mirror of
https://github.com/torvalds/linux.git
synced 2024-12-01 00:21:32 +00:00
fb690390e3
Make the integer hash function a property of the bucket it is used on. This allows us to gracefully add support for new hash functions without starting from scatch. Signed-off-by: Sage Weil <sage@newdream.net>
181 lines
4.9 KiB
C
181 lines
4.9 KiB
C
#ifndef _CRUSH_CRUSH_H
|
|
#define _CRUSH_CRUSH_H
|
|
|
|
#include <linux/types.h>
|
|
|
|
/*
|
|
* CRUSH is a pseudo-random data distribution algorithm that
|
|
* efficiently distributes input values (typically, data objects)
|
|
* across a heterogeneous, structured storage cluster.
|
|
*
|
|
* The algorithm was originally described in detail in this paper
|
|
* (although the algorithm has evolved somewhat since then):
|
|
*
|
|
* http://www.ssrc.ucsc.edu/Papers/weil-sc06.pdf
|
|
*
|
|
* LGPL2
|
|
*/
|
|
|
|
|
|
#define CRUSH_MAGIC 0x00010000ul /* for detecting algorithm revisions */
|
|
|
|
|
|
#define CRUSH_MAX_DEPTH 10 /* max crush hierarchy depth */
|
|
#define CRUSH_MAX_SET 10 /* max size of a mapping result */
|
|
|
|
|
|
/*
|
|
* CRUSH uses user-defined "rules" to describe how inputs should be
|
|
* mapped to devices. A rule consists of sequence of steps to perform
|
|
* to generate the set of output devices.
|
|
*/
|
|
struct crush_rule_step {
|
|
__u32 op;
|
|
__s32 arg1;
|
|
__s32 arg2;
|
|
};
|
|
|
|
/* step op codes */
|
|
enum {
|
|
CRUSH_RULE_NOOP = 0,
|
|
CRUSH_RULE_TAKE = 1, /* arg1 = value to start with */
|
|
CRUSH_RULE_CHOOSE_FIRSTN = 2, /* arg1 = num items to pick */
|
|
/* arg2 = type */
|
|
CRUSH_RULE_CHOOSE_INDEP = 3, /* same */
|
|
CRUSH_RULE_EMIT = 4, /* no args */
|
|
CRUSH_RULE_CHOOSE_LEAF_FIRSTN = 6,
|
|
CRUSH_RULE_CHOOSE_LEAF_INDEP = 7,
|
|
};
|
|
|
|
/*
|
|
* for specifying choose num (arg1) relative to the max parameter
|
|
* passed to do_rule
|
|
*/
|
|
#define CRUSH_CHOOSE_N 0
|
|
#define CRUSH_CHOOSE_N_MINUS(x) (-(x))
|
|
|
|
/*
|
|
* The rule mask is used to describe what the rule is intended for.
|
|
* Given a ruleset and size of output set, we search through the
|
|
* rule list for a matching rule_mask.
|
|
*/
|
|
struct crush_rule_mask {
|
|
__u8 ruleset;
|
|
__u8 type;
|
|
__u8 min_size;
|
|
__u8 max_size;
|
|
};
|
|
|
|
struct crush_rule {
|
|
__u32 len;
|
|
struct crush_rule_mask mask;
|
|
struct crush_rule_step steps[0];
|
|
};
|
|
|
|
#define crush_rule_size(len) (sizeof(struct crush_rule) + \
|
|
(len)*sizeof(struct crush_rule_step))
|
|
|
|
|
|
|
|
/*
|
|
* A bucket is a named container of other items (either devices or
|
|
* other buckets). Items within a bucket are chosen using one of a
|
|
* few different algorithms. The table summarizes how the speed of
|
|
* each option measures up against mapping stability when items are
|
|
* added or removed.
|
|
*
|
|
* Bucket Alg Speed Additions Removals
|
|
* ------------------------------------------------
|
|
* uniform O(1) poor poor
|
|
* list O(n) optimal poor
|
|
* tree O(log n) good good
|
|
* straw O(n) optimal optimal
|
|
*/
|
|
enum {
|
|
CRUSH_BUCKET_UNIFORM = 1,
|
|
CRUSH_BUCKET_LIST = 2,
|
|
CRUSH_BUCKET_TREE = 3,
|
|
CRUSH_BUCKET_STRAW = 4
|
|
};
|
|
extern const char *crush_bucket_alg_name(int alg);
|
|
|
|
struct crush_bucket {
|
|
__s32 id; /* this'll be negative */
|
|
__u16 type; /* non-zero; type=0 is reserved for devices */
|
|
__u8 alg; /* one of CRUSH_BUCKET_* */
|
|
__u8 hash; /* which hash function to use, CRUSH_HASH_* */
|
|
__u32 weight; /* 16-bit fixed point */
|
|
__u32 size; /* num items */
|
|
__s32 *items;
|
|
|
|
/*
|
|
* cached random permutation: used for uniform bucket and for
|
|
* the linear search fallback for the other bucket types.
|
|
*/
|
|
__u32 perm_x; /* @x for which *perm is defined */
|
|
__u32 perm_n; /* num elements of *perm that are permuted/defined */
|
|
__u32 *perm;
|
|
};
|
|
|
|
struct crush_bucket_uniform {
|
|
struct crush_bucket h;
|
|
__u32 item_weight; /* 16-bit fixed point; all items equally weighted */
|
|
};
|
|
|
|
struct crush_bucket_list {
|
|
struct crush_bucket h;
|
|
__u32 *item_weights; /* 16-bit fixed point */
|
|
__u32 *sum_weights; /* 16-bit fixed point. element i is sum
|
|
of weights 0..i, inclusive */
|
|
};
|
|
|
|
struct crush_bucket_tree {
|
|
struct crush_bucket h; /* note: h.size is _tree_ size, not number of
|
|
actual items */
|
|
__u8 num_nodes;
|
|
__u32 *node_weights;
|
|
};
|
|
|
|
struct crush_bucket_straw {
|
|
struct crush_bucket h;
|
|
__u32 *item_weights; /* 16-bit fixed point */
|
|
__u32 *straws; /* 16-bit fixed point */
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
* CRUSH map includes all buckets, rules, etc.
|
|
*/
|
|
struct crush_map {
|
|
struct crush_bucket **buckets;
|
|
struct crush_rule **rules;
|
|
|
|
/*
|
|
* Parent pointers to identify the parent bucket a device or
|
|
* bucket in the hierarchy. If an item appears more than
|
|
* once, this is the _last_ time it appeared (where buckets
|
|
* are processed in bucket id order, from -1 on down to
|
|
* -max_buckets.
|
|
*/
|
|
__u32 *bucket_parents;
|
|
__u32 *device_parents;
|
|
|
|
__s32 max_buckets;
|
|
__u32 max_rules;
|
|
__s32 max_devices;
|
|
};
|
|
|
|
|
|
/* crush.c */
|
|
extern int crush_get_bucket_item_weight(struct crush_bucket *b, int pos);
|
|
extern void crush_calc_parents(struct crush_map *map);
|
|
extern void crush_destroy_bucket_uniform(struct crush_bucket_uniform *b);
|
|
extern void crush_destroy_bucket_list(struct crush_bucket_list *b);
|
|
extern void crush_destroy_bucket_tree(struct crush_bucket_tree *b);
|
|
extern void crush_destroy_bucket_straw(struct crush_bucket_straw *b);
|
|
extern void crush_destroy_bucket(struct crush_bucket *b);
|
|
extern void crush_destroy(struct crush_map *map);
|
|
|
|
#endif
|