mirror of
https://github.com/torvalds/linux.git
synced 2024-12-22 02:52:56 +00:00
bed30de47b
Received from Mark Salyzyn from Adaptec: If more than two commands are outstanding to the controller, there is no need to notify the adapter via a PCI bus transaction of additional commands added into the queue; it will get to them when it works through the produce/consumer indexes. This reduced the PCI traffic in the driver to submit a command to the queue to near zero allowing a significant number of commands to be turned around with no need to block for the PCI bridge to flush the notify request to the adapter. Interrupt mitigation has always been present in the driver; it was turned off because of a bug that prevented one from realizing the usefulness of the feature. This bug is fixed in this patch. Signed-off-by: Mark Haverkamp <markh@osdl.org> Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
968 lines
27 KiB
C
968 lines
27 KiB
C
/*
|
|
* Adaptec AAC series RAID controller driver
|
|
* (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
|
|
*
|
|
* based on the old aacraid driver that is..
|
|
* Adaptec aacraid device driver for Linux.
|
|
*
|
|
* Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
* Module Name:
|
|
* commsup.c
|
|
*
|
|
* Abstract: Contain all routines that are required for FSA host/adapter
|
|
* communication.
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/types.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/blkdev.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <asm/semaphore.h>
|
|
|
|
#include "aacraid.h"
|
|
|
|
/**
|
|
* fib_map_alloc - allocate the fib objects
|
|
* @dev: Adapter to allocate for
|
|
*
|
|
* Allocate and map the shared PCI space for the FIB blocks used to
|
|
* talk to the Adaptec firmware.
|
|
*/
|
|
|
|
static int fib_map_alloc(struct aac_dev *dev)
|
|
{
|
|
dprintk((KERN_INFO
|
|
"allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
|
|
dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
|
|
AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
|
|
if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
|
|
* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
|
|
&dev->hw_fib_pa))==NULL)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fib_map_free - free the fib objects
|
|
* @dev: Adapter to free
|
|
*
|
|
* Free the PCI mappings and the memory allocated for FIB blocks
|
|
* on this adapter.
|
|
*/
|
|
|
|
void fib_map_free(struct aac_dev *dev)
|
|
{
|
|
pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
|
|
}
|
|
|
|
/**
|
|
* fib_setup - setup the fibs
|
|
* @dev: Adapter to set up
|
|
*
|
|
* Allocate the PCI space for the fibs, map it and then intialise the
|
|
* fib area, the unmapped fib data and also the free list
|
|
*/
|
|
|
|
int fib_setup(struct aac_dev * dev)
|
|
{
|
|
struct fib *fibptr;
|
|
struct hw_fib *hw_fib_va;
|
|
dma_addr_t hw_fib_pa;
|
|
int i;
|
|
|
|
while (((i = fib_map_alloc(dev)) == -ENOMEM)
|
|
&& (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
|
|
dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
|
|
dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
|
|
}
|
|
if (i<0)
|
|
return -ENOMEM;
|
|
|
|
hw_fib_va = dev->hw_fib_va;
|
|
hw_fib_pa = dev->hw_fib_pa;
|
|
memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
|
|
/*
|
|
* Initialise the fibs
|
|
*/
|
|
for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
|
|
{
|
|
fibptr->dev = dev;
|
|
fibptr->hw_fib = hw_fib_va;
|
|
fibptr->data = (void *) fibptr->hw_fib->data;
|
|
fibptr->next = fibptr+1; /* Forward chain the fibs */
|
|
init_MUTEX_LOCKED(&fibptr->event_wait);
|
|
spin_lock_init(&fibptr->event_lock);
|
|
hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
|
|
hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
|
|
fibptr->hw_fib_pa = hw_fib_pa;
|
|
hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
|
|
hw_fib_pa = hw_fib_pa + dev->max_fib_size;
|
|
}
|
|
/*
|
|
* Add the fib chain to the free list
|
|
*/
|
|
dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
|
|
/*
|
|
* Enable this to debug out of queue space
|
|
*/
|
|
dev->free_fib = &dev->fibs[0];
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fib_alloc - allocate a fib
|
|
* @dev: Adapter to allocate the fib for
|
|
*
|
|
* Allocate a fib from the adapter fib pool. If the pool is empty we
|
|
* return NULL.
|
|
*/
|
|
|
|
struct fib * fib_alloc(struct aac_dev *dev)
|
|
{
|
|
struct fib * fibptr;
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&dev->fib_lock, flags);
|
|
fibptr = dev->free_fib;
|
|
if(!fibptr){
|
|
spin_unlock_irqrestore(&dev->fib_lock, flags);
|
|
return fibptr;
|
|
}
|
|
dev->free_fib = fibptr->next;
|
|
spin_unlock_irqrestore(&dev->fib_lock, flags);
|
|
/*
|
|
* Set the proper node type code and node byte size
|
|
*/
|
|
fibptr->type = FSAFS_NTC_FIB_CONTEXT;
|
|
fibptr->size = sizeof(struct fib);
|
|
/*
|
|
* Null out fields that depend on being zero at the start of
|
|
* each I/O
|
|
*/
|
|
fibptr->hw_fib->header.XferState = 0;
|
|
fibptr->callback = NULL;
|
|
fibptr->callback_data = NULL;
|
|
|
|
return fibptr;
|
|
}
|
|
|
|
/**
|
|
* fib_free - free a fib
|
|
* @fibptr: fib to free up
|
|
*
|
|
* Frees up a fib and places it on the appropriate queue
|
|
* (either free or timed out)
|
|
*/
|
|
|
|
void fib_free(struct fib * fibptr)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
|
|
if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
|
|
aac_config.fib_timeouts++;
|
|
fibptr->next = fibptr->dev->timeout_fib;
|
|
fibptr->dev->timeout_fib = fibptr;
|
|
} else {
|
|
if (fibptr->hw_fib->header.XferState != 0) {
|
|
printk(KERN_WARNING "fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
|
|
(void*)fibptr,
|
|
le32_to_cpu(fibptr->hw_fib->header.XferState));
|
|
}
|
|
fibptr->next = fibptr->dev->free_fib;
|
|
fibptr->dev->free_fib = fibptr;
|
|
}
|
|
spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* fib_init - initialise a fib
|
|
* @fibptr: The fib to initialize
|
|
*
|
|
* Set up the generic fib fields ready for use
|
|
*/
|
|
|
|
void fib_init(struct fib *fibptr)
|
|
{
|
|
struct hw_fib *hw_fib = fibptr->hw_fib;
|
|
|
|
hw_fib->header.StructType = FIB_MAGIC;
|
|
hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
|
|
hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
|
|
hw_fib->header.SenderFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
|
|
hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
|
|
hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
|
|
}
|
|
|
|
/**
|
|
* fib_deallocate - deallocate a fib
|
|
* @fibptr: fib to deallocate
|
|
*
|
|
* Will deallocate and return to the free pool the FIB pointed to by the
|
|
* caller.
|
|
*/
|
|
|
|
static void fib_dealloc(struct fib * fibptr)
|
|
{
|
|
struct hw_fib *hw_fib = fibptr->hw_fib;
|
|
if(hw_fib->header.StructType != FIB_MAGIC)
|
|
BUG();
|
|
hw_fib->header.XferState = 0;
|
|
}
|
|
|
|
/*
|
|
* Commuication primitives define and support the queuing method we use to
|
|
* support host to adapter commuication. All queue accesses happen through
|
|
* these routines and are the only routines which have a knowledge of the
|
|
* how these queues are implemented.
|
|
*/
|
|
|
|
/**
|
|
* aac_get_entry - get a queue entry
|
|
* @dev: Adapter
|
|
* @qid: Queue Number
|
|
* @entry: Entry return
|
|
* @index: Index return
|
|
* @nonotify: notification control
|
|
*
|
|
* With a priority the routine returns a queue entry if the queue has free entries. If the queue
|
|
* is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
|
|
* returned.
|
|
*/
|
|
|
|
static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
|
|
{
|
|
struct aac_queue * q;
|
|
unsigned long idx;
|
|
|
|
/*
|
|
* All of the queues wrap when they reach the end, so we check
|
|
* to see if they have reached the end and if they have we just
|
|
* set the index back to zero. This is a wrap. You could or off
|
|
* the high bits in all updates but this is a bit faster I think.
|
|
*/
|
|
|
|
q = &dev->queues->queue[qid];
|
|
|
|
idx = *index = le32_to_cpu(*(q->headers.producer));
|
|
/* Interrupt Moderation, only interrupt for first two entries */
|
|
if (idx != le32_to_cpu(*(q->headers.consumer))) {
|
|
if (--idx == 0) {
|
|
if (qid == AdapHighCmdQueue)
|
|
idx = ADAP_HIGH_CMD_ENTRIES;
|
|
else if (qid == AdapNormCmdQueue)
|
|
idx = ADAP_NORM_CMD_ENTRIES;
|
|
else if (qid == AdapHighRespQueue)
|
|
idx = ADAP_HIGH_RESP_ENTRIES;
|
|
else if (qid == AdapNormRespQueue)
|
|
idx = ADAP_NORM_RESP_ENTRIES;
|
|
}
|
|
if (idx != le32_to_cpu(*(q->headers.consumer)))
|
|
*nonotify = 1;
|
|
}
|
|
|
|
if (qid == AdapHighCmdQueue) {
|
|
if (*index >= ADAP_HIGH_CMD_ENTRIES)
|
|
*index = 0;
|
|
} else if (qid == AdapNormCmdQueue) {
|
|
if (*index >= ADAP_NORM_CMD_ENTRIES)
|
|
*index = 0; /* Wrap to front of the Producer Queue. */
|
|
}
|
|
else if (qid == AdapHighRespQueue)
|
|
{
|
|
if (*index >= ADAP_HIGH_RESP_ENTRIES)
|
|
*index = 0;
|
|
}
|
|
else if (qid == AdapNormRespQueue)
|
|
{
|
|
if (*index >= ADAP_NORM_RESP_ENTRIES)
|
|
*index = 0; /* Wrap to front of the Producer Queue. */
|
|
}
|
|
else {
|
|
printk("aacraid: invalid qid\n");
|
|
BUG();
|
|
}
|
|
|
|
if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
|
|
printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
|
|
qid, q->numpending);
|
|
return 0;
|
|
} else {
|
|
*entry = q->base + *index;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* aac_queue_get - get the next free QE
|
|
* @dev: Adapter
|
|
* @index: Returned index
|
|
* @priority: Priority of fib
|
|
* @fib: Fib to associate with the queue entry
|
|
* @wait: Wait if queue full
|
|
* @fibptr: Driver fib object to go with fib
|
|
* @nonotify: Don't notify the adapter
|
|
*
|
|
* Gets the next free QE off the requested priorty adapter command
|
|
* queue and associates the Fib with the QE. The QE represented by
|
|
* index is ready to insert on the queue when this routine returns
|
|
* success.
|
|
*/
|
|
|
|
static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
|
|
{
|
|
struct aac_entry * entry = NULL;
|
|
int map = 0;
|
|
struct aac_queue * q = &dev->queues->queue[qid];
|
|
|
|
spin_lock_irqsave(q->lock, q->SavedIrql);
|
|
|
|
if (qid == AdapHighCmdQueue || qid == AdapNormCmdQueue)
|
|
{
|
|
/* if no entries wait for some if caller wants to */
|
|
while (!aac_get_entry(dev, qid, &entry, index, nonotify))
|
|
{
|
|
printk(KERN_ERR "GetEntries failed\n");
|
|
}
|
|
/*
|
|
* Setup queue entry with a command, status and fib mapped
|
|
*/
|
|
entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
|
|
map = 1;
|
|
}
|
|
else if (qid == AdapHighRespQueue || qid == AdapNormRespQueue)
|
|
{
|
|
while(!aac_get_entry(dev, qid, &entry, index, nonotify))
|
|
{
|
|
/* if no entries wait for some if caller wants to */
|
|
}
|
|
/*
|
|
* Setup queue entry with command, status and fib mapped
|
|
*/
|
|
entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
|
|
entry->addr = hw_fib->header.SenderFibAddress;
|
|
/* Restore adapters pointer to the FIB */
|
|
hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
|
|
map = 0;
|
|
}
|
|
/*
|
|
* If MapFib is true than we need to map the Fib and put pointers
|
|
* in the queue entry.
|
|
*/
|
|
if (map)
|
|
entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* aac_insert_entry - insert a queue entry
|
|
* @dev: Adapter
|
|
* @index: Index of entry to insert
|
|
* @qid: Queue number
|
|
* @nonotify: Suppress adapter notification
|
|
*
|
|
* Gets the next free QE off the requested priorty adapter command
|
|
* queue and associates the Fib with the QE. The QE represented by
|
|
* index is ready to insert on the queue when this routine returns
|
|
* success.
|
|
*/
|
|
|
|
static int aac_insert_entry(struct aac_dev * dev, u32 index, u32 qid, unsigned long nonotify)
|
|
{
|
|
struct aac_queue * q = &dev->queues->queue[qid];
|
|
|
|
if(q == NULL)
|
|
BUG();
|
|
*(q->headers.producer) = cpu_to_le32(index + 1);
|
|
spin_unlock_irqrestore(q->lock, q->SavedIrql);
|
|
|
|
if (qid == AdapHighCmdQueue ||
|
|
qid == AdapNormCmdQueue ||
|
|
qid == AdapHighRespQueue ||
|
|
qid == AdapNormRespQueue)
|
|
{
|
|
if (!nonotify)
|
|
aac_adapter_notify(dev, qid);
|
|
}
|
|
else
|
|
printk("Suprise insert!\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Define the highest level of host to adapter communication routines.
|
|
* These routines will support host to adapter FS commuication. These
|
|
* routines have no knowledge of the commuication method used. This level
|
|
* sends and receives FIBs. This level has no knowledge of how these FIBs
|
|
* get passed back and forth.
|
|
*/
|
|
|
|
/**
|
|
* fib_send - send a fib to the adapter
|
|
* @command: Command to send
|
|
* @fibptr: The fib
|
|
* @size: Size of fib data area
|
|
* @priority: Priority of Fib
|
|
* @wait: Async/sync select
|
|
* @reply: True if a reply is wanted
|
|
* @callback: Called with reply
|
|
* @callback_data: Passed to callback
|
|
*
|
|
* Sends the requested FIB to the adapter and optionally will wait for a
|
|
* response FIB. If the caller does not wish to wait for a response than
|
|
* an event to wait on must be supplied. This event will be set when a
|
|
* response FIB is received from the adapter.
|
|
*/
|
|
|
|
int fib_send(u16 command, struct fib * fibptr, unsigned long size, int priority, int wait, int reply, fib_callback callback, void * callback_data)
|
|
{
|
|
u32 index;
|
|
u32 qid;
|
|
struct aac_dev * dev = fibptr->dev;
|
|
unsigned long nointr = 0;
|
|
struct hw_fib * hw_fib = fibptr->hw_fib;
|
|
struct aac_queue * q;
|
|
unsigned long flags = 0;
|
|
if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
|
|
return -EBUSY;
|
|
/*
|
|
* There are 5 cases with the wait and reponse requested flags.
|
|
* The only invalid cases are if the caller requests to wait and
|
|
* does not request a response and if the caller does not want a
|
|
* response and the Fib is not allocated from pool. If a response
|
|
* is not requesed the Fib will just be deallocaed by the DPC
|
|
* routine when the response comes back from the adapter. No
|
|
* further processing will be done besides deleting the Fib. We
|
|
* will have a debug mode where the adapter can notify the host
|
|
* it had a problem and the host can log that fact.
|
|
*/
|
|
if (wait && !reply) {
|
|
return -EINVAL;
|
|
} else if (!wait && reply) {
|
|
hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
|
|
FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
|
|
} else if (!wait && !reply) {
|
|
hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
|
|
FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
|
|
} else if (wait && reply) {
|
|
hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
|
|
FIB_COUNTER_INCREMENT(aac_config.NormalSent);
|
|
}
|
|
/*
|
|
* Map the fib into 32bits by using the fib number
|
|
*/
|
|
|
|
hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr-dev->fibs)) << 1);
|
|
hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
|
|
/*
|
|
* Set FIB state to indicate where it came from and if we want a
|
|
* response from the adapter. Also load the command from the
|
|
* caller.
|
|
*
|
|
* Map the hw fib pointer as a 32bit value
|
|
*/
|
|
hw_fib->header.Command = cpu_to_le16(command);
|
|
hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
|
|
fibptr->hw_fib->header.Flags = 0; /* 0 the flags field - internal only*/
|
|
/*
|
|
* Set the size of the Fib we want to send to the adapter
|
|
*/
|
|
hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
|
|
if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
|
|
return -EMSGSIZE;
|
|
}
|
|
/*
|
|
* Get a queue entry connect the FIB to it and send an notify
|
|
* the adapter a command is ready.
|
|
*/
|
|
if (priority == FsaHigh) {
|
|
hw_fib->header.XferState |= cpu_to_le32(HighPriority);
|
|
qid = AdapHighCmdQueue;
|
|
} else {
|
|
hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
|
|
qid = AdapNormCmdQueue;
|
|
}
|
|
q = &dev->queues->queue[qid];
|
|
|
|
if(wait)
|
|
spin_lock_irqsave(&fibptr->event_lock, flags);
|
|
if(aac_queue_get( dev, &index, qid, hw_fib, 1, fibptr, &nointr)<0)
|
|
return -EWOULDBLOCK;
|
|
dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
|
|
dprintk((KERN_DEBUG "Fib contents:.\n"));
|
|
dprintk((KERN_DEBUG " Command = %d.\n", hw_fib->header.Command));
|
|
dprintk((KERN_DEBUG " XferState = %x.\n", hw_fib->header.XferState));
|
|
dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib));
|
|
dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
|
|
dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
|
|
/*
|
|
* Fill in the Callback and CallbackContext if we are not
|
|
* going to wait.
|
|
*/
|
|
if (!wait) {
|
|
fibptr->callback = callback;
|
|
fibptr->callback_data = callback_data;
|
|
}
|
|
FIB_COUNTER_INCREMENT(aac_config.FibsSent);
|
|
list_add_tail(&fibptr->queue, &q->pendingq);
|
|
q->numpending++;
|
|
|
|
fibptr->done = 0;
|
|
fibptr->flags = 0;
|
|
|
|
if(aac_insert_entry(dev, index, qid, (nointr & aac_config.irq_mod)) < 0)
|
|
return -EWOULDBLOCK;
|
|
/*
|
|
* If the caller wanted us to wait for response wait now.
|
|
*/
|
|
|
|
if (wait) {
|
|
spin_unlock_irqrestore(&fibptr->event_lock, flags);
|
|
down(&fibptr->event_wait);
|
|
if(fibptr->done == 0)
|
|
BUG();
|
|
|
|
if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
|
|
return -ETIMEDOUT;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
/*
|
|
* If the user does not want a response than return success otherwise
|
|
* return pending
|
|
*/
|
|
if (reply)
|
|
return -EINPROGRESS;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* aac_consumer_get - get the top of the queue
|
|
* @dev: Adapter
|
|
* @q: Queue
|
|
* @entry: Return entry
|
|
*
|
|
* Will return a pointer to the entry on the top of the queue requested that
|
|
* we are a consumer of, and return the address of the queue entry. It does
|
|
* not change the state of the queue.
|
|
*/
|
|
|
|
int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
|
|
{
|
|
u32 index;
|
|
int status;
|
|
if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
|
|
status = 0;
|
|
} else {
|
|
/*
|
|
* The consumer index must be wrapped if we have reached
|
|
* the end of the queue, else we just use the entry
|
|
* pointed to by the header index
|
|
*/
|
|
if (le32_to_cpu(*q->headers.consumer) >= q->entries)
|
|
index = 0;
|
|
else
|
|
index = le32_to_cpu(*q->headers.consumer);
|
|
*entry = q->base + index;
|
|
status = 1;
|
|
}
|
|
return(status);
|
|
}
|
|
|
|
/**
|
|
* aac_consumer_free - free consumer entry
|
|
* @dev: Adapter
|
|
* @q: Queue
|
|
* @qid: Queue ident
|
|
*
|
|
* Frees up the current top of the queue we are a consumer of. If the
|
|
* queue was full notify the producer that the queue is no longer full.
|
|
*/
|
|
|
|
void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
|
|
{
|
|
int wasfull = 0;
|
|
u32 notify;
|
|
|
|
if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
|
|
wasfull = 1;
|
|
|
|
if (le32_to_cpu(*q->headers.consumer) >= q->entries)
|
|
*q->headers.consumer = cpu_to_le32(1);
|
|
else
|
|
*q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
|
|
|
|
if (wasfull) {
|
|
switch (qid) {
|
|
|
|
case HostNormCmdQueue:
|
|
notify = HostNormCmdNotFull;
|
|
break;
|
|
case HostHighCmdQueue:
|
|
notify = HostHighCmdNotFull;
|
|
break;
|
|
case HostNormRespQueue:
|
|
notify = HostNormRespNotFull;
|
|
break;
|
|
case HostHighRespQueue:
|
|
notify = HostHighRespNotFull;
|
|
break;
|
|
default:
|
|
BUG();
|
|
return;
|
|
}
|
|
aac_adapter_notify(dev, notify);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* fib_adapter_complete - complete adapter issued fib
|
|
* @fibptr: fib to complete
|
|
* @size: size of fib
|
|
*
|
|
* Will do all necessary work to complete a FIB that was sent from
|
|
* the adapter.
|
|
*/
|
|
|
|
int fib_adapter_complete(struct fib * fibptr, unsigned short size)
|
|
{
|
|
struct hw_fib * hw_fib = fibptr->hw_fib;
|
|
struct aac_dev * dev = fibptr->dev;
|
|
unsigned long nointr = 0;
|
|
if (hw_fib->header.XferState == 0)
|
|
return 0;
|
|
/*
|
|
* If we plan to do anything check the structure type first.
|
|
*/
|
|
if ( hw_fib->header.StructType != FIB_MAGIC ) {
|
|
return -EINVAL;
|
|
}
|
|
/*
|
|
* This block handles the case where the adapter had sent us a
|
|
* command and we have finished processing the command. We
|
|
* call completeFib when we are done processing the command
|
|
* and want to send a response back to the adapter. This will
|
|
* send the completed cdb to the adapter.
|
|
*/
|
|
if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
|
|
hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
|
|
if (hw_fib->header.XferState & cpu_to_le32(HighPriority)) {
|
|
u32 index;
|
|
if (size)
|
|
{
|
|
size += sizeof(struct aac_fibhdr);
|
|
if (size > le16_to_cpu(hw_fib->header.SenderSize))
|
|
return -EMSGSIZE;
|
|
hw_fib->header.Size = cpu_to_le16(size);
|
|
}
|
|
if(aac_queue_get(dev, &index, AdapHighRespQueue, hw_fib, 1, NULL, &nointr) < 0) {
|
|
return -EWOULDBLOCK;
|
|
}
|
|
if (aac_insert_entry(dev, index, AdapHighRespQueue, (nointr & (int)aac_config.irq_mod)) != 0) {
|
|
}
|
|
} else if (hw_fib->header.XferState &
|
|
cpu_to_le32(NormalPriority)) {
|
|
u32 index;
|
|
|
|
if (size) {
|
|
size += sizeof(struct aac_fibhdr);
|
|
if (size > le16_to_cpu(hw_fib->header.SenderSize))
|
|
return -EMSGSIZE;
|
|
hw_fib->header.Size = cpu_to_le16(size);
|
|
}
|
|
if (aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr) < 0)
|
|
return -EWOULDBLOCK;
|
|
if (aac_insert_entry(dev, index, AdapNormRespQueue, (nointr & (int)aac_config.irq_mod)) != 0)
|
|
{
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
printk(KERN_WARNING "fib_adapter_complete: Unknown xferstate detected.\n");
|
|
BUG();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fib_complete - fib completion handler
|
|
* @fib: FIB to complete
|
|
*
|
|
* Will do all necessary work to complete a FIB.
|
|
*/
|
|
|
|
int fib_complete(struct fib * fibptr)
|
|
{
|
|
struct hw_fib * hw_fib = fibptr->hw_fib;
|
|
|
|
/*
|
|
* Check for a fib which has already been completed
|
|
*/
|
|
|
|
if (hw_fib->header.XferState == 0)
|
|
return 0;
|
|
/*
|
|
* If we plan to do anything check the structure type first.
|
|
*/
|
|
|
|
if (hw_fib->header.StructType != FIB_MAGIC)
|
|
return -EINVAL;
|
|
/*
|
|
* This block completes a cdb which orginated on the host and we
|
|
* just need to deallocate the cdb or reinit it. At this point the
|
|
* command is complete that we had sent to the adapter and this
|
|
* cdb could be reused.
|
|
*/
|
|
if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
|
|
(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
|
|
{
|
|
fib_dealloc(fibptr);
|
|
}
|
|
else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
|
|
{
|
|
/*
|
|
* This handles the case when the host has aborted the I/O
|
|
* to the adapter because the adapter is not responding
|
|
*/
|
|
fib_dealloc(fibptr);
|
|
} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
|
|
fib_dealloc(fibptr);
|
|
} else {
|
|
BUG();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* aac_printf - handle printf from firmware
|
|
* @dev: Adapter
|
|
* @val: Message info
|
|
*
|
|
* Print a message passed to us by the controller firmware on the
|
|
* Adaptec board
|
|
*/
|
|
|
|
void aac_printf(struct aac_dev *dev, u32 val)
|
|
{
|
|
char *cp = dev->printfbuf;
|
|
if (dev->printf_enabled)
|
|
{
|
|
int length = val & 0xffff;
|
|
int level = (val >> 16) & 0xffff;
|
|
|
|
/*
|
|
* The size of the printfbuf is set in port.c
|
|
* There is no variable or define for it
|
|
*/
|
|
if (length > 255)
|
|
length = 255;
|
|
if (cp[length] != 0)
|
|
cp[length] = 0;
|
|
if (level == LOG_AAC_HIGH_ERROR)
|
|
printk(KERN_WARNING "aacraid:%s", cp);
|
|
else
|
|
printk(KERN_INFO "aacraid:%s", cp);
|
|
}
|
|
memset(cp, 0, 256);
|
|
}
|
|
|
|
/**
|
|
* aac_command_thread - command processing thread
|
|
* @dev: Adapter to monitor
|
|
*
|
|
* Waits on the commandready event in it's queue. When the event gets set
|
|
* it will pull FIBs off it's queue. It will continue to pull FIBs off
|
|
* until the queue is empty. When the queue is empty it will wait for
|
|
* more FIBs.
|
|
*/
|
|
|
|
int aac_command_thread(struct aac_dev * dev)
|
|
{
|
|
struct hw_fib *hw_fib, *hw_newfib;
|
|
struct fib *fib, *newfib;
|
|
struct aac_queue_block *queues = dev->queues;
|
|
struct aac_fib_context *fibctx;
|
|
unsigned long flags;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
/*
|
|
* We can only have one thread per adapter for AIF's.
|
|
*/
|
|
if (dev->aif_thread)
|
|
return -EINVAL;
|
|
/*
|
|
* Set up the name that will appear in 'ps'
|
|
* stored in task_struct.comm[16].
|
|
*/
|
|
daemonize("aacraid");
|
|
allow_signal(SIGKILL);
|
|
/*
|
|
* Let the DPC know it has a place to send the AIF's to.
|
|
*/
|
|
dev->aif_thread = 1;
|
|
add_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
while(1)
|
|
{
|
|
spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
|
|
while(!list_empty(&(queues->queue[HostNormCmdQueue].cmdq))) {
|
|
struct list_head *entry;
|
|
struct aac_aifcmd * aifcmd;
|
|
|
|
set_current_state(TASK_RUNNING);
|
|
|
|
entry = queues->queue[HostNormCmdQueue].cmdq.next;
|
|
list_del(entry);
|
|
|
|
spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags);
|
|
fib = list_entry(entry, struct fib, fiblink);
|
|
/*
|
|
* We will process the FIB here or pass it to a
|
|
* worker thread that is TBD. We Really can't
|
|
* do anything at this point since we don't have
|
|
* anything defined for this thread to do.
|
|
*/
|
|
hw_fib = fib->hw_fib;
|
|
memset(fib, 0, sizeof(struct fib));
|
|
fib->type = FSAFS_NTC_FIB_CONTEXT;
|
|
fib->size = sizeof( struct fib );
|
|
fib->hw_fib = hw_fib;
|
|
fib->data = hw_fib->data;
|
|
fib->dev = dev;
|
|
/*
|
|
* We only handle AifRequest fibs from the adapter.
|
|
*/
|
|
aifcmd = (struct aac_aifcmd *) hw_fib->data;
|
|
if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
|
|
/* Handle Driver Notify Events */
|
|
*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
|
|
fib_adapter_complete(fib, (u16)sizeof(u32));
|
|
} else {
|
|
struct list_head *entry;
|
|
/* The u32 here is important and intended. We are using
|
|
32bit wrapping time to fit the adapter field */
|
|
|
|
u32 time_now, time_last;
|
|
unsigned long flagv;
|
|
|
|
time_now = jiffies/HZ;
|
|
|
|
spin_lock_irqsave(&dev->fib_lock, flagv);
|
|
entry = dev->fib_list.next;
|
|
/*
|
|
* For each Context that is on the
|
|
* fibctxList, make a copy of the
|
|
* fib, and then set the event to wake up the
|
|
* thread that is waiting for it.
|
|
*/
|
|
while (entry != &dev->fib_list) {
|
|
/*
|
|
* Extract the fibctx
|
|
*/
|
|
fibctx = list_entry(entry, struct aac_fib_context, next);
|
|
/*
|
|
* Check if the queue is getting
|
|
* backlogged
|
|
*/
|
|
if (fibctx->count > 20)
|
|
{
|
|
/*
|
|
* It's *not* jiffies folks,
|
|
* but jiffies / HZ so do not
|
|
* panic ...
|
|
*/
|
|
time_last = fibctx->jiffies;
|
|
/*
|
|
* Has it been > 2 minutes
|
|
* since the last read off
|
|
* the queue?
|
|
*/
|
|
if ((time_now - time_last) > 120) {
|
|
entry = entry->next;
|
|
aac_close_fib_context(dev, fibctx);
|
|
continue;
|
|
}
|
|
}
|
|
/*
|
|
* Warning: no sleep allowed while
|
|
* holding spinlock
|
|
*/
|
|
hw_newfib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
|
|
newfib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
|
|
if (newfib && hw_newfib) {
|
|
/*
|
|
* Make the copy of the FIB
|
|
*/
|
|
memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
|
|
memcpy(newfib, fib, sizeof(struct fib));
|
|
newfib->hw_fib = hw_newfib;
|
|
/*
|
|
* Put the FIB onto the
|
|
* fibctx's fibs
|
|
*/
|
|
list_add_tail(&newfib->fiblink, &fibctx->fib_list);
|
|
fibctx->count++;
|
|
/*
|
|
* Set the event to wake up the
|
|
* thread that will waiting.
|
|
*/
|
|
up(&fibctx->wait_sem);
|
|
} else {
|
|
printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
|
|
if(newfib)
|
|
kfree(newfib);
|
|
if(hw_newfib)
|
|
kfree(hw_newfib);
|
|
}
|
|
entry = entry->next;
|
|
}
|
|
/*
|
|
* Set the status of this FIB
|
|
*/
|
|
*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
|
|
fib_adapter_complete(fib, sizeof(u32));
|
|
spin_unlock_irqrestore(&dev->fib_lock, flagv);
|
|
}
|
|
spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
|
|
kfree(fib);
|
|
}
|
|
/*
|
|
* There are no more AIF's
|
|
*/
|
|
spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags);
|
|
schedule();
|
|
|
|
if(signal_pending(current))
|
|
break;
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
}
|
|
remove_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait);
|
|
dev->aif_thread = 0;
|
|
complete_and_exit(&dev->aif_completion, 0);
|
|
}
|