mirror of
https://github.com/torvalds/linux.git
synced 2024-12-05 02:23:16 +00:00
74c3cbe33b
New kind of audit rule predicates: "object is visible in given subtree". The part that can be sanely implemented, that is. Limitations: * if you have hardlink from outside of tree, you'd better watch it too (or just watch the object itself, obviously) * if you mount something under a watched tree, tell audit that new chunk should be added to watched subtrees * if you umount something in a watched tree and it's still mounted elsewhere, you will get matches on events happening there. New command tells audit to recalculate the trees, trimming such sources of false positives. Note that it's _not_ about path - if something mounted in several places (multiple mount, bindings, different namespaces, etc.), the match does _not_ depend on which one we are using for access. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
1474 lines
38 KiB
C
1474 lines
38 KiB
C
/* audit.c -- Auditing support
|
|
* Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
|
|
* System-call specific features have moved to auditsc.c
|
|
*
|
|
* Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* Written by Rickard E. (Rik) Faith <faith@redhat.com>
|
|
*
|
|
* Goals: 1) Integrate fully with SELinux.
|
|
* 2) Minimal run-time overhead:
|
|
* a) Minimal when syscall auditing is disabled (audit_enable=0).
|
|
* b) Small when syscall auditing is enabled and no audit record
|
|
* is generated (defer as much work as possible to record
|
|
* generation time):
|
|
* i) context is allocated,
|
|
* ii) names from getname are stored without a copy, and
|
|
* iii) inode information stored from path_lookup.
|
|
* 3) Ability to disable syscall auditing at boot time (audit=0).
|
|
* 4) Usable by other parts of the kernel (if audit_log* is called,
|
|
* then a syscall record will be generated automatically for the
|
|
* current syscall).
|
|
* 5) Netlink interface to user-space.
|
|
* 6) Support low-overhead kernel-based filtering to minimize the
|
|
* information that must be passed to user-space.
|
|
*
|
|
* Example user-space utilities: http://people.redhat.com/sgrubb/audit/
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <asm/types.h>
|
|
#include <asm/atomic.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/err.h>
|
|
#include <linux/kthread.h>
|
|
|
|
#include <linux/audit.h>
|
|
|
|
#include <net/sock.h>
|
|
#include <net/netlink.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/netlink.h>
|
|
#include <linux/selinux.h>
|
|
#include <linux/inotify.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/tty.h>
|
|
|
|
#include "audit.h"
|
|
|
|
/* No auditing will take place until audit_initialized != 0.
|
|
* (Initialization happens after skb_init is called.) */
|
|
static int audit_initialized;
|
|
|
|
/* 0 - no auditing
|
|
* 1 - auditing enabled
|
|
* 2 - auditing enabled and configuration is locked/unchangeable. */
|
|
int audit_enabled;
|
|
|
|
/* Default state when kernel boots without any parameters. */
|
|
static int audit_default;
|
|
|
|
/* If auditing cannot proceed, audit_failure selects what happens. */
|
|
static int audit_failure = AUDIT_FAIL_PRINTK;
|
|
|
|
/* If audit records are to be written to the netlink socket, audit_pid
|
|
* contains the (non-zero) pid. */
|
|
int audit_pid;
|
|
|
|
/* If audit_rate_limit is non-zero, limit the rate of sending audit records
|
|
* to that number per second. This prevents DoS attacks, but results in
|
|
* audit records being dropped. */
|
|
static int audit_rate_limit;
|
|
|
|
/* Number of outstanding audit_buffers allowed. */
|
|
static int audit_backlog_limit = 64;
|
|
static int audit_backlog_wait_time = 60 * HZ;
|
|
static int audit_backlog_wait_overflow = 0;
|
|
|
|
/* The identity of the user shutting down the audit system. */
|
|
uid_t audit_sig_uid = -1;
|
|
pid_t audit_sig_pid = -1;
|
|
u32 audit_sig_sid = 0;
|
|
|
|
/* Records can be lost in several ways:
|
|
0) [suppressed in audit_alloc]
|
|
1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
|
|
2) out of memory in audit_log_move [alloc_skb]
|
|
3) suppressed due to audit_rate_limit
|
|
4) suppressed due to audit_backlog_limit
|
|
*/
|
|
static atomic_t audit_lost = ATOMIC_INIT(0);
|
|
|
|
/* The netlink socket. */
|
|
static struct sock *audit_sock;
|
|
|
|
/* Inotify handle. */
|
|
struct inotify_handle *audit_ih;
|
|
|
|
/* Hash for inode-based rules */
|
|
struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
|
|
|
|
/* The audit_freelist is a list of pre-allocated audit buffers (if more
|
|
* than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
|
|
* being placed on the freelist). */
|
|
static DEFINE_SPINLOCK(audit_freelist_lock);
|
|
static int audit_freelist_count;
|
|
static LIST_HEAD(audit_freelist);
|
|
|
|
static struct sk_buff_head audit_skb_queue;
|
|
static struct task_struct *kauditd_task;
|
|
static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
|
|
static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
|
|
|
|
/* Serialize requests from userspace. */
|
|
static DEFINE_MUTEX(audit_cmd_mutex);
|
|
|
|
/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
|
|
* audit records. Since printk uses a 1024 byte buffer, this buffer
|
|
* should be at least that large. */
|
|
#define AUDIT_BUFSIZ 1024
|
|
|
|
/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
|
|
* audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
|
|
#define AUDIT_MAXFREE (2*NR_CPUS)
|
|
|
|
/* The audit_buffer is used when formatting an audit record. The caller
|
|
* locks briefly to get the record off the freelist or to allocate the
|
|
* buffer, and locks briefly to send the buffer to the netlink layer or
|
|
* to place it on a transmit queue. Multiple audit_buffers can be in
|
|
* use simultaneously. */
|
|
struct audit_buffer {
|
|
struct list_head list;
|
|
struct sk_buff *skb; /* formatted skb ready to send */
|
|
struct audit_context *ctx; /* NULL or associated context */
|
|
gfp_t gfp_mask;
|
|
};
|
|
|
|
static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
|
|
{
|
|
struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
|
|
nlh->nlmsg_pid = pid;
|
|
}
|
|
|
|
void audit_panic(const char *message)
|
|
{
|
|
switch (audit_failure)
|
|
{
|
|
case AUDIT_FAIL_SILENT:
|
|
break;
|
|
case AUDIT_FAIL_PRINTK:
|
|
printk(KERN_ERR "audit: %s\n", message);
|
|
break;
|
|
case AUDIT_FAIL_PANIC:
|
|
panic("audit: %s\n", message);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline int audit_rate_check(void)
|
|
{
|
|
static unsigned long last_check = 0;
|
|
static int messages = 0;
|
|
static DEFINE_SPINLOCK(lock);
|
|
unsigned long flags;
|
|
unsigned long now;
|
|
unsigned long elapsed;
|
|
int retval = 0;
|
|
|
|
if (!audit_rate_limit) return 1;
|
|
|
|
spin_lock_irqsave(&lock, flags);
|
|
if (++messages < audit_rate_limit) {
|
|
retval = 1;
|
|
} else {
|
|
now = jiffies;
|
|
elapsed = now - last_check;
|
|
if (elapsed > HZ) {
|
|
last_check = now;
|
|
messages = 0;
|
|
retval = 1;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* audit_log_lost - conditionally log lost audit message event
|
|
* @message: the message stating reason for lost audit message
|
|
*
|
|
* Emit at least 1 message per second, even if audit_rate_check is
|
|
* throttling.
|
|
* Always increment the lost messages counter.
|
|
*/
|
|
void audit_log_lost(const char *message)
|
|
{
|
|
static unsigned long last_msg = 0;
|
|
static DEFINE_SPINLOCK(lock);
|
|
unsigned long flags;
|
|
unsigned long now;
|
|
int print;
|
|
|
|
atomic_inc(&audit_lost);
|
|
|
|
print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
|
|
|
|
if (!print) {
|
|
spin_lock_irqsave(&lock, flags);
|
|
now = jiffies;
|
|
if (now - last_msg > HZ) {
|
|
print = 1;
|
|
last_msg = now;
|
|
}
|
|
spin_unlock_irqrestore(&lock, flags);
|
|
}
|
|
|
|
if (print) {
|
|
printk(KERN_WARNING
|
|
"audit: audit_lost=%d audit_rate_limit=%d audit_backlog_limit=%d\n",
|
|
atomic_read(&audit_lost),
|
|
audit_rate_limit,
|
|
audit_backlog_limit);
|
|
audit_panic(message);
|
|
}
|
|
}
|
|
|
|
static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sid)
|
|
{
|
|
int res, rc = 0, old = audit_rate_limit;
|
|
|
|
/* check if we are locked */
|
|
if (audit_enabled == 2)
|
|
res = 0;
|
|
else
|
|
res = 1;
|
|
|
|
if (sid) {
|
|
char *ctx = NULL;
|
|
u32 len;
|
|
if ((rc = selinux_sid_to_string(sid, &ctx, &len)) == 0) {
|
|
audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
|
|
"audit_rate_limit=%d old=%d by auid=%u"
|
|
" subj=%s res=%d",
|
|
limit, old, loginuid, ctx, res);
|
|
kfree(ctx);
|
|
} else
|
|
res = 0; /* Something weird, deny request */
|
|
}
|
|
audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
|
|
"audit_rate_limit=%d old=%d by auid=%u res=%d",
|
|
limit, old, loginuid, res);
|
|
|
|
/* If we are allowed, make the change */
|
|
if (res == 1)
|
|
audit_rate_limit = limit;
|
|
/* Not allowed, update reason */
|
|
else if (rc == 0)
|
|
rc = -EPERM;
|
|
return rc;
|
|
}
|
|
|
|
static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sid)
|
|
{
|
|
int res, rc = 0, old = audit_backlog_limit;
|
|
|
|
/* check if we are locked */
|
|
if (audit_enabled == 2)
|
|
res = 0;
|
|
else
|
|
res = 1;
|
|
|
|
if (sid) {
|
|
char *ctx = NULL;
|
|
u32 len;
|
|
if ((rc = selinux_sid_to_string(sid, &ctx, &len)) == 0) {
|
|
audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
|
|
"audit_backlog_limit=%d old=%d by auid=%u"
|
|
" subj=%s res=%d",
|
|
limit, old, loginuid, ctx, res);
|
|
kfree(ctx);
|
|
} else
|
|
res = 0; /* Something weird, deny request */
|
|
}
|
|
audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
|
|
"audit_backlog_limit=%d old=%d by auid=%u res=%d",
|
|
limit, old, loginuid, res);
|
|
|
|
/* If we are allowed, make the change */
|
|
if (res == 1)
|
|
audit_backlog_limit = limit;
|
|
/* Not allowed, update reason */
|
|
else if (rc == 0)
|
|
rc = -EPERM;
|
|
return rc;
|
|
}
|
|
|
|
static int audit_set_enabled(int state, uid_t loginuid, u32 sid)
|
|
{
|
|
int res, rc = 0, old = audit_enabled;
|
|
|
|
if (state < 0 || state > 2)
|
|
return -EINVAL;
|
|
|
|
/* check if we are locked */
|
|
if (audit_enabled == 2)
|
|
res = 0;
|
|
else
|
|
res = 1;
|
|
|
|
if (sid) {
|
|
char *ctx = NULL;
|
|
u32 len;
|
|
if ((rc = selinux_sid_to_string(sid, &ctx, &len)) == 0) {
|
|
audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
|
|
"audit_enabled=%d old=%d by auid=%u"
|
|
" subj=%s res=%d",
|
|
state, old, loginuid, ctx, res);
|
|
kfree(ctx);
|
|
} else
|
|
res = 0; /* Something weird, deny request */
|
|
}
|
|
audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
|
|
"audit_enabled=%d old=%d by auid=%u res=%d",
|
|
state, old, loginuid, res);
|
|
|
|
/* If we are allowed, make the change */
|
|
if (res == 1)
|
|
audit_enabled = state;
|
|
/* Not allowed, update reason */
|
|
else if (rc == 0)
|
|
rc = -EPERM;
|
|
return rc;
|
|
}
|
|
|
|
static int audit_set_failure(int state, uid_t loginuid, u32 sid)
|
|
{
|
|
int res, rc = 0, old = audit_failure;
|
|
|
|
if (state != AUDIT_FAIL_SILENT
|
|
&& state != AUDIT_FAIL_PRINTK
|
|
&& state != AUDIT_FAIL_PANIC)
|
|
return -EINVAL;
|
|
|
|
/* check if we are locked */
|
|
if (audit_enabled == 2)
|
|
res = 0;
|
|
else
|
|
res = 1;
|
|
|
|
if (sid) {
|
|
char *ctx = NULL;
|
|
u32 len;
|
|
if ((rc = selinux_sid_to_string(sid, &ctx, &len)) == 0) {
|
|
audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
|
|
"audit_failure=%d old=%d by auid=%u"
|
|
" subj=%s res=%d",
|
|
state, old, loginuid, ctx, res);
|
|
kfree(ctx);
|
|
} else
|
|
res = 0; /* Something weird, deny request */
|
|
}
|
|
audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
|
|
"audit_failure=%d old=%d by auid=%u res=%d",
|
|
state, old, loginuid, res);
|
|
|
|
/* If we are allowed, make the change */
|
|
if (res == 1)
|
|
audit_failure = state;
|
|
/* Not allowed, update reason */
|
|
else if (rc == 0)
|
|
rc = -EPERM;
|
|
return rc;
|
|
}
|
|
|
|
static int kauditd_thread(void *dummy)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
set_freezable();
|
|
while (!kthread_should_stop()) {
|
|
skb = skb_dequeue(&audit_skb_queue);
|
|
wake_up(&audit_backlog_wait);
|
|
if (skb) {
|
|
if (audit_pid) {
|
|
int err = netlink_unicast(audit_sock, skb, audit_pid, 0);
|
|
if (err < 0) {
|
|
BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */
|
|
printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
|
|
audit_pid = 0;
|
|
}
|
|
} else {
|
|
printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0));
|
|
kfree_skb(skb);
|
|
}
|
|
} else {
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
add_wait_queue(&kauditd_wait, &wait);
|
|
|
|
if (!skb_queue_len(&audit_skb_queue)) {
|
|
try_to_freeze();
|
|
schedule();
|
|
}
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
remove_wait_queue(&kauditd_wait, &wait);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int audit_prepare_user_tty(pid_t pid, uid_t loginuid)
|
|
{
|
|
struct task_struct *tsk;
|
|
int err;
|
|
|
|
read_lock(&tasklist_lock);
|
|
tsk = find_task_by_pid(pid);
|
|
err = -ESRCH;
|
|
if (!tsk)
|
|
goto out;
|
|
err = 0;
|
|
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
if (!tsk->signal->audit_tty)
|
|
err = -EPERM;
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
if (err)
|
|
goto out;
|
|
|
|
tty_audit_push_task(tsk, loginuid);
|
|
out:
|
|
read_unlock(&tasklist_lock);
|
|
return err;
|
|
}
|
|
|
|
int audit_send_list(void *_dest)
|
|
{
|
|
struct audit_netlink_list *dest = _dest;
|
|
int pid = dest->pid;
|
|
struct sk_buff *skb;
|
|
|
|
/* wait for parent to finish and send an ACK */
|
|
mutex_lock(&audit_cmd_mutex);
|
|
mutex_unlock(&audit_cmd_mutex);
|
|
|
|
while ((skb = __skb_dequeue(&dest->q)) != NULL)
|
|
netlink_unicast(audit_sock, skb, pid, 0);
|
|
|
|
kfree(dest);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_AUDIT_TREE
|
|
static int prune_tree_thread(void *unused)
|
|
{
|
|
mutex_lock(&audit_cmd_mutex);
|
|
audit_prune_trees();
|
|
mutex_unlock(&audit_cmd_mutex);
|
|
return 0;
|
|
}
|
|
|
|
void audit_schedule_prune(void)
|
|
{
|
|
kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
|
|
}
|
|
#endif
|
|
|
|
struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
|
|
int multi, void *payload, int size)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct nlmsghdr *nlh;
|
|
int len = NLMSG_SPACE(size);
|
|
void *data;
|
|
int flags = multi ? NLM_F_MULTI : 0;
|
|
int t = done ? NLMSG_DONE : type;
|
|
|
|
skb = alloc_skb(len, GFP_KERNEL);
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
nlh = NLMSG_PUT(skb, pid, seq, t, size);
|
|
nlh->nlmsg_flags = flags;
|
|
data = NLMSG_DATA(nlh);
|
|
memcpy(data, payload, size);
|
|
return skb;
|
|
|
|
nlmsg_failure: /* Used by NLMSG_PUT */
|
|
if (skb)
|
|
kfree_skb(skb);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* audit_send_reply - send an audit reply message via netlink
|
|
* @pid: process id to send reply to
|
|
* @seq: sequence number
|
|
* @type: audit message type
|
|
* @done: done (last) flag
|
|
* @multi: multi-part message flag
|
|
* @payload: payload data
|
|
* @size: payload size
|
|
*
|
|
* Allocates an skb, builds the netlink message, and sends it to the pid.
|
|
* No failure notifications.
|
|
*/
|
|
void audit_send_reply(int pid, int seq, int type, int done, int multi,
|
|
void *payload, int size)
|
|
{
|
|
struct sk_buff *skb;
|
|
skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
|
|
if (!skb)
|
|
return;
|
|
/* Ignore failure. It'll only happen if the sender goes away,
|
|
because our timeout is set to infinite. */
|
|
netlink_unicast(audit_sock, skb, pid, 0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Check for appropriate CAP_AUDIT_ capabilities on incoming audit
|
|
* control messages.
|
|
*/
|
|
static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
|
|
{
|
|
int err = 0;
|
|
|
|
switch (msg_type) {
|
|
case AUDIT_GET:
|
|
case AUDIT_LIST:
|
|
case AUDIT_LIST_RULES:
|
|
case AUDIT_SET:
|
|
case AUDIT_ADD:
|
|
case AUDIT_ADD_RULE:
|
|
case AUDIT_DEL:
|
|
case AUDIT_DEL_RULE:
|
|
case AUDIT_SIGNAL_INFO:
|
|
case AUDIT_TTY_GET:
|
|
case AUDIT_TTY_SET:
|
|
case AUDIT_TRIM:
|
|
case AUDIT_MAKE_EQUIV:
|
|
if (security_netlink_recv(skb, CAP_AUDIT_CONTROL))
|
|
err = -EPERM;
|
|
break;
|
|
case AUDIT_USER:
|
|
case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
|
|
case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
|
|
if (security_netlink_recv(skb, CAP_AUDIT_WRITE))
|
|
err = -EPERM;
|
|
break;
|
|
default: /* bad msg */
|
|
err = -EINVAL;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
|
|
{
|
|
u32 uid, pid, seq, sid;
|
|
void *data;
|
|
struct audit_status *status_get, status_set;
|
|
int err;
|
|
struct audit_buffer *ab;
|
|
u16 msg_type = nlh->nlmsg_type;
|
|
uid_t loginuid; /* loginuid of sender */
|
|
struct audit_sig_info *sig_data;
|
|
char *ctx;
|
|
u32 len;
|
|
|
|
err = audit_netlink_ok(skb, msg_type);
|
|
if (err)
|
|
return err;
|
|
|
|
/* As soon as there's any sign of userspace auditd,
|
|
* start kauditd to talk to it */
|
|
if (!kauditd_task)
|
|
kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
|
|
if (IS_ERR(kauditd_task)) {
|
|
err = PTR_ERR(kauditd_task);
|
|
kauditd_task = NULL;
|
|
return err;
|
|
}
|
|
|
|
pid = NETLINK_CREDS(skb)->pid;
|
|
uid = NETLINK_CREDS(skb)->uid;
|
|
loginuid = NETLINK_CB(skb).loginuid;
|
|
sid = NETLINK_CB(skb).sid;
|
|
seq = nlh->nlmsg_seq;
|
|
data = NLMSG_DATA(nlh);
|
|
|
|
switch (msg_type) {
|
|
case AUDIT_GET:
|
|
status_set.enabled = audit_enabled;
|
|
status_set.failure = audit_failure;
|
|
status_set.pid = audit_pid;
|
|
status_set.rate_limit = audit_rate_limit;
|
|
status_set.backlog_limit = audit_backlog_limit;
|
|
status_set.lost = atomic_read(&audit_lost);
|
|
status_set.backlog = skb_queue_len(&audit_skb_queue);
|
|
audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
|
|
&status_set, sizeof(status_set));
|
|
break;
|
|
case AUDIT_SET:
|
|
if (nlh->nlmsg_len < sizeof(struct audit_status))
|
|
return -EINVAL;
|
|
status_get = (struct audit_status *)data;
|
|
if (status_get->mask & AUDIT_STATUS_ENABLED) {
|
|
err = audit_set_enabled(status_get->enabled,
|
|
loginuid, sid);
|
|
if (err < 0) return err;
|
|
}
|
|
if (status_get->mask & AUDIT_STATUS_FAILURE) {
|
|
err = audit_set_failure(status_get->failure,
|
|
loginuid, sid);
|
|
if (err < 0) return err;
|
|
}
|
|
if (status_get->mask & AUDIT_STATUS_PID) {
|
|
int old = audit_pid;
|
|
if (sid) {
|
|
if ((err = selinux_sid_to_string(
|
|
sid, &ctx, &len)))
|
|
return err;
|
|
else
|
|
audit_log(NULL, GFP_KERNEL,
|
|
AUDIT_CONFIG_CHANGE,
|
|
"audit_pid=%d old=%d by auid=%u subj=%s",
|
|
status_get->pid, old,
|
|
loginuid, ctx);
|
|
kfree(ctx);
|
|
} else
|
|
audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
|
|
"audit_pid=%d old=%d by auid=%u",
|
|
status_get->pid, old, loginuid);
|
|
audit_pid = status_get->pid;
|
|
}
|
|
if (status_get->mask & AUDIT_STATUS_RATE_LIMIT)
|
|
err = audit_set_rate_limit(status_get->rate_limit,
|
|
loginuid, sid);
|
|
if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
|
|
err = audit_set_backlog_limit(status_get->backlog_limit,
|
|
loginuid, sid);
|
|
break;
|
|
case AUDIT_USER:
|
|
case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
|
|
case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
|
|
if (!audit_enabled && msg_type != AUDIT_USER_AVC)
|
|
return 0;
|
|
|
|
err = audit_filter_user(&NETLINK_CB(skb), msg_type);
|
|
if (err == 1) {
|
|
err = 0;
|
|
if (msg_type == AUDIT_USER_TTY) {
|
|
err = audit_prepare_user_tty(pid, loginuid);
|
|
if (err)
|
|
break;
|
|
}
|
|
ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
|
|
if (ab) {
|
|
audit_log_format(ab,
|
|
"user pid=%d uid=%u auid=%u",
|
|
pid, uid, loginuid);
|
|
if (sid) {
|
|
if (selinux_sid_to_string(
|
|
sid, &ctx, &len)) {
|
|
audit_log_format(ab,
|
|
" ssid=%u", sid);
|
|
/* Maybe call audit_panic? */
|
|
} else
|
|
audit_log_format(ab,
|
|
" subj=%s", ctx);
|
|
kfree(ctx);
|
|
}
|
|
if (msg_type != AUDIT_USER_TTY)
|
|
audit_log_format(ab, " msg='%.1024s'",
|
|
(char *)data);
|
|
else {
|
|
int size;
|
|
|
|
audit_log_format(ab, " msg=");
|
|
size = nlmsg_len(nlh);
|
|
audit_log_n_untrustedstring(ab, size,
|
|
data);
|
|
}
|
|
audit_set_pid(ab, pid);
|
|
audit_log_end(ab);
|
|
}
|
|
}
|
|
break;
|
|
case AUDIT_ADD:
|
|
case AUDIT_DEL:
|
|
if (nlmsg_len(nlh) < sizeof(struct audit_rule))
|
|
return -EINVAL;
|
|
if (audit_enabled == 2) {
|
|
ab = audit_log_start(NULL, GFP_KERNEL,
|
|
AUDIT_CONFIG_CHANGE);
|
|
if (ab) {
|
|
audit_log_format(ab,
|
|
"pid=%d uid=%u auid=%u",
|
|
pid, uid, loginuid);
|
|
if (sid) {
|
|
if (selinux_sid_to_string(
|
|
sid, &ctx, &len)) {
|
|
audit_log_format(ab,
|
|
" ssid=%u", sid);
|
|
/* Maybe call audit_panic? */
|
|
} else
|
|
audit_log_format(ab,
|
|
" subj=%s", ctx);
|
|
kfree(ctx);
|
|
}
|
|
audit_log_format(ab, " audit_enabled=%d res=0",
|
|
audit_enabled);
|
|
audit_log_end(ab);
|
|
}
|
|
return -EPERM;
|
|
}
|
|
/* fallthrough */
|
|
case AUDIT_LIST:
|
|
err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
|
|
uid, seq, data, nlmsg_len(nlh),
|
|
loginuid, sid);
|
|
break;
|
|
case AUDIT_ADD_RULE:
|
|
case AUDIT_DEL_RULE:
|
|
if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
|
|
return -EINVAL;
|
|
if (audit_enabled == 2) {
|
|
ab = audit_log_start(NULL, GFP_KERNEL,
|
|
AUDIT_CONFIG_CHANGE);
|
|
if (ab) {
|
|
audit_log_format(ab,
|
|
"pid=%d uid=%u auid=%u",
|
|
pid, uid, loginuid);
|
|
if (sid) {
|
|
if (selinux_sid_to_string(
|
|
sid, &ctx, &len)) {
|
|
audit_log_format(ab,
|
|
" ssid=%u", sid);
|
|
/* Maybe call audit_panic? */
|
|
} else
|
|
audit_log_format(ab,
|
|
" subj=%s", ctx);
|
|
kfree(ctx);
|
|
}
|
|
audit_log_format(ab, " audit_enabled=%d res=0",
|
|
audit_enabled);
|
|
audit_log_end(ab);
|
|
}
|
|
return -EPERM;
|
|
}
|
|
/* fallthrough */
|
|
case AUDIT_LIST_RULES:
|
|
err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
|
|
uid, seq, data, nlmsg_len(nlh),
|
|
loginuid, sid);
|
|
break;
|
|
case AUDIT_TRIM:
|
|
audit_trim_trees();
|
|
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
|
|
if (!ab)
|
|
break;
|
|
audit_log_format(ab, "auid=%u", loginuid);
|
|
if (sid) {
|
|
u32 len;
|
|
ctx = NULL;
|
|
if (selinux_sid_to_string(sid, &ctx, &len))
|
|
audit_log_format(ab, " ssid=%u", sid);
|
|
else
|
|
audit_log_format(ab, " subj=%s", ctx);
|
|
kfree(ctx);
|
|
}
|
|
audit_log_format(ab, " op=trim res=1");
|
|
audit_log_end(ab);
|
|
break;
|
|
case AUDIT_MAKE_EQUIV: {
|
|
void *bufp = data;
|
|
u32 sizes[2];
|
|
size_t len = nlmsg_len(nlh);
|
|
char *old, *new;
|
|
|
|
err = -EINVAL;
|
|
if (len < 2 * sizeof(u32))
|
|
break;
|
|
memcpy(sizes, bufp, 2 * sizeof(u32));
|
|
bufp += 2 * sizeof(u32);
|
|
len -= 2 * sizeof(u32);
|
|
old = audit_unpack_string(&bufp, &len, sizes[0]);
|
|
if (IS_ERR(old)) {
|
|
err = PTR_ERR(old);
|
|
break;
|
|
}
|
|
new = audit_unpack_string(&bufp, &len, sizes[1]);
|
|
if (IS_ERR(new)) {
|
|
err = PTR_ERR(new);
|
|
kfree(old);
|
|
break;
|
|
}
|
|
/* OK, here comes... */
|
|
err = audit_tag_tree(old, new);
|
|
|
|
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
|
|
if (!ab) {
|
|
kfree(old);
|
|
kfree(new);
|
|
break;
|
|
}
|
|
audit_log_format(ab, "auid=%u", loginuid);
|
|
if (sid) {
|
|
u32 len;
|
|
ctx = NULL;
|
|
if (selinux_sid_to_string(sid, &ctx, &len))
|
|
audit_log_format(ab, " ssid=%u", sid);
|
|
else
|
|
audit_log_format(ab, " subj=%s", ctx);
|
|
kfree(ctx);
|
|
}
|
|
audit_log_format(ab, " op=make_equiv old=");
|
|
audit_log_untrustedstring(ab, old);
|
|
audit_log_format(ab, " new=");
|
|
audit_log_untrustedstring(ab, new);
|
|
audit_log_format(ab, " res=%d", !err);
|
|
audit_log_end(ab);
|
|
kfree(old);
|
|
kfree(new);
|
|
break;
|
|
}
|
|
case AUDIT_SIGNAL_INFO:
|
|
err = selinux_sid_to_string(audit_sig_sid, &ctx, &len);
|
|
if (err)
|
|
return err;
|
|
sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
|
|
if (!sig_data) {
|
|
kfree(ctx);
|
|
return -ENOMEM;
|
|
}
|
|
sig_data->uid = audit_sig_uid;
|
|
sig_data->pid = audit_sig_pid;
|
|
memcpy(sig_data->ctx, ctx, len);
|
|
kfree(ctx);
|
|
audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
|
|
0, 0, sig_data, sizeof(*sig_data) + len);
|
|
kfree(sig_data);
|
|
break;
|
|
case AUDIT_TTY_GET: {
|
|
struct audit_tty_status s;
|
|
struct task_struct *tsk;
|
|
|
|
read_lock(&tasklist_lock);
|
|
tsk = find_task_by_pid(pid);
|
|
if (!tsk)
|
|
err = -ESRCH;
|
|
else {
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
s.enabled = tsk->signal->audit_tty != 0;
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0,
|
|
&s, sizeof(s));
|
|
break;
|
|
}
|
|
case AUDIT_TTY_SET: {
|
|
struct audit_tty_status *s;
|
|
struct task_struct *tsk;
|
|
|
|
if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
|
|
return -EINVAL;
|
|
s = data;
|
|
if (s->enabled != 0 && s->enabled != 1)
|
|
return -EINVAL;
|
|
read_lock(&tasklist_lock);
|
|
tsk = find_task_by_pid(pid);
|
|
if (!tsk)
|
|
err = -ESRCH;
|
|
else {
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
tsk->signal->audit_tty = s->enabled != 0;
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
break;
|
|
}
|
|
default:
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return err < 0 ? err : 0;
|
|
}
|
|
|
|
/*
|
|
* Get message from skb (based on rtnetlink_rcv_skb). Each message is
|
|
* processed by audit_receive_msg. Malformed skbs with wrong length are
|
|
* discarded silently.
|
|
*/
|
|
static void audit_receive_skb(struct sk_buff *skb)
|
|
{
|
|
int err;
|
|
struct nlmsghdr *nlh;
|
|
u32 rlen;
|
|
|
|
while (skb->len >= NLMSG_SPACE(0)) {
|
|
nlh = nlmsg_hdr(skb);
|
|
if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len)
|
|
return;
|
|
rlen = NLMSG_ALIGN(nlh->nlmsg_len);
|
|
if (rlen > skb->len)
|
|
rlen = skb->len;
|
|
if ((err = audit_receive_msg(skb, nlh))) {
|
|
netlink_ack(skb, nlh, err);
|
|
} else if (nlh->nlmsg_flags & NLM_F_ACK)
|
|
netlink_ack(skb, nlh, 0);
|
|
skb_pull(skb, rlen);
|
|
}
|
|
}
|
|
|
|
/* Receive messages from netlink socket. */
|
|
static void audit_receive(struct sk_buff *skb)
|
|
{
|
|
mutex_lock(&audit_cmd_mutex);
|
|
audit_receive_skb(skb);
|
|
mutex_unlock(&audit_cmd_mutex);
|
|
}
|
|
|
|
#ifdef CONFIG_AUDITSYSCALL
|
|
static const struct inotify_operations audit_inotify_ops = {
|
|
.handle_event = audit_handle_ievent,
|
|
.destroy_watch = audit_free_parent,
|
|
};
|
|
#endif
|
|
|
|
/* Initialize audit support at boot time. */
|
|
static int __init audit_init(void)
|
|
{
|
|
int i;
|
|
|
|
printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
|
|
audit_default ? "enabled" : "disabled");
|
|
audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0,
|
|
audit_receive, NULL, THIS_MODULE);
|
|
if (!audit_sock)
|
|
audit_panic("cannot initialize netlink socket");
|
|
else
|
|
audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
|
|
|
|
skb_queue_head_init(&audit_skb_queue);
|
|
audit_initialized = 1;
|
|
audit_enabled = audit_default;
|
|
|
|
/* Register the callback with selinux. This callback will be invoked
|
|
* when a new policy is loaded. */
|
|
selinux_audit_set_callback(&selinux_audit_rule_update);
|
|
|
|
audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
|
|
|
|
#ifdef CONFIG_AUDITSYSCALL
|
|
audit_ih = inotify_init(&audit_inotify_ops);
|
|
if (IS_ERR(audit_ih))
|
|
audit_panic("cannot initialize inotify handle");
|
|
#endif
|
|
|
|
for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
|
|
INIT_LIST_HEAD(&audit_inode_hash[i]);
|
|
|
|
return 0;
|
|
}
|
|
__initcall(audit_init);
|
|
|
|
/* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
|
|
static int __init audit_enable(char *str)
|
|
{
|
|
audit_default = !!simple_strtol(str, NULL, 0);
|
|
printk(KERN_INFO "audit: %s%s\n",
|
|
audit_default ? "enabled" : "disabled",
|
|
audit_initialized ? "" : " (after initialization)");
|
|
if (audit_initialized)
|
|
audit_enabled = audit_default;
|
|
return 1;
|
|
}
|
|
|
|
__setup("audit=", audit_enable);
|
|
|
|
static void audit_buffer_free(struct audit_buffer *ab)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!ab)
|
|
return;
|
|
|
|
if (ab->skb)
|
|
kfree_skb(ab->skb);
|
|
|
|
spin_lock_irqsave(&audit_freelist_lock, flags);
|
|
if (audit_freelist_count > AUDIT_MAXFREE)
|
|
kfree(ab);
|
|
else {
|
|
audit_freelist_count++;
|
|
list_add(&ab->list, &audit_freelist);
|
|
}
|
|
spin_unlock_irqrestore(&audit_freelist_lock, flags);
|
|
}
|
|
|
|
static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
|
|
gfp_t gfp_mask, int type)
|
|
{
|
|
unsigned long flags;
|
|
struct audit_buffer *ab = NULL;
|
|
struct nlmsghdr *nlh;
|
|
|
|
spin_lock_irqsave(&audit_freelist_lock, flags);
|
|
if (!list_empty(&audit_freelist)) {
|
|
ab = list_entry(audit_freelist.next,
|
|
struct audit_buffer, list);
|
|
list_del(&ab->list);
|
|
--audit_freelist_count;
|
|
}
|
|
spin_unlock_irqrestore(&audit_freelist_lock, flags);
|
|
|
|
if (!ab) {
|
|
ab = kmalloc(sizeof(*ab), gfp_mask);
|
|
if (!ab)
|
|
goto err;
|
|
}
|
|
|
|
ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask);
|
|
if (!ab->skb)
|
|
goto err;
|
|
|
|
ab->ctx = ctx;
|
|
ab->gfp_mask = gfp_mask;
|
|
nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0));
|
|
nlh->nlmsg_type = type;
|
|
nlh->nlmsg_flags = 0;
|
|
nlh->nlmsg_pid = 0;
|
|
nlh->nlmsg_seq = 0;
|
|
return ab;
|
|
err:
|
|
audit_buffer_free(ab);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* audit_serial - compute a serial number for the audit record
|
|
*
|
|
* Compute a serial number for the audit record. Audit records are
|
|
* written to user-space as soon as they are generated, so a complete
|
|
* audit record may be written in several pieces. The timestamp of the
|
|
* record and this serial number are used by the user-space tools to
|
|
* determine which pieces belong to the same audit record. The
|
|
* (timestamp,serial) tuple is unique for each syscall and is live from
|
|
* syscall entry to syscall exit.
|
|
*
|
|
* NOTE: Another possibility is to store the formatted records off the
|
|
* audit context (for those records that have a context), and emit them
|
|
* all at syscall exit. However, this could delay the reporting of
|
|
* significant errors until syscall exit (or never, if the system
|
|
* halts).
|
|
*/
|
|
unsigned int audit_serial(void)
|
|
{
|
|
static DEFINE_SPINLOCK(serial_lock);
|
|
static unsigned int serial = 0;
|
|
|
|
unsigned long flags;
|
|
unsigned int ret;
|
|
|
|
spin_lock_irqsave(&serial_lock, flags);
|
|
do {
|
|
ret = ++serial;
|
|
} while (unlikely(!ret));
|
|
spin_unlock_irqrestore(&serial_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void audit_get_stamp(struct audit_context *ctx,
|
|
struct timespec *t, unsigned int *serial)
|
|
{
|
|
if (ctx)
|
|
auditsc_get_stamp(ctx, t, serial);
|
|
else {
|
|
*t = CURRENT_TIME;
|
|
*serial = audit_serial();
|
|
}
|
|
}
|
|
|
|
/* Obtain an audit buffer. This routine does locking to obtain the
|
|
* audit buffer, but then no locking is required for calls to
|
|
* audit_log_*format. If the tsk is a task that is currently in a
|
|
* syscall, then the syscall is marked as auditable and an audit record
|
|
* will be written at syscall exit. If there is no associated task, tsk
|
|
* should be NULL. */
|
|
|
|
/**
|
|
* audit_log_start - obtain an audit buffer
|
|
* @ctx: audit_context (may be NULL)
|
|
* @gfp_mask: type of allocation
|
|
* @type: audit message type
|
|
*
|
|
* Returns audit_buffer pointer on success or NULL on error.
|
|
*
|
|
* Obtain an audit buffer. This routine does locking to obtain the
|
|
* audit buffer, but then no locking is required for calls to
|
|
* audit_log_*format. If the task (ctx) is a task that is currently in a
|
|
* syscall, then the syscall is marked as auditable and an audit record
|
|
* will be written at syscall exit. If there is no associated task, then
|
|
* task context (ctx) should be NULL.
|
|
*/
|
|
struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
|
|
int type)
|
|
{
|
|
struct audit_buffer *ab = NULL;
|
|
struct timespec t;
|
|
unsigned int serial;
|
|
int reserve;
|
|
unsigned long timeout_start = jiffies;
|
|
|
|
if (!audit_initialized)
|
|
return NULL;
|
|
|
|
if (unlikely(audit_filter_type(type)))
|
|
return NULL;
|
|
|
|
if (gfp_mask & __GFP_WAIT)
|
|
reserve = 0;
|
|
else
|
|
reserve = 5; /* Allow atomic callers to go up to five
|
|
entries over the normal backlog limit */
|
|
|
|
while (audit_backlog_limit
|
|
&& skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
|
|
if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
|
|
&& time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
|
|
|
|
/* Wait for auditd to drain the queue a little */
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
add_wait_queue(&audit_backlog_wait, &wait);
|
|
|
|
if (audit_backlog_limit &&
|
|
skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
|
|
schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
remove_wait_queue(&audit_backlog_wait, &wait);
|
|
continue;
|
|
}
|
|
if (audit_rate_check())
|
|
printk(KERN_WARNING
|
|
"audit: audit_backlog=%d > "
|
|
"audit_backlog_limit=%d\n",
|
|
skb_queue_len(&audit_skb_queue),
|
|
audit_backlog_limit);
|
|
audit_log_lost("backlog limit exceeded");
|
|
audit_backlog_wait_time = audit_backlog_wait_overflow;
|
|
wake_up(&audit_backlog_wait);
|
|
return NULL;
|
|
}
|
|
|
|
ab = audit_buffer_alloc(ctx, gfp_mask, type);
|
|
if (!ab) {
|
|
audit_log_lost("out of memory in audit_log_start");
|
|
return NULL;
|
|
}
|
|
|
|
audit_get_stamp(ab->ctx, &t, &serial);
|
|
|
|
audit_log_format(ab, "audit(%lu.%03lu:%u): ",
|
|
t.tv_sec, t.tv_nsec/1000000, serial);
|
|
return ab;
|
|
}
|
|
|
|
/**
|
|
* audit_expand - expand skb in the audit buffer
|
|
* @ab: audit_buffer
|
|
* @extra: space to add at tail of the skb
|
|
*
|
|
* Returns 0 (no space) on failed expansion, or available space if
|
|
* successful.
|
|
*/
|
|
static inline int audit_expand(struct audit_buffer *ab, int extra)
|
|
{
|
|
struct sk_buff *skb = ab->skb;
|
|
int ret = pskb_expand_head(skb, skb_headroom(skb), extra,
|
|
ab->gfp_mask);
|
|
if (ret < 0) {
|
|
audit_log_lost("out of memory in audit_expand");
|
|
return 0;
|
|
}
|
|
return skb_tailroom(skb);
|
|
}
|
|
|
|
/*
|
|
* Format an audit message into the audit buffer. If there isn't enough
|
|
* room in the audit buffer, more room will be allocated and vsnprint
|
|
* will be called a second time. Currently, we assume that a printk
|
|
* can't format message larger than 1024 bytes, so we don't either.
|
|
*/
|
|
static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
|
|
va_list args)
|
|
{
|
|
int len, avail;
|
|
struct sk_buff *skb;
|
|
va_list args2;
|
|
|
|
if (!ab)
|
|
return;
|
|
|
|
BUG_ON(!ab->skb);
|
|
skb = ab->skb;
|
|
avail = skb_tailroom(skb);
|
|
if (avail == 0) {
|
|
avail = audit_expand(ab, AUDIT_BUFSIZ);
|
|
if (!avail)
|
|
goto out;
|
|
}
|
|
va_copy(args2, args);
|
|
len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
|
|
if (len >= avail) {
|
|
/* The printk buffer is 1024 bytes long, so if we get
|
|
* here and AUDIT_BUFSIZ is at least 1024, then we can
|
|
* log everything that printk could have logged. */
|
|
avail = audit_expand(ab,
|
|
max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
|
|
if (!avail)
|
|
goto out;
|
|
len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
|
|
}
|
|
if (len > 0)
|
|
skb_put(skb, len);
|
|
out:
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* audit_log_format - format a message into the audit buffer.
|
|
* @ab: audit_buffer
|
|
* @fmt: format string
|
|
* @...: optional parameters matching @fmt string
|
|
*
|
|
* All the work is done in audit_log_vformat.
|
|
*/
|
|
void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
|
|
if (!ab)
|
|
return;
|
|
va_start(args, fmt);
|
|
audit_log_vformat(ab, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
/**
|
|
* audit_log_hex - convert a buffer to hex and append it to the audit skb
|
|
* @ab: the audit_buffer
|
|
* @buf: buffer to convert to hex
|
|
* @len: length of @buf to be converted
|
|
*
|
|
* No return value; failure to expand is silently ignored.
|
|
*
|
|
* This function will take the passed buf and convert it into a string of
|
|
* ascii hex digits. The new string is placed onto the skb.
|
|
*/
|
|
void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf,
|
|
size_t len)
|
|
{
|
|
int i, avail, new_len;
|
|
unsigned char *ptr;
|
|
struct sk_buff *skb;
|
|
static const unsigned char *hex = "0123456789ABCDEF";
|
|
|
|
if (!ab)
|
|
return;
|
|
|
|
BUG_ON(!ab->skb);
|
|
skb = ab->skb;
|
|
avail = skb_tailroom(skb);
|
|
new_len = len<<1;
|
|
if (new_len >= avail) {
|
|
/* Round the buffer request up to the next multiple */
|
|
new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
|
|
avail = audit_expand(ab, new_len);
|
|
if (!avail)
|
|
return;
|
|
}
|
|
|
|
ptr = skb_tail_pointer(skb);
|
|
for (i=0; i<len; i++) {
|
|
*ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
|
|
*ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
|
|
}
|
|
*ptr = 0;
|
|
skb_put(skb, len << 1); /* new string is twice the old string */
|
|
}
|
|
|
|
/*
|
|
* Format a string of no more than slen characters into the audit buffer,
|
|
* enclosed in quote marks.
|
|
*/
|
|
static void audit_log_n_string(struct audit_buffer *ab, size_t slen,
|
|
const char *string)
|
|
{
|
|
int avail, new_len;
|
|
unsigned char *ptr;
|
|
struct sk_buff *skb;
|
|
|
|
if (!ab)
|
|
return;
|
|
|
|
BUG_ON(!ab->skb);
|
|
skb = ab->skb;
|
|
avail = skb_tailroom(skb);
|
|
new_len = slen + 3; /* enclosing quotes + null terminator */
|
|
if (new_len > avail) {
|
|
avail = audit_expand(ab, new_len);
|
|
if (!avail)
|
|
return;
|
|
}
|
|
ptr = skb_tail_pointer(skb);
|
|
*ptr++ = '"';
|
|
memcpy(ptr, string, slen);
|
|
ptr += slen;
|
|
*ptr++ = '"';
|
|
*ptr = 0;
|
|
skb_put(skb, slen + 2); /* don't include null terminator */
|
|
}
|
|
|
|
/**
|
|
* audit_log_n_untrustedstring - log a string that may contain random characters
|
|
* @ab: audit_buffer
|
|
* @len: lenth of string (not including trailing null)
|
|
* @string: string to be logged
|
|
*
|
|
* This code will escape a string that is passed to it if the string
|
|
* contains a control character, unprintable character, double quote mark,
|
|
* or a space. Unescaped strings will start and end with a double quote mark.
|
|
* Strings that are escaped are printed in hex (2 digits per char).
|
|
*
|
|
* The caller specifies the number of characters in the string to log, which may
|
|
* or may not be the entire string.
|
|
*/
|
|
const char *audit_log_n_untrustedstring(struct audit_buffer *ab, size_t len,
|
|
const char *string)
|
|
{
|
|
const unsigned char *p;
|
|
|
|
for (p = string; p < (const unsigned char *)string + len && *p; p++) {
|
|
if (*p == '"' || *p < 0x21 || *p > 0x7f) {
|
|
audit_log_hex(ab, string, len);
|
|
return string + len + 1;
|
|
}
|
|
}
|
|
audit_log_n_string(ab, len, string);
|
|
return p + 1;
|
|
}
|
|
|
|
/**
|
|
* audit_log_untrustedstring - log a string that may contain random characters
|
|
* @ab: audit_buffer
|
|
* @string: string to be logged
|
|
*
|
|
* Same as audit_log_n_untrustedstring(), except that strlen is used to
|
|
* determine string length.
|
|
*/
|
|
const char *audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
|
|
{
|
|
return audit_log_n_untrustedstring(ab, strlen(string), string);
|
|
}
|
|
|
|
/* This is a helper-function to print the escaped d_path */
|
|
void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
|
|
struct dentry *dentry, struct vfsmount *vfsmnt)
|
|
{
|
|
char *p, *path;
|
|
|
|
if (prefix)
|
|
audit_log_format(ab, " %s", prefix);
|
|
|
|
/* We will allow 11 spaces for ' (deleted)' to be appended */
|
|
path = kmalloc(PATH_MAX+11, ab->gfp_mask);
|
|
if (!path) {
|
|
audit_log_format(ab, "<no memory>");
|
|
return;
|
|
}
|
|
p = d_path(dentry, vfsmnt, path, PATH_MAX+11);
|
|
if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
|
|
/* FIXME: can we save some information here? */
|
|
audit_log_format(ab, "<too long>");
|
|
} else
|
|
audit_log_untrustedstring(ab, p);
|
|
kfree(path);
|
|
}
|
|
|
|
/**
|
|
* audit_log_end - end one audit record
|
|
* @ab: the audit_buffer
|
|
*
|
|
* The netlink_* functions cannot be called inside an irq context, so
|
|
* the audit buffer is placed on a queue and a tasklet is scheduled to
|
|
* remove them from the queue outside the irq context. May be called in
|
|
* any context.
|
|
*/
|
|
void audit_log_end(struct audit_buffer *ab)
|
|
{
|
|
if (!ab)
|
|
return;
|
|
if (!audit_rate_check()) {
|
|
audit_log_lost("rate limit exceeded");
|
|
} else {
|
|
if (audit_pid) {
|
|
struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
|
|
nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
|
|
skb_queue_tail(&audit_skb_queue, ab->skb);
|
|
ab->skb = NULL;
|
|
wake_up_interruptible(&kauditd_wait);
|
|
} else {
|
|
printk(KERN_NOTICE "%s\n", ab->skb->data + NLMSG_SPACE(0));
|
|
}
|
|
}
|
|
audit_buffer_free(ab);
|
|
}
|
|
|
|
/**
|
|
* audit_log - Log an audit record
|
|
* @ctx: audit context
|
|
* @gfp_mask: type of allocation
|
|
* @type: audit message type
|
|
* @fmt: format string to use
|
|
* @...: variable parameters matching the format string
|
|
*
|
|
* This is a convenience function that calls audit_log_start,
|
|
* audit_log_vformat, and audit_log_end. It may be called
|
|
* in any context.
|
|
*/
|
|
void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
|
|
const char *fmt, ...)
|
|
{
|
|
struct audit_buffer *ab;
|
|
va_list args;
|
|
|
|
ab = audit_log_start(ctx, gfp_mask, type);
|
|
if (ab) {
|
|
va_start(args, fmt);
|
|
audit_log_vformat(ab, fmt, args);
|
|
va_end(args);
|
|
audit_log_end(ab);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(audit_log_start);
|
|
EXPORT_SYMBOL(audit_log_end);
|
|
EXPORT_SYMBOL(audit_log_format);
|
|
EXPORT_SYMBOL(audit_log);
|