mirror of
https://github.com/torvalds/linux.git
synced 2024-11-27 22:51:35 +00:00
828cad8ea0
Pull scheduler updates from Ingo Molnar: "The main changes in this (fairly busy) cycle were: - There was a class of scheduler bugs related to forgetting to update the rq-clock timestamp which can cause weird and hard to debug problems, so there's a new debug facility for this: which uncovered a whole lot of bugs which convinced us that we want to keep the debug facility. (Peter Zijlstra, Matt Fleming) - Various cputime related updates: eliminate cputime and use u64 nanoseconds directly, simplify and improve the arch interfaces, implement delayed accounting more widely, etc. - (Frederic Weisbecker) - Move code around for better structure plus cleanups (Ingo Molnar) - Move IO schedule accounting deeper into the scheduler plus related changes to improve the situation (Tejun Heo) - ... plus a round of sched/rt and sched/deadline fixes, plus other fixes, updats and cleanups" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (85 commits) sched/core: Remove unlikely() annotation from sched_move_task() sched/autogroup: Rename auto_group.[ch] to autogroup.[ch] sched/topology: Split out scheduler topology code from core.c into topology.c sched/core: Remove unnecessary #include headers sched/rq_clock: Consolidate the ordering of the rq_clock methods delayacct: Include <uapi/linux/taskstats.h> sched/core: Clean up comments sched/rt: Show the 'sched_rr_timeslice' SCHED_RR timeslice tuning knob in milliseconds sched/clock: Add dummy clear_sched_clock_stable() stub function sched/cputime: Remove generic asm headers sched/cputime: Remove unused nsec_to_cputime() s390, sched/cputime: Remove unused cputime definitions powerpc, sched/cputime: Remove unused cputime definitions s390, sched/cputime: Make arch_cpu_idle_time() to return nsecs ia64, sched/cputime: Remove unused cputime definitions ia64: Convert vtime to use nsec units directly ia64, sched/cputime: Move the nsecs based cputime headers to the last arch using it sched/cputime: Remove jiffies based cputime sched/cputime, vtime: Return nsecs instead of cputime_t to account sched/cputime: Complete nsec conversion of tick based accounting ...
278 lines
8.2 KiB
C
278 lines
8.2 KiB
C
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
|
|
/*
|
|
* Expects runqueue lock to be held for atomicity of update
|
|
*/
|
|
static inline void
|
|
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
|
|
{
|
|
if (rq) {
|
|
rq->rq_sched_info.run_delay += delta;
|
|
rq->rq_sched_info.pcount++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Expects runqueue lock to be held for atomicity of update
|
|
*/
|
|
static inline void
|
|
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
|
|
{
|
|
if (rq)
|
|
rq->rq_cpu_time += delta;
|
|
}
|
|
|
|
static inline void
|
|
rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
|
|
{
|
|
if (rq)
|
|
rq->rq_sched_info.run_delay += delta;
|
|
}
|
|
#define schedstat_enabled() static_branch_unlikely(&sched_schedstats)
|
|
#define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0)
|
|
#define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0)
|
|
#define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0)
|
|
#define schedstat_val(var) (var)
|
|
#define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0)
|
|
|
|
#else /* !CONFIG_SCHEDSTATS */
|
|
static inline void
|
|
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
|
|
{}
|
|
static inline void
|
|
rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
|
|
{}
|
|
static inline void
|
|
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
|
|
{}
|
|
#define schedstat_enabled() 0
|
|
#define schedstat_inc(var) do { } while (0)
|
|
#define schedstat_add(var, amt) do { } while (0)
|
|
#define schedstat_set(var, val) do { } while (0)
|
|
#define schedstat_val(var) 0
|
|
#define schedstat_val_or_zero(var) 0
|
|
#endif /* CONFIG_SCHEDSTATS */
|
|
|
|
#ifdef CONFIG_SCHED_INFO
|
|
static inline void sched_info_reset_dequeued(struct task_struct *t)
|
|
{
|
|
t->sched_info.last_queued = 0;
|
|
}
|
|
|
|
/*
|
|
* We are interested in knowing how long it was from the *first* time a
|
|
* task was queued to the time that it finally hit a cpu, we call this routine
|
|
* from dequeue_task() to account for possible rq->clock skew across cpus. The
|
|
* delta taken on each cpu would annul the skew.
|
|
*/
|
|
static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
|
|
{
|
|
unsigned long long now = rq_clock(rq), delta = 0;
|
|
|
|
if (unlikely(sched_info_on()))
|
|
if (t->sched_info.last_queued)
|
|
delta = now - t->sched_info.last_queued;
|
|
sched_info_reset_dequeued(t);
|
|
t->sched_info.run_delay += delta;
|
|
|
|
rq_sched_info_dequeued(rq, delta);
|
|
}
|
|
|
|
/*
|
|
* Called when a task finally hits the cpu. We can now calculate how
|
|
* long it was waiting to run. We also note when it began so that we
|
|
* can keep stats on how long its timeslice is.
|
|
*/
|
|
static void sched_info_arrive(struct rq *rq, struct task_struct *t)
|
|
{
|
|
unsigned long long now = rq_clock(rq), delta = 0;
|
|
|
|
if (t->sched_info.last_queued)
|
|
delta = now - t->sched_info.last_queued;
|
|
sched_info_reset_dequeued(t);
|
|
t->sched_info.run_delay += delta;
|
|
t->sched_info.last_arrival = now;
|
|
t->sched_info.pcount++;
|
|
|
|
rq_sched_info_arrive(rq, delta);
|
|
}
|
|
|
|
/*
|
|
* This function is only called from enqueue_task(), but also only updates
|
|
* the timestamp if it is already not set. It's assumed that
|
|
* sched_info_dequeued() will clear that stamp when appropriate.
|
|
*/
|
|
static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
|
|
{
|
|
if (unlikely(sched_info_on()))
|
|
if (!t->sched_info.last_queued)
|
|
t->sched_info.last_queued = rq_clock(rq);
|
|
}
|
|
|
|
/*
|
|
* Called when a process ceases being the active-running process involuntarily
|
|
* due, typically, to expiring its time slice (this may also be called when
|
|
* switching to the idle task). Now we can calculate how long we ran.
|
|
* Also, if the process is still in the TASK_RUNNING state, call
|
|
* sched_info_queued() to mark that it has now again started waiting on
|
|
* the runqueue.
|
|
*/
|
|
static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
|
|
{
|
|
unsigned long long delta = rq_clock(rq) -
|
|
t->sched_info.last_arrival;
|
|
|
|
rq_sched_info_depart(rq, delta);
|
|
|
|
if (t->state == TASK_RUNNING)
|
|
sched_info_queued(rq, t);
|
|
}
|
|
|
|
/*
|
|
* Called when tasks are switched involuntarily due, typically, to expiring
|
|
* their time slice. (This may also be called when switching to or from
|
|
* the idle task.) We are only called when prev != next.
|
|
*/
|
|
static inline void
|
|
__sched_info_switch(struct rq *rq,
|
|
struct task_struct *prev, struct task_struct *next)
|
|
{
|
|
/*
|
|
* prev now departs the cpu. It's not interesting to record
|
|
* stats about how efficient we were at scheduling the idle
|
|
* process, however.
|
|
*/
|
|
if (prev != rq->idle)
|
|
sched_info_depart(rq, prev);
|
|
|
|
if (next != rq->idle)
|
|
sched_info_arrive(rq, next);
|
|
}
|
|
static inline void
|
|
sched_info_switch(struct rq *rq,
|
|
struct task_struct *prev, struct task_struct *next)
|
|
{
|
|
if (unlikely(sched_info_on()))
|
|
__sched_info_switch(rq, prev, next);
|
|
}
|
|
#else
|
|
#define sched_info_queued(rq, t) do { } while (0)
|
|
#define sched_info_reset_dequeued(t) do { } while (0)
|
|
#define sched_info_dequeued(rq, t) do { } while (0)
|
|
#define sched_info_depart(rq, t) do { } while (0)
|
|
#define sched_info_arrive(rq, next) do { } while (0)
|
|
#define sched_info_switch(rq, t, next) do { } while (0)
|
|
#endif /* CONFIG_SCHED_INFO */
|
|
|
|
/*
|
|
* The following are functions that support scheduler-internal time accounting.
|
|
* These functions are generally called at the timer tick. None of this depends
|
|
* on CONFIG_SCHEDSTATS.
|
|
*/
|
|
|
|
/**
|
|
* get_running_cputimer - return &tsk->signal->cputimer if cputimer is running
|
|
*
|
|
* @tsk: Pointer to target task.
|
|
*/
|
|
#ifdef CONFIG_POSIX_TIMERS
|
|
static inline
|
|
struct thread_group_cputimer *get_running_cputimer(struct task_struct *tsk)
|
|
{
|
|
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
|
|
|
|
/* Check if cputimer isn't running. This is accessed without locking. */
|
|
if (!READ_ONCE(cputimer->running))
|
|
return NULL;
|
|
|
|
/*
|
|
* After we flush the task's sum_exec_runtime to sig->sum_sched_runtime
|
|
* in __exit_signal(), we won't account to the signal struct further
|
|
* cputime consumed by that task, even though the task can still be
|
|
* ticking after __exit_signal().
|
|
*
|
|
* In order to keep a consistent behaviour between thread group cputime
|
|
* and thread group cputimer accounting, lets also ignore the cputime
|
|
* elapsing after __exit_signal() in any thread group timer running.
|
|
*
|
|
* This makes sure that POSIX CPU clocks and timers are synchronized, so
|
|
* that a POSIX CPU timer won't expire while the corresponding POSIX CPU
|
|
* clock delta is behind the expiring timer value.
|
|
*/
|
|
if (unlikely(!tsk->sighand))
|
|
return NULL;
|
|
|
|
return cputimer;
|
|
}
|
|
#else
|
|
static inline
|
|
struct thread_group_cputimer *get_running_cputimer(struct task_struct *tsk)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* account_group_user_time - Maintain utime for a thread group.
|
|
*
|
|
* @tsk: Pointer to task structure.
|
|
* @cputime: Time value by which to increment the utime field of the
|
|
* thread_group_cputime structure.
|
|
*
|
|
* If thread group time is being maintained, get the structure for the
|
|
* running CPU and update the utime field there.
|
|
*/
|
|
static inline void account_group_user_time(struct task_struct *tsk,
|
|
u64 cputime)
|
|
{
|
|
struct thread_group_cputimer *cputimer = get_running_cputimer(tsk);
|
|
|
|
if (!cputimer)
|
|
return;
|
|
|
|
atomic64_add(cputime, &cputimer->cputime_atomic.utime);
|
|
}
|
|
|
|
/**
|
|
* account_group_system_time - Maintain stime for a thread group.
|
|
*
|
|
* @tsk: Pointer to task structure.
|
|
* @cputime: Time value by which to increment the stime field of the
|
|
* thread_group_cputime structure.
|
|
*
|
|
* If thread group time is being maintained, get the structure for the
|
|
* running CPU and update the stime field there.
|
|
*/
|
|
static inline void account_group_system_time(struct task_struct *tsk,
|
|
u64 cputime)
|
|
{
|
|
struct thread_group_cputimer *cputimer = get_running_cputimer(tsk);
|
|
|
|
if (!cputimer)
|
|
return;
|
|
|
|
atomic64_add(cputime, &cputimer->cputime_atomic.stime);
|
|
}
|
|
|
|
/**
|
|
* account_group_exec_runtime - Maintain exec runtime for a thread group.
|
|
*
|
|
* @tsk: Pointer to task structure.
|
|
* @ns: Time value by which to increment the sum_exec_runtime field
|
|
* of the thread_group_cputime structure.
|
|
*
|
|
* If thread group time is being maintained, get the structure for the
|
|
* running CPU and update the sum_exec_runtime field there.
|
|
*/
|
|
static inline void account_group_exec_runtime(struct task_struct *tsk,
|
|
unsigned long long ns)
|
|
{
|
|
struct thread_group_cputimer *cputimer = get_running_cputimer(tsk);
|
|
|
|
if (!cputimer)
|
|
return;
|
|
|
|
atomic64_add(ns, &cputimer->cputime_atomic.sum_exec_runtime);
|
|
}
|