mirror of
https://github.com/torvalds/linux.git
synced 2024-12-25 20:32:22 +00:00
b36c6049ed
The WPF needs access to the current display list to configure writeback. Add a display list pointer to the VSP1 entity .configure_stream() operation. Only display pipelines can make use of the display list there as mem-to-mem pipelines don't have access to a display list at stream configuration time. This is not an issue as writeback is only used for display pipelines. Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com> Reviewed-by: Kieran Bingham <kieran.bingham+renesas@ideasonboard.com> Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
1341 lines
34 KiB
C
1341 lines
34 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* vsp1_video.c -- R-Car VSP1 Video Node
|
|
*
|
|
* Copyright (C) 2013-2015 Renesas Electronics Corporation
|
|
*
|
|
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
|
|
*/
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/v4l2-mediabus.h>
|
|
#include <linux/videodev2.h>
|
|
#include <linux/wait.h>
|
|
|
|
#include <media/media-entity.h>
|
|
#include <media/v4l2-dev.h>
|
|
#include <media/v4l2-fh.h>
|
|
#include <media/v4l2-ioctl.h>
|
|
#include <media/v4l2-subdev.h>
|
|
#include <media/videobuf2-v4l2.h>
|
|
#include <media/videobuf2-dma-contig.h>
|
|
|
|
#include "vsp1.h"
|
|
#include "vsp1_brx.h"
|
|
#include "vsp1_dl.h"
|
|
#include "vsp1_entity.h"
|
|
#include "vsp1_hgo.h"
|
|
#include "vsp1_hgt.h"
|
|
#include "vsp1_pipe.h"
|
|
#include "vsp1_rwpf.h"
|
|
#include "vsp1_uds.h"
|
|
#include "vsp1_video.h"
|
|
|
|
#define VSP1_VIDEO_DEF_FORMAT V4L2_PIX_FMT_YUYV
|
|
#define VSP1_VIDEO_DEF_WIDTH 1024
|
|
#define VSP1_VIDEO_DEF_HEIGHT 768
|
|
|
|
#define VSP1_VIDEO_MAX_WIDTH 8190U
|
|
#define VSP1_VIDEO_MAX_HEIGHT 8190U
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Helper functions
|
|
*/
|
|
|
|
static struct v4l2_subdev *
|
|
vsp1_video_remote_subdev(struct media_pad *local, u32 *pad)
|
|
{
|
|
struct media_pad *remote;
|
|
|
|
remote = media_entity_remote_pad(local);
|
|
if (!remote || !is_media_entity_v4l2_subdev(remote->entity))
|
|
return NULL;
|
|
|
|
if (pad)
|
|
*pad = remote->index;
|
|
|
|
return media_entity_to_v4l2_subdev(remote->entity);
|
|
}
|
|
|
|
static int vsp1_video_verify_format(struct vsp1_video *video)
|
|
{
|
|
struct v4l2_subdev_format fmt;
|
|
struct v4l2_subdev *subdev;
|
|
int ret;
|
|
|
|
subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad);
|
|
if (subdev == NULL)
|
|
return -EINVAL;
|
|
|
|
fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
|
|
ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
|
|
if (ret < 0)
|
|
return ret == -ENOIOCTLCMD ? -EINVAL : ret;
|
|
|
|
if (video->rwpf->fmtinfo->mbus != fmt.format.code ||
|
|
video->rwpf->format.height != fmt.format.height ||
|
|
video->rwpf->format.width != fmt.format.width)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __vsp1_video_try_format(struct vsp1_video *video,
|
|
struct v4l2_pix_format_mplane *pix,
|
|
const struct vsp1_format_info **fmtinfo)
|
|
{
|
|
static const u32 xrgb_formats[][2] = {
|
|
{ V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 },
|
|
{ V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 },
|
|
{ V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 },
|
|
{ V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 },
|
|
};
|
|
|
|
const struct vsp1_format_info *info;
|
|
unsigned int width = pix->width;
|
|
unsigned int height = pix->height;
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Backward compatibility: replace deprecated RGB formats by their XRGB
|
|
* equivalent. This selects the format older userspace applications want
|
|
* while still exposing the new format.
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) {
|
|
if (xrgb_formats[i][0] == pix->pixelformat) {
|
|
pix->pixelformat = xrgb_formats[i][1];
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Retrieve format information and select the default format if the
|
|
* requested format isn't supported.
|
|
*/
|
|
info = vsp1_get_format_info(video->vsp1, pix->pixelformat);
|
|
if (info == NULL)
|
|
info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT);
|
|
|
|
pix->pixelformat = info->fourcc;
|
|
pix->colorspace = V4L2_COLORSPACE_SRGB;
|
|
pix->field = V4L2_FIELD_NONE;
|
|
|
|
if (info->fourcc == V4L2_PIX_FMT_HSV24 ||
|
|
info->fourcc == V4L2_PIX_FMT_HSV32)
|
|
pix->hsv_enc = V4L2_HSV_ENC_256;
|
|
|
|
memset(pix->reserved, 0, sizeof(pix->reserved));
|
|
|
|
/* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
|
|
width = round_down(width, info->hsub);
|
|
height = round_down(height, info->vsub);
|
|
|
|
/* Clamp the width and height. */
|
|
pix->width = clamp(width, info->hsub, VSP1_VIDEO_MAX_WIDTH);
|
|
pix->height = clamp(height, info->vsub, VSP1_VIDEO_MAX_HEIGHT);
|
|
|
|
/*
|
|
* Compute and clamp the stride and image size. While not documented in
|
|
* the datasheet, strides not aligned to a multiple of 128 bytes result
|
|
* in image corruption.
|
|
*/
|
|
for (i = 0; i < min(info->planes, 2U); ++i) {
|
|
unsigned int hsub = i > 0 ? info->hsub : 1;
|
|
unsigned int vsub = i > 0 ? info->vsub : 1;
|
|
unsigned int align = 128;
|
|
unsigned int bpl;
|
|
|
|
bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
|
|
pix->width / hsub * info->bpp[i] / 8,
|
|
round_down(65535U, align));
|
|
|
|
pix->plane_fmt[i].bytesperline = round_up(bpl, align);
|
|
pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
|
|
* pix->height / vsub;
|
|
}
|
|
|
|
if (info->planes == 3) {
|
|
/* The second and third planes must have the same stride. */
|
|
pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
|
|
pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
|
|
}
|
|
|
|
pix->num_planes = info->planes;
|
|
|
|
if (fmtinfo)
|
|
*fmtinfo = info;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* VSP1 Partition Algorithm support
|
|
*/
|
|
|
|
/**
|
|
* vsp1_video_calculate_partition - Calculate the active partition output window
|
|
*
|
|
* @pipe: the pipeline
|
|
* @partition: partition that will hold the calculated values
|
|
* @div_size: pre-determined maximum partition division size
|
|
* @index: partition index
|
|
*/
|
|
static void vsp1_video_calculate_partition(struct vsp1_pipeline *pipe,
|
|
struct vsp1_partition *partition,
|
|
unsigned int div_size,
|
|
unsigned int index)
|
|
{
|
|
const struct v4l2_mbus_framefmt *format;
|
|
struct vsp1_partition_window window;
|
|
unsigned int modulus;
|
|
|
|
/*
|
|
* Partitions are computed on the size before rotation, use the format
|
|
* at the WPF sink.
|
|
*/
|
|
format = vsp1_entity_get_pad_format(&pipe->output->entity,
|
|
pipe->output->entity.config,
|
|
RWPF_PAD_SINK);
|
|
|
|
/* A single partition simply processes the output size in full. */
|
|
if (pipe->partitions <= 1) {
|
|
window.left = 0;
|
|
window.width = format->width;
|
|
|
|
vsp1_pipeline_propagate_partition(pipe, partition, index,
|
|
&window);
|
|
return;
|
|
}
|
|
|
|
/* Initialise the partition with sane starting conditions. */
|
|
window.left = index * div_size;
|
|
window.width = div_size;
|
|
|
|
modulus = format->width % div_size;
|
|
|
|
/*
|
|
* We need to prevent the last partition from being smaller than the
|
|
* *minimum* width of the hardware capabilities.
|
|
*
|
|
* If the modulus is less than half of the partition size,
|
|
* the penultimate partition is reduced to half, which is added
|
|
* to the final partition: |1234|1234|1234|12|341|
|
|
* to prevent this: |1234|1234|1234|1234|1|.
|
|
*/
|
|
if (modulus) {
|
|
/*
|
|
* pipe->partitions is 1 based, whilst index is a 0 based index.
|
|
* Normalise this locally.
|
|
*/
|
|
unsigned int partitions = pipe->partitions - 1;
|
|
|
|
if (modulus < div_size / 2) {
|
|
if (index == partitions - 1) {
|
|
/* Halve the penultimate partition. */
|
|
window.width = div_size / 2;
|
|
} else if (index == partitions) {
|
|
/* Increase the final partition. */
|
|
window.width = (div_size / 2) + modulus;
|
|
window.left -= div_size / 2;
|
|
}
|
|
} else if (index == partitions) {
|
|
window.width = modulus;
|
|
}
|
|
}
|
|
|
|
vsp1_pipeline_propagate_partition(pipe, partition, index, &window);
|
|
}
|
|
|
|
static int vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
|
|
{
|
|
struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
|
|
const struct v4l2_mbus_framefmt *format;
|
|
struct vsp1_entity *entity;
|
|
unsigned int div_size;
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Partitions are computed on the size before rotation, use the format
|
|
* at the WPF sink.
|
|
*/
|
|
format = vsp1_entity_get_pad_format(&pipe->output->entity,
|
|
pipe->output->entity.config,
|
|
RWPF_PAD_SINK);
|
|
div_size = format->width;
|
|
|
|
/*
|
|
* Only Gen3 hardware requires image partitioning, Gen2 will operate
|
|
* with a single partition that covers the whole output.
|
|
*/
|
|
if (vsp1->info->gen == 3) {
|
|
list_for_each_entry(entity, &pipe->entities, list_pipe) {
|
|
unsigned int entity_max;
|
|
|
|
if (!entity->ops->max_width)
|
|
continue;
|
|
|
|
entity_max = entity->ops->max_width(entity, pipe);
|
|
if (entity_max)
|
|
div_size = min(div_size, entity_max);
|
|
}
|
|
}
|
|
|
|
pipe->partitions = DIV_ROUND_UP(format->width, div_size);
|
|
pipe->part_table = kcalloc(pipe->partitions, sizeof(*pipe->part_table),
|
|
GFP_KERNEL);
|
|
if (!pipe->part_table)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < pipe->partitions; ++i)
|
|
vsp1_video_calculate_partition(pipe, &pipe->part_table[i],
|
|
div_size, i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Pipeline Management
|
|
*/
|
|
|
|
/*
|
|
* vsp1_video_complete_buffer - Complete the current buffer
|
|
* @video: the video node
|
|
*
|
|
* This function completes the current buffer by filling its sequence number,
|
|
* time stamp and payload size, and hands it back to the videobuf core.
|
|
*
|
|
* Return the next queued buffer or NULL if the queue is empty.
|
|
*/
|
|
static struct vsp1_vb2_buffer *
|
|
vsp1_video_complete_buffer(struct vsp1_video *video)
|
|
{
|
|
struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
|
|
struct vsp1_vb2_buffer *next = NULL;
|
|
struct vsp1_vb2_buffer *done;
|
|
unsigned long flags;
|
|
unsigned int i;
|
|
|
|
spin_lock_irqsave(&video->irqlock, flags);
|
|
|
|
if (list_empty(&video->irqqueue)) {
|
|
spin_unlock_irqrestore(&video->irqlock, flags);
|
|
return NULL;
|
|
}
|
|
|
|
done = list_first_entry(&video->irqqueue,
|
|
struct vsp1_vb2_buffer, queue);
|
|
|
|
list_del(&done->queue);
|
|
|
|
if (!list_empty(&video->irqqueue))
|
|
next = list_first_entry(&video->irqqueue,
|
|
struct vsp1_vb2_buffer, queue);
|
|
|
|
spin_unlock_irqrestore(&video->irqlock, flags);
|
|
|
|
done->buf.sequence = pipe->sequence;
|
|
done->buf.vb2_buf.timestamp = ktime_get_ns();
|
|
for (i = 0; i < done->buf.vb2_buf.num_planes; ++i)
|
|
vb2_set_plane_payload(&done->buf.vb2_buf, i,
|
|
vb2_plane_size(&done->buf.vb2_buf, i));
|
|
vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE);
|
|
|
|
return next;
|
|
}
|
|
|
|
static void vsp1_video_frame_end(struct vsp1_pipeline *pipe,
|
|
struct vsp1_rwpf *rwpf)
|
|
{
|
|
struct vsp1_video *video = rwpf->video;
|
|
struct vsp1_vb2_buffer *buf;
|
|
|
|
buf = vsp1_video_complete_buffer(video);
|
|
if (buf == NULL)
|
|
return;
|
|
|
|
video->rwpf->mem = buf->mem;
|
|
pipe->buffers_ready |= 1 << video->pipe_index;
|
|
}
|
|
|
|
static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe,
|
|
struct vsp1_dl_list *dl,
|
|
unsigned int partition)
|
|
{
|
|
struct vsp1_dl_body *dlb = vsp1_dl_list_get_body0(dl);
|
|
struct vsp1_entity *entity;
|
|
|
|
pipe->partition = &pipe->part_table[partition];
|
|
|
|
list_for_each_entry(entity, &pipe->entities, list_pipe)
|
|
vsp1_entity_configure_partition(entity, pipe, dl, dlb);
|
|
}
|
|
|
|
static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
|
|
{
|
|
struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
|
|
struct vsp1_entity *entity;
|
|
struct vsp1_dl_body *dlb;
|
|
struct vsp1_dl_list *dl;
|
|
unsigned int partition;
|
|
|
|
dl = vsp1_dl_list_get(pipe->output->dlm);
|
|
|
|
/*
|
|
* If the VSP hardware isn't configured yet (which occurs either when
|
|
* processing the first frame or after a system suspend/resume), add the
|
|
* cached stream configuration to the display list to perform a full
|
|
* initialisation.
|
|
*/
|
|
if (!pipe->configured)
|
|
vsp1_dl_list_add_body(dl, pipe->stream_config);
|
|
|
|
dlb = vsp1_dl_list_get_body0(dl);
|
|
|
|
list_for_each_entry(entity, &pipe->entities, list_pipe)
|
|
vsp1_entity_configure_frame(entity, pipe, dl, dlb);
|
|
|
|
/* Run the first partition. */
|
|
vsp1_video_pipeline_run_partition(pipe, dl, 0);
|
|
|
|
/* Process consecutive partitions as necessary. */
|
|
for (partition = 1; partition < pipe->partitions; ++partition) {
|
|
struct vsp1_dl_list *dl_next;
|
|
|
|
dl_next = vsp1_dl_list_get(pipe->output->dlm);
|
|
|
|
/*
|
|
* An incomplete chain will still function, but output only
|
|
* the partitions that had a dl available. The frame end
|
|
* interrupt will be marked on the last dl in the chain.
|
|
*/
|
|
if (!dl_next) {
|
|
dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n");
|
|
break;
|
|
}
|
|
|
|
vsp1_video_pipeline_run_partition(pipe, dl_next, partition);
|
|
vsp1_dl_list_add_chain(dl, dl_next);
|
|
}
|
|
|
|
/* Complete, and commit the head display list. */
|
|
vsp1_dl_list_commit(dl, 0);
|
|
pipe->configured = true;
|
|
|
|
vsp1_pipeline_run(pipe);
|
|
}
|
|
|
|
static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe,
|
|
unsigned int completion)
|
|
{
|
|
struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
|
|
enum vsp1_pipeline_state state;
|
|
unsigned long flags;
|
|
unsigned int i;
|
|
|
|
/* M2M Pipelines should never call here with an incomplete frame. */
|
|
WARN_ON_ONCE(!(completion & VSP1_DL_FRAME_END_COMPLETED));
|
|
|
|
spin_lock_irqsave(&pipe->irqlock, flags);
|
|
|
|
/* Complete buffers on all video nodes. */
|
|
for (i = 0; i < vsp1->info->rpf_count; ++i) {
|
|
if (!pipe->inputs[i])
|
|
continue;
|
|
|
|
vsp1_video_frame_end(pipe, pipe->inputs[i]);
|
|
}
|
|
|
|
vsp1_video_frame_end(pipe, pipe->output);
|
|
|
|
state = pipe->state;
|
|
pipe->state = VSP1_PIPELINE_STOPPED;
|
|
|
|
/*
|
|
* If a stop has been requested, mark the pipeline as stopped and
|
|
* return. Otherwise restart the pipeline if ready.
|
|
*/
|
|
if (state == VSP1_PIPELINE_STOPPING)
|
|
wake_up(&pipe->wq);
|
|
else if (vsp1_pipeline_ready(pipe))
|
|
vsp1_video_pipeline_run(pipe);
|
|
|
|
spin_unlock_irqrestore(&pipe->irqlock, flags);
|
|
}
|
|
|
|
static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe,
|
|
struct vsp1_rwpf *input,
|
|
struct vsp1_rwpf *output)
|
|
{
|
|
struct media_entity_enum ent_enum;
|
|
struct vsp1_entity *entity;
|
|
struct media_pad *pad;
|
|
struct vsp1_brx *brx = NULL;
|
|
int ret;
|
|
|
|
ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/*
|
|
* The main data path doesn't include the HGO or HGT, use
|
|
* vsp1_entity_remote_pad() to traverse the graph.
|
|
*/
|
|
|
|
pad = vsp1_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]);
|
|
|
|
while (1) {
|
|
if (pad == NULL) {
|
|
ret = -EPIPE;
|
|
goto out;
|
|
}
|
|
|
|
/* We've reached a video node, that shouldn't have happened. */
|
|
if (!is_media_entity_v4l2_subdev(pad->entity)) {
|
|
ret = -EPIPE;
|
|
goto out;
|
|
}
|
|
|
|
entity = to_vsp1_entity(
|
|
media_entity_to_v4l2_subdev(pad->entity));
|
|
|
|
/*
|
|
* A BRU or BRS is present in the pipeline, store its input pad
|
|
* number in the input RPF for use when configuring the RPF.
|
|
*/
|
|
if (entity->type == VSP1_ENTITY_BRU ||
|
|
entity->type == VSP1_ENTITY_BRS) {
|
|
/* BRU and BRS can't be chained. */
|
|
if (brx) {
|
|
ret = -EPIPE;
|
|
goto out;
|
|
}
|
|
|
|
brx = to_brx(&entity->subdev);
|
|
brx->inputs[pad->index].rpf = input;
|
|
input->brx_input = pad->index;
|
|
}
|
|
|
|
/* We've reached the WPF, we're done. */
|
|
if (entity->type == VSP1_ENTITY_WPF)
|
|
break;
|
|
|
|
/* Ensure the branch has no loop. */
|
|
if (media_entity_enum_test_and_set(&ent_enum,
|
|
&entity->subdev.entity)) {
|
|
ret = -EPIPE;
|
|
goto out;
|
|
}
|
|
|
|
/* UDS can't be chained. */
|
|
if (entity->type == VSP1_ENTITY_UDS) {
|
|
if (pipe->uds) {
|
|
ret = -EPIPE;
|
|
goto out;
|
|
}
|
|
|
|
pipe->uds = entity;
|
|
pipe->uds_input = brx ? &brx->entity : &input->entity;
|
|
}
|
|
|
|
/* Follow the source link, ignoring any HGO or HGT. */
|
|
pad = &entity->pads[entity->source_pad];
|
|
pad = vsp1_entity_remote_pad(pad);
|
|
}
|
|
|
|
/* The last entity must be the output WPF. */
|
|
if (entity != &output->entity)
|
|
ret = -EPIPE;
|
|
|
|
out:
|
|
media_entity_enum_cleanup(&ent_enum);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe,
|
|
struct vsp1_video *video)
|
|
{
|
|
struct media_graph graph;
|
|
struct media_entity *entity = &video->video.entity;
|
|
struct media_device *mdev = entity->graph_obj.mdev;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
/* Walk the graph to locate the entities and video nodes. */
|
|
ret = media_graph_walk_init(&graph, mdev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
media_graph_walk_start(&graph, entity);
|
|
|
|
while ((entity = media_graph_walk_next(&graph))) {
|
|
struct v4l2_subdev *subdev;
|
|
struct vsp1_rwpf *rwpf;
|
|
struct vsp1_entity *e;
|
|
|
|
if (!is_media_entity_v4l2_subdev(entity))
|
|
continue;
|
|
|
|
subdev = media_entity_to_v4l2_subdev(entity);
|
|
e = to_vsp1_entity(subdev);
|
|
list_add_tail(&e->list_pipe, &pipe->entities);
|
|
e->pipe = pipe;
|
|
|
|
switch (e->type) {
|
|
case VSP1_ENTITY_RPF:
|
|
rwpf = to_rwpf(subdev);
|
|
pipe->inputs[rwpf->entity.index] = rwpf;
|
|
rwpf->video->pipe_index = ++pipe->num_inputs;
|
|
break;
|
|
|
|
case VSP1_ENTITY_WPF:
|
|
rwpf = to_rwpf(subdev);
|
|
pipe->output = rwpf;
|
|
rwpf->video->pipe_index = 0;
|
|
break;
|
|
|
|
case VSP1_ENTITY_LIF:
|
|
pipe->lif = e;
|
|
break;
|
|
|
|
case VSP1_ENTITY_BRU:
|
|
case VSP1_ENTITY_BRS:
|
|
pipe->brx = e;
|
|
break;
|
|
|
|
case VSP1_ENTITY_HGO:
|
|
pipe->hgo = e;
|
|
break;
|
|
|
|
case VSP1_ENTITY_HGT:
|
|
pipe->hgt = e;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
media_graph_walk_cleanup(&graph);
|
|
|
|
/* We need one output and at least one input. */
|
|
if (pipe->num_inputs == 0 || !pipe->output)
|
|
return -EPIPE;
|
|
|
|
/*
|
|
* Follow links downstream for each input and make sure the graph
|
|
* contains no loop and that all branches end at the output WPF.
|
|
*/
|
|
for (i = 0; i < video->vsp1->info->rpf_count; ++i) {
|
|
if (!pipe->inputs[i])
|
|
continue;
|
|
|
|
ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i],
|
|
pipe->output);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe,
|
|
struct vsp1_video *video)
|
|
{
|
|
vsp1_pipeline_init(pipe);
|
|
|
|
pipe->frame_end = vsp1_video_pipeline_frame_end;
|
|
|
|
return vsp1_video_pipeline_build(pipe, video);
|
|
}
|
|
|
|
static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video)
|
|
{
|
|
struct vsp1_pipeline *pipe;
|
|
int ret;
|
|
|
|
/*
|
|
* Get a pipeline object for the video node. If a pipeline has already
|
|
* been allocated just increment its reference count and return it.
|
|
* Otherwise allocate a new pipeline and initialize it, it will be freed
|
|
* when the last reference is released.
|
|
*/
|
|
if (!video->rwpf->entity.pipe) {
|
|
pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
|
|
if (!pipe)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ret = vsp1_video_pipeline_init(pipe, video);
|
|
if (ret < 0) {
|
|
vsp1_pipeline_reset(pipe);
|
|
kfree(pipe);
|
|
return ERR_PTR(ret);
|
|
}
|
|
} else {
|
|
pipe = video->rwpf->entity.pipe;
|
|
kref_get(&pipe->kref);
|
|
}
|
|
|
|
return pipe;
|
|
}
|
|
|
|
static void vsp1_video_pipeline_release(struct kref *kref)
|
|
{
|
|
struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref);
|
|
|
|
vsp1_pipeline_reset(pipe);
|
|
kfree(pipe);
|
|
}
|
|
|
|
static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe)
|
|
{
|
|
struct media_device *mdev = &pipe->output->entity.vsp1->media_dev;
|
|
|
|
mutex_lock(&mdev->graph_mutex);
|
|
kref_put(&pipe->kref, vsp1_video_pipeline_release);
|
|
mutex_unlock(&mdev->graph_mutex);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* videobuf2 Queue Operations
|
|
*/
|
|
|
|
static int
|
|
vsp1_video_queue_setup(struct vb2_queue *vq,
|
|
unsigned int *nbuffers, unsigned int *nplanes,
|
|
unsigned int sizes[], struct device *alloc_devs[])
|
|
{
|
|
struct vsp1_video *video = vb2_get_drv_priv(vq);
|
|
const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
|
|
unsigned int i;
|
|
|
|
if (*nplanes) {
|
|
if (*nplanes != format->num_planes)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < *nplanes; i++)
|
|
if (sizes[i] < format->plane_fmt[i].sizeimage)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
*nplanes = format->num_planes;
|
|
|
|
for (i = 0; i < format->num_planes; ++i)
|
|
sizes[i] = format->plane_fmt[i].sizeimage;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vsp1_video_buffer_prepare(struct vb2_buffer *vb)
|
|
{
|
|
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
|
|
struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
|
|
struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
|
|
const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
|
|
unsigned int i;
|
|
|
|
if (vb->num_planes < format->num_planes)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < vb->num_planes; ++i) {
|
|
buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
|
|
|
|
if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage)
|
|
return -EINVAL;
|
|
}
|
|
|
|
for ( ; i < 3; ++i)
|
|
buf->mem.addr[i] = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vsp1_video_buffer_queue(struct vb2_buffer *vb)
|
|
{
|
|
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
|
|
struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
|
|
struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
|
|
struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
|
|
unsigned long flags;
|
|
bool empty;
|
|
|
|
spin_lock_irqsave(&video->irqlock, flags);
|
|
empty = list_empty(&video->irqqueue);
|
|
list_add_tail(&buf->queue, &video->irqqueue);
|
|
spin_unlock_irqrestore(&video->irqlock, flags);
|
|
|
|
if (!empty)
|
|
return;
|
|
|
|
spin_lock_irqsave(&pipe->irqlock, flags);
|
|
|
|
video->rwpf->mem = buf->mem;
|
|
pipe->buffers_ready |= 1 << video->pipe_index;
|
|
|
|
if (vb2_is_streaming(&video->queue) &&
|
|
vsp1_pipeline_ready(pipe))
|
|
vsp1_video_pipeline_run(pipe);
|
|
|
|
spin_unlock_irqrestore(&pipe->irqlock, flags);
|
|
}
|
|
|
|
static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe)
|
|
{
|
|
struct vsp1_entity *entity;
|
|
int ret;
|
|
|
|
/* Determine this pipelines sizes for image partitioning support. */
|
|
ret = vsp1_video_pipeline_setup_partitions(pipe);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (pipe->uds) {
|
|
struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);
|
|
|
|
/*
|
|
* If a BRU or BRS is present in the pipeline before the UDS,
|
|
* the alpha component doesn't need to be scaled as the BRU and
|
|
* BRS output alpha value is fixed to 255. Otherwise we need to
|
|
* scale the alpha component only when available at the input
|
|
* RPF.
|
|
*/
|
|
if (pipe->uds_input->type == VSP1_ENTITY_BRU ||
|
|
pipe->uds_input->type == VSP1_ENTITY_BRS) {
|
|
uds->scale_alpha = false;
|
|
} else {
|
|
struct vsp1_rwpf *rpf =
|
|
to_rwpf(&pipe->uds_input->subdev);
|
|
|
|
uds->scale_alpha = rpf->fmtinfo->alpha;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute and cache the stream configuration into a body. The cached
|
|
* body will be added to the display list by vsp1_video_pipeline_run()
|
|
* whenever the pipeline needs to be fully reconfigured.
|
|
*/
|
|
pipe->stream_config = vsp1_dlm_dl_body_get(pipe->output->dlm);
|
|
if (!pipe->stream_config)
|
|
return -ENOMEM;
|
|
|
|
list_for_each_entry(entity, &pipe->entities, list_pipe) {
|
|
vsp1_entity_route_setup(entity, pipe, pipe->stream_config);
|
|
vsp1_entity_configure_stream(entity, pipe, NULL,
|
|
pipe->stream_config);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vsp1_video_release_buffers(struct vsp1_video *video)
|
|
{
|
|
struct vsp1_vb2_buffer *buffer;
|
|
unsigned long flags;
|
|
|
|
/* Remove all buffers from the IRQ queue. */
|
|
spin_lock_irqsave(&video->irqlock, flags);
|
|
list_for_each_entry(buffer, &video->irqqueue, queue)
|
|
vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR);
|
|
INIT_LIST_HEAD(&video->irqqueue);
|
|
spin_unlock_irqrestore(&video->irqlock, flags);
|
|
}
|
|
|
|
static void vsp1_video_cleanup_pipeline(struct vsp1_pipeline *pipe)
|
|
{
|
|
lockdep_assert_held(&pipe->lock);
|
|
|
|
/* Release any cached configuration from our output video. */
|
|
vsp1_dl_body_put(pipe->stream_config);
|
|
pipe->stream_config = NULL;
|
|
pipe->configured = false;
|
|
|
|
/* Release our partition table allocation. */
|
|
kfree(pipe->part_table);
|
|
pipe->part_table = NULL;
|
|
}
|
|
|
|
static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count)
|
|
{
|
|
struct vsp1_video *video = vb2_get_drv_priv(vq);
|
|
struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
|
|
bool start_pipeline = false;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
mutex_lock(&pipe->lock);
|
|
if (pipe->stream_count == pipe->num_inputs) {
|
|
ret = vsp1_video_setup_pipeline(pipe);
|
|
if (ret < 0) {
|
|
vsp1_video_release_buffers(video);
|
|
vsp1_video_cleanup_pipeline(pipe);
|
|
mutex_unlock(&pipe->lock);
|
|
return ret;
|
|
}
|
|
|
|
start_pipeline = true;
|
|
}
|
|
|
|
pipe->stream_count++;
|
|
mutex_unlock(&pipe->lock);
|
|
|
|
/*
|
|
* vsp1_pipeline_ready() is not sufficient to establish that all streams
|
|
* are prepared and the pipeline is configured, as multiple streams
|
|
* can race through streamon with buffers already queued; Therefore we
|
|
* don't even attempt to start the pipeline until the last stream has
|
|
* called through here.
|
|
*/
|
|
if (!start_pipeline)
|
|
return 0;
|
|
|
|
spin_lock_irqsave(&pipe->irqlock, flags);
|
|
if (vsp1_pipeline_ready(pipe))
|
|
vsp1_video_pipeline_run(pipe);
|
|
spin_unlock_irqrestore(&pipe->irqlock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vsp1_video_stop_streaming(struct vb2_queue *vq)
|
|
{
|
|
struct vsp1_video *video = vb2_get_drv_priv(vq);
|
|
struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
/*
|
|
* Clear the buffers ready flag to make sure the device won't be started
|
|
* by a QBUF on the video node on the other side of the pipeline.
|
|
*/
|
|
spin_lock_irqsave(&video->irqlock, flags);
|
|
pipe->buffers_ready &= ~(1 << video->pipe_index);
|
|
spin_unlock_irqrestore(&video->irqlock, flags);
|
|
|
|
mutex_lock(&pipe->lock);
|
|
if (--pipe->stream_count == pipe->num_inputs) {
|
|
/* Stop the pipeline. */
|
|
ret = vsp1_pipeline_stop(pipe);
|
|
if (ret == -ETIMEDOUT)
|
|
dev_err(video->vsp1->dev, "pipeline stop timeout\n");
|
|
|
|
vsp1_video_cleanup_pipeline(pipe);
|
|
}
|
|
mutex_unlock(&pipe->lock);
|
|
|
|
media_pipeline_stop(&video->video.entity);
|
|
vsp1_video_release_buffers(video);
|
|
vsp1_video_pipeline_put(pipe);
|
|
}
|
|
|
|
static const struct vb2_ops vsp1_video_queue_qops = {
|
|
.queue_setup = vsp1_video_queue_setup,
|
|
.buf_prepare = vsp1_video_buffer_prepare,
|
|
.buf_queue = vsp1_video_buffer_queue,
|
|
.wait_prepare = vb2_ops_wait_prepare,
|
|
.wait_finish = vb2_ops_wait_finish,
|
|
.start_streaming = vsp1_video_start_streaming,
|
|
.stop_streaming = vsp1_video_stop_streaming,
|
|
};
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* V4L2 ioctls
|
|
*/
|
|
|
|
static int
|
|
vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
|
|
{
|
|
struct v4l2_fh *vfh = file->private_data;
|
|
struct vsp1_video *video = to_vsp1_video(vfh->vdev);
|
|
|
|
cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING
|
|
| V4L2_CAP_VIDEO_CAPTURE_MPLANE
|
|
| V4L2_CAP_VIDEO_OUTPUT_MPLANE;
|
|
|
|
if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE)
|
|
cap->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE
|
|
| V4L2_CAP_STREAMING;
|
|
else
|
|
cap->device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE
|
|
| V4L2_CAP_STREAMING;
|
|
|
|
strscpy(cap->driver, "vsp1", sizeof(cap->driver));
|
|
strscpy(cap->card, video->video.name, sizeof(cap->card));
|
|
snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
|
|
dev_name(video->vsp1->dev));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
|
|
{
|
|
struct v4l2_fh *vfh = file->private_data;
|
|
struct vsp1_video *video = to_vsp1_video(vfh->vdev);
|
|
|
|
if (format->type != video->queue.type)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&video->lock);
|
|
format->fmt.pix_mp = video->rwpf->format;
|
|
mutex_unlock(&video->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
|
|
{
|
|
struct v4l2_fh *vfh = file->private_data;
|
|
struct vsp1_video *video = to_vsp1_video(vfh->vdev);
|
|
|
|
if (format->type != video->queue.type)
|
|
return -EINVAL;
|
|
|
|
return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL);
|
|
}
|
|
|
|
static int
|
|
vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
|
|
{
|
|
struct v4l2_fh *vfh = file->private_data;
|
|
struct vsp1_video *video = to_vsp1_video(vfh->vdev);
|
|
const struct vsp1_format_info *info;
|
|
int ret;
|
|
|
|
if (format->type != video->queue.type)
|
|
return -EINVAL;
|
|
|
|
ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
mutex_lock(&video->lock);
|
|
|
|
if (vb2_is_busy(&video->queue)) {
|
|
ret = -EBUSY;
|
|
goto done;
|
|
}
|
|
|
|
video->rwpf->format = format->fmt.pix_mp;
|
|
video->rwpf->fmtinfo = info;
|
|
|
|
done:
|
|
mutex_unlock(&video->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
|
|
{
|
|
struct v4l2_fh *vfh = file->private_data;
|
|
struct vsp1_video *video = to_vsp1_video(vfh->vdev);
|
|
struct media_device *mdev = &video->vsp1->media_dev;
|
|
struct vsp1_pipeline *pipe;
|
|
int ret;
|
|
|
|
if (video->queue.owner && video->queue.owner != file->private_data)
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* Get a pipeline for the video node and start streaming on it. No link
|
|
* touching an entity in the pipeline can be activated or deactivated
|
|
* once streaming is started.
|
|
*/
|
|
mutex_lock(&mdev->graph_mutex);
|
|
|
|
pipe = vsp1_video_pipeline_get(video);
|
|
if (IS_ERR(pipe)) {
|
|
mutex_unlock(&mdev->graph_mutex);
|
|
return PTR_ERR(pipe);
|
|
}
|
|
|
|
ret = __media_pipeline_start(&video->video.entity, &pipe->pipe);
|
|
if (ret < 0) {
|
|
mutex_unlock(&mdev->graph_mutex);
|
|
goto err_pipe;
|
|
}
|
|
|
|
mutex_unlock(&mdev->graph_mutex);
|
|
|
|
/*
|
|
* Verify that the configured format matches the output of the connected
|
|
* subdev.
|
|
*/
|
|
ret = vsp1_video_verify_format(video);
|
|
if (ret < 0)
|
|
goto err_stop;
|
|
|
|
/* Start the queue. */
|
|
ret = vb2_streamon(&video->queue, type);
|
|
if (ret < 0)
|
|
goto err_stop;
|
|
|
|
return 0;
|
|
|
|
err_stop:
|
|
media_pipeline_stop(&video->video.entity);
|
|
err_pipe:
|
|
vsp1_video_pipeline_put(pipe);
|
|
return ret;
|
|
}
|
|
|
|
static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = {
|
|
.vidioc_querycap = vsp1_video_querycap,
|
|
.vidioc_g_fmt_vid_cap_mplane = vsp1_video_get_format,
|
|
.vidioc_s_fmt_vid_cap_mplane = vsp1_video_set_format,
|
|
.vidioc_try_fmt_vid_cap_mplane = vsp1_video_try_format,
|
|
.vidioc_g_fmt_vid_out_mplane = vsp1_video_get_format,
|
|
.vidioc_s_fmt_vid_out_mplane = vsp1_video_set_format,
|
|
.vidioc_try_fmt_vid_out_mplane = vsp1_video_try_format,
|
|
.vidioc_reqbufs = vb2_ioctl_reqbufs,
|
|
.vidioc_querybuf = vb2_ioctl_querybuf,
|
|
.vidioc_qbuf = vb2_ioctl_qbuf,
|
|
.vidioc_dqbuf = vb2_ioctl_dqbuf,
|
|
.vidioc_expbuf = vb2_ioctl_expbuf,
|
|
.vidioc_create_bufs = vb2_ioctl_create_bufs,
|
|
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
|
|
.vidioc_streamon = vsp1_video_streamon,
|
|
.vidioc_streamoff = vb2_ioctl_streamoff,
|
|
};
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* V4L2 File Operations
|
|
*/
|
|
|
|
static int vsp1_video_open(struct file *file)
|
|
{
|
|
struct vsp1_video *video = video_drvdata(file);
|
|
struct v4l2_fh *vfh;
|
|
int ret = 0;
|
|
|
|
vfh = kzalloc(sizeof(*vfh), GFP_KERNEL);
|
|
if (vfh == NULL)
|
|
return -ENOMEM;
|
|
|
|
v4l2_fh_init(vfh, &video->video);
|
|
v4l2_fh_add(vfh);
|
|
|
|
file->private_data = vfh;
|
|
|
|
ret = vsp1_device_get(video->vsp1);
|
|
if (ret < 0) {
|
|
v4l2_fh_del(vfh);
|
|
v4l2_fh_exit(vfh);
|
|
kfree(vfh);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vsp1_video_release(struct file *file)
|
|
{
|
|
struct vsp1_video *video = video_drvdata(file);
|
|
struct v4l2_fh *vfh = file->private_data;
|
|
|
|
mutex_lock(&video->lock);
|
|
if (video->queue.owner == vfh) {
|
|
vb2_queue_release(&video->queue);
|
|
video->queue.owner = NULL;
|
|
}
|
|
mutex_unlock(&video->lock);
|
|
|
|
vsp1_device_put(video->vsp1);
|
|
|
|
v4l2_fh_release(file);
|
|
|
|
file->private_data = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct v4l2_file_operations vsp1_video_fops = {
|
|
.owner = THIS_MODULE,
|
|
.unlocked_ioctl = video_ioctl2,
|
|
.open = vsp1_video_open,
|
|
.release = vsp1_video_release,
|
|
.poll = vb2_fop_poll,
|
|
.mmap = vb2_fop_mmap,
|
|
};
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Suspend and Resume
|
|
*/
|
|
|
|
void vsp1_video_suspend(struct vsp1_device *vsp1)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
/*
|
|
* To avoid increasing the system suspend time needlessly, loop over the
|
|
* pipelines twice, first to set them all to the stopping state, and
|
|
* then to wait for the stop to complete.
|
|
*/
|
|
for (i = 0; i < vsp1->info->wpf_count; ++i) {
|
|
struct vsp1_rwpf *wpf = vsp1->wpf[i];
|
|
struct vsp1_pipeline *pipe;
|
|
|
|
if (wpf == NULL)
|
|
continue;
|
|
|
|
pipe = wpf->entity.pipe;
|
|
if (pipe == NULL)
|
|
continue;
|
|
|
|
spin_lock_irqsave(&pipe->irqlock, flags);
|
|
if (pipe->state == VSP1_PIPELINE_RUNNING)
|
|
pipe->state = VSP1_PIPELINE_STOPPING;
|
|
spin_unlock_irqrestore(&pipe->irqlock, flags);
|
|
}
|
|
|
|
for (i = 0; i < vsp1->info->wpf_count; ++i) {
|
|
struct vsp1_rwpf *wpf = vsp1->wpf[i];
|
|
struct vsp1_pipeline *pipe;
|
|
|
|
if (wpf == NULL)
|
|
continue;
|
|
|
|
pipe = wpf->entity.pipe;
|
|
if (pipe == NULL)
|
|
continue;
|
|
|
|
ret = wait_event_timeout(pipe->wq, vsp1_pipeline_stopped(pipe),
|
|
msecs_to_jiffies(500));
|
|
if (ret == 0)
|
|
dev_warn(vsp1->dev, "pipeline %u stop timeout\n",
|
|
wpf->entity.index);
|
|
}
|
|
}
|
|
|
|
void vsp1_video_resume(struct vsp1_device *vsp1)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int i;
|
|
|
|
/* Resume all running pipelines. */
|
|
for (i = 0; i < vsp1->info->wpf_count; ++i) {
|
|
struct vsp1_rwpf *wpf = vsp1->wpf[i];
|
|
struct vsp1_pipeline *pipe;
|
|
|
|
if (wpf == NULL)
|
|
continue;
|
|
|
|
pipe = wpf->entity.pipe;
|
|
if (pipe == NULL)
|
|
continue;
|
|
|
|
/*
|
|
* The hardware may have been reset during a suspend and will
|
|
* need a full reconfiguration.
|
|
*/
|
|
pipe->configured = false;
|
|
|
|
spin_lock_irqsave(&pipe->irqlock, flags);
|
|
if (vsp1_pipeline_ready(pipe))
|
|
vsp1_video_pipeline_run(pipe);
|
|
spin_unlock_irqrestore(&pipe->irqlock, flags);
|
|
}
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Initialization and Cleanup
|
|
*/
|
|
|
|
struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1,
|
|
struct vsp1_rwpf *rwpf)
|
|
{
|
|
struct vsp1_video *video;
|
|
const char *direction;
|
|
int ret;
|
|
|
|
video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL);
|
|
if (!video)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
rwpf->video = video;
|
|
|
|
video->vsp1 = vsp1;
|
|
video->rwpf = rwpf;
|
|
|
|
if (rwpf->entity.type == VSP1_ENTITY_RPF) {
|
|
direction = "input";
|
|
video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
|
|
video->pad.flags = MEDIA_PAD_FL_SOURCE;
|
|
video->video.vfl_dir = VFL_DIR_TX;
|
|
} else {
|
|
direction = "output";
|
|
video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
|
|
video->pad.flags = MEDIA_PAD_FL_SINK;
|
|
video->video.vfl_dir = VFL_DIR_RX;
|
|
}
|
|
|
|
mutex_init(&video->lock);
|
|
spin_lock_init(&video->irqlock);
|
|
INIT_LIST_HEAD(&video->irqqueue);
|
|
|
|
/* Initialize the media entity... */
|
|
ret = media_entity_pads_init(&video->video.entity, 1, &video->pad);
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
|
|
/* ... and the format ... */
|
|
rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT;
|
|
rwpf->format.width = VSP1_VIDEO_DEF_WIDTH;
|
|
rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT;
|
|
__vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo);
|
|
|
|
/* ... and the video node... */
|
|
video->video.v4l2_dev = &video->vsp1->v4l2_dev;
|
|
video->video.fops = &vsp1_video_fops;
|
|
snprintf(video->video.name, sizeof(video->video.name), "%s %s",
|
|
rwpf->entity.subdev.name, direction);
|
|
video->video.vfl_type = VFL_TYPE_GRABBER;
|
|
video->video.release = video_device_release_empty;
|
|
video->video.ioctl_ops = &vsp1_video_ioctl_ops;
|
|
|
|
video_set_drvdata(&video->video, video);
|
|
|
|
video->queue.type = video->type;
|
|
video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
|
|
video->queue.lock = &video->lock;
|
|
video->queue.drv_priv = video;
|
|
video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer);
|
|
video->queue.ops = &vsp1_video_queue_qops;
|
|
video->queue.mem_ops = &vb2_dma_contig_memops;
|
|
video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
|
|
video->queue.dev = video->vsp1->bus_master;
|
|
ret = vb2_queue_init(&video->queue);
|
|
if (ret < 0) {
|
|
dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n");
|
|
goto error;
|
|
}
|
|
|
|
/* ... and register the video device. */
|
|
video->video.queue = &video->queue;
|
|
ret = video_register_device(&video->video, VFL_TYPE_GRABBER, -1);
|
|
if (ret < 0) {
|
|
dev_err(video->vsp1->dev, "failed to register video device\n");
|
|
goto error;
|
|
}
|
|
|
|
return video;
|
|
|
|
error:
|
|
vsp1_video_cleanup(video);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
void vsp1_video_cleanup(struct vsp1_video *video)
|
|
{
|
|
if (video_is_registered(&video->video))
|
|
video_unregister_device(&video->video);
|
|
|
|
media_entity_cleanup(&video->video.entity);
|
|
}
|