linux/drivers/hwmon/nzxt-kraken3.c
Aleksa Savic f3b4b146eb hwmon: Add driver for NZXT Kraken X and Z series AIO CPU coolers
This driver enables hardware monitoring support for NZXT Kraken
X53/X63/X73 and Z53/Z63/Z73 all-in-one CPU liquid coolers.

All models expose liquid temperature and pump speed (in RPM), as well as
PWM control (natively only through a temp-PWM curve, but the driver also
emulates fixed PWM control on top of that). The Z-series models
additionally expose the speed and duty of an optionally connected fan,
with the same PWM control capabilities.

Pump and fan duty control mode can be set through pwm[1-2]_enable,
where 1 is for the manual control mode and 2 is for the liquid temp
to PWM curve mode. Writing a 0 disables control of the channel through
the driver after setting its duty to 100%. As it is not possible to query
the device for the active mode, the driver keeps track of it.

The temperature of the curves relates to the fixed [20-59] C range, per
device limitations, and correlating to the detected liquid temperature.
Only PWM values (ranging from 0-255) can be set.

The addressable RGB LEDs and LCD screen, included only on Z-series models,
are not supported in this driver.

Co-developed-by: Jonas Malaco <jonas@protocubo.io>
Signed-off-by: Jonas Malaco <jonas@protocubo.io>
Co-developed-by: Yury Zhuravlev <stalkerg@gmail.com>
Signed-off-by: Yury Zhuravlev <stalkerg@gmail.com>
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Link: https://lore.kernel.org/r/20240129111932.368232-1-savicaleksa83@gmail.com
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2024-02-25 12:37:37 -08:00

1009 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* hwmon driver for NZXT Kraken X53/X63/X73 and Z53/Z63/Z73 all in one coolers.
* X53 and Z53 in code refer to all models in their respective series (shortened
* for brevity).
*
* Copyright 2021 Jonas Malaco <jonas@protocubo.io>
* Copyright 2022 Aleksa Savic <savicaleksa83@gmail.com>
*/
#include <linux/debugfs.h>
#include <linux/hid.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
#include <asm/unaligned.h>
#define USB_VENDOR_ID_NZXT 0x1e71
#define USB_PRODUCT_ID_X53 0x2007
#define USB_PRODUCT_ID_X53_SECOND 0x2014
#define USB_PRODUCT_ID_Z53 0x3008
enum kinds { X53, Z53 } __packed;
enum pwm_enable { off, manual, curve } __packed;
static const char *const kraken3_device_names[] = {
[X53] = "x53",
[Z53] = "z53",
};
#define DRIVER_NAME "nzxt_kraken3"
#define STATUS_REPORT_ID 0x75
#define FIRMWARE_REPORT_ID 0x11
#define STATUS_VALIDITY 2000 /* In ms, equivalent to period of four status reports */
#define CUSTOM_CURVE_POINTS 40 /* For temps from 20C to 59C (critical temp) */
#define PUMP_DUTY_MIN 20 /* In percent */
/* Sensor report offsets for Kraken X53 and Z53 */
#define TEMP_SENSOR_START_OFFSET 15
#define TEMP_SENSOR_END_OFFSET 16
#define PUMP_SPEED_OFFSET 17
#define PUMP_DUTY_OFFSET 19
/* Firmware version report offset for Kraken X53 and Z53 */
#define FIRMWARE_VERSION_OFFSET 17
/* Sensor report offsets for Kraken Z53 */
#define Z53_FAN_SPEED_OFFSET 23
#define Z53_FAN_DUTY_OFFSET 25
/* Report offsets for control commands for Kraken X53 and Z53 */
#define SET_DUTY_ID_OFFSET 1
/* Control commands and their lengths for Kraken X53 and Z53 */
/* Last byte sets the report interval at 0.5s */
static const u8 set_interval_cmd[] = { 0x70, 0x02, 0x01, 0xB8, 1 };
static const u8 finish_init_cmd[] = { 0x70, 0x01 };
static const u8 __maybe_unused get_fw_version_cmd[] = { 0x10, 0x01 };
static const u8 set_pump_duty_cmd_header[] = { 0x72, 0x00, 0x00, 0x00 };
static const u8 z53_get_status_cmd[] = { 0x74, 0x01 };
#define SET_INTERVAL_CMD_LENGTH 5
#define FINISH_INIT_CMD_LENGTH 2
#define GET_FW_VERSION_CMD_LENGTH 2
#define MAX_REPORT_LENGTH 64
#define MIN_REPORT_LENGTH 20
#define SET_CURVE_DUTY_CMD_HEADER_LENGTH 4
/* 4 byte header and 40 duty offsets */
#define SET_CURVE_DUTY_CMD_LENGTH (4 + 40)
#define Z53_GET_STATUS_CMD_LENGTH 2
static const char *const kraken3_temp_label[] = {
"Coolant temp",
};
static const char *const kraken3_fan_label[] = {
"Pump speed",
"Fan speed"
};
struct kraken3_channel_info {
enum pwm_enable mode;
/* Both values are PWM */
u16 reported_duty;
u16 fixed_duty; /* Manually set fixed duty */
u8 pwm_points[CUSTOM_CURVE_POINTS];
};
struct kraken3_data {
struct hid_device *hdev;
struct device *hwmon_dev;
struct dentry *debugfs;
struct mutex buffer_lock; /* For locking access to buffer */
struct mutex z53_status_request_lock;
struct completion fw_version_processed;
/*
* For X53 devices, tracks whether an initial (one) sensor report was received to
* make fancontrol not bail outright. For Z53 devices, whether a status report
* was processed after requesting one.
*/
struct completion status_report_processed;
/* For locking the above completion */
spinlock_t status_completion_lock;
u8 *buffer;
struct kraken3_channel_info channel_info[2]; /* Pump and fan */
bool is_device_faulty;
/* Sensor values */
s32 temp_input[1];
u16 fan_input[2];
enum kinds kind;
u8 firmware_version[3];
unsigned long updated; /* jiffies */
};
static umode_t kraken3_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr,
int channel)
{
const struct kraken3_data *priv = data;
switch (type) {
case hwmon_temp:
if (channel < 1)
return 0444;
break;
case hwmon_fan:
switch (priv->kind) {
case X53:
/* Just the pump */
if (channel < 1)
return 0444;
break;
case Z53:
/* Pump and fan */
if (channel < 2)
return 0444;
break;
default:
break;
}
break;
case hwmon_pwm:
switch (attr) {
case hwmon_pwm_enable:
case hwmon_pwm_input:
switch (priv->kind) {
case X53:
/* Just the pump */
if (channel < 1)
return 0644;
break;
case Z53:
/* Pump and fan */
if (channel < 2)
return 0644;
break;
default:
break;
}
break;
default:
break;
}
break;
default:
break;
}
return 0;
}
/*
* Writes the command to the device with the rest of the report (up to 64 bytes) filled
* with zeroes.
*/
static int kraken3_write_expanded(struct kraken3_data *priv, const u8 *cmd, int cmd_length)
{
int ret;
mutex_lock(&priv->buffer_lock);
memcpy_and_pad(priv->buffer, MAX_REPORT_LENGTH, cmd, cmd_length, 0x00);
ret = hid_hw_output_report(priv->hdev, priv->buffer, MAX_REPORT_LENGTH);
mutex_unlock(&priv->buffer_lock);
return ret;
}
static int kraken3_percent_to_pwm(long val)
{
return DIV_ROUND_CLOSEST(val * 255, 100);
}
static int kraken3_pwm_to_percent(long val, int channel)
{
int percent_value;
if (val < 0 || val > 255)
return -EINVAL;
percent_value = DIV_ROUND_CLOSEST(val * 100, 255);
/* Bring up pump duty to min value if needed */
if (channel == 0 && percent_value < PUMP_DUTY_MIN)
percent_value = PUMP_DUTY_MIN;
return percent_value;
}
static int kraken3_read_x53(struct kraken3_data *priv)
{
int ret;
if (completion_done(&priv->status_report_processed))
/*
* We're here because data is stale. This means that sensor reports haven't
* been received for some time in kraken3_raw_event(). On X-series sensor data
* can't be manually requested, so return an error.
*/
return -ENODATA;
/*
* Data needs to be read, but a sensor report wasn't yet received. It's usually
* fancontrol that requests data this early and it exits if it reads an error code.
* So, wait for the first report to be parsed (but up to STATUS_VALIDITY).
* This does not concern the Z series devices, because they send a sensor report
* only when requested.
*/
ret = wait_for_completion_interruptible_timeout(&priv->status_report_processed,
msecs_to_jiffies(STATUS_VALIDITY));
if (ret == 0)
return -ETIMEDOUT;
else if (ret < 0)
return ret;
/* The first sensor report was parsed on time and reading can continue */
return 0;
}
static int kraken3_read_z53(struct kraken3_data *priv)
{
int ret = mutex_lock_interruptible(&priv->z53_status_request_lock);
if (ret < 0)
return ret;
if (!time_after(jiffies, priv->updated + msecs_to_jiffies(STATUS_VALIDITY))) {
/* Data is up to date */
goto unlock_and_return;
}
/*
* Disable interrupts for a moment to safely reinit the completion,
* as hidraw calls could have allowed one or more readers to complete.
*/
spin_lock_bh(&priv->status_completion_lock);
reinit_completion(&priv->status_report_processed);
spin_unlock_bh(&priv->status_completion_lock);
/* Send command for getting status */
ret = kraken3_write_expanded(priv, z53_get_status_cmd, Z53_GET_STATUS_CMD_LENGTH);
if (ret < 0)
goto unlock_and_return;
/* Wait for completion from kraken3_raw_event() */
ret = wait_for_completion_interruptible_timeout(&priv->status_report_processed,
msecs_to_jiffies(STATUS_VALIDITY));
if (ret == 0)
ret = -ETIMEDOUT;
unlock_and_return:
mutex_unlock(&priv->z53_status_request_lock);
if (ret < 0)
return ret;
return 0;
}
static int kraken3_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel,
long *val)
{
struct kraken3_data *priv = dev_get_drvdata(dev);
int ret;
if (time_after(jiffies, priv->updated + msecs_to_jiffies(STATUS_VALIDITY))) {
if (priv->kind == X53)
ret = kraken3_read_x53(priv);
else
ret = kraken3_read_z53(priv);
if (ret < 0)
return ret;
if (priv->is_device_faulty)
return -ENODATA;
}
switch (type) {
case hwmon_temp:
*val = priv->temp_input[channel];
break;
case hwmon_fan:
*val = priv->fan_input[channel];
break;
case hwmon_pwm:
switch (attr) {
case hwmon_pwm_enable:
*val = priv->channel_info[channel].mode;
break;
case hwmon_pwm_input:
*val = priv->channel_info[channel].reported_duty;
break;
default:
return -EOPNOTSUPP;
}
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int kraken3_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr,
int channel, const char **str)
{
switch (type) {
case hwmon_temp:
*str = kraken3_temp_label[channel];
break;
case hwmon_fan:
*str = kraken3_fan_label[channel];
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
/* Writes custom curve to device */
static int kraken3_write_curve(struct kraken3_data *priv, u8 *curve_array, int channel)
{
u8 fixed_duty_cmd[SET_CURVE_DUTY_CMD_LENGTH];
int ret;
/* Copy command header */
memcpy(fixed_duty_cmd, set_pump_duty_cmd_header, SET_CURVE_DUTY_CMD_HEADER_LENGTH);
/* Set the correct ID for writing pump/fan duty (0x01 or 0x02, respectively) */
fixed_duty_cmd[SET_DUTY_ID_OFFSET] = channel + 1;
/* Copy curve to command */
memcpy(fixed_duty_cmd + SET_CURVE_DUTY_CMD_HEADER_LENGTH, curve_array, CUSTOM_CURVE_POINTS);
ret = kraken3_write_expanded(priv, fixed_duty_cmd, SET_CURVE_DUTY_CMD_LENGTH);
return ret;
}
static int kraken3_write_fixed_duty(struct kraken3_data *priv, long val, int channel)
{
u8 fixed_curve_points[CUSTOM_CURVE_POINTS];
int ret, percent_val, i;
percent_val = kraken3_pwm_to_percent(val, channel);
if (percent_val < 0)
return percent_val;
/*
* The devices can only control the duty through a curve.
* Since we're setting a fixed duty here, fill the whole curve
* (ranging from 20C to 59C) with the same duty, except for
* the last point, the critical temperature, where it's maxed
* out for safety.
*/
/* Fill the custom curve with the fixed value we're setting */
for (i = 0; i < CUSTOM_CURVE_POINTS - 1; i++)
fixed_curve_points[i] = percent_val;
/* Force duty to 100% at critical temp */
fixed_curve_points[CUSTOM_CURVE_POINTS - 1] = 100;
/* Write the fixed duty curve to the device */
ret = kraken3_write_curve(priv, fixed_curve_points, channel);
return ret;
}
static int kraken3_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel,
long val)
{
struct kraken3_data *priv = dev_get_drvdata(dev);
int ret;
switch (type) {
case hwmon_pwm:
switch (attr) {
case hwmon_pwm_input:
/* Remember the last set fixed duty for channel */
priv->channel_info[channel].fixed_duty = val;
if (priv->channel_info[channel].mode == manual) {
ret = kraken3_write_fixed_duty(priv, val, channel);
if (ret < 0)
return ret;
/*
* Lock onto this value and report it until next interrupt status
* report is received, so userspace tools can continue to work.
*/
priv->channel_info[channel].reported_duty = val;
}
break;
case hwmon_pwm_enable:
if (val < 0 || val > 2)
return -EINVAL;
switch (val) {
case 0:
/* Set channel to 100%, direct duty value */
ret = kraken3_write_fixed_duty(priv, 255, channel);
if (ret < 0)
return ret;
/* We don't control anything anymore */
priv->channel_info[channel].mode = off;
break;
case 1:
/* Apply the last known direct duty value */
ret =
kraken3_write_fixed_duty(priv,
priv->channel_info[channel].fixed_duty,
channel);
if (ret < 0)
return ret;
priv->channel_info[channel].mode = manual;
break;
case 2:
/* Apply the curve and note as enabled */
ret =
kraken3_write_curve(priv,
priv->channel_info[channel].pwm_points,
channel);
if (ret < 0)
return ret;
priv->channel_info[channel].mode = curve;
break;
default:
break;
}
break;
default:
return -EOPNOTSUPP;
}
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static ssize_t kraken3_fan_curve_pwm_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *dev_attr = to_sensor_dev_attr_2(attr);
struct kraken3_data *priv = dev_get_drvdata(dev);
long val;
int ret;
if (kstrtol(buf, 10, &val) < 0)
return -EINVAL;
val = kraken3_pwm_to_percent(val, dev_attr->nr);
if (val < 0)
return val;
priv->channel_info[dev_attr->nr].pwm_points[dev_attr->index] = val;
if (priv->channel_info[dev_attr->nr].mode == curve) {
/* Apply the curve */
ret =
kraken3_write_curve(priv,
priv->channel_info[dev_attr->nr].pwm_points, dev_attr->nr);
if (ret < 0)
return ret;
}
return count;
}
static umode_t kraken3_curve_props_are_visible(struct kobject *kobj, struct attribute *attr,
int index)
{
struct device *dev = kobj_to_dev(kobj);
struct kraken3_data *priv = dev_get_drvdata(dev);
/* Only Z53 has the fan curve */
if (index >= CUSTOM_CURVE_POINTS && priv->kind != Z53)
return 0;
return attr->mode;
}
/* Custom pump curve from 20C to 59C (critical temp) */
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point1_pwm, kraken3_fan_curve_pwm, 0, 0);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point2_pwm, kraken3_fan_curve_pwm, 0, 1);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point3_pwm, kraken3_fan_curve_pwm, 0, 2);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point4_pwm, kraken3_fan_curve_pwm, 0, 3);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point5_pwm, kraken3_fan_curve_pwm, 0, 4);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point6_pwm, kraken3_fan_curve_pwm, 0, 5);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point7_pwm, kraken3_fan_curve_pwm, 0, 6);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point8_pwm, kraken3_fan_curve_pwm, 0, 7);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point9_pwm, kraken3_fan_curve_pwm, 0, 8);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point10_pwm, kraken3_fan_curve_pwm, 0, 9);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point11_pwm, kraken3_fan_curve_pwm, 0, 10);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point12_pwm, kraken3_fan_curve_pwm, 0, 11);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point13_pwm, kraken3_fan_curve_pwm, 0, 12);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point14_pwm, kraken3_fan_curve_pwm, 0, 13);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point15_pwm, kraken3_fan_curve_pwm, 0, 14);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point16_pwm, kraken3_fan_curve_pwm, 0, 15);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point17_pwm, kraken3_fan_curve_pwm, 0, 16);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point18_pwm, kraken3_fan_curve_pwm, 0, 17);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point19_pwm, kraken3_fan_curve_pwm, 0, 18);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point20_pwm, kraken3_fan_curve_pwm, 0, 19);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point21_pwm, kraken3_fan_curve_pwm, 0, 20);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point22_pwm, kraken3_fan_curve_pwm, 0, 21);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point23_pwm, kraken3_fan_curve_pwm, 0, 22);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point24_pwm, kraken3_fan_curve_pwm, 0, 23);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point25_pwm, kraken3_fan_curve_pwm, 0, 24);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point26_pwm, kraken3_fan_curve_pwm, 0, 25);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point27_pwm, kraken3_fan_curve_pwm, 0, 26);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point28_pwm, kraken3_fan_curve_pwm, 0, 27);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point29_pwm, kraken3_fan_curve_pwm, 0, 28);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point30_pwm, kraken3_fan_curve_pwm, 0, 29);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point31_pwm, kraken3_fan_curve_pwm, 0, 30);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point32_pwm, kraken3_fan_curve_pwm, 0, 31);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point33_pwm, kraken3_fan_curve_pwm, 0, 32);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point34_pwm, kraken3_fan_curve_pwm, 0, 33);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point35_pwm, kraken3_fan_curve_pwm, 0, 34);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point36_pwm, kraken3_fan_curve_pwm, 0, 35);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point37_pwm, kraken3_fan_curve_pwm, 0, 36);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point38_pwm, kraken3_fan_curve_pwm, 0, 37);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point39_pwm, kraken3_fan_curve_pwm, 0, 38);
static SENSOR_DEVICE_ATTR_2_WO(temp1_auto_point40_pwm, kraken3_fan_curve_pwm, 0, 39);
/* Custom fan curve from 20C to 59C (critical temp) */
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point1_pwm, kraken3_fan_curve_pwm, 1, 0);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point2_pwm, kraken3_fan_curve_pwm, 1, 1);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point3_pwm, kraken3_fan_curve_pwm, 1, 2);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point4_pwm, kraken3_fan_curve_pwm, 1, 3);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point5_pwm, kraken3_fan_curve_pwm, 1, 4);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point6_pwm, kraken3_fan_curve_pwm, 1, 5);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point7_pwm, kraken3_fan_curve_pwm, 1, 6);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point8_pwm, kraken3_fan_curve_pwm, 1, 7);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point9_pwm, kraken3_fan_curve_pwm, 1, 8);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point10_pwm, kraken3_fan_curve_pwm, 1, 9);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point11_pwm, kraken3_fan_curve_pwm, 1, 10);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point12_pwm, kraken3_fan_curve_pwm, 1, 11);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point13_pwm, kraken3_fan_curve_pwm, 1, 12);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point14_pwm, kraken3_fan_curve_pwm, 1, 13);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point15_pwm, kraken3_fan_curve_pwm, 1, 14);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point16_pwm, kraken3_fan_curve_pwm, 1, 15);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point17_pwm, kraken3_fan_curve_pwm, 1, 16);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point18_pwm, kraken3_fan_curve_pwm, 1, 17);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point19_pwm, kraken3_fan_curve_pwm, 1, 18);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point20_pwm, kraken3_fan_curve_pwm, 1, 19);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point21_pwm, kraken3_fan_curve_pwm, 1, 20);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point22_pwm, kraken3_fan_curve_pwm, 1, 21);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point23_pwm, kraken3_fan_curve_pwm, 1, 22);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point24_pwm, kraken3_fan_curve_pwm, 1, 23);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point25_pwm, kraken3_fan_curve_pwm, 1, 24);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point26_pwm, kraken3_fan_curve_pwm, 1, 25);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point27_pwm, kraken3_fan_curve_pwm, 1, 26);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point28_pwm, kraken3_fan_curve_pwm, 1, 27);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point29_pwm, kraken3_fan_curve_pwm, 1, 28);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point30_pwm, kraken3_fan_curve_pwm, 1, 29);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point31_pwm, kraken3_fan_curve_pwm, 1, 30);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point32_pwm, kraken3_fan_curve_pwm, 1, 31);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point33_pwm, kraken3_fan_curve_pwm, 1, 32);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point34_pwm, kraken3_fan_curve_pwm, 1, 33);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point35_pwm, kraken3_fan_curve_pwm, 1, 34);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point36_pwm, kraken3_fan_curve_pwm, 1, 35);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point37_pwm, kraken3_fan_curve_pwm, 1, 36);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point38_pwm, kraken3_fan_curve_pwm, 1, 37);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point39_pwm, kraken3_fan_curve_pwm, 1, 38);
static SENSOR_DEVICE_ATTR_2_WO(temp2_auto_point40_pwm, kraken3_fan_curve_pwm, 1, 39);
static struct attribute *kraken3_curve_attrs[] = {
/* Pump control curve */
&sensor_dev_attr_temp1_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point3_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point4_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point5_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point6_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point7_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point8_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point9_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point10_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point11_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point12_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point13_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point14_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point15_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point16_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point17_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point18_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point19_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point20_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point21_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point22_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point23_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point24_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point25_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point26_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point27_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point28_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point29_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point30_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point31_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point32_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point33_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point34_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point35_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point36_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point37_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point38_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point39_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point40_pwm.dev_attr.attr,
/* Fan control curve (Z53 only) */
&sensor_dev_attr_temp2_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point3_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point4_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point5_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point6_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point7_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point8_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point9_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point10_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point11_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point12_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point13_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point14_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point15_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point16_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point17_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point18_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point19_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point20_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point21_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point22_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point23_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point24_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point25_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point26_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point27_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point28_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point29_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point30_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point31_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point32_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point33_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point34_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point35_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point36_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point37_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point38_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point39_pwm.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point40_pwm.dev_attr.attr,
NULL
};
static const struct attribute_group kraken3_curves_group = {
.attrs = kraken3_curve_attrs,
.is_visible = kraken3_curve_props_are_visible
};
static const struct attribute_group *kraken3_groups[] = {
&kraken3_curves_group,
NULL
};
static const struct hwmon_ops kraken3_hwmon_ops = {
.is_visible = kraken3_is_visible,
.read = kraken3_read,
.read_string = kraken3_read_string,
.write = kraken3_write
};
static const struct hwmon_channel_info *kraken3_info[] = {
HWMON_CHANNEL_INFO(temp,
HWMON_T_INPUT | HWMON_T_LABEL),
HWMON_CHANNEL_INFO(fan,
HWMON_F_INPUT | HWMON_F_LABEL,
HWMON_F_INPUT | HWMON_F_LABEL,
HWMON_F_INPUT | HWMON_F_LABEL,
HWMON_F_INPUT | HWMON_F_LABEL),
HWMON_CHANNEL_INFO(pwm,
HWMON_PWM_INPUT | HWMON_PWM_ENABLE,
HWMON_PWM_INPUT | HWMON_PWM_ENABLE),
NULL
};
static const struct hwmon_chip_info kraken3_chip_info = {
.ops = &kraken3_hwmon_ops,
.info = kraken3_info,
};
static int kraken3_raw_event(struct hid_device *hdev, struct hid_report *report, u8 *data, int size)
{
struct kraken3_data *priv = hid_get_drvdata(hdev);
int i;
if (size < MIN_REPORT_LENGTH)
return 0;
if (report->id == FIRMWARE_REPORT_ID) {
/* Read firmware version */
for (i = 0; i < 3; i++)
priv->firmware_version[i] = data[FIRMWARE_VERSION_OFFSET + i];
if (!completion_done(&priv->fw_version_processed))
complete_all(&priv->fw_version_processed);
return 0;
}
if (report->id != STATUS_REPORT_ID)
return 0;
if (data[TEMP_SENSOR_START_OFFSET] == 0xff && data[TEMP_SENSOR_END_OFFSET] == 0xff) {
hid_err_once(hdev,
"firmware or device is possibly damaged (is SATA power connected?), not parsing reports\n");
/*
* Mark first X-series device report as received,
* as well as all for Z-series, if faulty.
*/
spin_lock(&priv->status_completion_lock);
if (priv->kind != X53 || !completion_done(&priv->status_report_processed)) {
priv->is_device_faulty = true;
complete_all(&priv->status_report_processed);
}
spin_unlock(&priv->status_completion_lock);
return 0;
}
/* Received normal data */
priv->is_device_faulty = false;
/* Temperature and fan sensor readings */
priv->temp_input[0] =
data[TEMP_SENSOR_START_OFFSET] * 1000 + data[TEMP_SENSOR_END_OFFSET] * 100;
priv->fan_input[0] = get_unaligned_le16(data + PUMP_SPEED_OFFSET);
priv->channel_info[0].reported_duty = kraken3_percent_to_pwm(data[PUMP_DUTY_OFFSET]);
spin_lock(&priv->status_completion_lock);
if (priv->kind == X53 && !completion_done(&priv->status_report_processed)) {
/* Mark first X-series device report as received */
complete_all(&priv->status_report_processed);
} else if (priv->kind == Z53) {
/* Additional readings for Z53 */
priv->fan_input[1] = get_unaligned_le16(data + Z53_FAN_SPEED_OFFSET);
priv->channel_info[1].reported_duty =
kraken3_percent_to_pwm(data[Z53_FAN_DUTY_OFFSET]);
if (!completion_done(&priv->status_report_processed))
complete_all(&priv->status_report_processed);
}
spin_unlock(&priv->status_completion_lock);
priv->updated = jiffies;
return 0;
}
static int kraken3_init_device(struct hid_device *hdev)
{
struct kraken3_data *priv = hid_get_drvdata(hdev);
int ret;
/* Set the polling interval */
ret = kraken3_write_expanded(priv, set_interval_cmd, SET_INTERVAL_CMD_LENGTH);
if (ret < 0)
return ret;
/* Finalize the init process */
ret = kraken3_write_expanded(priv, finish_init_cmd, FINISH_INIT_CMD_LENGTH);
if (ret < 0)
return ret;
return 0;
}
static int kraken3_get_fw_ver(struct hid_device *hdev)
{
struct kraken3_data *priv = hid_get_drvdata(hdev);
int ret;
ret = kraken3_write_expanded(priv, get_fw_version_cmd, GET_FW_VERSION_CMD_LENGTH);
if (ret < 0)
return ret;
ret = wait_for_completion_interruptible_timeout(&priv->fw_version_processed,
msecs_to_jiffies(STATUS_VALIDITY));
if (ret == 0)
return -ETIMEDOUT;
else if (ret < 0)
return ret;
return 0;
}
static int __maybe_unused kraken3_reset_resume(struct hid_device *hdev)
{
int ret;
ret = kraken3_init_device(hdev);
if (ret)
hid_err(hdev, "req init (reset_resume) failed with %d\n", ret);
return ret;
}
static int firmware_version_show(struct seq_file *seqf, void *unused)
{
struct kraken3_data *priv = seqf->private;
seq_printf(seqf, "%u.%u.%u\n", priv->firmware_version[0], priv->firmware_version[1],
priv->firmware_version[2]);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(firmware_version);
static void kraken3_debugfs_init(struct kraken3_data *priv)
{
char name[64];
if (!priv->firmware_version[0])
return; /* Nothing to display in debugfs */
scnprintf(name, sizeof(name), "%s_%s-%s", DRIVER_NAME, kraken3_device_names[priv->kind],
dev_name(&priv->hdev->dev));
priv->debugfs = debugfs_create_dir(name, NULL);
debugfs_create_file("firmware_version", 0444, priv->debugfs, priv, &firmware_version_fops);
}
static int kraken3_probe(struct hid_device *hdev, const struct hid_device_id *id)
{
struct kraken3_data *priv;
int ret;
priv = devm_kzalloc(&hdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->hdev = hdev;
hid_set_drvdata(hdev, priv);
/*
* Initialize ->updated to STATUS_VALIDITY seconds in the past, making
* the initial empty data invalid for kraken3_read without the need for
* a special case there.
*/
priv->updated = jiffies - msecs_to_jiffies(STATUS_VALIDITY);
ret = hid_parse(hdev);
if (ret) {
hid_err(hdev, "hid parse failed with %d\n", ret);
return ret;
}
/* Enable hidraw so existing user-space tools can continue to work */
ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW);
if (ret) {
hid_err(hdev, "hid hw start failed with %d\n", ret);
return ret;
}
ret = hid_hw_open(hdev);
if (ret) {
hid_err(hdev, "hid hw open failed with %d\n", ret);
goto fail_and_stop;
}
switch (hdev->product) {
case USB_PRODUCT_ID_X53:
case USB_PRODUCT_ID_X53_SECOND:
priv->kind = X53;
break;
case USB_PRODUCT_ID_Z53:
priv->kind = Z53;
break;
default:
break;
}
priv->buffer = devm_kzalloc(&hdev->dev, MAX_REPORT_LENGTH, GFP_KERNEL);
if (!priv->buffer) {
ret = -ENOMEM;
goto fail_and_close;
}
mutex_init(&priv->buffer_lock);
mutex_init(&priv->z53_status_request_lock);
init_completion(&priv->fw_version_processed);
init_completion(&priv->status_report_processed);
spin_lock_init(&priv->status_completion_lock);
hid_device_io_start(hdev);
ret = kraken3_init_device(hdev);
if (ret < 0) {
hid_err(hdev, "device init failed with %d\n", ret);
goto fail_and_close;
}
ret = kraken3_get_fw_ver(hdev);
if (ret < 0)
hid_warn(hdev, "fw version request failed with %d\n", ret);
priv->hwmon_dev = hwmon_device_register_with_info(&hdev->dev,
kraken3_device_names[priv->kind], priv,
&kraken3_chip_info, kraken3_groups);
if (IS_ERR(priv->hwmon_dev)) {
ret = PTR_ERR(priv->hwmon_dev);
hid_err(hdev, "hwmon registration failed with %d\n", ret);
goto fail_and_close;
}
kraken3_debugfs_init(priv);
return 0;
fail_and_close:
hid_hw_close(hdev);
fail_and_stop:
hid_hw_stop(hdev);
return ret;
}
static void kraken3_remove(struct hid_device *hdev)
{
struct kraken3_data *priv = hid_get_drvdata(hdev);
debugfs_remove_recursive(priv->debugfs);
hwmon_device_unregister(priv->hwmon_dev);
hid_hw_close(hdev);
hid_hw_stop(hdev);
}
static const struct hid_device_id kraken3_table[] = {
/* NZXT Kraken X53/X63/X73 have two possible product IDs */
{ HID_USB_DEVICE(USB_VENDOR_ID_NZXT, USB_PRODUCT_ID_X53) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NZXT, USB_PRODUCT_ID_X53_SECOND) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NZXT, USB_PRODUCT_ID_Z53) },
{ }
};
MODULE_DEVICE_TABLE(hid, kraken3_table);
static struct hid_driver kraken3_driver = {
.name = DRIVER_NAME,
.id_table = kraken3_table,
.probe = kraken3_probe,
.remove = kraken3_remove,
.raw_event = kraken3_raw_event,
#ifdef CONFIG_PM
.reset_resume = kraken3_reset_resume,
#endif
};
static int __init kraken3_init(void)
{
return hid_register_driver(&kraken3_driver);
}
static void __exit kraken3_exit(void)
{
hid_unregister_driver(&kraken3_driver);
}
/* When compiled into the kernel, initialize after the HID bus */
late_initcall(kraken3_init);
module_exit(kraken3_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Jonas Malaco <jonas@protocubo.io>");
MODULE_AUTHOR("Aleksa Savic <savicaleksa83@gmail.com>");
MODULE_DESCRIPTION("Hwmon driver for NZXT Kraken X53/X63/X73, Z53/Z63/Z73 coolers");