linux/drivers/dma-buf/dma-fence.c
Rob Clark aec11c8d7c dma-buf/dma-fence: Add deadline awareness
Add a way to hint to the fence signaler of an upcoming deadline, such as
vblank, which the fence waiter would prefer not to miss.  This is to aid
the fence signaler in making power management decisions, like boosting
frequency as the deadline approaches and awareness of missing deadlines
so that can be factored in to the frequency scaling.

v2: Drop dma_fence::deadline and related logic to filter duplicate
    deadlines, to avoid increasing dma_fence size.  The fence-context
    implementation will need similar logic to track deadlines of all
    the fences on the same timeline.  [ckoenig]
v3: Clarify locking wrt. set_deadline callback
v4: Clarify in docs comment that this is a hint
v5: Drop DMA_FENCE_FLAG_HAS_DEADLINE_BIT.
v6: More docs
v7: Fix typo, clarify past deadlines

Signed-off-by: Rob Clark <robdclark@chromium.org>
Reviewed-by: Christian König <christian.koenig@amd.com>
Acked-by: Pekka Paalanen <pekka.paalanen@collabora.com>
Reviewed-by: Bagas Sanjaya <bagasdotme@gmail.com>
2023-03-25 10:55:07 -07:00

1024 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Fence mechanism for dma-buf and to allow for asynchronous dma access
*
* Copyright (C) 2012 Canonical Ltd
* Copyright (C) 2012 Texas Instruments
*
* Authors:
* Rob Clark <robdclark@gmail.com>
* Maarten Lankhorst <maarten.lankhorst@canonical.com>
*/
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/atomic.h>
#include <linux/dma-fence.h>
#include <linux/sched/signal.h>
#include <linux/seq_file.h>
#define CREATE_TRACE_POINTS
#include <trace/events/dma_fence.h>
EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled);
static DEFINE_SPINLOCK(dma_fence_stub_lock);
static struct dma_fence dma_fence_stub;
/*
* fence context counter: each execution context should have its own
* fence context, this allows checking if fences belong to the same
* context or not. One device can have multiple separate contexts,
* and they're used if some engine can run independently of another.
*/
static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
/**
* DOC: DMA fences overview
*
* DMA fences, represented by &struct dma_fence, are the kernel internal
* synchronization primitive for DMA operations like GPU rendering, video
* encoding/decoding, or displaying buffers on a screen.
*
* A fence is initialized using dma_fence_init() and completed using
* dma_fence_signal(). Fences are associated with a context, allocated through
* dma_fence_context_alloc(), and all fences on the same context are
* fully ordered.
*
* Since the purposes of fences is to facilitate cross-device and
* cross-application synchronization, there's multiple ways to use one:
*
* - Individual fences can be exposed as a &sync_file, accessed as a file
* descriptor from userspace, created by calling sync_file_create(). This is
* called explicit fencing, since userspace passes around explicit
* synchronization points.
*
* - Some subsystems also have their own explicit fencing primitives, like
* &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
* fence to be updated.
*
* - Then there's also implicit fencing, where the synchronization points are
* implicitly passed around as part of shared &dma_buf instances. Such
* implicit fences are stored in &struct dma_resv through the
* &dma_buf.resv pointer.
*/
/**
* DOC: fence cross-driver contract
*
* Since &dma_fence provide a cross driver contract, all drivers must follow the
* same rules:
*
* * Fences must complete in a reasonable time. Fences which represent kernels
* and shaders submitted by userspace, which could run forever, must be backed
* up by timeout and gpu hang recovery code. Minimally that code must prevent
* further command submission and force complete all in-flight fences, e.g.
* when the driver or hardware do not support gpu reset, or if the gpu reset
* failed for some reason. Ideally the driver supports gpu recovery which only
* affects the offending userspace context, and no other userspace
* submissions.
*
* * Drivers may have different ideas of what completion within a reasonable
* time means. Some hang recovery code uses a fixed timeout, others a mix
* between observing forward progress and increasingly strict timeouts.
* Drivers should not try to second guess timeout handling of fences from
* other drivers.
*
* * To ensure there's no deadlocks of dma_fence_wait() against other locks
* drivers should annotate all code required to reach dma_fence_signal(),
* which completes the fences, with dma_fence_begin_signalling() and
* dma_fence_end_signalling().
*
* * Drivers are allowed to call dma_fence_wait() while holding dma_resv_lock().
* This means any code required for fence completion cannot acquire a
* &dma_resv lock. Note that this also pulls in the entire established
* locking hierarchy around dma_resv_lock() and dma_resv_unlock().
*
* * Drivers are allowed to call dma_fence_wait() from their &shrinker
* callbacks. This means any code required for fence completion cannot
* allocate memory with GFP_KERNEL.
*
* * Drivers are allowed to call dma_fence_wait() from their &mmu_notifier
* respectively &mmu_interval_notifier callbacks. This means any code required
* for fence completeion cannot allocate memory with GFP_NOFS or GFP_NOIO.
* Only GFP_ATOMIC is permissible, which might fail.
*
* Note that only GPU drivers have a reasonable excuse for both requiring
* &mmu_interval_notifier and &shrinker callbacks at the same time as having to
* track asynchronous compute work using &dma_fence. No driver outside of
* drivers/gpu should ever call dma_fence_wait() in such contexts.
*/
static const char *dma_fence_stub_get_name(struct dma_fence *fence)
{
return "stub";
}
static const struct dma_fence_ops dma_fence_stub_ops = {
.get_driver_name = dma_fence_stub_get_name,
.get_timeline_name = dma_fence_stub_get_name,
};
/**
* dma_fence_get_stub - return a signaled fence
*
* Return a stub fence which is already signaled. The fence's
* timestamp corresponds to the first time after boot this
* function is called.
*/
struct dma_fence *dma_fence_get_stub(void)
{
spin_lock(&dma_fence_stub_lock);
if (!dma_fence_stub.ops) {
dma_fence_init(&dma_fence_stub,
&dma_fence_stub_ops,
&dma_fence_stub_lock,
0, 0);
set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
&dma_fence_stub.flags);
dma_fence_signal_locked(&dma_fence_stub);
}
spin_unlock(&dma_fence_stub_lock);
return dma_fence_get(&dma_fence_stub);
}
EXPORT_SYMBOL(dma_fence_get_stub);
/**
* dma_fence_allocate_private_stub - return a private, signaled fence
*
* Return a newly allocated and signaled stub fence.
*/
struct dma_fence *dma_fence_allocate_private_stub(void)
{
struct dma_fence *fence;
fence = kzalloc(sizeof(*fence), GFP_KERNEL);
if (fence == NULL)
return ERR_PTR(-ENOMEM);
dma_fence_init(fence,
&dma_fence_stub_ops,
&dma_fence_stub_lock,
0, 0);
set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
&fence->flags);
dma_fence_signal(fence);
return fence;
}
EXPORT_SYMBOL(dma_fence_allocate_private_stub);
/**
* dma_fence_context_alloc - allocate an array of fence contexts
* @num: amount of contexts to allocate
*
* This function will return the first index of the number of fence contexts
* allocated. The fence context is used for setting &dma_fence.context to a
* unique number by passing the context to dma_fence_init().
*/
u64 dma_fence_context_alloc(unsigned num)
{
WARN_ON(!num);
return atomic64_fetch_add(num, &dma_fence_context_counter);
}
EXPORT_SYMBOL(dma_fence_context_alloc);
/**
* DOC: fence signalling annotation
*
* Proving correctness of all the kernel code around &dma_fence through code
* review and testing is tricky for a few reasons:
*
* * It is a cross-driver contract, and therefore all drivers must follow the
* same rules for lock nesting order, calling contexts for various functions
* and anything else significant for in-kernel interfaces. But it is also
* impossible to test all drivers in a single machine, hence brute-force N vs.
* N testing of all combinations is impossible. Even just limiting to the
* possible combinations is infeasible.
*
* * There is an enormous amount of driver code involved. For render drivers
* there's the tail of command submission, after fences are published,
* scheduler code, interrupt and workers to process job completion,
* and timeout, gpu reset and gpu hang recovery code. Plus for integration
* with core mm with have &mmu_notifier, respectively &mmu_interval_notifier,
* and &shrinker. For modesetting drivers there's the commit tail functions
* between when fences for an atomic modeset are published, and when the
* corresponding vblank completes, including any interrupt processing and
* related workers. Auditing all that code, across all drivers, is not
* feasible.
*
* * Due to how many other subsystems are involved and the locking hierarchies
* this pulls in there is extremely thin wiggle-room for driver-specific
* differences. &dma_fence interacts with almost all of the core memory
* handling through page fault handlers via &dma_resv, dma_resv_lock() and
* dma_resv_unlock(). On the other side it also interacts through all
* allocation sites through &mmu_notifier and &shrinker.
*
* Furthermore lockdep does not handle cross-release dependencies, which means
* any deadlocks between dma_fence_wait() and dma_fence_signal() can't be caught
* at runtime with some quick testing. The simplest example is one thread
* waiting on a &dma_fence while holding a lock::
*
* lock(A);
* dma_fence_wait(B);
* unlock(A);
*
* while the other thread is stuck trying to acquire the same lock, which
* prevents it from signalling the fence the previous thread is stuck waiting
* on::
*
* lock(A);
* unlock(A);
* dma_fence_signal(B);
*
* By manually annotating all code relevant to signalling a &dma_fence we can
* teach lockdep about these dependencies, which also helps with the validation
* headache since now lockdep can check all the rules for us::
*
* cookie = dma_fence_begin_signalling();
* lock(A);
* unlock(A);
* dma_fence_signal(B);
* dma_fence_end_signalling(cookie);
*
* For using dma_fence_begin_signalling() and dma_fence_end_signalling() to
* annotate critical sections the following rules need to be observed:
*
* * All code necessary to complete a &dma_fence must be annotated, from the
* point where a fence is accessible to other threads, to the point where
* dma_fence_signal() is called. Un-annotated code can contain deadlock issues,
* and due to the very strict rules and many corner cases it is infeasible to
* catch these just with review or normal stress testing.
*
* * &struct dma_resv deserves a special note, since the readers are only
* protected by rcu. This means the signalling critical section starts as soon
* as the new fences are installed, even before dma_resv_unlock() is called.
*
* * The only exception are fast paths and opportunistic signalling code, which
* calls dma_fence_signal() purely as an optimization, but is not required to
* guarantee completion of a &dma_fence. The usual example is a wait IOCTL
* which calls dma_fence_signal(), while the mandatory completion path goes
* through a hardware interrupt and possible job completion worker.
*
* * To aid composability of code, the annotations can be freely nested, as long
* as the overall locking hierarchy is consistent. The annotations also work
* both in interrupt and process context. Due to implementation details this
* requires that callers pass an opaque cookie from
* dma_fence_begin_signalling() to dma_fence_end_signalling().
*
* * Validation against the cross driver contract is implemented by priming
* lockdep with the relevant hierarchy at boot-up. This means even just
* testing with a single device is enough to validate a driver, at least as
* far as deadlocks with dma_fence_wait() against dma_fence_signal() are
* concerned.
*/
#ifdef CONFIG_LOCKDEP
static struct lockdep_map dma_fence_lockdep_map = {
.name = "dma_fence_map"
};
/**
* dma_fence_begin_signalling - begin a critical DMA fence signalling section
*
* Drivers should use this to annotate the beginning of any code section
* required to eventually complete &dma_fence by calling dma_fence_signal().
*
* The end of these critical sections are annotated with
* dma_fence_end_signalling().
*
* Returns:
*
* Opaque cookie needed by the implementation, which needs to be passed to
* dma_fence_end_signalling().
*/
bool dma_fence_begin_signalling(void)
{
/* explicitly nesting ... */
if (lock_is_held_type(&dma_fence_lockdep_map, 1))
return true;
/* rely on might_sleep check for soft/hardirq locks */
if (in_atomic())
return true;
/* ... and non-recursive readlock */
lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _RET_IP_);
return false;
}
EXPORT_SYMBOL(dma_fence_begin_signalling);
/**
* dma_fence_end_signalling - end a critical DMA fence signalling section
* @cookie: opaque cookie from dma_fence_begin_signalling()
*
* Closes a critical section annotation opened by dma_fence_begin_signalling().
*/
void dma_fence_end_signalling(bool cookie)
{
if (cookie)
return;
lock_release(&dma_fence_lockdep_map, _RET_IP_);
}
EXPORT_SYMBOL(dma_fence_end_signalling);
void __dma_fence_might_wait(void)
{
bool tmp;
tmp = lock_is_held_type(&dma_fence_lockdep_map, 1);
if (tmp)
lock_release(&dma_fence_lockdep_map, _THIS_IP_);
lock_map_acquire(&dma_fence_lockdep_map);
lock_map_release(&dma_fence_lockdep_map);
if (tmp)
lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _THIS_IP_);
}
#endif
/**
* dma_fence_signal_timestamp_locked - signal completion of a fence
* @fence: the fence to signal
* @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
*
* Signal completion for software callbacks on a fence, this will unblock
* dma_fence_wait() calls and run all the callbacks added with
* dma_fence_add_callback(). Can be called multiple times, but since a fence
* can only go from the unsignaled to the signaled state and not back, it will
* only be effective the first time. Set the timestamp provided as the fence
* signal timestamp.
*
* Unlike dma_fence_signal_timestamp(), this function must be called with
* &dma_fence.lock held.
*
* Returns 0 on success and a negative error value when @fence has been
* signalled already.
*/
int dma_fence_signal_timestamp_locked(struct dma_fence *fence,
ktime_t timestamp)
{
struct dma_fence_cb *cur, *tmp;
struct list_head cb_list;
lockdep_assert_held(fence->lock);
if (unlikely(test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
&fence->flags)))
return -EINVAL;
/* Stash the cb_list before replacing it with the timestamp */
list_replace(&fence->cb_list, &cb_list);
fence->timestamp = timestamp;
set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
trace_dma_fence_signaled(fence);
list_for_each_entry_safe(cur, tmp, &cb_list, node) {
INIT_LIST_HEAD(&cur->node);
cur->func(fence, cur);
}
return 0;
}
EXPORT_SYMBOL(dma_fence_signal_timestamp_locked);
/**
* dma_fence_signal_timestamp - signal completion of a fence
* @fence: the fence to signal
* @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
*
* Signal completion for software callbacks on a fence, this will unblock
* dma_fence_wait() calls and run all the callbacks added with
* dma_fence_add_callback(). Can be called multiple times, but since a fence
* can only go from the unsignaled to the signaled state and not back, it will
* only be effective the first time. Set the timestamp provided as the fence
* signal timestamp.
*
* Returns 0 on success and a negative error value when @fence has been
* signalled already.
*/
int dma_fence_signal_timestamp(struct dma_fence *fence, ktime_t timestamp)
{
unsigned long flags;
int ret;
if (!fence)
return -EINVAL;
spin_lock_irqsave(fence->lock, flags);
ret = dma_fence_signal_timestamp_locked(fence, timestamp);
spin_unlock_irqrestore(fence->lock, flags);
return ret;
}
EXPORT_SYMBOL(dma_fence_signal_timestamp);
/**
* dma_fence_signal_locked - signal completion of a fence
* @fence: the fence to signal
*
* Signal completion for software callbacks on a fence, this will unblock
* dma_fence_wait() calls and run all the callbacks added with
* dma_fence_add_callback(). Can be called multiple times, but since a fence
* can only go from the unsignaled to the signaled state and not back, it will
* only be effective the first time.
*
* Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
* held.
*
* Returns 0 on success and a negative error value when @fence has been
* signalled already.
*/
int dma_fence_signal_locked(struct dma_fence *fence)
{
return dma_fence_signal_timestamp_locked(fence, ktime_get());
}
EXPORT_SYMBOL(dma_fence_signal_locked);
/**
* dma_fence_signal - signal completion of a fence
* @fence: the fence to signal
*
* Signal completion for software callbacks on a fence, this will unblock
* dma_fence_wait() calls and run all the callbacks added with
* dma_fence_add_callback(). Can be called multiple times, but since a fence
* can only go from the unsignaled to the signaled state and not back, it will
* only be effective the first time.
*
* Returns 0 on success and a negative error value when @fence has been
* signalled already.
*/
int dma_fence_signal(struct dma_fence *fence)
{
unsigned long flags;
int ret;
bool tmp;
if (!fence)
return -EINVAL;
tmp = dma_fence_begin_signalling();
spin_lock_irqsave(fence->lock, flags);
ret = dma_fence_signal_timestamp_locked(fence, ktime_get());
spin_unlock_irqrestore(fence->lock, flags);
dma_fence_end_signalling(tmp);
return ret;
}
EXPORT_SYMBOL(dma_fence_signal);
/**
* dma_fence_wait_timeout - sleep until the fence gets signaled
* or until timeout elapses
* @fence: the fence to wait on
* @intr: if true, do an interruptible wait
* @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
*
* Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
* remaining timeout in jiffies on success. Other error values may be
* returned on custom implementations.
*
* Performs a synchronous wait on this fence. It is assumed the caller
* directly or indirectly (buf-mgr between reservation and committing)
* holds a reference to the fence, otherwise the fence might be
* freed before return, resulting in undefined behavior.
*
* See also dma_fence_wait() and dma_fence_wait_any_timeout().
*/
signed long
dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
{
signed long ret;
if (WARN_ON(timeout < 0))
return -EINVAL;
might_sleep();
__dma_fence_might_wait();
dma_fence_enable_sw_signaling(fence);
trace_dma_fence_wait_start(fence);
if (fence->ops->wait)
ret = fence->ops->wait(fence, intr, timeout);
else
ret = dma_fence_default_wait(fence, intr, timeout);
trace_dma_fence_wait_end(fence);
return ret;
}
EXPORT_SYMBOL(dma_fence_wait_timeout);
/**
* dma_fence_release - default relese function for fences
* @kref: &dma_fence.recfount
*
* This is the default release functions for &dma_fence. Drivers shouldn't call
* this directly, but instead call dma_fence_put().
*/
void dma_fence_release(struct kref *kref)
{
struct dma_fence *fence =
container_of(kref, struct dma_fence, refcount);
trace_dma_fence_destroy(fence);
if (WARN(!list_empty(&fence->cb_list) &&
!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags),
"Fence %s:%s:%llx:%llx released with pending signals!\n",
fence->ops->get_driver_name(fence),
fence->ops->get_timeline_name(fence),
fence->context, fence->seqno)) {
unsigned long flags;
/*
* Failed to signal before release, likely a refcounting issue.
*
* This should never happen, but if it does make sure that we
* don't leave chains dangling. We set the error flag first
* so that the callbacks know this signal is due to an error.
*/
spin_lock_irqsave(fence->lock, flags);
fence->error = -EDEADLK;
dma_fence_signal_locked(fence);
spin_unlock_irqrestore(fence->lock, flags);
}
if (fence->ops->release)
fence->ops->release(fence);
else
dma_fence_free(fence);
}
EXPORT_SYMBOL(dma_fence_release);
/**
* dma_fence_free - default release function for &dma_fence.
* @fence: fence to release
*
* This is the default implementation for &dma_fence_ops.release. It calls
* kfree_rcu() on @fence.
*/
void dma_fence_free(struct dma_fence *fence)
{
kfree_rcu(fence, rcu);
}
EXPORT_SYMBOL(dma_fence_free);
static bool __dma_fence_enable_signaling(struct dma_fence *fence)
{
bool was_set;
lockdep_assert_held(fence->lock);
was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
&fence->flags);
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
return false;
if (!was_set && fence->ops->enable_signaling) {
trace_dma_fence_enable_signal(fence);
if (!fence->ops->enable_signaling(fence)) {
dma_fence_signal_locked(fence);
return false;
}
}
return true;
}
/**
* dma_fence_enable_sw_signaling - enable signaling on fence
* @fence: the fence to enable
*
* This will request for sw signaling to be enabled, to make the fence
* complete as soon as possible. This calls &dma_fence_ops.enable_signaling
* internally.
*/
void dma_fence_enable_sw_signaling(struct dma_fence *fence)
{
unsigned long flags;
spin_lock_irqsave(fence->lock, flags);
__dma_fence_enable_signaling(fence);
spin_unlock_irqrestore(fence->lock, flags);
}
EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
/**
* dma_fence_add_callback - add a callback to be called when the fence
* is signaled
* @fence: the fence to wait on
* @cb: the callback to register
* @func: the function to call
*
* Add a software callback to the fence. The caller should keep a reference to
* the fence.
*
* @cb will be initialized by dma_fence_add_callback(), no initialization
* by the caller is required. Any number of callbacks can be registered
* to a fence, but a callback can only be registered to one fence at a time.
*
* If fence is already signaled, this function will return -ENOENT (and
* *not* call the callback).
*
* Note that the callback can be called from an atomic context or irq context.
*
* Returns 0 in case of success, -ENOENT if the fence is already signaled
* and -EINVAL in case of error.
*/
int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
dma_fence_func_t func)
{
unsigned long flags;
int ret = 0;
if (WARN_ON(!fence || !func))
return -EINVAL;
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
INIT_LIST_HEAD(&cb->node);
return -ENOENT;
}
spin_lock_irqsave(fence->lock, flags);
if (__dma_fence_enable_signaling(fence)) {
cb->func = func;
list_add_tail(&cb->node, &fence->cb_list);
} else {
INIT_LIST_HEAD(&cb->node);
ret = -ENOENT;
}
spin_unlock_irqrestore(fence->lock, flags);
return ret;
}
EXPORT_SYMBOL(dma_fence_add_callback);
/**
* dma_fence_get_status - returns the status upon completion
* @fence: the dma_fence to query
*
* This wraps dma_fence_get_status_locked() to return the error status
* condition on a signaled fence. See dma_fence_get_status_locked() for more
* details.
*
* Returns 0 if the fence has not yet been signaled, 1 if the fence has
* been signaled without an error condition, or a negative error code
* if the fence has been completed in err.
*/
int dma_fence_get_status(struct dma_fence *fence)
{
unsigned long flags;
int status;
spin_lock_irqsave(fence->lock, flags);
status = dma_fence_get_status_locked(fence);
spin_unlock_irqrestore(fence->lock, flags);
return status;
}
EXPORT_SYMBOL(dma_fence_get_status);
/**
* dma_fence_remove_callback - remove a callback from the signaling list
* @fence: the fence to wait on
* @cb: the callback to remove
*
* Remove a previously queued callback from the fence. This function returns
* true if the callback is successfully removed, or false if the fence has
* already been signaled.
*
* *WARNING*:
* Cancelling a callback should only be done if you really know what you're
* doing, since deadlocks and race conditions could occur all too easily. For
* this reason, it should only ever be done on hardware lockup recovery,
* with a reference held to the fence.
*
* Behaviour is undefined if @cb has not been added to @fence using
* dma_fence_add_callback() beforehand.
*/
bool
dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
{
unsigned long flags;
bool ret;
spin_lock_irqsave(fence->lock, flags);
ret = !list_empty(&cb->node);
if (ret)
list_del_init(&cb->node);
spin_unlock_irqrestore(fence->lock, flags);
return ret;
}
EXPORT_SYMBOL(dma_fence_remove_callback);
struct default_wait_cb {
struct dma_fence_cb base;
struct task_struct *task;
};
static void
dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
{
struct default_wait_cb *wait =
container_of(cb, struct default_wait_cb, base);
wake_up_state(wait->task, TASK_NORMAL);
}
/**
* dma_fence_default_wait - default sleep until the fence gets signaled
* or until timeout elapses
* @fence: the fence to wait on
* @intr: if true, do an interruptible wait
* @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
*
* Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
* remaining timeout in jiffies on success. If timeout is zero the value one is
* returned if the fence is already signaled for consistency with other
* functions taking a jiffies timeout.
*/
signed long
dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
{
struct default_wait_cb cb;
unsigned long flags;
signed long ret = timeout ? timeout : 1;
spin_lock_irqsave(fence->lock, flags);
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
goto out;
if (intr && signal_pending(current)) {
ret = -ERESTARTSYS;
goto out;
}
if (!timeout) {
ret = 0;
goto out;
}
cb.base.func = dma_fence_default_wait_cb;
cb.task = current;
list_add(&cb.base.node, &fence->cb_list);
while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
if (intr)
__set_current_state(TASK_INTERRUPTIBLE);
else
__set_current_state(TASK_UNINTERRUPTIBLE);
spin_unlock_irqrestore(fence->lock, flags);
ret = schedule_timeout(ret);
spin_lock_irqsave(fence->lock, flags);
if (ret > 0 && intr && signal_pending(current))
ret = -ERESTARTSYS;
}
if (!list_empty(&cb.base.node))
list_del(&cb.base.node);
__set_current_state(TASK_RUNNING);
out:
spin_unlock_irqrestore(fence->lock, flags);
return ret;
}
EXPORT_SYMBOL(dma_fence_default_wait);
static bool
dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
uint32_t *idx)
{
int i;
for (i = 0; i < count; ++i) {
struct dma_fence *fence = fences[i];
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
if (idx)
*idx = i;
return true;
}
}
return false;
}
/**
* dma_fence_wait_any_timeout - sleep until any fence gets signaled
* or until timeout elapses
* @fences: array of fences to wait on
* @count: number of fences to wait on
* @intr: if true, do an interruptible wait
* @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
* @idx: used to store the first signaled fence index, meaningful only on
* positive return
*
* Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
* interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
* on success.
*
* Synchronous waits for the first fence in the array to be signaled. The
* caller needs to hold a reference to all fences in the array, otherwise a
* fence might be freed before return, resulting in undefined behavior.
*
* See also dma_fence_wait() and dma_fence_wait_timeout().
*/
signed long
dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
bool intr, signed long timeout, uint32_t *idx)
{
struct default_wait_cb *cb;
signed long ret = timeout;
unsigned i;
if (WARN_ON(!fences || !count || timeout < 0))
return -EINVAL;
if (timeout == 0) {
for (i = 0; i < count; ++i)
if (dma_fence_is_signaled(fences[i])) {
if (idx)
*idx = i;
return 1;
}
return 0;
}
cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
if (cb == NULL) {
ret = -ENOMEM;
goto err_free_cb;
}
for (i = 0; i < count; ++i) {
struct dma_fence *fence = fences[i];
cb[i].task = current;
if (dma_fence_add_callback(fence, &cb[i].base,
dma_fence_default_wait_cb)) {
/* This fence is already signaled */
if (idx)
*idx = i;
goto fence_rm_cb;
}
}
while (ret > 0) {
if (intr)
set_current_state(TASK_INTERRUPTIBLE);
else
set_current_state(TASK_UNINTERRUPTIBLE);
if (dma_fence_test_signaled_any(fences, count, idx))
break;
ret = schedule_timeout(ret);
if (ret > 0 && intr && signal_pending(current))
ret = -ERESTARTSYS;
}
__set_current_state(TASK_RUNNING);
fence_rm_cb:
while (i-- > 0)
dma_fence_remove_callback(fences[i], &cb[i].base);
err_free_cb:
kfree(cb);
return ret;
}
EXPORT_SYMBOL(dma_fence_wait_any_timeout);
/**
* DOC: deadline hints
*
* In an ideal world, it would be possible to pipeline a workload sufficiently
* that a utilization based device frequency governor could arrive at a minimum
* frequency that meets the requirements of the use-case, in order to minimize
* power consumption. But in the real world there are many workloads which
* defy this ideal. For example, but not limited to:
*
* * Workloads that ping-pong between device and CPU, with alternating periods
* of CPU waiting for device, and device waiting on CPU. This can result in
* devfreq and cpufreq seeing idle time in their respective domains and in
* result reduce frequency.
*
* * Workloads that interact with a periodic time based deadline, such as double
* buffered GPU rendering vs vblank sync'd page flipping. In this scenario,
* missing a vblank deadline results in an *increase* in idle time on the GPU
* (since it has to wait an additional vblank period), sending a signal to
* the GPU's devfreq to reduce frequency, when in fact the opposite is what is
* needed.
*
* To this end, deadline hint(s) can be set on a &dma_fence via &dma_fence_set_deadline.
* The deadline hint provides a way for the waiting driver, or userspace, to
* convey an appropriate sense of urgency to the signaling driver.
*
* A deadline hint is given in absolute ktime (CLOCK_MONOTONIC for userspace
* facing APIs). The time could either be some point in the future (such as
* the vblank based deadline for page-flipping, or the start of a compositor's
* composition cycle), or the current time to indicate an immediate deadline
* hint (Ie. forward progress cannot be made until this fence is signaled).
*
* Multiple deadlines may be set on a given fence, even in parallel. See the
* documentation for &dma_fence_ops.set_deadline.
*
* The deadline hint is just that, a hint. The driver that created the fence
* may react by increasing frequency, making different scheduling choices, etc.
* Or doing nothing at all.
*/
/**
* dma_fence_set_deadline - set desired fence-wait deadline hint
* @fence: the fence that is to be waited on
* @deadline: the time by which the waiter hopes for the fence to be
* signaled
*
* Give the fence signaler a hint about an upcoming deadline, such as
* vblank, by which point the waiter would prefer the fence to be
* signaled by. This is intended to give feedback to the fence signaler
* to aid in power management decisions, such as boosting GPU frequency
* if a periodic vblank deadline is approaching but the fence is not
* yet signaled..
*/
void dma_fence_set_deadline(struct dma_fence *fence, ktime_t deadline)
{
if (fence->ops->set_deadline && !dma_fence_is_signaled(fence))
fence->ops->set_deadline(fence, deadline);
}
EXPORT_SYMBOL(dma_fence_set_deadline);
/**
* dma_fence_describe - Dump fence describtion into seq_file
* @fence: the 6fence to describe
* @seq: the seq_file to put the textual description into
*
* Dump a textual description of the fence and it's state into the seq_file.
*/
void dma_fence_describe(struct dma_fence *fence, struct seq_file *seq)
{
seq_printf(seq, "%s %s seq %llu %ssignalled\n",
fence->ops->get_driver_name(fence),
fence->ops->get_timeline_name(fence), fence->seqno,
dma_fence_is_signaled(fence) ? "" : "un");
}
EXPORT_SYMBOL(dma_fence_describe);
/**
* dma_fence_init - Initialize a custom fence.
* @fence: the fence to initialize
* @ops: the dma_fence_ops for operations on this fence
* @lock: the irqsafe spinlock to use for locking this fence
* @context: the execution context this fence is run on
* @seqno: a linear increasing sequence number for this context
*
* Initializes an allocated fence, the caller doesn't have to keep its
* refcount after committing with this fence, but it will need to hold a
* refcount again if &dma_fence_ops.enable_signaling gets called.
*
* context and seqno are used for easy comparison between fences, allowing
* to check which fence is later by simply using dma_fence_later().
*/
void
dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
spinlock_t *lock, u64 context, u64 seqno)
{
BUG_ON(!lock);
BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
kref_init(&fence->refcount);
fence->ops = ops;
INIT_LIST_HEAD(&fence->cb_list);
fence->lock = lock;
fence->context = context;
fence->seqno = seqno;
fence->flags = 0UL;
fence->error = 0;
trace_dma_fence_init(fence);
}
EXPORT_SYMBOL(dma_fence_init);