linux/drivers/power/supply/bd99954-charger.c
Linus Walleij 25fd330370 power: supply_core: Pass pointer to battery info
The function to retrieve battery info (from the device tree) assumes
we have a static info struct that gets populated by calling into
power_supply_get_battery_info().

This is awkward since I want to support tables of static battery
info by just assigning a pointer to all info based on e.g. a
compatible value in the device tree.

We also have a mixture of static and dynamically allocated
variables here.

Bite the bullet and let power_supply_get_battery_info() allocate
also the memory used for the very top level
struct power_supply_battery_info container. Pass pointers
around and lifecycle this with the psy device just like the
stuff we allocate inside it.

Change all current users over.

As part of the change, initializers need to be added to some
previously uninitialized fields in struct
power_supply_battery_info.

Reviewed-By: Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.com>
2022-01-03 18:53:10 +01:00

1145 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* ROHM BD99954 charger driver
*
* Copyright (C) 2020 Rohm Semiconductors
* Originally written by:
* Mikko Mutanen <mikko.mutanen@fi.rohmeurope.com>
* Markus Laine <markus.laine@fi.rohmeurope.com>
* Bugs added by:
* Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>
*/
/*
* The battery charging profile of BD99954.
*
* Curve (1) represents charging current.
* Curve (2) represents battery voltage.
*
* The BD99954 data sheet divides charging to three phases.
* a) Trickle-charge with constant current (8).
* b) pre-charge with constant current (6)
* c) fast-charge, first with constant current (5) phase. After
* the battery voltage has reached target level (4) we have constant
* voltage phase until charging current has dropped to termination
* level (7)
*
* V ^ ^ I
* . .
* . .
*(4)` `.` ` ` ` ` ` ` ` ` ` ` ` ` ` ----------------------------.
* . :/ .
* . o----+/:/ ` ` ` ` ` ` ` ` ` ` ` ` `.` ` (5)
* . + :: + .
* . + /- -- .
* . +`/- + .
* . o/- -: .
* . .s. +` .
* . .--+ `/ .
* . ..`` + .: .
* . -` + -- .
* . (2) ...`` + :- .
* . ...`` + -: .
*(3)` `.`."" ` ` ` `+-------- ` ` ` ` ` ` `.:` ` ` ` ` ` ` ` ` .` ` (6)
* . + `:. .
* . + -: .
* . + -:. .
* . + .--. .
* . (1) + `.+` ` ` `.` ` (7)
* -..............` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` + ` ` ` .` ` (8)
* . + -
* -------------------------------------------------+++++++++-->
* | trickle | pre | fast |
*
* Details of DT properties for different limits can be found from BD99954
* device tree binding documentation.
*/
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/linear_range.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/power_supply.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/types.h>
#include "bd99954-charger.h"
struct battery_data {
u16 precharge_current; /* Trickle-charge Current */
u16 fc_reg_voltage; /* Fast Charging Regulation Voltage */
u16 voltage_min;
u16 voltage_max;
};
/* Initial field values, converted to initial register values */
struct bd9995x_init_data {
u16 vsysreg_set; /* VSYS Regulation Setting */
u16 ibus_lim_set; /* VBUS input current limitation */
u16 icc_lim_set; /* VCC/VACP Input Current Limit Setting */
u16 itrich_set; /* Trickle-charge Current Setting */
u16 iprech_set; /* Pre-Charge Current Setting */
u16 ichg_set; /* Fast-Charge constant current */
u16 vfastchg_reg_set1; /* Fast Charging Regulation Voltage */
u16 vprechg_th_set; /* Pre-charge Voltage Threshold Setting */
u16 vrechg_set; /* Re-charge Battery Voltage Setting */
u16 vbatovp_set; /* Battery Over Voltage Threshold Setting */
u16 iterm_set; /* Charging termination current */
};
struct bd9995x_state {
u8 online;
u16 chgstm_status;
u16 vbat_vsys_status;
u16 vbus_vcc_status;
};
struct bd9995x_device {
struct i2c_client *client;
struct device *dev;
struct power_supply *charger;
struct regmap *rmap;
struct regmap_field *rmap_fields[F_MAX_FIELDS];
int chip_id;
int chip_rev;
struct bd9995x_init_data init_data;
struct bd9995x_state state;
struct mutex lock; /* Protect state data */
};
static const struct regmap_range bd9995x_readonly_reg_ranges[] = {
regmap_reg_range(CHGSTM_STATUS, SEL_ILIM_VAL),
regmap_reg_range(IOUT_DACIN_VAL, IOUT_DACIN_VAL),
regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS),
regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS),
regmap_reg_range(CHIP_ID, CHIP_REV),
regmap_reg_range(SYSTEM_STATUS, SYSTEM_STATUS),
regmap_reg_range(IBATP_VAL, VBAT_AVE_VAL),
regmap_reg_range(VTH_VAL, EXTIADP_AVE_VAL),
};
static const struct regmap_access_table bd9995x_writeable_regs = {
.no_ranges = bd9995x_readonly_reg_ranges,
.n_no_ranges = ARRAY_SIZE(bd9995x_readonly_reg_ranges),
};
static const struct regmap_range bd9995x_volatile_reg_ranges[] = {
regmap_reg_range(CHGSTM_STATUS, WDT_STATUS),
regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS),
regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS),
regmap_reg_range(INT0_STATUS, INT7_STATUS),
regmap_reg_range(SYSTEM_STATUS, SYSTEM_CTRL_SET),
regmap_reg_range(IBATP_VAL, EXTIADP_AVE_VAL), /* Measurement regs */
};
static const struct regmap_access_table bd9995x_volatile_regs = {
.yes_ranges = bd9995x_volatile_reg_ranges,
.n_yes_ranges = ARRAY_SIZE(bd9995x_volatile_reg_ranges),
};
static const struct regmap_range_cfg regmap_range_cfg[] = {
{
.selector_reg = MAP_SET,
.selector_mask = 0xFFFF,
.selector_shift = 0,
.window_start = 0,
.window_len = 0x100,
.range_min = 0 * 0x100,
.range_max = 3 * 0x100,
},
};
static const struct regmap_config bd9995x_regmap_config = {
.reg_bits = 8,
.val_bits = 16,
.reg_stride = 1,
.max_register = 3 * 0x100,
.cache_type = REGCACHE_RBTREE,
.ranges = regmap_range_cfg,
.num_ranges = ARRAY_SIZE(regmap_range_cfg),
.val_format_endian = REGMAP_ENDIAN_LITTLE,
.wr_table = &bd9995x_writeable_regs,
.volatile_table = &bd9995x_volatile_regs,
};
enum bd9995x_chrg_fault {
CHRG_FAULT_NORMAL,
CHRG_FAULT_INPUT,
CHRG_FAULT_THERMAL_SHUTDOWN,
CHRG_FAULT_TIMER_EXPIRED,
};
static int bd9995x_get_prop_batt_health(struct bd9995x_device *bd)
{
int ret, tmp;
ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp);
if (ret)
return POWER_SUPPLY_HEALTH_UNKNOWN;
/* TODO: Check these against datasheet page 34 */
switch (tmp) {
case ROOM:
return POWER_SUPPLY_HEALTH_GOOD;
case HOT1:
case HOT2:
case HOT3:
return POWER_SUPPLY_HEALTH_OVERHEAT;
case COLD1:
case COLD2:
return POWER_SUPPLY_HEALTH_COLD;
case TEMP_DIS:
case BATT_OPEN:
default:
return POWER_SUPPLY_HEALTH_UNKNOWN;
}
}
static int bd9995x_get_prop_charge_type(struct bd9995x_device *bd)
{
int ret, tmp;
ret = regmap_field_read(bd->rmap_fields[F_CHGSTM_STATE], &tmp);
if (ret)
return POWER_SUPPLY_CHARGE_TYPE_UNKNOWN;
switch (tmp) {
case CHGSTM_TRICKLE_CHARGE:
case CHGSTM_PRE_CHARGE:
return POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
case CHGSTM_FAST_CHARGE:
return POWER_SUPPLY_CHARGE_TYPE_FAST;
case CHGSTM_TOP_OFF:
case CHGSTM_DONE:
case CHGSTM_SUSPEND:
return POWER_SUPPLY_CHARGE_TYPE_NONE;
default: /* Rest of the states are error related, no charging */
return POWER_SUPPLY_CHARGE_TYPE_NONE;
}
}
static bool bd9995x_get_prop_batt_present(struct bd9995x_device *bd)
{
int ret, tmp;
ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp);
if (ret)
return false;
return tmp != BATT_OPEN;
}
static int bd9995x_get_prop_batt_voltage(struct bd9995x_device *bd)
{
int ret, tmp;
ret = regmap_field_read(bd->rmap_fields[F_VBAT_VAL], &tmp);
if (ret)
return 0;
tmp = min(tmp, 19200);
return tmp * 1000;
}
static int bd9995x_get_prop_batt_current(struct bd9995x_device *bd)
{
int ret, tmp;
ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp);
if (ret)
return 0;
return tmp * 1000;
}
#define DEFAULT_BATTERY_TEMPERATURE 250
static int bd9995x_get_prop_batt_temp(struct bd9995x_device *bd)
{
int ret, tmp;
ret = regmap_field_read(bd->rmap_fields[F_THERM_VAL], &tmp);
if (ret)
return DEFAULT_BATTERY_TEMPERATURE;
return (200 - tmp) * 10;
}
static int bd9995x_power_supply_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
int ret, tmp;
struct bd9995x_device *bd = power_supply_get_drvdata(psy);
struct bd9995x_state state;
mutex_lock(&bd->lock);
state = bd->state;
mutex_unlock(&bd->lock);
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
switch (state.chgstm_status) {
case CHGSTM_TRICKLE_CHARGE:
case CHGSTM_PRE_CHARGE:
case CHGSTM_FAST_CHARGE:
case CHGSTM_TOP_OFF:
val->intval = POWER_SUPPLY_STATUS_CHARGING;
break;
case CHGSTM_DONE:
val->intval = POWER_SUPPLY_STATUS_FULL;
break;
case CHGSTM_SUSPEND:
case CHGSTM_TEMPERATURE_ERROR_1:
case CHGSTM_TEMPERATURE_ERROR_2:
case CHGSTM_TEMPERATURE_ERROR_3:
case CHGSTM_TEMPERATURE_ERROR_4:
case CHGSTM_TEMPERATURE_ERROR_5:
case CHGSTM_TEMPERATURE_ERROR_6:
case CHGSTM_TEMPERATURE_ERROR_7:
case CHGSTM_THERMAL_SHUT_DOWN_1:
case CHGSTM_THERMAL_SHUT_DOWN_2:
case CHGSTM_THERMAL_SHUT_DOWN_3:
case CHGSTM_THERMAL_SHUT_DOWN_4:
case CHGSTM_THERMAL_SHUT_DOWN_5:
case CHGSTM_THERMAL_SHUT_DOWN_6:
case CHGSTM_THERMAL_SHUT_DOWN_7:
case CHGSTM_BATTERY_ERROR:
val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
break;
default:
val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
break;
}
break;
case POWER_SUPPLY_PROP_MANUFACTURER:
val->strval = BD9995X_MANUFACTURER;
break;
case POWER_SUPPLY_PROP_ONLINE:
val->intval = state.online;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp);
if (ret)
return ret;
val->intval = tmp * 1000;
break;
case POWER_SUPPLY_PROP_CHARGE_AVG:
ret = regmap_field_read(bd->rmap_fields[F_IBATP_AVE_VAL], &tmp);
if (ret)
return ret;
val->intval = tmp * 1000;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
/*
* Currently the DT uses this property to give the
* target current for fast-charging constant current phase.
* I think it is correct in a sense.
*
* Yet, this prop we read and return here is the programmed
* safety limit for combined input currents. This feels
* also correct in a sense.
*
* However, this results a mismatch to DT value and value
* read from sysfs.
*/
ret = regmap_field_read(bd->rmap_fields[F_SEL_ILIM_VAL], &tmp);
if (ret)
return ret;
val->intval = tmp * 1000;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
if (!state.online) {
val->intval = 0;
break;
}
ret = regmap_field_read(bd->rmap_fields[F_VFASTCHG_REG_SET1],
&tmp);
if (ret)
return ret;
/*
* The actual range : 2560 to 19200 mV. No matter what the
* register says
*/
val->intval = clamp_val(tmp << 4, 2560, 19200);
val->intval *= 1000;
break;
case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
ret = regmap_field_read(bd->rmap_fields[F_ITERM_SET], &tmp);
if (ret)
return ret;
/* Start step is 64 mA */
val->intval = tmp << 6;
/* Maximum is 1024 mA - no matter what register says */
val->intval = min(val->intval, 1024);
val->intval *= 1000;
break;
/* Battery properties which we access through charger */
case POWER_SUPPLY_PROP_PRESENT:
val->intval = bd9995x_get_prop_batt_present(bd);
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = bd9995x_get_prop_batt_voltage(bd);
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
val->intval = bd9995x_get_prop_batt_current(bd);
break;
case POWER_SUPPLY_PROP_CHARGE_TYPE:
val->intval = bd9995x_get_prop_charge_type(bd);
break;
case POWER_SUPPLY_PROP_HEALTH:
val->intval = bd9995x_get_prop_batt_health(bd);
break;
case POWER_SUPPLY_PROP_TEMP:
val->intval = bd9995x_get_prop_batt_temp(bd);
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
break;
case POWER_SUPPLY_PROP_MODEL_NAME:
val->strval = "bd99954";
break;
default:
return -EINVAL;
}
return 0;
}
static int bd9995x_get_chip_state(struct bd9995x_device *bd,
struct bd9995x_state *state)
{
int i, ret, tmp;
struct {
struct regmap_field *id;
u16 *data;
} state_fields[] = {
{
bd->rmap_fields[F_CHGSTM_STATE], &state->chgstm_status,
}, {
bd->rmap_fields[F_VBAT_VSYS_STATUS],
&state->vbat_vsys_status,
}, {
bd->rmap_fields[F_VBUS_VCC_STATUS],
&state->vbus_vcc_status,
},
};
for (i = 0; i < ARRAY_SIZE(state_fields); i++) {
ret = regmap_field_read(state_fields[i].id, &tmp);
if (ret)
return ret;
*state_fields[i].data = tmp;
}
if (state->vbus_vcc_status & STATUS_VCC_DET ||
state->vbus_vcc_status & STATUS_VBUS_DET)
state->online = 1;
else
state->online = 0;
return 0;
}
static irqreturn_t bd9995x_irq_handler_thread(int irq, void *private)
{
struct bd9995x_device *bd = private;
int ret, status, mask, i;
unsigned long tmp;
struct bd9995x_state state;
/*
* The bd9995x does not seem to generate big amount of interrupts.
* The logic regarding which interrupts can cause relevant
* status changes seem to be pretty complex.
*
* So lets implement really simple and hopefully bullet-proof handler:
* It does not really matter which IRQ we handle, we just go and
* re-read all interesting statuses + give the framework a nudge.
*
* Other option would be building a _complex_ and error prone logic
* trying to decide what could have been changed (resulting this IRQ
* we are now handling). During the normal operation the BD99954 does
* not seem to be generating much of interrupts so benefit from such
* logic would probably be minimal.
*/
ret = regmap_read(bd->rmap, INT0_STATUS, &status);
if (ret) {
dev_err(bd->dev, "Failed to read IRQ status\n");
return IRQ_NONE;
}
ret = regmap_field_read(bd->rmap_fields[F_INT0_SET], &mask);
if (ret) {
dev_err(bd->dev, "Failed to read IRQ mask\n");
return IRQ_NONE;
}
/* Handle only IRQs that are not masked */
status &= mask;
tmp = status;
/* Lowest bit does not represent any sub-registers */
tmp >>= 1;
/*
* Mask and ack IRQs we will handle (+ the idiot bit)
*/
ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], 0);
if (ret) {
dev_err(bd->dev, "Failed to mask F_INT0\n");
return IRQ_NONE;
}
ret = regmap_write(bd->rmap, INT0_STATUS, status);
if (ret) {
dev_err(bd->dev, "Failed to ack F_INT0\n");
goto err_umask;
}
for_each_set_bit(i, &tmp, 7) {
int sub_status, sub_mask;
int sub_status_reg[] = {
INT1_STATUS, INT2_STATUS, INT3_STATUS, INT4_STATUS,
INT5_STATUS, INT6_STATUS, INT7_STATUS,
};
struct regmap_field *sub_mask_f[] = {
bd->rmap_fields[F_INT1_SET],
bd->rmap_fields[F_INT2_SET],
bd->rmap_fields[F_INT3_SET],
bd->rmap_fields[F_INT4_SET],
bd->rmap_fields[F_INT5_SET],
bd->rmap_fields[F_INT6_SET],
bd->rmap_fields[F_INT7_SET],
};
/* Clear sub IRQs */
ret = regmap_read(bd->rmap, sub_status_reg[i], &sub_status);
if (ret) {
dev_err(bd->dev, "Failed to read IRQ sub-status\n");
goto err_umask;
}
ret = regmap_field_read(sub_mask_f[i], &sub_mask);
if (ret) {
dev_err(bd->dev, "Failed to read IRQ sub-mask\n");
goto err_umask;
}
/* Ack active sub-statuses */
sub_status &= sub_mask;
ret = regmap_write(bd->rmap, sub_status_reg[i], sub_status);
if (ret) {
dev_err(bd->dev, "Failed to ack sub-IRQ\n");
goto err_umask;
}
}
ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask);
if (ret)
/* May as well retry once */
goto err_umask;
/* Read whole chip state */
ret = bd9995x_get_chip_state(bd, &state);
if (ret < 0) {
dev_err(bd->dev, "Failed to read chip state\n");
} else {
mutex_lock(&bd->lock);
bd->state = state;
mutex_unlock(&bd->lock);
power_supply_changed(bd->charger);
}
return IRQ_HANDLED;
err_umask:
ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask);
if (ret)
dev_err(bd->dev,
"Failed to un-mask F_INT0 - IRQ permanently disabled\n");
return IRQ_NONE;
}
static int __bd9995x_chip_reset(struct bd9995x_device *bd)
{
int ret, state;
int rst_check_counter = 10;
u16 tmp = ALLRST | OTPLD;
ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2);
if (ret < 0)
return ret;
do {
ret = regmap_field_read(bd->rmap_fields[F_OTPLD_STATE], &state);
if (ret)
return ret;
msleep(10);
} while (state == 0 && --rst_check_counter);
if (!rst_check_counter) {
dev_err(bd->dev, "chip reset not completed\n");
return -ETIMEDOUT;
}
tmp = 0;
ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2);
return ret;
}
static int bd9995x_hw_init(struct bd9995x_device *bd)
{
int ret;
int i;
struct bd9995x_state state;
struct bd9995x_init_data *id = &bd->init_data;
const struct {
enum bd9995x_fields id;
u16 value;
} init_data[] = {
/* Enable the charging trigger after SDP charger attached */
{F_SDP_CHG_TRIG_EN, 1},
/* Enable charging trigger after SDP charger attached */
{F_SDP_CHG_TRIG, 1},
/* Disable charging trigger by BC1.2 detection */
{F_VBUS_BC_DISEN, 1},
/* Disable charging trigger by BC1.2 detection */
{F_VCC_BC_DISEN, 1},
/* Disable automatic limitation of the input current */
{F_ILIM_AUTO_DISEN, 1},
/* Select current limitation when SDP charger attached*/
{F_SDP_500_SEL, 1},
/* Select current limitation when DCP charger attached */
{F_DCP_2500_SEL, 1},
{F_VSYSREG_SET, id->vsysreg_set},
/* Activate USB charging and DC/DC converter */
{F_USB_SUS, 0},
/* DCDC clock: 1200 kHz*/
{F_DCDC_CLK_SEL, 3},
/* Enable charging */
{F_CHG_EN, 1},
/* Disable Input current Limit setting voltage measurement */
{F_EXTIADPEN, 0},
/* Disable input current limiting */
{F_VSYS_PRIORITY, 1},
{F_IBUS_LIM_SET, id->ibus_lim_set},
{F_ICC_LIM_SET, id->icc_lim_set},
/* Charge Termination Current Setting to 0*/
{F_ITERM_SET, id->iterm_set},
/* Trickle-charge Current Setting */
{F_ITRICH_SET, id->itrich_set},
/* Pre-charge Current setting */
{F_IPRECH_SET, id->iprech_set},
/* Fast Charge Current for constant current phase */
{F_ICHG_SET, id->ichg_set},
/* Fast Charge Voltage Regulation Setting */
{F_VFASTCHG_REG_SET1, id->vfastchg_reg_set1},
/* Set Pre-charge Voltage Threshold for trickle charging. */
{F_VPRECHG_TH_SET, id->vprechg_th_set},
{F_VRECHG_SET, id->vrechg_set},
{F_VBATOVP_SET, id->vbatovp_set},
/* Reverse buck boost voltage Setting */
{F_VRBOOST_SET, 0},
/* Disable fast-charging watchdog */
{F_WDT_FST, 0},
/* Disable pre-charging watchdog */
{F_WDT_PRE, 0},
/* Power save off */
{F_POWER_SAVE_MODE, 0},
{F_INT1_SET, INT1_ALL},
{F_INT2_SET, INT2_ALL},
{F_INT3_SET, INT3_ALL},
{F_INT4_SET, INT4_ALL},
{F_INT5_SET, INT5_ALL},
{F_INT6_SET, INT6_ALL},
{F_INT7_SET, INT7_ALL},
};
/*
* Currently we initialize charger to a known state at startup.
* If we want to allow for example the boot code to initialize
* charger we should get rid of this.
*/
ret = __bd9995x_chip_reset(bd);
if (ret < 0)
return ret;
/* Initialize currents/voltages and other parameters */
for (i = 0; i < ARRAY_SIZE(init_data); i++) {
ret = regmap_field_write(bd->rmap_fields[init_data[i].id],
init_data[i].value);
if (ret) {
dev_err(bd->dev, "failed to initialize charger (%d)\n",
ret);
return ret;
}
}
ret = bd9995x_get_chip_state(bd, &state);
if (ret < 0)
return ret;
mutex_lock(&bd->lock);
bd->state = state;
mutex_unlock(&bd->lock);
return 0;
}
static enum power_supply_property bd9995x_power_supply_props[] = {
POWER_SUPPLY_PROP_MANUFACTURER,
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_ONLINE,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
POWER_SUPPLY_PROP_CHARGE_AVG,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
/* Battery props we access through charger */
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CHARGE_TYPE,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_MODEL_NAME,
};
static const struct power_supply_desc bd9995x_power_supply_desc = {
.name = "bd9995x-charger",
.type = POWER_SUPPLY_TYPE_USB,
.properties = bd9995x_power_supply_props,
.num_properties = ARRAY_SIZE(bd9995x_power_supply_props),
.get_property = bd9995x_power_supply_get_property,
};
/*
* Limit configurations for vbus-input-current and vcc-vacp-input-current
* Minimum limit is 0 uA. Max is 511 * 32000 uA = 16352000 uA. This is
* configured by writing a register so that each increment in register
* value equals to 32000 uA limit increment.
*
* Eg, value 0x0 is limit 0, value 0x1 is limit 32000, ...
* Describe the setting in linear_range table.
*/
static const struct linear_range input_current_limit_ranges[] = {
{
.min = 0,
.step = 32000,
.min_sel = 0x0,
.max_sel = 0x1ff,
},
};
/* Possible trickle, pre-charging and termination current values */
static const struct linear_range charging_current_ranges[] = {
{
.min = 0,
.step = 64000,
.min_sel = 0x0,
.max_sel = 0x10,
}, {
.min = 1024000,
.step = 0,
.min_sel = 0x11,
.max_sel = 0x1f,
},
};
/*
* Fast charging voltage regulation, starting re-charging limit
* and battery over voltage protection have same possible values
*/
static const struct linear_range charge_voltage_regulation_ranges[] = {
{
.min = 2560000,
.step = 0,
.min_sel = 0,
.max_sel = 0xA0,
}, {
.min = 2560000,
.step = 16000,
.min_sel = 0xA0,
.max_sel = 0x4B0,
}, {
.min = 19200000,
.step = 0,
.min_sel = 0x4B0,
.max_sel = 0x7FF,
},
};
/* Possible VSYS voltage regulation values */
static const struct linear_range vsys_voltage_regulation_ranges[] = {
{
.min = 2560000,
.step = 0,
.min_sel = 0,
.max_sel = 0x28,
}, {
.min = 2560000,
.step = 64000,
.min_sel = 0x28,
.max_sel = 0x12C,
}, {
.min = 19200000,
.step = 0,
.min_sel = 0x12C,
.max_sel = 0x1FF,
},
};
/* Possible settings for switching from trickle to pre-charging limits */
static const struct linear_range trickle_to_pre_threshold_ranges[] = {
{
.min = 2048000,
.step = 0,
.min_sel = 0,
.max_sel = 0x20,
}, {
.min = 2048000,
.step = 64000,
.min_sel = 0x20,
.max_sel = 0x12C,
}, {
.min = 19200000,
.step = 0,
.min_sel = 0x12C,
.max_sel = 0x1FF
}
};
/* Possible current values for fast-charging constant current phase */
static const struct linear_range fast_charge_current_ranges[] = {
{
.min = 0,
.step = 64000,
.min_sel = 0,
.max_sel = 0xFF,
}
};
struct battery_init {
const char *name;
int *info_data;
const struct linear_range *range;
int ranges;
u16 *data;
};
struct dt_init {
char *prop;
const struct linear_range *range;
int ranges;
u16 *data;
};
static int bd9995x_fw_probe(struct bd9995x_device *bd)
{
int ret;
struct power_supply_battery_info *info;
u32 property;
int i;
int regval;
bool found;
struct bd9995x_init_data *init = &bd->init_data;
struct battery_init battery_inits[] = {
{
.name = "trickle-charging current",
.range = &charging_current_ranges[0],
.ranges = 2,
.data = &init->itrich_set,
}, {
.name = "pre-charging current",
.range = &charging_current_ranges[0],
.ranges = 2,
.data = &init->iprech_set,
}, {
.name = "pre-to-trickle charge voltage threshold",
.range = &trickle_to_pre_threshold_ranges[0],
.ranges = 2,
.data = &init->vprechg_th_set,
}, {
.name = "charging termination current",
.range = &charging_current_ranges[0],
.ranges = 2,
.data = &init->iterm_set,
}, {
.name = "charging re-start voltage",
.range = &charge_voltage_regulation_ranges[0],
.ranges = 2,
.data = &init->vrechg_set,
}, {
.name = "battery overvoltage limit",
.range = &charge_voltage_regulation_ranges[0],
.ranges = 2,
.data = &init->vbatovp_set,
}, {
.name = "fast-charging max current",
.range = &fast_charge_current_ranges[0],
.ranges = 1,
.data = &init->ichg_set,
}, {
.name = "fast-charging voltage",
.range = &charge_voltage_regulation_ranges[0],
.ranges = 2,
.data = &init->vfastchg_reg_set1,
},
};
struct dt_init props[] = {
{
.prop = "rohm,vsys-regulation-microvolt",
.range = &vsys_voltage_regulation_ranges[0],
.ranges = 2,
.data = &init->vsysreg_set,
}, {
.prop = "rohm,vbus-input-current-limit-microamp",
.range = &input_current_limit_ranges[0],
.ranges = 1,
.data = &init->ibus_lim_set,
}, {
.prop = "rohm,vcc-input-current-limit-microamp",
.range = &input_current_limit_ranges[0],
.ranges = 1,
.data = &init->icc_lim_set,
},
};
/*
* The power_supply_get_battery_info() does not support getting values
* from ACPI. Let's fix it if ACPI is required here.
*/
ret = power_supply_get_battery_info(bd->charger, &info);
if (ret < 0)
return ret;
/* Put pointers to the generic battery info */
battery_inits[0].info_data = &info->tricklecharge_current_ua;
battery_inits[1].info_data = &info->precharge_current_ua;
battery_inits[2].info_data = &info->precharge_voltage_max_uv;
battery_inits[3].info_data = &info->charge_term_current_ua;
battery_inits[4].info_data = &info->charge_restart_voltage_uv;
battery_inits[5].info_data = &info->overvoltage_limit_uv;
battery_inits[6].info_data = &info->constant_charge_current_max_ua;
battery_inits[7].info_data = &info->constant_charge_voltage_max_uv;
for (i = 0; i < ARRAY_SIZE(battery_inits); i++) {
int val = *battery_inits[i].info_data;
const struct linear_range *range = battery_inits[i].range;
int ranges = battery_inits[i].ranges;
if (val == -EINVAL)
continue;
ret = linear_range_get_selector_low_array(range, ranges, val,
&regval, &found);
if (ret) {
dev_err(bd->dev, "Unsupported value for %s\n",
battery_inits[i].name);
power_supply_put_battery_info(bd->charger, info);
return -EINVAL;
}
if (!found) {
dev_warn(bd->dev,
"Unsupported value for %s - using smaller\n",
battery_inits[i].name);
}
*(battery_inits[i].data) = regval;
}
power_supply_put_battery_info(bd->charger, info);
for (i = 0; i < ARRAY_SIZE(props); i++) {
ret = device_property_read_u32(bd->dev, props[i].prop,
&property);
if (ret < 0) {
dev_err(bd->dev, "failed to read %s", props[i].prop);
return ret;
}
ret = linear_range_get_selector_low_array(props[i].range,
props[i].ranges,
property, &regval,
&found);
if (ret) {
dev_err(bd->dev, "Unsupported value for '%s'\n",
props[i].prop);
return -EINVAL;
}
if (!found) {
dev_warn(bd->dev,
"Unsupported value for '%s' - using smaller\n",
props[i].prop);
}
*(props[i].data) = regval;
}
return 0;
}
static void bd9995x_chip_reset(void *bd)
{
__bd9995x_chip_reset(bd);
}
static int bd9995x_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct bd9995x_device *bd;
struct power_supply_config psy_cfg = {};
int ret;
int i;
bd = devm_kzalloc(dev, sizeof(*bd), GFP_KERNEL);
if (!bd)
return -ENOMEM;
bd->client = client;
bd->dev = dev;
psy_cfg.drv_data = bd;
psy_cfg.of_node = dev->of_node;
mutex_init(&bd->lock);
bd->rmap = devm_regmap_init_i2c(client, &bd9995x_regmap_config);
if (IS_ERR(bd->rmap)) {
dev_err(dev, "Failed to setup register access via i2c\n");
return PTR_ERR(bd->rmap);
}
for (i = 0; i < ARRAY_SIZE(bd9995x_reg_fields); i++) {
const struct reg_field *reg_fields = bd9995x_reg_fields;
bd->rmap_fields[i] = devm_regmap_field_alloc(dev, bd->rmap,
reg_fields[i]);
if (IS_ERR(bd->rmap_fields[i])) {
dev_err(dev, "cannot allocate regmap field\n");
return PTR_ERR(bd->rmap_fields[i]);
}
}
i2c_set_clientdata(client, bd);
ret = regmap_field_read(bd->rmap_fields[F_CHIP_ID], &bd->chip_id);
if (ret) {
dev_err(dev, "Cannot read chip ID.\n");
return ret;
}
if (bd->chip_id != BD99954_ID) {
dev_err(dev, "Chip with ID=0x%x, not supported!\n",
bd->chip_id);
return -ENODEV;
}
ret = regmap_field_read(bd->rmap_fields[F_CHIP_REV], &bd->chip_rev);
if (ret) {
dev_err(dev, "Cannot read revision.\n");
return ret;
}
dev_info(bd->dev, "Found BD99954 chip rev %d\n", bd->chip_rev);
/*
* We need to init the psy before we can call
* power_supply_get_battery_info() for it
*/
bd->charger = devm_power_supply_register(bd->dev,
&bd9995x_power_supply_desc,
&psy_cfg);
if (IS_ERR(bd->charger)) {
dev_err(dev, "Failed to register power supply\n");
return PTR_ERR(bd->charger);
}
ret = bd9995x_fw_probe(bd);
if (ret < 0) {
dev_err(dev, "Cannot read device properties.\n");
return ret;
}
ret = bd9995x_hw_init(bd);
if (ret < 0) {
dev_err(dev, "Cannot initialize the chip.\n");
return ret;
}
ret = devm_add_action_or_reset(dev, bd9995x_chip_reset, bd);
if (ret)
return ret;
return devm_request_threaded_irq(dev, client->irq, NULL,
bd9995x_irq_handler_thread,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
BD9995X_IRQ_PIN, bd);
}
static const struct of_device_id bd9995x_of_match[] = {
{ .compatible = "rohm,bd99954", },
{ }
};
MODULE_DEVICE_TABLE(of, bd9995x_of_match);
static struct i2c_driver bd9995x_driver = {
.driver = {
.name = "bd9995x-charger",
.of_match_table = bd9995x_of_match,
},
.probe_new = bd9995x_probe,
};
module_i2c_driver(bd9995x_driver);
MODULE_AUTHOR("Laine Markus <markus.laine@fi.rohmeurope.com>");
MODULE_DESCRIPTION("ROHM BD99954 charger driver");
MODULE_LICENSE("GPL");