|
fput(files[1]);
|
|
put_unused_fd(fd[0]);
|
|
put_unused_fd(fd[1]);
|
|
error = -EFAULT;
|
|
} else {
|
|
fd_install(fd[0], files[0]);
|
|
fd_install(fd[1], files[1]);
|
|
}
|
|
}
|
|
return error;
|
|
}
|
|
|
|
SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
|
|
{
|
|
return do_pipe2(fildes, flags);
|
|
}
|
|
|
|
SYSCALL_DEFINE1(pipe, int __user *, fildes)
|
|
{
|
|
return do_pipe2(fildes, 0);
|
|
}
|
|
|
|
/*
|
|
* This is the stupid "wait for pipe to be readable or writable"
|
|
* model.
|
|
*
|
|
* See pipe_read/write() for the proper kind of exclusive wait,
|
|
* but that requires that we wake up any other readers/writers
|
|
* if we then do not end up reading everything (ie the whole
|
|
* "wake_next_reader/writer" logic in pipe_read/write()).
|
|
*/
|
|
void pipe_wait_readable(struct pipe_inode_info *pipe)
|
|
{
|
|
pipe_unlock(pipe);
|
|
wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
|
|
pipe_lock(pipe);
|
|
}
|
|
|
|
void pipe_wait_writable(struct pipe_inode_info *pipe)
|
|
{
|
|
pipe_unlock(pipe);
|
|
wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
|
|
pipe_lock(pipe);
|
|
}
|
|
|
|
/*
|
|
* This depends on both the wait (here) and the wakeup (wake_up_partner)
|
|
* holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
|
|
* race with the count check and waitqueue prep.
|
|
*
|
|
* Normally in order to avoid races, you'd do the prepare_to_wait() first,
|
|
* then check the condition you're waiting for, and only then sleep. But
|
|
* because of the pipe lock, we can check the condition before being on
|
|
* the wait queue.
|
|
*
|
|
* We use the 'rd_wait' waitqueue for pipe partner waiting.
|
|
*/
|
|
static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
|
|
{
|
|
DEFINE_WAIT(rdwait);
|
|
int cur = *cnt;
|
|
|
|
while (cur == *cnt) {
|
|
prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
|
|
pipe_unlock(pipe);
|
|
schedule();
|
|
finish_wait(&pipe->rd_wait, &rdwait);
|
|
pipe_lock(pipe);
|
|
if (signal_pending(current))
|
|
break;
|
|
}
|
|
return cur == *cnt ? -ERESTARTSYS : 0;
|
|
}
|
|
|
|
static void wake_up_partner(struct pipe_inode_info *pipe)
|
|
{
|
|
wake_up_interruptible_all(&pipe->rd_wait);
|
|
}
|
|
|
|
static int fifo_open(struct inode *inode, struct file *filp)
|
|
{
|
|
struct pipe_inode_info *pipe;
|
|
bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
|
|
int ret;
|
|
|
|
filp->f_version = 0;
|
|
|
|
spin_lock(&inode->i_lock);
|
|
if (inode->i_pipe) {
|
|
pipe = inode->i_pipe;
|
|
pipe->files++;
|
|
spin_unlock(&inode->i_lock);
|
|
} else {
|
|
spin_unlock(&inode->i_lock);
|
|
pipe = alloc_pipe_info();
|
|
if (!pipe)
|
|
return -ENOMEM;
|
|
pipe->files = 1;
|
|
spin_lock(&inode->i_lock);
|
|
if (unlikely(inode->i_pipe)) {
|
|
inode->i_pipe->files++;
|
|
spin_unlock(&inode->i_lock);
|
|
free_pipe_info(pipe);
|
|
pipe = inode->i_pipe;
|
|
} else {
|
|
inode->i_pipe = pipe;
|
|
spin_unlock(&inode->i_lock);
|
|
}
|
|
}
|
|
filp->private_data = pipe;
|
|
/* OK, we have a pipe and it's pinned down */
|
|
|
|
mutex_lock(&pipe->mutex);
|
|
|
|
/* We can only do regular read/write on fifos */
|
|
stream_open(inode, filp);
|
|
|
|
switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
|
|
case FMODE_READ:
|
|
/*
|
|
* O_RDONLY
|
|
* POSIX.1 says that O_NONBLOCK means return with the FIFO
|
|
* opened, even when there is no process writing the FIFO.
|
|
*/
|
|
pipe->r_counter++;
|
|
if (pipe->readers++ == 0)
|
|
wake_up_partner(pipe);
|
|
|
|
if (!is_pipe && !pipe->writers) {
|
|
if ((filp->f_flags & O_NONBLOCK)) {
|
|
/* suppress EPOLLHUP until we have
|
|
* seen a writer */
|
|
filp->f_version = pipe->w_counter;
|
|
} else {
|
|
if (wait_for_partner(pipe, &pipe->w_counter))
|
|
goto err_rd;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case FMODE_WRITE:
|
|
/*
|
|
* O_WRONLY
|
|
* POSIX.1 says that O_NONBLOCK means return -1 with
|
|
* errno=ENXIO when there is no process reading the FIFO.
|
|
*/
|
|
ret = -ENXIO;
|
|
if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
|
|
goto err;
|
|
|
|
pipe->w_counter++;
|
|
if (!pipe->writers++)
|
|
wake_up_partner(pipe);
|
|
|
|
if (!is_pipe && !pipe->readers) {
|
|
if (wait_for_partner(pipe, &pipe->r_counter))
|
|
goto err_wr;
|
|
}
|
|
break;
|
|
|
|
case FMODE_READ | FMODE_WRITE:
|
|
/*
|
|
* O_RDWR
|
|
* POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
|
|
* This implementation will NEVER block on a O_RDWR open, since
|
|
* the process can at least talk to itself.
|
|
*/
|
|
|
|
pipe->readers++;
|
|
pipe->writers++;
|
|
pipe->r_counter++;
|
|
pipe->w_counter++;
|
|
if (pipe->readers == 1 || pipe->writers == 1)
|
|
wake_up_partner(pipe);
|
|
break;
|
|
|
|
default:
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
/* Ok! */
|
|
mutex_unlock(&pipe->mutex);
|
|
return 0;
|
|
|
|
err_rd:
|
|
if (!--pipe->readers)
|
|
wake_up_interruptible(&pipe->wr_wait);
|
|
ret = -ERESTARTSYS;
|
|
goto err;
|
|
|
|
err_wr:
|
|
if (!--pipe->writers)
|
|
wake_up_interruptible_all(&pipe->rd_wait);
|
|
ret = -ERESTARTSYS;
|
|
goto err;
|
|
|
|
err:
|
|
mutex_unlock(&pipe->mutex);
|
|
|
|
put_pipe_info(inode, pipe);
|
|
return ret;
|
|
}
|
|
|
|
const struct file_operations pipefifo_fops = {
|
|
.open = fifo_open,
|
|
.llseek = no_llseek,
|
|
.read_iter = pipe_read,
|
|
.write_iter = pipe_write,
|
|
.poll = pipe_poll,
|
|
.unlocked_ioctl = pipe_ioctl,
|
|
.release = pipe_release,
|
|
.fasync = pipe_fasync,
|
|
.splice_write = iter_file_splice_write,
|
|
};
|
|
|
|
/*
|
|
* Currently we rely on the pipe array holding a power-of-2 number
|
|
* of pages. Returns 0 on error.
|
|
*/
|
|
unsigned int round_pipe_size(unsigned int size)
|
|
{
|
|
if (size > (1U << 31))
|
|
return 0;
|
|
|
|
/* Minimum pipe size, as required by POSIX */
|
|
if (size < PAGE_SIZE)
|
|
return PAGE_SIZE;
|
|
|
|
return roundup_pow_of_two(size);
|
|
}
|
|
|
|
/*
|
|
* Resize the pipe ring to a number of slots.
|
|
*
|
|
* Note the pipe can be reduced in capacity, but only if the current
|
|
* occupancy doesn't exceed nr_slots; if it does, EBUSY will be
|
|
* returned instead.
|
|
*/
|
|
int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
|
|
{
|
|
struct pipe_buffer *bufs;
|
|
unsigned int head, tail, mask, n;
|
|
|
|
bufs = kcalloc(nr_slots, sizeof(*bufs),
|
|
GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
|
|
if (unlikely(!bufs))
|
|
return -ENOMEM;
|
|
|
|
spin_lock_irq(&pipe->rd_wait.lock);
|
|
mask = pipe->ring_size - 1;
|
|
head = pipe->head;
|
|
tail = pipe->tail;
|
|
|
|
n = pipe_occupancy(head, tail);
|
|
if (nr_slots < n) {
|
|
spin_unlock_irq(&pipe->rd_wait.lock);
|
|
kfree(bufs);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* The pipe array wraps around, so just start the new one at zero
|
|
* and adjust the indices.
|
|
*/
|
|
if (n > 0) {
|
|
unsigned int h = head & mask;
|
|
unsigned int t = tail & mask;
|
|
if (h > t) {
|
|
memcpy(bufs, pipe->bufs + t,
|
|
n * sizeof(struct pipe_buffer));
|
|
} else {
|
|
unsigned int tsize = pipe->ring_size - t;
|
|
if (h > 0)
|
|
memcpy(bufs + tsize, pipe->bufs,
|
|
h * sizeof(struct pipe_buffer));
|
|
memcpy(bufs, pipe->bufs + t,
|
|
tsize * sizeof(struct pipe_buffer));
|
|
}
|
|
}
|
|
|
|
head = n;
|
|
tail = 0;
|
|
|
|
kfree(pipe->bufs);
|
|
pipe->bufs = bufs;
|
|
pipe->ring_size = nr_slots;
|
|
if (pipe->max_usage > nr_slots)
|
|
pipe->max_usage = nr_slots;
|
|
pipe->tail = tail;
|
|
pipe->head = head;
|
|
|
|
if (!pipe_has_watch_queue(pipe)) {
|
|
pipe->max_usage = nr_slots;
|
|
pipe->nr_accounted = nr_slots;
|
|
}
|
|
|
|
spin_unlock_irq(&pipe->rd_wait.lock);
|
|
|
|
/* This might have made more room for writers */
|
|
wake_up_interruptible(&pipe->wr_wait);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate a new array of pipe buffers and copy the info over. Returns the
|
|
* pipe size if successful, or return -ERROR on error.
|
|
*/
|
|
static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg)
|
|
{
|
|
unsigned long user_bufs;
|
|
unsigned int nr_slots, size;
|
|
long ret = 0;
|
|
|
|
if (pipe_has_watch_queue(pipe))
|
|
return -EBUSY;
|
|
|
|
size = round_pipe_size(arg);
|
|
nr_slots = size >> PAGE_SHIFT;
|
|
|
|
if (!nr_slots)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If trying to increase the pipe capacity, check that an
|
|
* unprivileged user is not trying to exceed various limits
|
|
* (soft limit check here, hard limit check just below).
|
|
* Decreasing the pipe capacity is always permitted, even
|
|
* if the user is currently over a limit.
|
|
*/
|
|
if (nr_slots > pipe->max_usage &&
|
|
size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
|
|
return -EPERM;
|
|
|
|
user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
|
|
|
|
if (nr_slots > pipe->max_usage &&
|
|
(too_many_pipe_buffers_hard(user_bufs) ||
|
|
too_many_pipe_buffers_soft(user_bufs)) &&
|
|
pipe_is_unprivileged_user()) {
|
|
ret = -EPERM;
|
|
goto out_revert_acct;
|
|
}
|
|
|
|
ret = pipe_resize_ring(pipe, nr_slots);
|
|
if (ret < 0)
|
|
goto out_revert_acct;
|
|
|
|
return pipe->max_usage * PAGE_SIZE;
|
|
|
|
out_revert_acct:
|
|
(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
|
|
* not enough to verify that this is a pipe.
|
|
*/
|
|
struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
|
|
{
|
|
struct pipe_inode_info *pipe = file->private_data;
|
|
|
|
if (file->f_op != &pipefifo_fops || !pipe)
|
|
return NULL;
|
|
if (for_splice && pipe_has_watch_queue(pipe))
|
|
return NULL;
|
|
return pipe;
|
|
}
|
|
|
|
long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
|
|
{
|
|
struct pipe_inode_info *pipe;
|
|
long ret;
|
|
|
|
pipe = get_pipe_info(file, false);
|
|
if (!pipe)
|
|
return -EBADF;
|
|
|
|
mutex_lock(&pipe->mutex);
|
|
|
|
switch (cmd) {
|
|
case F_SETPIPE_SZ:
|
|
ret = pipe_set_size(pipe, arg);
|
|
break;
|
|
case F_GETPIPE_SZ:
|
|
ret = pipe->max_usage * PAGE_SIZE;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&pipe->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static const struct super_operations pipefs_ops = {
|
|
.destroy_inode = free_inode_nonrcu,
|
|
.statfs = simple_statfs,
|
|
};
|
|
|
|
/*
|
|
* pipefs should _never_ be mounted by userland - too much of security hassle,
|
|
* no real gain from having the whole whorehouse mounted. So we don't need
|
|
* any operations on the root directory. However, we need a non-trivial
|
|
* d_name - pipe: will go nicely and kill the special-casing in procfs.
|
|
*/
|
|
|
|
static int pipefs_init_fs_context(struct fs_context *fc)
|
|
{
|
|
struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
ctx->ops = &pipefs_ops;
|
|
ctx->dops = &pipefs_dentry_operations;
|
|
return 0;
|
|
}
|
|
|
|
static struct file_system_type pipe_fs_type = {
|
|
.name = "pipefs",
|
|
.init_fs_context = pipefs_init_fs_context,
|
|
.kill_sb = kill_anon_super,
|
|
};
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
|
|
unsigned int *valp,
|
|
int write, void *data)
|
|
{
|
|
if (write) {
|
|
unsigned int val;
|
|
|
|
val = round_pipe_size(*lvalp);
|
|
if (val == 0)
|
|
return -EINVAL;
|
|
|
|
*valp = val;
|
|
} else {
|
|
unsigned int val = *valp;
|
|
*lvalp = (unsigned long) val;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int proc_dopipe_max_size(const struct ctl_table *table, int write,
|
|
void *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
return do_proc_douintvec(table, write, buffer, lenp, ppos,
|
|
do_proc_dopipe_max_size_conv, NULL);
|
|
}
|
|
|
|
static struct ctl_table fs_pipe_sysctls[] = {
|
|
{
|
|
.procname = "pipe-max-size",
|
|
.data = &pipe_max_size,
|
|
.maxlen = sizeof(pipe_max_size),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dopipe_max_size,
|
|
},
|
|
{
|
|
.procname = "pipe-user-pages-hard",
|
|
.data = &pipe_user_pages_hard,
|
|
.maxlen = sizeof(pipe_user_pages_hard),
|
|
.mode = 0644,
|
|
.proc_handler = proc_doulongvec_minmax,
|
|
},
|
|
{
|
|
.procname = "pipe-user-pages-soft",
|
|
.data = &pipe_user_pages_soft,
|
|
.maxlen = sizeof(pipe_user_pages_soft),
|
|
.mode = 0644,
|
|
.proc_handler = proc_doulongvec_minmax,
|
|
},
|
|
};
|
|
#endif
|
|
|
|
static int __init init_pipe_fs(void)
|
|
{
|
|
int err = register_filesystem(&pipe_fs_type);
|
|
|
|
if (!err) {
|
|
pipe_mnt = kern_mount(&pipe_fs_type);
|
|
if (IS_ERR(pipe_mnt)) {
|
|
err = PTR_ERR(pipe_mnt);
|
|
unregister_filesystem(&pipe_fs_type);
|
|
}
|
|
}
|
|
#ifdef CONFIG_SYSCTL
|
|
register_sysctl_init("fs", fs_pipe_sysctls);
|
|
#endif
|
|
return err;
|
|
}
|
|
|
|
fs_initcall(init_pipe_fs);
|