linux/drivers/md/bcache/request.c
Rui Hua b221fc130c bcache: ret IOERR when read meets metadata error
The read request might meet error when searching the btree, but the error
was not handled in cache_lookup(), and this kind of metadata failure will
not go into cached_dev_read_error(), finally, the upper layer will receive
bi_status=0.  In this patch we judge the metadata error by the return
value of bch_btree_map_keys(), there are two potential paths give rise to
the error:

1. Because the btree is not totally cached in memery, we maybe get error
   when read btree node from cache device (see bch_btree_node_get()), the
   likely errno is -EIO, -ENOMEM

2. When read miss happens, bch_btree_insert_check_key() will be called to
   insert a "replace_key" to btree(see cached_dev_cache_miss(), just for
   doing preparatory work before insert the missed data to cache device),
   a failure can also happen in this situation, the likely errno is
   -ENOMEM

bch_btree_map_keys() will return MAP_DONE in normal scenario, but we will
get either -EIO or -ENOMEM in above two cases. if this happened, we should
NOT recover data from backing device (when cache device is dirty) because
we don't know whether bkeys the read request covered are all clean.  And
after that happened, s->iop.status is still its initially value(0) before
we submit s->bio.bio, we set it to BLK_STS_IOERR, so it can go into
cached_dev_read_error(), and finally it can be passed to upper layer, or
recovered by reread from backing device.

[edit by mlyle: patch formatting, word-wrap, comment spelling,
commit log format]

Signed-off-by: Hua Rui <huarui.dev@gmail.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-08 13:29:00 -07:00

1195 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Main bcache entry point - handle a read or a write request and decide what to
* do with it; the make_request functions are called by the block layer.
*
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright 2012 Google, Inc.
*/
#include "bcache.h"
#include "btree.h"
#include "debug.h"
#include "request.h"
#include "writeback.h"
#include <linux/module.h>
#include <linux/hash.h>
#include <linux/random.h>
#include <linux/backing-dev.h>
#include <trace/events/bcache.h>
#define CUTOFF_CACHE_ADD 95
#define CUTOFF_CACHE_READA 90
struct kmem_cache *bch_search_cache;
static void bch_data_insert_start(struct closure *);
static unsigned cache_mode(struct cached_dev *dc)
{
return BDEV_CACHE_MODE(&dc->sb);
}
static bool verify(struct cached_dev *dc)
{
return dc->verify;
}
static void bio_csum(struct bio *bio, struct bkey *k)
{
struct bio_vec bv;
struct bvec_iter iter;
uint64_t csum = 0;
bio_for_each_segment(bv, bio, iter) {
void *d = kmap(bv.bv_page) + bv.bv_offset;
csum = bch_crc64_update(csum, d, bv.bv_len);
kunmap(bv.bv_page);
}
k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
}
/* Insert data into cache */
static void bch_data_insert_keys(struct closure *cl)
{
struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
atomic_t *journal_ref = NULL;
struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
int ret;
/*
* If we're looping, might already be waiting on
* another journal write - can't wait on more than one journal write at
* a time
*
* XXX: this looks wrong
*/
#if 0
while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
closure_sync(&s->cl);
#endif
if (!op->replace)
journal_ref = bch_journal(op->c, &op->insert_keys,
op->flush_journal ? cl : NULL);
ret = bch_btree_insert(op->c, &op->insert_keys,
journal_ref, replace_key);
if (ret == -ESRCH) {
op->replace_collision = true;
} else if (ret) {
op->status = BLK_STS_RESOURCE;
op->insert_data_done = true;
}
if (journal_ref)
atomic_dec_bug(journal_ref);
if (!op->insert_data_done) {
continue_at(cl, bch_data_insert_start, op->wq);
return;
}
bch_keylist_free(&op->insert_keys);
closure_return(cl);
}
static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
struct cache_set *c)
{
size_t oldsize = bch_keylist_nkeys(l);
size_t newsize = oldsize + u64s;
/*
* The journalling code doesn't handle the case where the keys to insert
* is bigger than an empty write: If we just return -ENOMEM here,
* bio_insert() and bio_invalidate() will insert the keys created so far
* and finish the rest when the keylist is empty.
*/
if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
return -ENOMEM;
return __bch_keylist_realloc(l, u64s);
}
static void bch_data_invalidate(struct closure *cl)
{
struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
struct bio *bio = op->bio;
pr_debug("invalidating %i sectors from %llu",
bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
while (bio_sectors(bio)) {
unsigned sectors = min(bio_sectors(bio),
1U << (KEY_SIZE_BITS - 1));
if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
goto out;
bio->bi_iter.bi_sector += sectors;
bio->bi_iter.bi_size -= sectors << 9;
bch_keylist_add(&op->insert_keys,
&KEY(op->inode, bio->bi_iter.bi_sector, sectors));
}
op->insert_data_done = true;
bio_put(bio);
out:
continue_at(cl, bch_data_insert_keys, op->wq);
}
static void bch_data_insert_error(struct closure *cl)
{
struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
/*
* Our data write just errored, which means we've got a bunch of keys to
* insert that point to data that wasn't succesfully written.
*
* We don't have to insert those keys but we still have to invalidate
* that region of the cache - so, if we just strip off all the pointers
* from the keys we'll accomplish just that.
*/
struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
while (src != op->insert_keys.top) {
struct bkey *n = bkey_next(src);
SET_KEY_PTRS(src, 0);
memmove(dst, src, bkey_bytes(src));
dst = bkey_next(dst);
src = n;
}
op->insert_keys.top = dst;
bch_data_insert_keys(cl);
}
static void bch_data_insert_endio(struct bio *bio)
{
struct closure *cl = bio->bi_private;
struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
if (bio->bi_status) {
/* TODO: We could try to recover from this. */
if (op->writeback)
op->status = bio->bi_status;
else if (!op->replace)
set_closure_fn(cl, bch_data_insert_error, op->wq);
else
set_closure_fn(cl, NULL, NULL);
}
bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
}
static void bch_data_insert_start(struct closure *cl)
{
struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
struct bio *bio = op->bio, *n;
if (op->bypass)
return bch_data_invalidate(cl);
if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
wake_up_gc(op->c);
/*
* Journal writes are marked REQ_PREFLUSH; if the original write was a
* flush, it'll wait on the journal write.
*/
bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
do {
unsigned i;
struct bkey *k;
struct bio_set *split = op->c->bio_split;
/* 1 for the device pointer and 1 for the chksum */
if (bch_keylist_realloc(&op->insert_keys,
3 + (op->csum ? 1 : 0),
op->c)) {
continue_at(cl, bch_data_insert_keys, op->wq);
return;
}
k = op->insert_keys.top;
bkey_init(k);
SET_KEY_INODE(k, op->inode);
SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
op->write_point, op->write_prio,
op->writeback))
goto err;
n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
n->bi_end_io = bch_data_insert_endio;
n->bi_private = cl;
if (op->writeback) {
SET_KEY_DIRTY(k, true);
for (i = 0; i < KEY_PTRS(k); i++)
SET_GC_MARK(PTR_BUCKET(op->c, k, i),
GC_MARK_DIRTY);
}
SET_KEY_CSUM(k, op->csum);
if (KEY_CSUM(k))
bio_csum(n, k);
trace_bcache_cache_insert(k);
bch_keylist_push(&op->insert_keys);
bio_set_op_attrs(n, REQ_OP_WRITE, 0);
bch_submit_bbio(n, op->c, k, 0);
} while (n != bio);
op->insert_data_done = true;
continue_at(cl, bch_data_insert_keys, op->wq);
return;
err:
/* bch_alloc_sectors() blocks if s->writeback = true */
BUG_ON(op->writeback);
/*
* But if it's not a writeback write we'd rather just bail out if
* there aren't any buckets ready to write to - it might take awhile and
* we might be starving btree writes for gc or something.
*/
if (!op->replace) {
/*
* Writethrough write: We can't complete the write until we've
* updated the index. But we don't want to delay the write while
* we wait for buckets to be freed up, so just invalidate the
* rest of the write.
*/
op->bypass = true;
return bch_data_invalidate(cl);
} else {
/*
* From a cache miss, we can just insert the keys for the data
* we have written or bail out if we didn't do anything.
*/
op->insert_data_done = true;
bio_put(bio);
if (!bch_keylist_empty(&op->insert_keys))
continue_at(cl, bch_data_insert_keys, op->wq);
else
closure_return(cl);
}
}
/**
* bch_data_insert - stick some data in the cache
*
* This is the starting point for any data to end up in a cache device; it could
* be from a normal write, or a writeback write, or a write to a flash only
* volume - it's also used by the moving garbage collector to compact data in
* mostly empty buckets.
*
* It first writes the data to the cache, creating a list of keys to be inserted
* (if the data had to be fragmented there will be multiple keys); after the
* data is written it calls bch_journal, and after the keys have been added to
* the next journal write they're inserted into the btree.
*
* It inserts the data in s->cache_bio; bi_sector is used for the key offset,
* and op->inode is used for the key inode.
*
* If s->bypass is true, instead of inserting the data it invalidates the
* region of the cache represented by s->cache_bio and op->inode.
*/
void bch_data_insert(struct closure *cl)
{
struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
trace_bcache_write(op->c, op->inode, op->bio,
op->writeback, op->bypass);
bch_keylist_init(&op->insert_keys);
bio_get(op->bio);
bch_data_insert_start(cl);
}
/* Congested? */
unsigned bch_get_congested(struct cache_set *c)
{
int i;
long rand;
if (!c->congested_read_threshold_us &&
!c->congested_write_threshold_us)
return 0;
i = (local_clock_us() - c->congested_last_us) / 1024;
if (i < 0)
return 0;
i += atomic_read(&c->congested);
if (i >= 0)
return 0;
i += CONGESTED_MAX;
if (i > 0)
i = fract_exp_two(i, 6);
rand = get_random_int();
i -= bitmap_weight(&rand, BITS_PER_LONG);
return i > 0 ? i : 1;
}
static void add_sequential(struct task_struct *t)
{
ewma_add(t->sequential_io_avg,
t->sequential_io, 8, 0);
t->sequential_io = 0;
}
static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
{
return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
}
static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
{
struct cache_set *c = dc->disk.c;
unsigned mode = cache_mode(dc);
unsigned sectors, congested = bch_get_congested(c);
struct task_struct *task = current;
struct io *i;
if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
(bio_op(bio) == REQ_OP_DISCARD))
goto skip;
if (mode == CACHE_MODE_NONE ||
(mode == CACHE_MODE_WRITEAROUND &&
op_is_write(bio_op(bio))))
goto skip;
/*
* Flag for bypass if the IO is for read-ahead or background,
* unless the read-ahead request is for metadata (eg, for gfs2).
*/
if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) &&
!(bio->bi_opf & REQ_META))
goto skip;
if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
bio_sectors(bio) & (c->sb.block_size - 1)) {
pr_debug("skipping unaligned io");
goto skip;
}
if (bypass_torture_test(dc)) {
if ((get_random_int() & 3) == 3)
goto skip;
else
goto rescale;
}
if (!congested && !dc->sequential_cutoff)
goto rescale;
spin_lock(&dc->io_lock);
hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
if (i->last == bio->bi_iter.bi_sector &&
time_before(jiffies, i->jiffies))
goto found;
i = list_first_entry(&dc->io_lru, struct io, lru);
add_sequential(task);
i->sequential = 0;
found:
if (i->sequential + bio->bi_iter.bi_size > i->sequential)
i->sequential += bio->bi_iter.bi_size;
i->last = bio_end_sector(bio);
i->jiffies = jiffies + msecs_to_jiffies(5000);
task->sequential_io = i->sequential;
hlist_del(&i->hash);
hlist_add_head(&i->hash, iohash(dc, i->last));
list_move_tail(&i->lru, &dc->io_lru);
spin_unlock(&dc->io_lock);
sectors = max(task->sequential_io,
task->sequential_io_avg) >> 9;
if (dc->sequential_cutoff &&
sectors >= dc->sequential_cutoff >> 9) {
trace_bcache_bypass_sequential(bio);
goto skip;
}
if (congested && sectors >= congested) {
trace_bcache_bypass_congested(bio);
goto skip;
}
rescale:
bch_rescale_priorities(c, bio_sectors(bio));
return false;
skip:
bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
return true;
}
/* Cache lookup */
struct search {
/* Stack frame for bio_complete */
struct closure cl;
struct bbio bio;
struct bio *orig_bio;
struct bio *cache_miss;
struct bcache_device *d;
unsigned insert_bio_sectors;
unsigned recoverable:1;
unsigned write:1;
unsigned read_dirty_data:1;
unsigned cache_missed:1;
unsigned long start_time;
struct btree_op op;
struct data_insert_op iop;
};
static void bch_cache_read_endio(struct bio *bio)
{
struct bbio *b = container_of(bio, struct bbio, bio);
struct closure *cl = bio->bi_private;
struct search *s = container_of(cl, struct search, cl);
/*
* If the bucket was reused while our bio was in flight, we might have
* read the wrong data. Set s->error but not error so it doesn't get
* counted against the cache device, but we'll still reread the data
* from the backing device.
*/
if (bio->bi_status)
s->iop.status = bio->bi_status;
else if (!KEY_DIRTY(&b->key) &&
ptr_stale(s->iop.c, &b->key, 0)) {
atomic_long_inc(&s->iop.c->cache_read_races);
s->iop.status = BLK_STS_IOERR;
}
bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
}
/*
* Read from a single key, handling the initial cache miss if the key starts in
* the middle of the bio
*/
static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
{
struct search *s = container_of(op, struct search, op);
struct bio *n, *bio = &s->bio.bio;
struct bkey *bio_key;
unsigned ptr;
if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
return MAP_CONTINUE;
if (KEY_INODE(k) != s->iop.inode ||
KEY_START(k) > bio->bi_iter.bi_sector) {
unsigned bio_sectors = bio_sectors(bio);
unsigned sectors = KEY_INODE(k) == s->iop.inode
? min_t(uint64_t, INT_MAX,
KEY_START(k) - bio->bi_iter.bi_sector)
: INT_MAX;
int ret = s->d->cache_miss(b, s, bio, sectors);
if (ret != MAP_CONTINUE)
return ret;
/* if this was a complete miss we shouldn't get here */
BUG_ON(bio_sectors <= sectors);
}
if (!KEY_SIZE(k))
return MAP_CONTINUE;
/* XXX: figure out best pointer - for multiple cache devices */
ptr = 0;
PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
if (KEY_DIRTY(k))
s->read_dirty_data = true;
n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
KEY_OFFSET(k) - bio->bi_iter.bi_sector),
GFP_NOIO, s->d->bio_split);
bio_key = &container_of(n, struct bbio, bio)->key;
bch_bkey_copy_single_ptr(bio_key, k, ptr);
bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
n->bi_end_io = bch_cache_read_endio;
n->bi_private = &s->cl;
/*
* The bucket we're reading from might be reused while our bio
* is in flight, and we could then end up reading the wrong
* data.
*
* We guard against this by checking (in cache_read_endio()) if
* the pointer is stale again; if so, we treat it as an error
* and reread from the backing device (but we don't pass that
* error up anywhere).
*/
__bch_submit_bbio(n, b->c);
return n == bio ? MAP_DONE : MAP_CONTINUE;
}
static void cache_lookup(struct closure *cl)
{
struct search *s = container_of(cl, struct search, iop.cl);
struct bio *bio = &s->bio.bio;
struct cached_dev *dc;
int ret;
bch_btree_op_init(&s->op, -1);
ret = bch_btree_map_keys(&s->op, s->iop.c,
&KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
cache_lookup_fn, MAP_END_KEY);
if (ret == -EAGAIN) {
continue_at(cl, cache_lookup, bcache_wq);
return;
}
/*
* We might meet err when searching the btree, If that happens, we will
* get negative ret, in this scenario we should not recover data from
* backing device (when cache device is dirty) because we don't know
* whether bkeys the read request covered are all clean.
*
* And after that happened, s->iop.status is still its initial value
* before we submit s->bio.bio
*/
if (ret < 0) {
BUG_ON(ret == -EINTR);
if (s->d && s->d->c &&
!UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
dc = container_of(s->d, struct cached_dev, disk);
if (dc && atomic_read(&dc->has_dirty))
s->recoverable = false;
}
if (!s->iop.status)
s->iop.status = BLK_STS_IOERR;
}
closure_return(cl);
}
/* Common code for the make_request functions */
static void request_endio(struct bio *bio)
{
struct closure *cl = bio->bi_private;
if (bio->bi_status) {
struct search *s = container_of(cl, struct search, cl);
s->iop.status = bio->bi_status;
/* Only cache read errors are recoverable */
s->recoverable = false;
}
bio_put(bio);
closure_put(cl);
}
static void bio_complete(struct search *s)
{
if (s->orig_bio) {
struct request_queue *q = s->orig_bio->bi_disk->queue;
generic_end_io_acct(q, bio_data_dir(s->orig_bio),
&s->d->disk->part0, s->start_time);
trace_bcache_request_end(s->d, s->orig_bio);
s->orig_bio->bi_status = s->iop.status;
bio_endio(s->orig_bio);
s->orig_bio = NULL;
}
}
static void do_bio_hook(struct search *s, struct bio *orig_bio)
{
struct bio *bio = &s->bio.bio;
bio_init(bio, NULL, 0);
__bio_clone_fast(bio, orig_bio);
bio->bi_end_io = request_endio;
bio->bi_private = &s->cl;
bio_cnt_set(bio, 3);
}
static void search_free(struct closure *cl)
{
struct search *s = container_of(cl, struct search, cl);
bio_complete(s);
if (s->iop.bio)
bio_put(s->iop.bio);
closure_debug_destroy(cl);
mempool_free(s, s->d->c->search);
}
static inline struct search *search_alloc(struct bio *bio,
struct bcache_device *d)
{
struct search *s;
s = mempool_alloc(d->c->search, GFP_NOIO);
closure_init(&s->cl, NULL);
do_bio_hook(s, bio);
s->orig_bio = bio;
s->cache_miss = NULL;
s->cache_missed = 0;
s->d = d;
s->recoverable = 1;
s->write = op_is_write(bio_op(bio));
s->read_dirty_data = 0;
s->start_time = jiffies;
s->iop.c = d->c;
s->iop.bio = NULL;
s->iop.inode = d->id;
s->iop.write_point = hash_long((unsigned long) current, 16);
s->iop.write_prio = 0;
s->iop.status = 0;
s->iop.flags = 0;
s->iop.flush_journal = op_is_flush(bio->bi_opf);
s->iop.wq = bcache_wq;
return s;
}
/* Cached devices */
static void cached_dev_bio_complete(struct closure *cl)
{
struct search *s = container_of(cl, struct search, cl);
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
search_free(cl);
cached_dev_put(dc);
}
/* Process reads */
static void cached_dev_cache_miss_done(struct closure *cl)
{
struct search *s = container_of(cl, struct search, cl);
if (s->iop.replace_collision)
bch_mark_cache_miss_collision(s->iop.c, s->d);
if (s->iop.bio)
bio_free_pages(s->iop.bio);
cached_dev_bio_complete(cl);
}
static void cached_dev_read_error(struct closure *cl)
{
struct search *s = container_of(cl, struct search, cl);
struct bio *bio = &s->bio.bio;
/*
* If read request hit dirty data (s->read_dirty_data is true),
* then recovery a failed read request from cached device may
* get a stale data back. So read failure recovery is only
* permitted when read request hit clean data in cache device,
* or when cache read race happened.
*/
if (s->recoverable && !s->read_dirty_data) {
/* Retry from the backing device: */
trace_bcache_read_retry(s->orig_bio);
s->iop.status = 0;
do_bio_hook(s, s->orig_bio);
/* XXX: invalidate cache */
closure_bio_submit(bio, cl);
}
continue_at(cl, cached_dev_cache_miss_done, NULL);
}
static void cached_dev_read_done(struct closure *cl)
{
struct search *s = container_of(cl, struct search, cl);
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
/*
* We had a cache miss; cache_bio now contains data ready to be inserted
* into the cache.
*
* First, we copy the data we just read from cache_bio's bounce buffers
* to the buffers the original bio pointed to:
*/
if (s->iop.bio) {
bio_reset(s->iop.bio);
s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
bio_copy_dev(s->iop.bio, s->cache_miss);
s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
bch_bio_map(s->iop.bio, NULL);
bio_copy_data(s->cache_miss, s->iop.bio);
bio_put(s->cache_miss);
s->cache_miss = NULL;
}
if (verify(dc) && s->recoverable && !s->read_dirty_data)
bch_data_verify(dc, s->orig_bio);
bio_complete(s);
if (s->iop.bio &&
!test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
BUG_ON(!s->iop.replace);
closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
}
continue_at(cl, cached_dev_cache_miss_done, NULL);
}
static void cached_dev_read_done_bh(struct closure *cl)
{
struct search *s = container_of(cl, struct search, cl);
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
bch_mark_cache_accounting(s->iop.c, s->d,
!s->cache_missed, s->iop.bypass);
trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
if (s->iop.status)
continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
else if (s->iop.bio || verify(dc))
continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
else
continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
}
static int cached_dev_cache_miss(struct btree *b, struct search *s,
struct bio *bio, unsigned sectors)
{
int ret = MAP_CONTINUE;
unsigned reada = 0;
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
struct bio *miss, *cache_bio;
s->cache_missed = 1;
if (s->cache_miss || s->iop.bypass) {
miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
goto out_submit;
}
if (!(bio->bi_opf & REQ_RAHEAD) &&
!(bio->bi_opf & REQ_META) &&
s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
reada = min_t(sector_t, dc->readahead >> 9,
get_capacity(bio->bi_disk) - bio_end_sector(bio));
s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
s->iop.replace_key = KEY(s->iop.inode,
bio->bi_iter.bi_sector + s->insert_bio_sectors,
s->insert_bio_sectors);
ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
if (ret)
return ret;
s->iop.replace = true;
miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
/* btree_search_recurse()'s btree iterator is no good anymore */
ret = miss == bio ? MAP_DONE : -EINTR;
cache_bio = bio_alloc_bioset(GFP_NOWAIT,
DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
dc->disk.bio_split);
if (!cache_bio)
goto out_submit;
cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
bio_copy_dev(cache_bio, miss);
cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
cache_bio->bi_end_io = request_endio;
cache_bio->bi_private = &s->cl;
bch_bio_map(cache_bio, NULL);
if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
goto out_put;
if (reada)
bch_mark_cache_readahead(s->iop.c, s->d);
s->cache_miss = miss;
s->iop.bio = cache_bio;
bio_get(cache_bio);
closure_bio_submit(cache_bio, &s->cl);
return ret;
out_put:
bio_put(cache_bio);
out_submit:
miss->bi_end_io = request_endio;
miss->bi_private = &s->cl;
closure_bio_submit(miss, &s->cl);
return ret;
}
static void cached_dev_read(struct cached_dev *dc, struct search *s)
{
struct closure *cl = &s->cl;
closure_call(&s->iop.cl, cache_lookup, NULL, cl);
continue_at(cl, cached_dev_read_done_bh, NULL);
}
/* Process writes */
static void cached_dev_write_complete(struct closure *cl)
{
struct search *s = container_of(cl, struct search, cl);
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
up_read_non_owner(&dc->writeback_lock);
cached_dev_bio_complete(cl);
}
static void cached_dev_write(struct cached_dev *dc, struct search *s)
{
struct closure *cl = &s->cl;
struct bio *bio = &s->bio.bio;
struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
down_read_non_owner(&dc->writeback_lock);
if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
/*
* We overlap with some dirty data undergoing background
* writeback, force this write to writeback
*/
s->iop.bypass = false;
s->iop.writeback = true;
}
/*
* Discards aren't _required_ to do anything, so skipping if
* check_overlapping returned true is ok
*
* But check_overlapping drops dirty keys for which io hasn't started,
* so we still want to call it.
*/
if (bio_op(bio) == REQ_OP_DISCARD)
s->iop.bypass = true;
if (should_writeback(dc, s->orig_bio,
cache_mode(dc),
s->iop.bypass)) {
s->iop.bypass = false;
s->iop.writeback = true;
}
if (s->iop.bypass) {
s->iop.bio = s->orig_bio;
bio_get(s->iop.bio);
if ((bio_op(bio) != REQ_OP_DISCARD) ||
blk_queue_discard(bdev_get_queue(dc->bdev)))
closure_bio_submit(bio, cl);
} else if (s->iop.writeback) {
bch_writeback_add(dc);
s->iop.bio = bio;
if (bio->bi_opf & REQ_PREFLUSH) {
/* Also need to send a flush to the backing device */
struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
dc->disk.bio_split);
bio_copy_dev(flush, bio);
flush->bi_end_io = request_endio;
flush->bi_private = cl;
flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
closure_bio_submit(flush, cl);
}
} else {
s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
closure_bio_submit(bio, cl);
}
closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
continue_at(cl, cached_dev_write_complete, NULL);
}
static void cached_dev_nodata(struct closure *cl)
{
struct search *s = container_of(cl, struct search, cl);
struct bio *bio = &s->bio.bio;
if (s->iop.flush_journal)
bch_journal_meta(s->iop.c, cl);
/* If it's a flush, we send the flush to the backing device too */
closure_bio_submit(bio, cl);
continue_at(cl, cached_dev_bio_complete, NULL);
}
/* Cached devices - read & write stuff */
static blk_qc_t cached_dev_make_request(struct request_queue *q,
struct bio *bio)
{
struct search *s;
struct bcache_device *d = bio->bi_disk->private_data;
struct cached_dev *dc = container_of(d, struct cached_dev, disk);
int rw = bio_data_dir(bio);
generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
bio_set_dev(bio, dc->bdev);
bio->bi_iter.bi_sector += dc->sb.data_offset;
if (cached_dev_get(dc)) {
s = search_alloc(bio, d);
trace_bcache_request_start(s->d, bio);
if (!bio->bi_iter.bi_size) {
/*
* can't call bch_journal_meta from under
* generic_make_request
*/
continue_at_nobarrier(&s->cl,
cached_dev_nodata,
bcache_wq);
} else {
s->iop.bypass = check_should_bypass(dc, bio);
if (rw)
cached_dev_write(dc, s);
else
cached_dev_read(dc, s);
}
} else {
if ((bio_op(bio) == REQ_OP_DISCARD) &&
!blk_queue_discard(bdev_get_queue(dc->bdev)))
bio_endio(bio);
else
generic_make_request(bio);
}
return BLK_QC_T_NONE;
}
static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
struct cached_dev *dc = container_of(d, struct cached_dev, disk);
return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
}
static int cached_dev_congested(void *data, int bits)
{
struct bcache_device *d = data;
struct cached_dev *dc = container_of(d, struct cached_dev, disk);
struct request_queue *q = bdev_get_queue(dc->bdev);
int ret = 0;
if (bdi_congested(q->backing_dev_info, bits))
return 1;
if (cached_dev_get(dc)) {
unsigned i;
struct cache *ca;
for_each_cache(ca, d->c, i) {
q = bdev_get_queue(ca->bdev);
ret |= bdi_congested(q->backing_dev_info, bits);
}
cached_dev_put(dc);
}
return ret;
}
void bch_cached_dev_request_init(struct cached_dev *dc)
{
struct gendisk *g = dc->disk.disk;
g->queue->make_request_fn = cached_dev_make_request;
g->queue->backing_dev_info->congested_fn = cached_dev_congested;
dc->disk.cache_miss = cached_dev_cache_miss;
dc->disk.ioctl = cached_dev_ioctl;
}
/* Flash backed devices */
static int flash_dev_cache_miss(struct btree *b, struct search *s,
struct bio *bio, unsigned sectors)
{
unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
swap(bio->bi_iter.bi_size, bytes);
zero_fill_bio(bio);
swap(bio->bi_iter.bi_size, bytes);
bio_advance(bio, bytes);
if (!bio->bi_iter.bi_size)
return MAP_DONE;
return MAP_CONTINUE;
}
static void flash_dev_nodata(struct closure *cl)
{
struct search *s = container_of(cl, struct search, cl);
if (s->iop.flush_journal)
bch_journal_meta(s->iop.c, cl);
continue_at(cl, search_free, NULL);
}
static blk_qc_t flash_dev_make_request(struct request_queue *q,
struct bio *bio)
{
struct search *s;
struct closure *cl;
struct bcache_device *d = bio->bi_disk->private_data;
int rw = bio_data_dir(bio);
generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
s = search_alloc(bio, d);
cl = &s->cl;
bio = &s->bio.bio;
trace_bcache_request_start(s->d, bio);
if (!bio->bi_iter.bi_size) {
/*
* can't call bch_journal_meta from under
* generic_make_request
*/
continue_at_nobarrier(&s->cl,
flash_dev_nodata,
bcache_wq);
return BLK_QC_T_NONE;
} else if (rw) {
bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
&KEY(d->id, bio->bi_iter.bi_sector, 0),
&KEY(d->id, bio_end_sector(bio), 0));
s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0;
s->iop.writeback = true;
s->iop.bio = bio;
closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
} else {
closure_call(&s->iop.cl, cache_lookup, NULL, cl);
}
continue_at(cl, search_free, NULL);
return BLK_QC_T_NONE;
}
static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
return -ENOTTY;
}
static int flash_dev_congested(void *data, int bits)
{
struct bcache_device *d = data;
struct request_queue *q;
struct cache *ca;
unsigned i;
int ret = 0;
for_each_cache(ca, d->c, i) {
q = bdev_get_queue(ca->bdev);
ret |= bdi_congested(q->backing_dev_info, bits);
}
return ret;
}
void bch_flash_dev_request_init(struct bcache_device *d)
{
struct gendisk *g = d->disk;
g->queue->make_request_fn = flash_dev_make_request;
g->queue->backing_dev_info->congested_fn = flash_dev_congested;
d->cache_miss = flash_dev_cache_miss;
d->ioctl = flash_dev_ioctl;
}
void bch_request_exit(void)
{
if (bch_search_cache)
kmem_cache_destroy(bch_search_cache);
}
int __init bch_request_init(void)
{
bch_search_cache = KMEM_CACHE(search, 0);
if (!bch_search_cache)
return -ENOMEM;
return 0;
}